
Shortcutting Directed and
Undirected Networks with a Degree
Constraint

Richard B. Tan

Erik Jan van Leeuwen

Jan van Leeuwen

Technical Report UU-CS-2014-020

August 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Shortcutting Directed and Undirected Networks
with a Degree Constraint?

Richard B. Tan1 Erik Jan van Leeuwen2 Jan van Leeuwen3

1 Dept. of Computer Science, University of Sciences & Arts of Oklahoma
Chickasha, OK 73018, USA.

B.T.Tan@uu.nl
2 Dept. of Algorithms and Complexity, Max-Planck Institut für Informatik

D-66123 Saarbrücken, Germany.
erikjan@mpi-inf.mpg.de

3 Dept. of Information and Computing Sciences, Utrecht University
Princetonplein 5, 3584 CC Utrecht, The Netherlands.

j.vanleeuwen1@uu.nl

Abstract. Shortcutting is the operation of adding edges to a network with
the intent to decrease its diameter. We are interested in shortcutting graphs
while keeping degree increases bounded, a problem first posed by Chung and
Garey. Improving on a result of Bokhari and Raza we show that, for any
δ ≥ 1, every undirected graph G can be shortcut in linear time to a diameter
of at most O(log1+δ n) by the addition of no more than O(n/ log1+δ n) edges
and degree increases bounded by δ. The result also improves on an estimate
due to Alon et al. Degree increases can be limited to 1 at a small extra
cost. For strongly connected, bounded-degree directed graphs Flaxman and
Frieze proved that, if εn random edges are added, then the resulting graph
has diameter O(ln n) with high probability. We prove that O(n/ ln n) edges
suffice to shortcut any strongly connected directed graph to a graph with
diameter less than O(ln n) while keeping degree increases bounded by O(1)
per node. The result is proved in a stronger, parametrized form. For general
directed graphs with stability number α, we show that all distances can be
reduced to O(αdln n

α
e) by adding only 4n

ln n/α
+αφ edges and degree increases

of at most O(1) per node, with φ equal to the so-called feedback-dimension of
the graph. Finally, we prove bounds for special classes of graphs, including
e.g. graphs with Hamiltonian cycles or paths. Shortcutting with a degree
constraint is proved to be NP-complete and W [2]-hard, and is shown not to
have a polynomial-time (1− ε) ln N -approximation algorithm for any ε > 0,
unless NP ⊆ DTIME(N log log N).

Keywords: Networks, Graphs, Rooted Directed Trees, DAGs, Diameter, Com-
pression, Shortcutting, Feedback Dimension, Path Covers, Stability Number, W [2]-
hardness.

1 Introduction

Shortcutting is the operation of adding links (lines, edges) to a network with the
intent to decrease its diameter. Shortcutting networks increases their transmission
capacity and decreases network delay. Adding links to nodes in order to reduce a
network’s diameter is not free of charge, however. In many instances, the number
of links that can be added to a node is limited due to physical and even economical
constraints. Hence, in reality one may be able to add only a limited number of extra
links per network node. It is this type of constraint that we are interested in.
? Version dated August 8, 2014.

2 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Specifically, we are interested in δ-shortcutting arbitrary networks G. In this
problem we wish to shortcut a network subject to the constraint that the number
of edges added per node is bounded by a fixed integer value δ ≥ 1. We require also
that added edges only link nodes that are connected in the transitive closure of G, to
remain faithful to the structure of the network. We model networks as finite graphs
and phrase the shortcutting problem accordingly. We consider the following general
question, for both undirected and directed n-node graphs G:

what reductions in diameter and/or inter-node distances are achievable by
shortcutting G and how many extra edges are needed for it, allowing a degree
increase of at most a small fixed amount at every node.

Most prior research on the shortcutting problem has not taken any degree con-
straint into account. The general study of the shortcutting problem seems to have
been initiated by Chung and Garey [16]. In the undirected case, many studies show
how to achieve small, even constant diameters with only a linear number of addi-
tional edges, both for special graph classes and in general (see e.g. [1, 7, 9, 44]). The
problem of determining whether some number of edges suffices to achieve a non-
trivial reduction in diameter has been studied in many papers, leading e.g. to tight
bounds, NP-hardness and even W[2]-hardness results ([38, 16, 25]). Also the com-
plexity of approximating the number of edges needed to achieve a certain diameter
decrease has been studied ([17, 34, 6]). Integer LP-techniques have been applied to
it for achieving shortest paths between nodes in the expected case on certain classes
of networks ([10]). For the directed case, Thorup [42, 43] showed that all m-edge
planar digraphs can be shortcut to a poly-logarithmic diameter by the addition
of at most m extra edges, but Hesse [28] showed that this fact does not hold for
digraphs in general. Finally, a shortcut graph is a special instance of a so-called
transitive-closure spanner of the graph, which have been studied from a different
perspective (see e.g. [36]).

The shortcutting problem as we study it here, i.e. with degree constraint, seems
to have received very little attention before. Chung and Garey [16] suggested to
constrain the maximum degree of nodes in the problem, but few results seem to
have been obtained for it. The only earlier study of δ-shortcutting seems to be due
to Bokhari and Raza [8], who considered the problem for undirected graphs for the
interesting case δ = 1. In this paper we study the δ-shortcutting problem more
generally and in more detail and aim at proving sharp bounds on the reductions in
diameter or inter-node distance that can be achieved. In the sequel, when we speak
of shortcutting we will always mean δ-shortcutting.

Results We consider the shortcutting problem for the undirected and directed
cases separately. We first consider the case of undirected graphs. One fact can be
noted straight off: a graph with maximum degree ∆ ≥ 3 can have a diameter of
log∆−1 n at best, based on the Moore bound (see Section 2). Hence, when a graph
is δ-shortcut, one can hope for a diameter of about log1+δ n at best (take ∆ ≥ 2+ δ
in the above bound).

For the case δ = 1, the δ-shortcutting problem was first studied by Bokhari and
Raza [8]. They showed that any connected undirected graph can be 1-shortcut to a
diameter D with D = O(log2 n), by adding at most n edges. They also showed that
the edges needed for the shortcutting can be computed by an O(n2) algorithm. In
Section 3 we improve on this, by giving an algorithm that 1-shortcuts a graph to
a diameter D with D = O(log2 n) by adding only O(n

log2 n) edges, by means of an
O(n) algorithm.

The improved bounds are in fact an instance of a more general result. Note that
Alon et al. [1] (see also [35]) already showed that any connected undirected graph
G can be reduced to diameter D by adding at most n

bD/2c edges, without taking

Shortcutting Networks 3

Graph class Diameter] Edges Delta Thm
Undirected O(D

β) n
bD/βc n

β
D 2

O(log1+δ n) n
log1+δ n δ 3

O(δ log1+δ n) n
δ log1+δ n 1 4

Rooted directed path O(δ log1+δ n) 2n
δ log1+δ n 1 6

Rooted directed tree? O(log1+δ n) O(δn
log1+δ n) O(δ) 7

O(δ log1+δ n) n
3 log1+δ n 1 8

Rooted directed tree O(∆δdlog1+δ he log2 n) 4n
δ log1+δ log1+δ h 1 10

Directed acyclic O(δwdlog1+δ n/we) 4n
δ log1+δ n/w 1 9

Strongly connected O(log1+δ n) O(δn
log1+δ n) O(δ) 11

O(δ log1+δ n/δ) O(n
log1+δ n) 2 12

General directed O(δwc log2
1+δ n) O(δn

log1+δ nmin
) O(δ) 14

O(δαdlog1+δ
n
αe)

4n
δ log1+δ n/α + αφ 2 16

Hamiltonian directed O(log1+δ n) 4n
δ log1+δ n + 1 2 18

Table 1: Main results on shortcutting and compression. (Compression is marked by
?.) Column ‘Delta’ gives the bound on the degree increases. For notation and details,
see the theorem cited in the last column.

the degree constraint into account. We extend this result to the case where the
degree constraint is taken into account. We prove that any connected graph G can
be shortcut in linear time to a diameter O(D) by adding at most n

bD/2c edges while

keeping degree increases smaller than n
2
D (provided D ≥ 4). Reformulating this in

our notation, the result asserts that for any integer δ ≥ 1, any connected undirected
graph can be δ-shortcut to a diameter O(log1+δ n) by adding at most O(n

log1+δ n)
extra edges. The extra edges can dtermined in linear time. The degree increases
can be limited to 1 at the expense of an extra factor δ in diameter but saving a
factor δ on the number of added edges. As Alon et al. [1] proved their result to be
worst-case optimal, even for degree-3 trees, so is our degree-constrained extension
of it. We show this in Section 3.

After proving several preliminary results on δ-shortcutting rooted directed paths
and δ-compressing rooted directed trees in Sections 4 and 5, we turn to the case
of (general) directed graphs in Section 6. We first prove several useful bounds for
1-shortcutting DAGs and rooted directed trees depending on parameters like the
width of the DAG or the height of the tree, respectively. As another step towards the
general case, we consider the problem of shortcutting strongly connected digraphs.

For strongly connected digraphs, we note that Flaxman and Frieze [22] proved
for the bounded-degree case that, if εn random edges are added to the graph, then
the resulting graph has diameter O(lnn) with high probability. We show that any
strongly connected n-node digraph can be shortcut to a diameter of O(lnn), by
adding O(n

ln n) edges and degree increases bounded by 2. The bounds follow from
a more general result that can be tuned a various ways (cf. Table 1).

For general directed graphs we prove several bounds in Sections 6 and 7. In
particular, in Section 7 we show that all distances in any n-node directed graph
can be shortcut to O(α(G) · dln n

α(G)e), again by the addition of at most a sublinear
number of edges and keeping degree increases bounded by 2. Here α(G) is the
stability number of G. The result involves an interesting application of the Gallai-
Milgram theorem (see Section 2). We also show that every tournament can be
2-shortcut to diameter O(lnn), by adding at most a linear number of arcs. An
overview of the main results achieved in this paper is shown in Table 1.

4 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

In Section 8 we consider the complexity of minimal shortcutting. It is well-known
that without the degree constraint, the problem of deciding whether the addition of
a certain number of edges can reduce diameter is computationally hard. We argue
that even in a simple form, the problem with the degree constraint remains both NP-
complete and W [2]-hard. This implies that the exact number of edges to be added
to a graph in order to decrease its diameter while allowing degrees to increase only
by a given constant is likely to be hard to compute and not even fixed-parameter
tractable, with the number of extra edges as the parameter. We also prove that
shortcutting with a degree constraint is not (1− ε) ln N -approximable by means of
a polynomial-time algorithm for any ε > 0, unless NP ⊆ DTIME(N log log N). This
is discussed further in Section 8. In Section 9 we give some conclusions and mention
a few problems for further work.

2 Preliminaries

In this section we list a number of basic concepts and results that will be used in
the sequel.

2.1 Graph Theory

G = 〈V,E〉 will denote a connected undirected or directed graph with vertex set V
and edge set E. Edges will also be called arcs in the directed case. We do not allow
self-loops. We let n = |V |, and assume that n > 1 throughout. The complement of
G is the graph G = 〈V,E〉, where E is the complement of E in V × V .

The degree of a node v is the number of edges incident to v. The degree ∆ of a
graph G is the maximum of the degrees over all nodes in V . For directed graphs we
distinguish between the in-degree and the out-degree of nodes. When δ-shortcutting
a directed graph we use δin and δout to denote the increases in in- and out-degree
respectively. We let δ = max{δin, δout} in this case.

A walk in a graph G is any alternating sequence v1, e2, v2, · · · , ek, vk of nodes
and edges (arcs), for some k ≥ 1, such that for each i (2 ≤ i ≤ k), ei is incident to
both vi−1 and vi. (In the directed case this means that arc ei points from vi−1 to
vi.) In walks, it is also assumed that no edge (arc) appears more than once. A path
in G is a walk in which no vertex appears more than once.

A rooted directed path is a directed graph G = 〈V,E〉 with V = {v1, · · · , vn} and
E = {(vi, vi+1) | 1 ≤ i < n}. The sub-path from vi to vj (i < j), denoted by [vi, vj],
is called a segment of G.

A rooted tree is a tree in which one node, denoted by r, is designated as the root.
We think of a rooted tree as having its root at the ‘top’ and all its edges drawn
downward. In a rooted directed tree we assume that all edges are directed ‘away’
from the root. An ordered tree is a tree in which the subtrees at every internal node
are ordered from left to right.

The weight of a node is the number of nodes in its subtree (itself included). The
depth of a tree is the longest distance from its root to a leaf. The following fact is
known as the centroid theorem for rooted trees.

Fact 1 A rooted directed tree with n nodes and all its out-degrees ≤ 2 must contain
an internal node v such that the subtree rooted at v contains between 1

3n and 2
3n

nodes.1

1 Let T be a rooted (directed) tree with n nodes and out-degrees ≤ 2. Let u be the lowest
node in T that has weight(u) > 2

3
n. Node u exists and is unique. If dout(u) = 1, then

take v equal to the one son of u. If dout(u) = 2, then both of its subtrees have size ≤ 2
3
n.

Now take v equal to the root of the largest of the two subtrees. 2

Shortcutting Networks 5

Fact 2 A rooted directed tree with l leaves and all internal out-degrees ≥ 2 has at
most 2 · l − 2 edges.

We denote the complete undirected graph on n nodes by Kn. A tournament on
n nodes is any directed graph that can be obtained by giving a unique orientation
to each edge of Kn.

In graphs G, we write v
?→ w (v k→ w) to denote that nodes v and w are

connected by a (directed) path (of length k). The length (number of edges) of a
path π will be denoted by |π|. The distance from v to w is the length of the shortest
path from v to w. The diameter D of a graph is the maximum of the distances
in the graph, over all pairs of vertices. Thus, in the directed case, the diameter is
defined (finite) only in the case of strongly connected graphs.

For directed acyclic graphs G, the depth d(G) is the length of the longest directed
path in G.

Path Covers Let G be a directed graph. The path cover number µ(G) of G is the
smallest number of node-disjoint directed paths that cover (partition) the entire
graph.

In the case of directed acyclic graphs (DAGs), directed paths are normally called
chains. An anti-chain is any set of nodes of which no two lie on a same directed
path in G. The width w(G) of a directed acyclic graph G is the size of the largest
anti-chain in G. A decomposition of G into a number of disjoint chains is called a
chain decomposition of G. The well-known theorem of Dilworth (cf. [39], Corollary
14.2a) implies the following:

Fact 3 For any directed acyclic graph G, one has µ(G) = w(G).

For directed acyclic graphs G, both µ(G) and a smallest path cover can be
computed in polynomial time by means of standard techniques from combinatorial
optimization [39]. Any decomposition of G into w(G) chains is called a Dilworth
decomposition.

Let G be a general directed graph. A stable set in G is any set of nodes in G
that are pairwise non-adjacent. The stability number α(G) of G is defined as the size
of the largest stable set in G. The following fact follows from the Gallai-Milgram
theorem [24].

Fact 4 For any directed graph G, one has µ(G) ≤ α(G).

It is known that every strongly connected directed graph G with α(G) ≤ 2 has
a Hamiltonian path [14]. It is therefore conjectured that Fact 4 can be strengthened
to µ(G) ≤ α(G)− 1 in the case of strongly connected digraphs [4].

Both µ(G) and α(G) are NP-hard to determine, in general. However, it is known
that a path cover of at most k disjoint paths together with an independent set of k
nodes, for some k ≤ α(G), can be computed in polynomial time [11].

Moore Trees A d-tree is defined as an (undirected) rooted tree in which every
node has degree at most d. A full (or Moore) d-tree of n nodes is a d-tree with n
nodes in which all levels are filled to maximum size except possibly the lowest level.
In this case, if the leaves all appear in level k > 0, all internal nodes except possibly
those in level k − 1 have full degree d.

A full d-tree is the tightest way of packing n nodes in a degree-d graph while
minimizing diameter. This follows from the Moore bound which states that the
number of nodes n in a graph of degree d and diameter D must satisfy (cf. [15]):

n ≤ 1 + d + d(d− 1) + · · ·+ d(d− 1)D−1 = 1 +
d

d− 2
((d− 1)D − 1)

6 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Note that a full d-tree of n nodes has a depth at most logd−1 n (d ≥ 3).
A complete d-tree is a d-tree in which all levels from the root down are filled

to the maximum possible size. In a complete d-tree the root has d sons, and all
other interior nodes have d − 1 sons. Clearly, given a full d-tree T on n nodes, the
smallest extension of T to a complete d-tree will have at most dn nodes (obtained
by completing the degrees in the lowest interior level of T).

2.2 Complexity Theory

Deterministic time-complexity classes will be denoted by DTIME(f(N)), where
f(N) is a time bounding function. NP is the class of all decision problems that are
solvable in nondeterministic polynomial time. We assume that the reader is familiar
with the theory of NP-completeness [26].

An optimization problem is said to be efficiently r-approximable if there exists a
polynomial-time algorithm that computes a solution to the problem that is within a
factor r from the optimum solution. We will only use basic facts for NP-optimization
problems. For more details, see Ausiello et al. [2]. For an overview of the many
different types of efficient approximation scheme that have been distinguished and
their interrelationships, we refer to [45].

Finally, we will need some concepts from parameterized complexity theory [19].
In this theory one classifies decision problems in the so-called W -hierarchy:

FPT = W [0] ⊆ W [1] ⊆ W [2] ⊆ · · · ⊆ W [poly]

with the class of fixed-parameter tractable problems (FPT) at the base level. None
of the inclusions in the hierarchy is known to be strict. It is known, however, that
all classes are closed under standard parameterized (FPT-)reductions and that all
classes have complete problems under the implied notion of reducibility (cf. [19]).
We will use the following problem, of which the decision version is known to be
NP-complete and the parameterized version W [2]-complete (cf. [19], p. 444):

Hitting Set

Input: a finite universe U = {u1, · · · , un}, a family S of subsets S1, · · · , Sm ⊆
U , and an integer k ≥ 1.
Question: does (U,S) have a ‘hitting set’ of size at most k, i.e. does there
exist a subset H ⊆ U with |H| ≤ k such that Si ∩H 6= ∅ for i = 1, · · · ,m.

If a problem is W [t]-hard for some t ≥ 1, then the problem is not fixed-parameter
tractable unless FPT = W [0] = · · · = W [t]. In [19] it is extensively argued that
equalities like FPT = W [1] or W [1] = W [2] are very unlikely to hold, but they
remain open to date.

The following fact follows from a result of Feige [21].

Fact 5 Hitting Set is not efficiently (1−ε) ln N -approximable for any ε > 0 unless
NP ⊆ DTIME(N log log N), where N(= n + m) is the size of a problem instance.2

The complexity-theoretic status of the shortcutting problem will be considered
in Section 8.

2 Feige’s result was originally proved for Set Cover but this is equivalent to Hitting
Set (cf. [2], problem SP7, p. 426).

Shortcutting Networks 7

2.3 Inequalities

In later analyses we use an extension of Jensen’s inequality (cf. [29]) for convex and
concave functions. The extension is given in the following Lemma and seems new.

Lemma 1. Let f, g be positive real functions such that f is concave, and f
g and g

are both monotone nondecreasing. Then for any integer k ≥ 1 and any x1, · · · , xk

in the joint domain, one has

f(x1)
g(x1)

+ · · ·+ f(xk)
g(xk)

≤ 2k · f(xav)
g(xav)

where xav = 1
k (x1 + · · ·+ xk).

The Lemma follows by taking µ1 = · · · = µk = 1 in the following, more general
inequality which seems new as well.

Theorem 1. Let f, g be positive real functions such that f is concave, and f
g and g

are both monotone nondecreasing. Let µ1, · · · , µk be positive weights. Then for any
integer k ≥ 1 and any x1, · · · , xk in the joint domain, one has

µ1
f(x1)
g(x1)

+ · · ·+ µk
f(xk)
g(xk)

≤ 2Σµi ·
f(1

Σµi
(µ1x1 + · · ·+ µkxk))

g(1
Σµi

(µ1x1 + · · ·+ µkxk))

Proof. Assume w.l.o.g. that k ≥ 2, that the arguments are ordered: x1 ≤ · · · ≤ xk,
and that the xi’s are not all equal. Let xav = 1

Σµi
(µ1x1 + · · · + µkxk). Then there

must be an index t such that xi ≤ xav for all 1 ≤ i ≤ t and xj ≥ xav for t+1 ≤ j ≤ k.
Now write:

µ1
f(x1)
g(x1)

+· · ·+µk
f(xk)
g(xk)

= (µ1
f(x1)
g(x1)

+· · ·+µt
f(xt)
g(xt)

)+(µt+1
f(xt+1)
g(xt+1)

+· · ·+µk
f(xk)
g(xk)

)

By monotonicity, the first summand is bounded by

(µ1 + · · ·+ µt)
f(xav)
g(xav)

≤ Σµi ·
f(xav)
g(xav)

By Jensen’s inequality one has µ1f(x1) + · · · + µkf(xk) ≤ Σµif(xav). Thus the
second summand can be bounded by

µt+1
f(xt+1)
g(xav)

+ · · ·+ µk
f(xk)
g(xav)

≤ 1
g(xav)

(µ1f(x1) + · · ·+ µkf(xk)) ≤ Σµi ·
f(xav)
g(xav)

By combining these estimates, the theorem follows. ut

3 δ-Shortcutting Undirected Graphs

Bokhari and Raza [8] proved that one can 1-shortcut a graph and get a diameter
D with D ≤ 4 log2

n+2
3 by adding at most n edges using an O(n2)-time algorithm.

We prove a better bound and give a more efficient algorithm to compute it. In fact,
this section will be largely devoted to a more general result.

We note that Alon et al. [1] showed that the diameter of any connected undi-
rected graph can be reduced to (at most) D by adding at most n

bD/2c edges without
taking a degree constraint into account. We extend this to a result for δ-shortcutting.
We show that for any δ ≥ 1 one can shortcut a graph to a diameter of O(log1+δ n),
by adding at most O(n

log1+δ n) edges in linear time while keeping the degree increases
bounded by δ. We also show a corresponding result in which the degree increases
remain bounded by 1.

We first outline the basic construction in Subsection 3.1 and then derive the
concrete bounds in Subsection 3.2. In Subsection 3.3 we discuss the optimality of
the bounds.

8 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

3.1 Constructing clusters

We first give the general principle. Let G be an (undirected) connected graph with
n > 1 nodes and m edges, and let λ be an integer with 1 ≤ λ ≤ n − 1. Define a
λ-cluster in G to be any connected subset of at least λ+1 nodes and diameter ≤ λ.
Because n ≥ λ + 1, G will contain at least one λ-cluster.

Definition 1. A set of λ-clusters C1, · · · , Ck in G is called good if the clusters are
(node-)disjoint and any node u of G that does not belong to any of the clusters has
a distance of at most λ to at least one of them.

If C1, · · · , Ck are (node-)disjoint λ-clusters in G, then necessarily k ≤ n
λ+1 . Good

sets of λ-clusters exist, e.g. any maximal set of λ-clusters is good.

Lemma 2. A good set of disjoint λ-clusters in G can be computed in O(n + m)
time.

Proof. We first compute a rooted spanning tree S of G, which can be done in linear
time by any of several standard techniques [30]. Note that S has O(n) nodes and
edges. Now traverse S in maze-order recursively as follows: visit the root r of S,
and recursively ‘visit a sub-tree in maze order and return to r’ as long as there are
unvisited sub-trees left at r.3

Maze order traces the entire tree S, respects subtrees, and does so by traversing
every edge twice: once in a downward direction (‘away from the root’) and once
upward (‘back to the root’). It is immediate that a maze-order traversal is performed
in linear time. A key property is that consecutively visited nodes are always directly
connected. We will use the maze-order traversal to compute a maximal set of disjoint
λ-clusters in G as follows.

Assume that at the start, all nodes are colored white. We will reserve the color
blue for nodes that are part of an identified λ-cluster, and the color red for nodes
that we have to leave aside. Initialize the process by starting at the root r of S, and
tracing the maze-order until exactly λ + 1 different nodes have been visited. The
visited nodes must form a λ-cluster. We assign a unique cluster name to them and
color them blue. We now continue the traversal where we left off, possibly backing
up over any blue nodes and continuing at a white-colored son of some blue node
(unless the process is at an end).

This process is continued in principle, identifying yet another λ-cluster and col-
oring its nodes blue every time when precisely λ+1 different white nodes have been
visited in the continued maze-order traversal. However, if the traversal backs up to
a blue node r′ before completing a new cluster, an ‘exception’ occurs. Note that
the most recent segment of the traversal must have started at a white son of r′ and
thus we have effectively completed the traversal of the full corresponding subtree
at r′. We cannot merge this subtree with the λ-cluster of r′ as this might violate
the diameter constraint of the cluster. Therefore we color the nodes in this entire
subtree ‘red’, leave them aside (as they cannot form a λ-cluster by themselves in
S), and continue the traversal at r′. Note that the maze-order traversal will never
back up to a red node. The process ends when the traversal returns to the root r
of S for the last time. There will be no more white nodes left in S at that time.

Let the clustering process end with λ-clusters B1, · · · , Bl (with l ≥ 1 by the
initializing part). By design the clusters are all disjoint. We claim that it is a good
set. Clearly l ≤ n

λ+1 . Next, consider any node u that does not belong to any of the
clusters Bi (1 ≤ i ≤ l). Clearly u must have been colored red during the procedure.
Thus u must be contained in a fully red subtree, necessarily of size ≤ λ and attached
3 Maze-order differs from traditional traversal orders like ‘pre-order’ by explicitly re-

visiting a node r every time after one of its subtrees has been traversed [31].

Shortcutting Networks 9

to a blue node, i.e. to a node of one of the clusters Bi. Thus u has a distance at
most λ to at least one of the clusters. It follows that the computed set of λ-clusters
is good. The whole procedure takes only linear time. ut

Lemma 3. Let integers c, d be such that 3 ≤ c + 1 ≤ min(d, λ + 1). Then the
diameter of G can be reduced to at most

4λ− 2c + 2c logd−1

n

λ + 1

by the addition of at most n
λ+1 edges and a degree increase of at most δ = dd/(c+1)e.

Moreover, the necessary edges for it can be determined in linear time.

Proof. Let G, λ, c and d be as given. Let C1, · · · , Ck be any good set of λ-clusters in
G. For each cluster C, fix some connected subset of c + 1 nodes of C as its nucleus
N [C].

Consider the clusters C1, · · · , Ck and make them into the nodes of a full d-tree
T on k nodes. T will have at most k edges and a depth (or height) of at most
logd−1 k. We now embed this tree into graph G, by adding the k edges to G and
‘connecting’ the clusters the way they are linked in T . Note that as ‘super nodes’ in
T , each cluster is incident to precisely d ‘extra’ edges. When adding the extra edges
to G, we divide the d edges incident to each cluster C evenly over the c + 1 nodes
of its nucleus N [C]. Doing this increases the degrees of the nucleus nodes (and only
those) by at most dd/(c + 1)e.

We now estimate the effect of adding the k edges on the diameter of G. Let u, v
be two arbitrary nodes of G. Both u and v have distance at most λ to any of the
clusters, and thus are at a distance of at most 2λ− c to the nuclei of the respective
clusters. The clusters are at a distance of at most 2 logd−1 k in T and thus of at
most 2c logd−1 k in G, using that it takes at most c ‘steps’ inside every cluster (in
fact, over its nucleus) to switch from the ‘incoming’ edge to the ‘forward going’ edge
on the path.

Thus we get a diameter of at most 4λ − 2c + 2c logd−1 k. The bounds in the
Lemma follow by substituting k ≤ n

λ+1 . By Lemma 2 the clusters C1, · · · , Ck can
be determined in linear time. The embedding of the edges of T trivially follows in
the same linear time-bound. ut

3.2 Concrete Bounds

Several conclusions can be drawn from the above construction, depending on δ and
the number of extra edges we allow.

We first show how Lemma 3 allows us to extend the result for diameter reduction
as given by Alon et al. [1] in the unconstrained case. Recall that Alon et al. [1] (see
also [35]) proved that the diameter of an n-node connected undirected graph can
be reduced to (at most) D by adding at most n

bD/2c edges without taking a degree
constraint into account.

Theorem 2. Any connected graph G of n nodes can be shortcut in linear time to
a diameter of O(D

β) by the addition of at most n
bD/βc edges while keeping degree

increases smaller than n
β
D , for any (real) β, D > 0 such that D ≥ 2β.

Proof. Take c = 2, d = 1 + dn
β
D e and λ = bD

β c in Lemma 3, and recall that n > 1.
The conditions on β and D guarantee that the lemma applies, noting that always
n

β
D > 1. With this choice of parameters one obtains a diameter bounded by

4λ− 4 + 4 · log
dn

β
D e

n

λ + 1
< 4λ + 4

D

β

log2
n

λ+1

log2 n
≤ 8

D

β

10 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

and the number of extra edges remains bounded by n
bD/βc . As dn

β
D e > 1, the degree

increases remain bounded by d 1+dn
β
D e

3 e < n
β
D . ut

Theorem 2 shows clearly how the result of Alon et al. [1] is extended. By a
change of parameters one can reformulate the result as follows.

Theorem 3. Any connected graph G of n nodes can be δ-shortcut in linear time to
a diameter of O(log1+δ n) by adding at most n

log1+δ n edges, for any integer δ ≥ 1
and provided log1+δ n > 1.

Proof. Take β = 1
2 and D = log1+δ n in Theorem 2. For a direct proof, take c = 2,

d = 2 + δ and λ = dlog1+δ ne in Lemma 3. Note that (2 + δ)/3 ≤ δ. This gives the
stated bounds. ut

By a suitable choice of parameter values one can limit the degree increases in
G even to 1, at the expense of a slightly larger bound on the diameter but using
fewer extra edges. For example, take λ = 2, c = 2 and d = 3 in Lemma 3. With this
setting one obtains that any n-node graph can be 1-shortcut to a diameter D with
D ≤ 4 + 4 log2

n
3 by adding at most n/3 edges. Moreover, the shortcutting edges

can be determined in linear time. This already improves on Bokhari and Raza’s
construction, both in the number of edges needed and in time complexity. However,
one can do better still, using only a sublinear number of edges.

Theorem 4. Any connected graph G of n nodes can be 1-shortcut in linear time to
a diameter of O(δ log1+δ n) by adding at most n

δ log1+δ n edges, for any integer δ ≥ 1
and provided log1+δ n > 1.

Proof. Take c = 1+ δ, d = 2+ δ and λ = dδ log1+δ ne in Lemma 3. Note that δ < λ,
hence c + 1 ≤ min(d, λ + 1) and the lemma indeed applies. This gives the stated
bounds. ut

Note that the requirement that log1+δ n > 1, i.e. n > 1+δ, in Theorems 3 and 4
is not severe. If the requirement is not satisfied, then the diameter of G is bounded
by 1 + δ without having to add any edges at all.

Interestingly, Lemma 3 can give diameters smaller than O(log1+δ n) while still
adding only a sublinear number of edges, provided we allow degrees to increase by
more than a constant. Let γ(n) be any integer function with 2 ≤ γ(n) < log2 n.

Theorem 5. The diameter of any connected graph G of n nodes can be reduced to
O(log2 n/ log2 γ(n)) in linear time, by adding at most n · log2 γ(n)

log2 n edges and a degree
increase of at most γ(n) per node.

Proof. Let c = 2, d = 1 + γ(n), and λ = d log2 n
log2 γ(n)e. Note that λ ≥ 2. By Lemma 3

we obtain a diameter bound of

4λ− 4 + 4 log2 n/ log2 γ(n) < 8
log2 n

log2 γ(n)

while adding a number of extra edges and keeping degree increases bounded as
stated. ut

For example, take γ(n) = (log2 n)ρ for any ρ with 0 < ρ ≤ 1. It follows from The-
orem 5 that any connected graph G may be shortcut to a diameter of O(log2 n

ρ log2 log2 n)
by adding only a sublinear number of edges, while keeping degree increases bounded
by (log2 n)ρ.

Shortcutting Networks 11

3.3 Optimality

The bounds in Section 3.2 can be tuned in various ways, especially when it comes
to the constant factors. We list some cases where the bounds are best possible, in
order of magnitude.

First of all, we consider the case of a path, i.e. a connected graph with n nodes
and maximum degree 2. Chung and Garey [16] (see also [46]) proved that in order
to reduce the diameter of a path to (at most) D, the number of edges that must be
added to achieve this is approximately n

D , with no constraint on the degree increase
per node. It follows that Theorem 2 is essentially optimal here and so is Lemma 3
in this case, with the parameters used in proving the theorem.

For the general case, consider Theorem 2 or rather, the formulation of the bounds
as in Theorem 3. Note that Alon et al. [1] proved their result to be worst-case optimal
even for degree-3 trees, without the degree constraint. But then it follows that the
degree-constrained extension of the result is worst-case optimal in this case as well,
up to constant factors.

Several studies have focused on the minimum diameter achievable by adding
some specified number of edges. This problem is computationally hard, even as an
approximation problem ([18, 33, 23]). In Section 8 we comment on this for the case
in which the degree constraint is taken into account.

4 δ-Shortcutting Rooted Directed Paths

Directed graphs are even more adequate models of networks than undirected ones.
However, the δ-shortcutting problem for directed graphs appears to be considerably
more difficult. Before we can address the general problem in Section 6, we need
several auxiliary results that are of interest in their own right. In the present section
we consider the shortcutting problem for rooted directed paths. In Section 5 we
consider rooted directed trees.

4.1 Rooted Directed Paths

Let G = 〈V,E〉 with V = {v1, · · · , vn} and E = {(vi, vi+1) | 1 ≤ i < n} be a rooted
directed path. We view the nodes v1, · · · , vn as being laid out on a line from left to
right, with arcs between consecutive nodes directed from left to right.

Yao [46] (see also [7]) showed that by adding O(n) arcs one can reduce the
diameter of a directed path down to O(α(n)), where α(n) is the inverse Acker-
mann function (cf. [41]). The diameter can be reduced to O(log2 n) by adding only
O(n

log2 n) edges ([7]). However, these results do not keep degree increases constantly
bounded.

We show that one can shortcut any n-node rooted directed path to a graph with
diameter O(log2 n) by adding only O(n

log2 n) edges while degree increases remain
bounded by at most 1 per node. In fact, we prove the following, stronger result.

Theorem 6. All distances in a rooted directed path G of n nodes can be reduced
to O(δ log1+δ n), by adding at most 2n

δ log1+δ n edges and with a degree increase of at
most 1 per node, for any integer δ ≥ 1 and provided log1+δ n ≥ 1.

The proof is divided into three parts. First, we re-organize the layout of G into
a special arc structure in Subsection 4.2. The construction is related to the one in
the proof of Lemma 3 using clusters, now called ‘blocks’, but is more subtle. The
new layout is better suited for shortcutting, as explained in Subsection 4.3. The
proof that the construction achieves the stated bounds follows in Subsection 4.4.
The proof will also show that the entire construction can be done in linear time.

12 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

4.2 Constructing blocks

Let G be a rooted directed path of n nodes. Let d, λ be integers such that 3 ≤ d ≤
λ− 1. We will later see that d and λ can be chosen as desired.

We will first re-organize the linear layout of G and place its nodes into k = b n
λ+1c

blocks of size λ + 1 in a special way, as described below. We assume w.l.o.g. that
(λ + 1)|n, otherwise we restrict the construction to the highest multiple of λ + 1
nodes counted from the beginning of the path and add the remaining, up to λ nodes
separately at the end of the construction. This will not affect the bounds.

Blocks A block of λ + 1 nodes will consist of a list part and a switch part. In the
list part the nodes are connected in a directed path (‘from left to right’), in the
switch part the nodes are not directly connected to each other but are still viewed
as being laid out ‘from left to right’. We will determine later how big the list and
switch parts of a block have to be. The leftmost node of a block is called its in-node,
the rightmost one is called its out-node (see Figure 1).

Before describing the blocks further, we outline our overall plan of adding in the
arcs that connect the blocks. We symbolically make the k blocks to the ‘nodes’ of
a full d-tree T on k nodes. T itself is undirected and has depth logd−1 k. In order
to trace out all the blocks and thus all the nodes of G eventually, we follow the
consecutive steps of a maze-order traversal of T (cf. the proof of Lemma 2).

In this traversal, each block is entered by a ‘downward arc’ that leads from its
father in T to its in-node and, after traversing all its sons (at most d sons in case
of the root of T , at most d − 1 for an internal node, and 0 for a leaf), the block is
exited again over an ‘upward arc’ from the out-node back to its father.

Arc structure In order to add the arcs into the structure we are building, we
must define ‘where’ the arcs we just described begin and return, respectively, in the
father of a block in T , which is a block itself. This is where the switch part of the
blocks comes in. We design the switch part of a block such that it has just the right
number of ‘unconnected’ nodes to accommodate the arcs to and from the sons of
the block.

For a block B with s sons in T (0 ≤ s ≤ d) this design looks as follows. The
list part of B has λ + 1− s nodes beginning at its in-node, and the switch part has
s nodes of which the last one is its out-node (cf. Figure 1). When the maze-order
traversal of T reaches blocks B, the traversal proceeds in the following way:

– B is entered at its in-node,
– the traversal then traces the list part to its end,
– here the downward arc to the first son is attached and traversed,
– the block of the first son is traversed and arcs are attached in this block and its

subtree recursively,
– returning from this block, the upward arc coming in from the end-node of the

block is attached to the first node of B’s switch part and followed,
– at this and any subsequent node that is reached in the switch part of B, the

downward arc to the next son of B (if any) is attached and traversed, and the
return arc is attached to the next node in its switch part and traversed, and so
on,

– until the traversal returns from the end node of the last son of B, in which case
the traversal continues over the upward arc from this node to the father of B.

The arc structure at the root of T and at its leaves is obtained by a trivial variant
of the description above. (NB If n was not a multiple of λ + 1 to start with, we add
the final segment of n− (λ + 1)k nodes of the path that we initially left off back in,
by a special arc from the end-node of the root block.)

Shortcutting Networks 13

in out

Figure 1: Design of a block, with its list and switch parts in blue (left) and green (right)
respectively. The two red (overarching) arcs are the only shortcut arcs in the block.

Claim 1 Starting at the in-node of the root block, the traversal of the resulting arc
structure precisely traces a rooted directed path of n nodes.

Proof. All nodes in the created arc structure, except the in- and out-nodes of the
root block, have gotten precisely one incoming and one outgoing arc. Starting at
the in-node of the root block, the traversal process connects all blocks and traces
their nodes completely. This gives a rooted directed path of n nodes. ut

We identify the virtual arc structure that is obtained with G. Observe that, as
λ + 1− d ≥ 2, the list part of each block contains at least 2 nodes.

4.3 Shortcuts

So far we have only re-organized the layout of G. We now add shortcut arcs to G,
as follows.

Consider each block B in turn. Add two shortcut arcs to B, if applicable: one
arc from B’s in-node to the last node of its list part, and one from the node adjacent
to B’s in-node to its out-node (cf. Figure 1). Thus, one arc shortcuts over the list
part, and the other shortcuts over the entire block. If the list part consists of only
2 nodes, we do not add the first arc. If the list part spans the whole block, which
happens in leaf nodes, then we do not add the second arc.

Observe that the added arcs are all valid shortcut arcs, as they connect nodes
‘in the direction of the path’. Also, the added arcs increase degrees by at most 1 at
every node. (In fact, one verifies that at every node δin + δout ≤ 1.) We make two
claims about the effect of the shortcutting.

Claim 2 Consider any block B. Starting at its in-node, at the last node of its list
part, or at any node of its switch part, all nodes in the switch part of B further to
the right in the block are reached by traversing at most O(d) arcs.

Proof. Consider the different nodes in B in turn. At the in-node, one reaches the
last node of the list part in one step by means of the shortcut arc. Suppose we are
at this last node of the list part or at any node further to the right in the switch
part that is not the out-node. Call the node u. The down arc at u brings us to
the in-node of the son of B that is attached. By going to the node adjacent to the
in-node and traversing the shortcut arc from there, one reaches the out-node of this
block and can return to B by traversing the upward arc there, reaching the node
to the immediate right of u in B. (If the son at u is a leaf, we follow the shortcut
arc from the in-node straight to the out-node in this block.) This takes a total of 4
steps. Hence, all nodes further to the right in the switch part of B can be reached
in at most 4d steps. ut

14 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Claim 3 Let u, v ∈ G with u occurring before v on the path. Then the distance
from u to v in the original graph is shortcut to O(λ + d logd−1 k) in the shortcut
graph.

Proof. Let Bu and Bv be the blocks in which u and v occur, respectively. If Bu = Bv

we are done, using Claim 2 and the fact that there are at most λ + 1 nodes in each
block. Assuming Bu 6= Bv, let Blca be the (block of the) lowest common ancestor
of Bu and Bv in T .

Assume w.l.o.g. that Bu 6= Blca. Then first go ‘up’ from Bu to Blca as follows. By
traversing at most λ+4d arcs one reaches the out-node of Bu (cf. Claim 2). Following
the upward arc from this out-node one reaches the switch part of the father node
of Bu. Traversing O(d) more arcs one reaches its out-node and, continuing this
way, one eventually reaches the switch part of Blca, say in node u′. All this takes
O(d logd−1 k) steps so far.

By the linear order of the nodes along the rooted directed path from u to v, two
cases can arise:

(a) If Bv is equal to Blca, then either u′ = v or v is a node further to the right of
u′ in the switch part of Blca. By Claim 2, O(d) more arc traversals suffice to reach
v and we are done.

(b) If Bv is not equal to Blca, then Bv is located in the sub-tree of a son of
Blca. This son of Blca in question must be the son of a node v′ in the switch part
to the right of u′. Then we move from u′ to v′ in O(d) steps (cf. Claim 2) and move
from v′ down the path in T towards Bv, spending O(d) steps in each intermediate
block to switch over to the desired subtree in which the downward path continues.
Eventually Bv is reached, after at most O(d logd−1 k) steps again.

When Bv is reached we enter it at its in-node. It takes another λ + O(d) steps
to reach v in B. Adding up the bounds proves the Claim. ut

4.4 Completing the Proof

We now have all the ingredients for the proof of Theorem 6.

Proof. Set d = 2+ δ and λ = b3 + δ log1+δ nc. As we assumed that log1+δ n ≥ 1, we
have 3 ≤ d ≤ λ− 1 and the given construction applies. With at most two shortcut
arcs per block, at most 2 n

λ+1 ≤ 2 n
δ log1+δ n arcs are added in total. We observed that

all degree increases remain bounded by 1. By Claim 3, the inter-node distances in
the shortcut graph are all bounded by O(δ log1+δ n). ut

Observe that the underlying block structure and thus the shortcut arcs can be found
by a basic linear-time maze-order traversal process.

As in Section 3, the requirement that log1+δ n ≥ 1, i.e. n ≥ 1 + δ, in Theorem
6 is not severe. If the requirement is not satisfied, then the length of G is bounded
by δ without having to add any edges at all.

Corollary 1. Any rooted directed path G of n nodes can be 1-shortcut in linear time
so all distances are reduced to O(δdlog1+δ ne) by the addition of at most 2n

δ log1+δ n

edges, for any δ ≥ 1.

5 δ-Compressing Rooted Directed Trees

Besides the result for rooted directed paths we need one more auxiliary result,
namely on δ-compressing rooted directed trees. This is the problem to shortcut the
paths from the root to all other nodes of the tree only, under the usual requirements
and such that degree increases remain bounded.

Shortcutting Networks 15

δ-Compression relates to various classical issues in the theory of data structures
of reducing root-to-node and node-to-root distances in trees (cf. [32]). The problem
is different from ‘balancing’ trees by rotating subtrees, as we are not allowed to cre-
ate new nodes or change hierarchical relationships. However, the problem is related
to path compression, for which highly sublogarithmic bounds on path length can be
achieved in almost linear time [41]. However, the path collapsing rules used in these
methods typically increase node degrees severely, which we do not allow here.

We show the following key result. By varying the parameters d and λ, which
may depend on n, one can obtain all sorts of trade-offs between the compression
and the number of extra edges used for it.

Lemma 4. Let reals d, λ be such that λ ≥ 12d and d > 2. Then any n-node rooted
directed tree can be shortcut such that all root-to-node distances are reduced to at
most λ + 2 logd n by the addition of at most 12dn/λ edges and a degree increase of
at most 12d, provided n ≥ λ + 1.

Note that Lemma 4 applies to ‘general’ rooted directed trees, i.e. without any
restriction on out-degrees. The proof is long as it will be given in detail. A typical
application is obtained by taking d = 2+δ and λ = 6 log1+δ n, as shown in Theorem
7 below.

In Lemma 6 we show that the degree increases can remain strictly bounded by
1, at the expense of an extra factor of O(d) in depth. The construction is no longer
linear but still quadratic, in general.

5.1 Preliminary Remarks

If out-degrees were, for example, bounded by 2, then a version of Lemma 4 could
be proved as follows. Let G = Gr be an n-node rooted directed tree with root r and
out-degrees ≤ 2. We may assume w.l.o.g. that G is ordered. Thus, let Gr1 be the
left subtree of r and, if it exists, Gr2 the right subtree of r.

In order to compress G, we observe that by the centroid theorem for binary
trees (cf. Fact 1) there is an internal node v such the subtree Gv rooted at v has a
size between 1

3n and 2
3n. Assume w.l.o.g. that v ∈ Gr1 . Now add a shortcut edge

from r to v, and subsequently recurse on the three binary trees Gr1\Gv, Gr2 , and
Gv. It is easily seen that the process ends after O(log3 n) iterations and that G gets
compressed to depth O(log3 n), with a degree increases bounded by 1.

The depth reductions we prove in this section follow the same pattern but are
more complex for the following reasons: we do not make any assumption on out-
degrees, we want to limit the number of shortcut edges to a sublinear bound, and
we want the result to be tunable with the parameters given in Lemma 4.

The section is organized as follows. In Subsection 5.2 we give the basic idea
behind the lemma and the construction of the clusters we need. In Subsection 5.3
we give the recursive construction for compressing a rooted directed tree, observing
that degrees do not increase by more than a tunable parameter. We also prove that
the construction terminates after at most logarithmically many levels have been
created. In Subsection 5.4 we bound the number of extra edges that are used. In
Subsection 5.5 we combine all ingredients and prove the trade-off lemma. We also
show how the construction can be modified to keep all degree increases strictly
bounded by 1. Finally, we give some concrete applications of the trade-off lemma.

5.2 Basic Steps

Let G be an arbitrary rooted directed tree with n nodes. Let d, λ be (real) values
possibly depending on n such that n ≥ λ + 1, λ ≥ 12d and d > 2.

16 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Set-up We copy G to a rooted directed tree P . We implement all modifications
and shortcuts on P rather than on G, level after level, so G itself remains unaltered
for the purpose of reference. We use a simple color code. Initially all edges in P
are colored ‘green’. The edges that are untouched will remain green. The shortcut
edges that are gradually added to P are colored ‘red’. No other colors are used. In
the end we are interested in the depth of P and in the number of red edges that
were added in the process.

Labels Whenever a next level of P is constructed, nodes in this level will be labeled
A, B, C, or D by the following legend:

– A: the weight w of the node satisfies w > λ,
– B: the weight w of the node satisfies 1

6dλ ≤ w ≤ λ
– C: the weight w of the node satisfies w < 1

6dλ,
– D: an intermediate label (to be explained below).

The weights refer to the weight a node has ‘left’ in P at any stage. (NB In preceding
stages subtrees may have been removed from the node’s own subtree in P .) Once a
node is labeled, its label will not change. The root node is initialised to label A.

Levels P will be compressed by creating consecutive levels to which clusters (i.e.
subtrees) of lower nodes from the tree are ‘pulled up’. This will be done by adding
shortcut edges to them, thus effectively elevating their root to a higher level and
bringing all nodes in the subtree closer to the root. This proceeds recursively. We
will define later what clusters are selected.

In general, if the next level i of P is reached for processing (i integer), then up
to two next levels are created: a possible level i + 1

2 and a level i + 1. Level i + 1
2

consists of the roots of selected clusters that are pulled up and linked to from their
ancestor in level i by a shortcut (i.e. red) edge. (This will also pull up all nodes
inside the respective clusters, bringing them closer to the root of P .) Nodes in level
i + 1

2 will always be labeled D, to mark them special. Level i + 1 consists of the
nodes that were pulled up as sons of the selected root nodes in level i or level i+ 1

2 .
This process then continues recursively on the ‘pulled up’ subtrees in level i + 1.

The process starts at level 0, containing the root. If level i of P is reached to
be processed (i integer), the part of P up to and including this level will have been
compressed, and all nodes in it are labeled. Directed paths from the root to nodes
in this part of P all obey the hierarchical relationships given by G but benefit from
the shortcuts already created. The nodes of level i still have their ‘old’ subtrees
attached as they had them in G except that possibly lower parts (i.e. subtrees)
were already cut off from it, pulled up as clusters, and attached to a higher level in
P during the process. Nodes are assigned to next levels only explicitly in the course
of the process.

Clusters We are now ready to describe the recursive path compression process,
starting at level 0. Suppose more generally, that we are to process level i (i integer).
Note that the part below level i is still ‘uncompressed’. We begin with the first part,
the construction of clusters in the subtrees that are attached to nodes in level i.

The compressions at level i depend on a node’s label. The subtrees of B- and C-
nodes in level i do not have to be compressed further: if a path from the root reaches
any of these nodes, then any node in their subtree is reached by an additional λ
steps at most (cf. the legend for labels B and C). We therefore leave the subtrees
of B- and C-nodes untouched from here on, in particular their nodes will not be
assigned any (lower) level and thus do not participate in the further process. D-
nodes will not occur in integer levels (cf. the description of the levels), and thus we
are left with specifying what should happen at the ‘heavy’ A-nodes. If there are no
A-nodes in level i, then the construction stops with level i.

Shortcutting Networks 17

Assuming there are A-nodes v in level i, we will decompose their subtrees Pv (in
P) by means of a tree covering method due to Geary et al. [27, 20]. This method
covers the vertices of a rooted (ordered) tree by means of clusters, i.e. connected
subtrees, in such a way that any two clusters are either disjoint or only have their
root in common. Any maximal set of clusters joined at a common root in this
context will be called a pinned set of clusters.

The property we use is the following:

Lemma 5. [27] Given any integer L ≥ 2, a rooted (ordered) tree can be covered
with clusters that all have size between L and 3L, except possibly for one cluster
that contains the root which may have size less than L.

Consider any A-node v in level i. Let Pv be its subtree in P , and let nv = |Pv|
(the weight of v). Note that Pv is still unlabeled and has only green edges.

Definition 2. Let Lv = d 1
3dnv − 1e.

Because v is an A-node, we have nv > λ ≥ 12d (by assumption) and thus that
Lv ≥ 4, which is good enough for applying Lemma 5. Cover Pv by a set of clusters,
using Lv as the value of L in Lemma 5.

Claim 4 For any A-node v, the number of clusters xv in the cover satisfies d <
xv ≤ 1 + 12d. All clusters have size smaller than 1

dnv.

Proof. The number xv must be large enough so xv · 3Lv ≥ nv. It follows that
xv · 3 · d 1

3dnv − 1e ≥ nv. If xv ≤ d, then

xv · 3 · d
1
3d

nv − 1e < d · 3 · 1
3d

nv = nv

using that dβ − 1e < β for all β. This is a contradiction. Hence, xv > d.
Next observe that necessarily 1 + (xv − 1)(Lv − 1) ≤ nv, accounting for one

cluster that can possibly have size less than Lv and excluding the roots from the
other clusters. By substituting that Lv ≥ 1

3dnv − 2, it follows that

xv ≤ 1 +
nv − 1
Lv − 1

≤ 1 + 3d · nv − 1
nv − 9d

and hence, using that nv > 12d, one has xv ≤ 1 + 12d. The bound on the size of
the clusters trivially follows from the value of Lv. ut

For later reference we also observe the following bound, which relates to the
lower bound of the B-label.

Claim 5 For all A-nodes v one has Lv − 1 ≥ 1
6dλ.

Proof. For A-nodes v one has nv > λ. It follows that

Lv − 1 ≥ 1
3d

nv − 2 ≥ 1
3d

λ− 2 =
1− 6d

λ

3d
· λ

Because λ ≥ 12d by assumption, one gets Lv − 1 ≥ 1
6dλ. ut

In the next subsection we explain how the clusters are used for shortcutting the
part of the current set of subtrees of P below the A-nodes.

5.3 Compression by Shortcutting

Assume that there are A-nodes in level i. We now describe the second part of the
path compression process, the actual compression of the subtrees attached to the
A-nodes in level i.

18 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Construction By treating all A-nodes in level i as specified below, the levels i+ 1
2

and i + 1 are formed. (NB Recall that we will not touch the B- and C-nodes and
their subtrees in level i anymore. In particular, the nodes in their subtrees will not
be assigned to any further levels anymore and have basically become ‘invisible’ from
now on.)

Consider any arbitrary A-node v in level i. Assume that Pv is covered by xv−1 >
d−1 > 1 thus at least 2 clusters of size between Lv and 3Lv, and one cluster of size
at most 3Lv but possibly less than Lv and containing the root node v (cf. Claim 4
and Lemma 5). We divide these clusters into three categories and do the following,
in the given order.

I: The clusters not containing v as a root. These clusters cover the low subtrees
of Pv, in the form of (disjoint) pinned sets that are arranged following the structure
of P . Detach each of these pinned sets from Pv (by dropping the green edge between
their common root node and the father of this node). For each of the pinned sets,
do the following.

Let the clusters of the pinned set we consider have common root v′. Put v′ into
level i + 1

2 and add a red edge from v to v′. Label v′ by D.
Next we re-position the clusters pinned at v′. Consider the clusters (i.e. subtrees)

attached to v′ one at a time, and consider the sons of v′ in any such cluster. (Note
that all edges in the clusters are still green.) Put all these sons of v′, with their
respective subtrees attached, into level i + 1 (keeping them attached to v′ by the
existing green edges). Label the sons by A, B, or C according to the legend. Proceed
until all clusters attached to v′ have been dealt with.

Repeat the above for all pinned sets of clusters in this category. Note that in
this way all paths from v to nodes in these clusters get shortcut, and that we add
at most xv − 1 red edges in the process (one for every cluster).

II: The clusters of size between L and 3L that have v as a root. In this case we
proceed as above, except that we do not need to put any node in level i + 1

2 this
time. (Root v is already in level i.) For completeness, here is what we do. Consider
the pinned set of clusters of the given size bound, with common root v (if such a
set exists). Consider the clusters attached to v one at a time, and consider the sons
of v in any such cluster. Put all these sons, with their respective subtrees attached,
at level i + 1 (keeping them attached to v by the existing green edges). Label the
sons by A, B, or C, according to the legend. Proceed until all clusters attached to
v have been dealt with.

III: One cluster of size less than L and which has v as a root. This case is
handled exactly as case II above. (We list this case separately only for the later
analysis.)

The construction guarantees that δin ≤ 1 and δout ≤ xv − 1 ≤ 12d (cf. Claim
4). Red edges are only added in I, leading to nodes labeled D, in level i + 1

2 .

Claim 6 Assigned labels remain consistent with the legend.

Proof. It is clear that once a label is assigned to a node, its weight does not change
after that. ut

After level i has been dealt with as described, the compression process continues
with level i + 1. This completes the description of the recursive method. From now
on P will denote the final tree that is obtained.

Termination Observe that, in the end, P is a rooted directed tree with paths from
the root to all nodes of G, consistent with the way the path would be in G if we
would include jumps according to the red edges. Hence, these paths are shortcut in
a valid way. We show that the construction must be logarithmically bounded.

Shortcutting Networks 19

Claim 7 Let i ≥ 0 (i integer) be any level that is created in the compression process.
For any node u assigned into level i, weight(u) ≤ n/di.

Proof. By induction. The statement certainly holds for level i = 0, i.e. for the root
of P . Suppose the statement holds up to and including level i for some integer i ≥ 0,
and let u be added into level i + 1. Then u is added because it is the son of a node
that is the root of a cluster in Pv. Then by Claim 4:

weight(u) ≤ 1
d
nv ≤ n/di+1

This completes the induction. ut

An immediate consequence of Claim 7 is that the process we described termi-
nates after at most logd n integer levels have been created. Also note that in P , by
design, any path leading from the root of P downward must eventually enter a node
that is labeled B or C, possibly running on into the unmodified subtree attached to
this node. A stronger conclusion can be drawn.

Claim 8 Any path in P from the root to a node u in the tree has length at most
λ + 2 logd n.

Proof. Consider the path from the root to u. Let u0, u1, · · · , uk be the nodes of the
path on the consecutive integer levels that the path visits, with u0 the root of P .
By Claim 7 and accounting for any intermediate levels, uk is at most 2 logd n levels
deep. Now the following two cases can occur:

– uk has label A. Then at least one more integer level follows after the level
containing uk, by construction. But as uk is the last node on an integer level on
the path to u, we must either have that u = uk or that u is a D-labeled son of
uk. Thus the path to u is no longer than 1 + 2 logd n.

– uk has label B or C. Then the subtree at uk is not compressed further. We now
have that u = uk or that u is a node in the (uncompressed) subtree attached to
uk which, by the label of uk, has depth no more than λ. Thus the path to u is
not longer than λ + 2 logd n.

Note that uk cannot have label D (D-labels occur only in ‘half’ levels). It follows
that the proof is complete. ut

5.4 Estimating the Number of Red Edges

Next, we estimate the number of shortcut edges introduced in constructing P . To
this end, we will effectively compact P to a tree Q which has as many red edges
as P has and internal nodes of out-degree at least 2 only, but which has a smaller
number of leaves than P . By Fact 2 the latter will enable us to bound the number of
edges in Q, thus including the number of red edges. Q is used only for this purpose
and need not be actually constructed.

Construction P will be trimmed level after level, by re-examining the entire con-
struction of P from the top down. Recall that the red edges in P are easily identified:
these edges are exactly the edges from an A-node to a D-node, where the D-nodes
are the nodes that lie in the ‘half’ levels i + 1

2 (i integer). We assert:

H: Q is constructed such that it has only integer levels, contains as many red
edges as P , and has nodes with labels A or B only. Moreover, its internal nodes will
have out-degree ≥ 2.

20 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

We begin by setting Q equal to G. Then we go through the entire construction of
P again and describe how to modify it to reach our goal, level after level. In doing
so, we maintain the following inductive assertion.

H(i): The nodes at levels j with j ≤ i in Q are all labeled A or B, the A-nodes in
these levels are the same as in P , the number of red edges in these levels is the same
as in P , and all internal nodes have degree ≥ 2. Moreover, there are no 1

2 -levels j
with j ≤ i anymore in Q.

We prove the assertion along with the explanation of how a next level of Q (or of
P for that matter) is constructed.

Claim 9 For all integers i ≥ 0, H(i) holds whenever the compression process has
come to the point where level i is going to be processed.

Proof. We proceed inductively. Obviously H(0) holds, because the root of P and
thus of Q, is labeled A. We proceed by induction. Let H(i) hold for some i ≥ 0. We
show how the elaboration of level i in Q can be arranged such that H(i + 1) holds
at the point where level i + 1 is going to be processed, if at all.

To determine how level i should be processed in Q, consider how levels i+ 1
2 and

i + 1 are constructed for P . We only need to look at how A-nodes are expanded.
By the induction hypothesis, the A-nodes in level i are the same in Q and P . If
there are no A-nodes in this level, the process stops. Assuming there are, let v be
an arbitrary A-node in level i.

The construction starts by determining a cover of Pv, the subtree attached to v
in P and thus in Q. By Claim 4 this leads to xv ≥ d clusters, which are subsequently
divided into categories I, II, and III and used for the compression at this level. We
now show how level i + 1

2 can be dropped in Q, possibly at the expense of a slight
modification of level i + 1 which can only affect the B- and C-labeled nodes in this
level.

Consider the result of the compression process at node v. Define a group to be
the collection of all sons of the root of any cluster in Pv. Observing the process at
v, it leads to xv distinct groups of nodes in level i + 1. Here a group will be:

– either the set of sons directly connected to from v and arising from a cluster in
category II and III, or

– the set of sons attached to a D-node v′ in level i + 1
2 arising from a cluster in

category I, where v′ is directly connected to from v via a red edge.

Recall that all nodes in the groups are labeled A, B, or C according to their weight,
as they are assigned to level i + 1.

We will now trim and contract the groups, to obtain a tighter tree than P . To
this end we do the following with the nodes in the groups as delineated in level i+1,
in the given order:

N1: The A- and B-nodes. Simply keep these nodes in the level, with their labels.
However, delete all subtrees attached to the B-nodes (as we know enough about their
count by the label alone).

N2: The C-nodes. Our aim is to delete all of them from this level. However, we
have to be careful because we do not want to get rid of too many groups in doing
so (if we have many groups of just C-nodes, for example). Consider the xv groups
Z in level i + 1 in turn, and do the following:

– If Z contains an A- or a B-node, then delete all C-labeled nodes from Z.

Shortcutting Networks 21

– If Z originates from the one cluster in category III and consists entirely of
C-nodes, then delete all of these C-nodes and thus the entire group Z. (Note
that this group is connected to directly from A-node v and thus not from any
D-node.)

– If Z originates from any cluster in category I or II and consists entirely of C-
nodes then observe that, by the definition of the categories, the group and the
subtrees attached to the nodes in it together consist of at least Lv − 1 nodes.
(NB The root of the cluster is not part of the group.) We proved in Claim 5
that Lv − 1 ≥ 1

6dλ. Thus, we can safely do the following: delete all nodes of
Z and their attached subtrees and replace the entire group by one new node
that is labeled B and that is attached to the same node (v or a son v′ of v in
level i + 1

2) to which the group was attached. This sufficiently accounts for the
replaced nodes and their subtrees (i.e. as a lower bound, which is all we will
need for the counting).

Note that we have deleted at most one group, but there will be at least xv −1 >
d− 1 > 1 thus at least 2 non-empty groups left, all attached either directly to v or
to a D-node v′ attached to v. All nodes in the groups are now labeled A or B.

It is a consequence of the above construction that the groups attached to the
D-nodes in level i + 1

2 have all remained present, if only in modified form because
we got rid of all C-nodes in them. As a final step we eliminate the D-nodes in level
i + 1

2 , and thus the entire level as a level of Q. To this end, do the following for all
D-nodes v′ attached to v:

N3: The D-nodes. For every D-node v′, consider all groups Z1, · · · , Zk attached
to v′, where necessarily k ≥ 1 and all groups have their current composition with
only A- and B-nodes. Delete node v′ and its incident edges (including the red edge
from v to v′), and connect v to all nodes in Z1, · · · , Zk by a direct edge. Color
exactly one of these edges red, in order to preserve the number of red edges. (We
not care about the number of green edges.) After doing this for all D-nodes, level
i + 1

2 is empty and is deleted.

Because at least xv − 1 > d − 1 > 1 thus at least 2 non-empty groups under v
remain after N1 and N2, the result of N3 is that v has degree greater than d− 1,
thus ≥ 2.

Repeating the above for all A-nodes v in level i leads to a level i + 1 of Q and
proves H(i + 1). This completes the induction. ut

Analysis We conclude that when Q is constructed as given, then H(i) holds for
all integers i which occur as levels. But then we are done: promise H follows imme-
diately from the fact that H(i) holds for i equal to the last integer level of P . Thus
Q can be constructed as promised in H.

Claim 10 P contains at most 12d · n
λ red edges.

Proof. By promise H, it suffices to count the number of red edges in Q. Let Q
have l leaves. As all leaves are labeled A or B and their labels represent counts of
disjoint sets of nodes (of the subtrees of the corresponding nodes in P) we must
have l · 1

6dλ ≤ n, using the lower bound from the legend. Hence, l ≤ 6d · n/λ.
By promise H all nodes in Q have out-degree ≥ 2. By Fact 2 the number of

edges in Q and thus the number of red edges, is bounded by 2 · l. With the bound
on l, the Claim follows. ut

22 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

5.5 Concrete Bounds

We now have all the ingredients for the proof of Lemma 4. We first give the ba-
sic version and some applications. Next we show that one can bound the degree
increases strictly by 1.

Basic version By the overall compression process and its analysis, we can conclude
the following proof of Lemma 4.

Proof. Consider any n-node rooted directed tree G. Construct P as specified in
Subsections 5.3 and 5.4. By adding the red edges of P to G, the paths from the root
to lower nodes in P all become paths in G as well. Thus G is effectively compressed,
in a valid manner.

The bounds on the length of the compressed paths in G and the number of red
edges that were used, follow from the Claims in Subsections 5.4 and 5.5. In the
construction, the degree increases remain bounded by δin ≤ 1 and δout ≤ 12d. ut

Observe that the given construction for compressing the tree proceeds top-down
and works on every A-, B-, and C-node a constant number of times. Thus, the
construction involves only a linear number of cover constructions and takes O(n2)
time. A useful application is the following result.

Theorem 7. Any n-node rooted directed tree G can be compressed to a depth of
O(log1+δ n) by the addition of O(δn

log1+δ n) edges and a degree increase of at most
O(δ) per node, for any δ ≥ 1 and provided log1+δ n ≥ 2(2 + δ).

Proof. Take d = 2+δ and λ = 6 log1+δ n in Lemma 4, for any δ ≥ 1. The constraint
on log1+δ n guarantees that the requirements for the lemma are satisfied, including
that n ≥ λ + 1. ut

However, many other trade-offs between compression and extra edges may be
achieved. As an example, we give the following corollary.

Corollary 2. Any n-node rooted directed tree G can be compressed to a depth of
O(δ

1
2 log1+δ n) by the addition of O(δ

1
2 n

log1+δ n) edges and a degree increase of at
most O(δ) per node, for any δ ≥ 1 and provided log1+δ n ≥ 2(2 + δ).

Proof. Take d = 2 + δ and λ = 6δ
1
2 log1+δ n in Lemma 4, for any δ ≥ 1. It is easily

checked that the constraint on log1+δ n again guarantees that the requirements for
the lemma are satisfied, including that n ≥ λ + 1. ut

Bounding degree increases to 1 A further trade-off can be made, to the effect
that the degree increases can all remain strictly bounded by 1, provided that we
tolerate a slight increase in depth. The proof is based on a subtle refinement of the
construction in Lemma 4.

Lemma 6. Let reals d, λ be such that λ ≥ 12d and d > 2. Then any n-node rooted
directed tree can be shortcut such that all root-to-node distances are reduced to at
most 12d · (λ+2 logd

n
12) by the addition of at most n/λ edges and a degree increase

of at most 1, provided n ≥ 12d(λ + 1).

Proof. Let G be an n-node rooted directed tree, and define ρ = 12d. We proceed in
a few steps.

We first divide G into clusters (like in Section 3). To this end, create a root cluster
consisting of the entire subtree of depth ρ at the root. Next, create clusters in the
same way in the subtrees attached to the nodes in level ρ, and so on recursively. If a

Shortcutting Networks 23

subtree does not reach to the full depth ρ anymore, we will call it ‘incomplete’ and
delete it (except its root) from G for this construction. Let Gρ be the condensation
of G obtained by contracting the clusters to super-nodes. Gρ is a rooted directed
tree again, with at most n/ρ = n/12d nodes.

Now apply the construction from Lemma 4 to Gρ, where we note that n
12d ≥ λ+1

by assumption. This compresses Gρ to a depth of λ + 2 logd
n

12d by the addition of
12d·n/12d·λ = n/λ edges and a degree increase of at most ρ per node. In particular,
at most ρ red (outgoing) edges are added to every node of Gρ and the in-degrees
are increased by at most 1.

Considering that the super-nodes of Gρ are themselves depth-ρ subtrees of G,
we have effectively obtained a compression of G. A path from the root to a node
u in G has been compressed to a path from the root to the cluster to which node
u belongs or, if u belongs to an incomplete subtree, to the root of the cluster to
which the latter is attached (thus taking ρ extra steps to reach). It follows that u
is reached in at most λ + 2 logd

n
12d + 2ρ steps, using the shortcuts as they stand.

Finally, consider the red edges which emanate from an internal node v, i.e. after
the compression. Necessarily v is the root node of a cluster Gv of depth ρ. There
are at most ρ red edges leading out of v. These edges all lead to subtrees located
‘below’, in the original subtrees attached to the leaves of Gv at depth ρ.

Instead of keeping all red edges attached to v, we redistribute them over Gv in
such a way that the hierarchical relationships in G are preserved. In particular, if
a red edge leads from v to the root of a lower subtree Gw and Gw is part of the
full subtree (in G) attached to leaf z of Gv, then we can re-attach the red edge to
any node on the path from v to z (and still leading to the root of Gw). As all paths
from v to a leaf of Gv consist of precisely ρ nodes, it is easily seen that all red edges
attached to v can be re-distributed in this way and such that every node in Gv gets
at most one red edge. (There is enough room on every path from v to a leaf of Gv

even though the paths overlap.)
Redistribute all red edges as described. The modification leads to a compression

of G with δin ≤ 1 and δout ≤ 1. However, for every shortcut path from the root of
G to a node u we now have to account for up to ρ extra steps in every cluster on
the way. This gives a total depth bounded by

ρ · (λ + 2 logd

n

12d
) + 2ρ = 12d · (λ + 2 logd

n

12d
+ 2) = 12d · (λ + 2 logd

n

12
)

as was to be shown. ut

As a typical application of Lemma 6 we mention the following result.

Theorem 8. Any n-node rooted directed tree G can be compressed to a depth of
O(δ log1+δ n) by the addition of at most n

3 log1+δ n edges and a degree increase of at
most 1 per node, for any δ ≥ 1 and provided log1+δ n ≥ 4(2 + δ).

Proof. Take d = 2 + δ and λ = 3 log1+δ n in Lemma 6, for any δ ≥ 1. It is easily
checked that the constraint on log1+δ n guarantees the requirements of the lemma,
including that n ≥ 12d(λ + 1). ut

The constraints on n and λ in the given theorems all amount to the requirement
that n is not too small in terms of δ. If the requirement is not satisfied, the depth
of G is already bounded by O(δ).

6 δ-Shortcutting Directed Graphs

We now consider δ-shortcutting directed graphs in general. We will actually consider
various special cases first, which are of interest in their own right. This includes the

24 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

δ-shortcutting problem for DAGs, directed rooted trees with bounded out-degrees,
and strongly connected graphs, using the auxiliary results from Sections 4 and 5.
The results are combined in the problem for general directed graphs. In Section 7
we approach the general case in a different way.

6.1 Arbitrary DAGs

Let G be a DAG. Recall that the width w = w(G) of G is the size of its largest anti-
chain (cf. Section 2). The width of G is an important measure when shortcutting
arbitrary DAGs. Assume w.l.o.g. that w(G) < n in the results below.

Theorem 9. All distances in an n-node DAG G of width w can be reduced to
O(δwdlog1+δ n/we), by adding at most 4n

δ log1+δ n/w arcs and a degree increase of at
most 1 per node, for any δ ≥ 1.

Proof. By Dilworth’s theorem for DAGs (cf. Fact 3) one can decompose G into
w disjoint chains C1, · · · , Cw which partition the nodes. Let ni = |Ci| and assume
w.l.o.g. that ni ≥ 2 (1 ≤ i ≤ w). We 1-shortcut each of the chains Ci with ni > 1+δ
by the method underlying Theorem 6.

We now estimate the effect of this shortcut of G. Consider any two nodes u and
v of G, and let π be the shortest directed path between them in G. Let C = Ci be
any of the chains in the decomposition. If π ever intersects C, let xC be the first
node on C that it hits and yC the last (i.e. after possibly traversing some sections
of other chains in between). Necessarily yC = xC or yC lies ‘above’ xC on the chain,
as G is acyclic. Thus we can replace the entire segment of π from xC to yC by the
segment from xC to yC on this single chain and thus by the shortcut path over C
if C was shortcut. It follows that π can be modified to a path from u to v with at
most one, possibly shortcut, segment from each chain.

Let there be L chains Ci with ni > 1 + δ, for some L with 0 ≤ L ≤ w. Assume
w.l.o.g. that these chains are C1, · · · , CL. By Theorem 6, |π| is bounded in order of
magnitude by

δ(log1+δ n1 + · · ·+ log1+δ nL) + (w − L)(1 + δ)

This can be estimated by

δ(log1+δ n1 + · · ·+ log1+δ nw) + (w − L)(1 + δ) ≤ δw log1+δ n/w + w(1 + δ)

using Jensen’s inequality for concave functions (cf. Lemma 1) and the fact that
n1 + · · ·+ nw = n. The final expression is bounded by O(δwdlog1+δ n/we).

The construction increases degrees by at most 1, at the expense of adding a
number of arcs bounded by

2
δ

(
n1

log1+δ n1
+ · · ·+ nL

log1+δ nL

)
Segments of a length less than or equal to 1 + δ are not shortcut and thus do not
contribute to the count. Nevertheless, we can estimate the expression by

2
δ

(
n1

log1+δ n1
+ · · ·+ nw

log1+δ nw

)
≤ 4

δ
· n

log1+δ n/w

where the latter bound follows from Lemma 1. ut

The construction in the proof clearly takes linear time, except for the initial part
of constructing a Dilworth decomposition, which takes polynomial time. In case the
width w of G is large, the bound on the number of shortcut arcs in Theorem 9
becomes large. In the next subsection we show how to work around it for rooted
directed trees.

Shortcutting Networks 25

6.2 Rooted Directed Trees

The shortcutting problem for rooted directed trees generalizes that of rooted di-
rected paths studied in Section 4.

Without any degree constraints, Chazelle [13] (also [44]) proved that n-node
(undirected) trees can be shortcut to a diameter of O(α(m,n)) by adding m edges.
Here α(m,n) is the inverse Ackermann function [41]. To show what can be achieved
by δ-shortcutting, we consider rooted directed trees with maximum out-degree at
most ∆ ≥ 2. (For ∆ = 1 one has a rooted directed path and Theorem 6 applies.)

Theorem 10. All distances in an n-node rooted directed tree G with (out-)degrees
bounded by ∆ and height h can be reduced to O(∆δdlog1+δ he · log2 n), by adding at
most 4n/(δ log1+δ log1+δ h) arcs and with a degree increase of at most 1 per node,
for any δ ≥ 1 and provided log1+δ h > 1.

Proof. Order G such that at any (internal) node, the sons are ordered from left to
right by decreasing weight. (This ordering is similar to the one used in so-called
leftist trees, cf. [32].)

Call any arc from a father node to its leftmost (and thus heaviest) son a left-
going arc and all the other arcs right-going. Call any node that is either the root of
G or reached from its father by a right-going arc, a head-node. For any head-node
u, let Cu be the chain obtained by starting at u and tracing all the left-going arcs
until a leaf node is reached.

Observe that the chains Cu with u ranging over all head-nodes, are all disjoint
and together cover all nodes of G (and thus form a decomposition.) Consider the
chains. Let x and y be two nodes in G and let π be the shortest directed path
between them, say leading from x down to y. The path zigzags down G, starting
with some segment in a chain, then following a right-going arc to another head-node,
and so on. Suppose π visits K chains.

Claim 11 K ≤ 1 + ∆ lnn.

Proof. Note that, if an internal node of weight m has s sons (1 ≤ s ≤ ∆), then its
left son will have weight ≥ m

s . Thus the sons reached by a right-going arc will have
weight at most m− m

s ≤ m(1− 1
∆).

Assume w.l.o.g. that π begins at a head node. The node has weight at most n.
Path π will eventually visit precisely K − 1 further head nodes. The final one will
have weight at most

n ·
(

1− 1
∆

)K−1

As n · (1− 1
∆)K−1 ≥ 1, it follows that K − 1 ≤ ∆ lnn. ut

By assumption all chains have length at most h. Now we 1-shortcut the chains,
by the method from Theorem 6. However, we only shortcut chains if they are longer
than log1+δ h and, also, longer than 1 + δ. For a chain of length ci that meets these
criteria, this takes 2ci/(δ log1+δ ci) extra arcs but all distances on the chain are
reduced to O(δ log1+δ h), using that log1+δ h > 1.

Claim 12 The number of shortcut arcs needed is bounded by 4n/(δ log1+δ log1+δ h).

Proof. Suppose we 1-shortcut a total of L chains of lengths c1, · · · , cL respectively.
Because the chains are disjoint we have c1 + · · · + cL ≤ n, and by the threshold
criterion we have 1

L (c1 + · · · + cL) ≥ log1+δ h. Thus, the total number of shortcut
arcs is bounded by

2
δ

(
c1

log1+δ c1
+ · · ·+ cL

log1+δ cL

)
≤ 4n

δ log1+δ log1+δ h

by applying Lemma 1. ut

26 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Finally, we conclude that the length of π after shortcutting the chains is bounded
in the order of

K + K ·max(δ log1+δ h, δ) = O(Kδdlog1+δ he)

where K is as above. (The first K-term accounts for the right-going arcs on π.)
Substituting the bound from Claim 11 gives the result. ut

By Corollary 1 the shortcuts in the construction underlying Theorem 10 can be
computed in linear time. Note that the requirement that log1+δ h > 1, i.e. h > 1+δ
is not severe. If it is not satisfied, then the height of G is bounded by 1 + δ without
having to add any arcs at all.

6.3 Strongly Connected Digraphs

When shortcutting strongly connected digraphs, a few results are known when the
degree constraint is not imposed. For example, Thorup [42] observed that all strongly
connected digraphs can be shortcut to a diameter ≤ 4, by at most doubling the
number of arcs. Also, Flaxman and Frieze [22] proved that if εn random arcs are
added to a strongly connected bounded-degree digraph, then the resulting graph
has diameter O(lnn) with high probability.

We will show that O(n
ln n) arcs always suffice to shortcut any n-node strongly con-

nected digraph to a diameter O(lnn), while keeping the degree increases bounded by
O(1). In fact we prove a more general result on shortcutting any strongly connected
digraph to a diameter O(log1+δ n) while keeping the degree increases bounded by
O(δ), provided n is large enough in terms of δ. We also prove a corresponding result
in which degree increases are strictly bounded by 2. The proofs make essential use
of the results from Section 5.

Theorem 11. The diameter of any strongly connected directed graph G can be
reduced to O(log1+δ n), by the addition of O(δn

log1+δ n) arcs and a degree increase of
at most O(δ) per node, for any δ ≥ 1 and provided log1+δ n ≥ 2(2 + δ).

Proof. Let r be an arbitrary node in G. Because G is strongly connected, there is
a rooted directed in-tree Tin with root r (i.e. with all arcs pointing towards r) that
spans G. Likewise there is a rooted directed out-tree Tout with root r (with all arcs
pointing away from r) that spans G. Consider Tin and Tout in G.

By Theorem 7, Tin and Tout can each be compressed to depth O(log1+δ n) by
adding O(δn

log1+δ n) arcs and with a degree increase of at most O(δ) at every node.
(In the case of Tin this follows after reversing the directions of the arcs first, and
reversing these arcs and the shortcut arcs again afterwards.) Now add the shortcut
arcs of Tin and Tout to G, thus combining the two compressions. This gives a valid
shortcutting of G.

Consider any two nodes u and v in G. Then v can be reached from u by following
a path over (the compression of) Tin from u to r, and then following a path over
(the compression of) Tout from r to v. The total length of the path is bounded by
O(log1+δ n). Thus G is shortcut as desired. ut

Directed in- and out-trees as needed in Theorem 11 are typically computed as
a side-product of a single-source shortest path algorithm. With the shortcutting of
these trees, the shortcut construction for G can thus be done in at most O(n2) time.

Note that we could have 4-shortcut the strongly connected graph G by first
adding two ‘oppositely directed’ directed paths through all nodes of G at the expense
of two extra in- and out-arcs per node, and then applying the result of Theorem 6
to both paths. However, this takes Ω(n) extra arcs, which is more than we need in
the case of Theorem 11. However, if we apply Theorem 8 instead of Theorem 7 in
the above proof, we obtain the following result.

Shortcutting Networks 27

Theorem 12. The diameter of any strongly connected directed graph G can be
reduced to O(δ log1+δ n), by the addition of O(n

log1+δ n) arcs and a degree increase
of at most 2 per node, for any δ ≥ 1 and provided log1+δ n ≥ 4(2 + δ).

As a concrete instance of Theorem 12 we obtain the following fact, which relates
to the result of Flaxman and Frieze [22] discussed above.

Corollary 3. The diameter of any strongly connected directed graph G can be re-
duced to O(lnn), by the addition of O(n

ln n) arcs and a degree increase of at most 2
per node.

We return to strongly connected digraphs in Corollary 5.

6.4 General Directed Graphs

We now consider δ-shortcutting general digraphs. We first follow the classical ap-
proach based on condensing a graph, using the results for DAGs and for strongly
connected graphs obtained above. In Section 7 we follow a different approach, using
path covers.

Let G be a directed graph, and let nmin (nmax) be the number of nodes in
the smallest (resp. largest) strongly connected component of G. Let Gc be the
condensation of G, i.e. the DAG obtained by ‘shrinking’ each strongly connected
component of G to a single node. Let nc be the number of nodes in Gc, ∆c the
(maximum) degree of any node in Gc, dc its depth, and wc its width. We think of
wc as being ‘small’ with respect to n but this is not needed for the results.

Theorem 13. The distances in an arbitrary n-node directed graph G can be reduced
to O(δwc ·dlog1+δ

nc

wc
e· log1+δ

n
wc

) by the addition of O(δn
log1+δ n/nc

) arcs and a degree
increase of at most O(δ) per node, for any δ ≥ 1 and provided log1+δ nmin ≥ 2(2+δ).

Proof. Let H1, · · · ,Hnc be the strongly connected components of G. Let the number
of nodes of Hi be hi (1 ≤ i ≤ nc). Shortcut the components Hi using Theorem 11.
Subsequently shortcut Gc, the condensation of G with H1, · · · ,Hnc as ‘super-nodes’,
using Theorem 9. Add all the shortcut arcs so obtained to G. (In case of the shortcut
arcs of Gc, if such a shortcut arcs connects component H to component H ′, then the
arc is embedded in G by letting it connect an arbitrary node of H to an arbitrary
node of H ′.)

We first estimate the resulting increase in the size of G. Theorem 11 is applicable
and guarantees that the degrees in each strongly connected component can rise by
at most O(δ) if we consider their individual shortcutting only. By Theorem 9 the
shortcutting of Gc increases the degree of at most one node in each component by
1. This bounds the total to O(δ) per node overall. The total number of arcs added
is in the order of:(

δh1

log1+δ h1
+ · · ·+ δhnc

log1+δ hnc

)
+

nc

δ log1+δ nc/wc

which by application of Lemma 1 and using that h1 + · · · + hc = n reduces to a
bound of

δn

log1+δ n/nc
+

nc

δ log1+δ nc/wc
= O

(
δn

log1+δ n/nc

)
which follows because δn

log1+δ n/nc
is monotone in n and already subsumes the second

term when n is close to nc.
It remains to show that G is adequately shortcut. Consider any two nodes u

and v of G and let there be a directed path from u to v. Let strongly connected

28 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

components H and H ′ be such that u ∈ H and v ∈ H ′, and assume w.l.o.g. that
H 6= H ′. The path from u to v can be viewed as a path over Gc, beginning in super-
node H and ending in super-node H ′. The path ‘traverses’ the intermediate super-
nodes by going from an incoming node to an outgoing node inside each component
that is visited.

By the shortcutting, Theorem 11 implies that any component of size h can be
traversed in only O(log1+δ h) steps. Also, by Theorem 9 the path need not visit more
than O(δwcdlog1+δ

nc

wc
e) super-nodes in total. Let the super-nodes on the path from

u to v have sizes hi1 , · · · , his for some s = O(δwcdlog1+δ
nc

wc
e). By the shortcutting

the path is kept to a length in the order of:

log1+δ hi1 + · · ·+ log1+δ his = O(s log1+δ n/s) ≤ O(δwcdlog1+δ

nc

wc
e · log1+δ n/wc)

The last step follows because log1+δ n/s is monotone decreasing in s. This proves
that G is shortcut as claimed. ut

Note that n
wc

≥ n
nc

≥ nmin, as wc ≤ nc. Crudely estimating the bounds in Theorem
13 we obtain:

Theorem 14. The distances in an arbitrary n-node directed graph G can be reduced
to O(δwc · log2

1+δ n) by the addition of O(δn
log1+δ nmin

) arcs and a degree increase of
at most O(δ) per node, for any δ ≥ 1 and provided log1+δ nmin ≥ 2(2 + δ).

Finally, using Theorem 12 instead of Theorem 11 in the given proof, both The-
orem 13 and Theorem 14 can be modified such that a degree increase of at most 3
is incurred only, at the expense of an extra factor of O(δ) in the distances.

7 δ-Shortcutting Using Path Covers

In this Section we aim to show that the path cover number µ(G) of a directed graph
G is a useful measure in shortcutting G. The approach generalizes the technique we
already used in Subsection 6.1 for the special case of DAGs.

We begin by outlining the notion of feedback dimension in a digraph. Next we
show how digraphs can be effectively 2-shortcut and apply it, for example, to graphs
with bounded stability number and feedback dimension. Finally we show how the
result can be specialized to various classes of graphs, including graphs that have
Hamiltonian cycles, disjoint cycle covers or long paths.

7.1 Feedback dimension

Let G be a directed graph and π a path in G. We depict π as an ordered line of
nodes ‘from left to right’. We will be interested in the number of ‘maximal segments’
that can be formed on π when it is intersected by another, arbitrary path in G. To
this end we need the following concept, which appears to be new.

Definition 3. The feedback dimension of π is the largest k ≥ 0 such that there
exist distinct nodes u1, v1, · · ·uk, vk ‘from left to right’ on π that satisfy the following
properties (the feedback base properties):
– for each i (1 ≤ i ≤ k) there is a path from vi back to ui,
– for each i (1 ≤ i ≤ k) vi is maximal, that is, there is no path from a node beyond

vi to a node before vi.

Shortcutting Networks 29

If u1, v1, · · ·uk, vk satisfy the feedback base properties on a path π, then we may
assume that every ui is minimal. For, suppose that some ui (1 ≤ i ≤ k) was not
minimal. It means there would be a node w on π beyond ui that has an arc back
to a node z before ui (1 ≤ i ≤ k). Then we have ui < w ≤ vi and vi−1 < z, by the
second property. Moving ui back to z is easily seen to preserve the feedback base
properties of the list. By repeating this as long as needed, ui must become minimal.
If u1, v1, · · ·uk, vk are such that all ui are minimal, the set is clearly unique for π.

Lemma 7. Let u1, v1, · · ·uk, vk satisfy the feedback base properties on π. Then for
each i 6= j (1 ≤ i, j ≤ k), any walk from vi back to ui is node-disjoint from any
walk from vj back to uj.

Proof. If not, we could combine the intersecting walks and create a path from vj to
ui and from vi to uj respectively, which is impossible. ut

Definition 4. The feedback dimension φ(G) of G is the largest k for which G has
a path of feedback dimension k.

The feedback dimension of a digraph G is 0 if and only if G is acyclic, and 1 if
G is strongly connected. In general we have the following.

Lemma 8. The feedback dimension of a digraph G is the largest k for which there
exist k distinct strongly connected components and a path π in G such that each of
the k strongly connected components contains at least one arc of π.

Proof. The Lemma clearly holds for φ(G) = 0, i.e. when G is acyclic. We next
observe the following, for any directed graph G with φ(G) ≥ 1.

(I) Suppose there are k distinct strongly components C1, · · · , Ck and a path π
in G with the stated property. For each i (1 ≤ i ≤ k), let ui be the node at which
π enters Ci for the first time and vi the node where π exits Ci for the last time.
By strong connectedness, each segment [ui, vi] is fully contained in its Ci. It follows
that the segments [ui, vi] (1 ≤ i ≤ k) are disjoint and also, as π and Ci have at
least one arc in common, that ui 6= vi for each i. Hence, the nodes u1, v1, · · · , uk, vk

as defined are all distinct. Assume w.l.o.g. that the components C1, · · · , Ck were
ordered such that the nodes u1, v1, · · · , uk, vk are ordered ‘from left to right’ on π.
It is easily verified from their definition that the nodes satisfy the feedback base
properties.

(II) Conversely, consider any directed path π in G and nodes u1, v1, · · · , uk, vk

(k ≥ 1) on π that satisfy the feedback base properties. Each segment [ui, vi] of
π (1 ≤ i ≤ k) consists of at least one arc and belongs fully to a single strongly
connected component, say Ci, of G. By the feedback properties, the Ci (1 ≤ i ≤ k)
must be all distinct. Thus π has at least one arc in common with k distinct strongly
connected components.

We conclude that the feedback dimension is precisely the largest k with the
stated property. ut

Let dc(G) denote the depth of Gc. Observe that for an n-node directed path
G one has φ(G) = 0 and dc(G) = n. The bound below immediately follows from
Lemma 8.

Corollary 4. For any digraph G, φ(G) ≤ dc(G).

7.2 Directed Graphs

The feedback dimension is of interest when it comes to shortcutting directed graphs,
as we show now. The result generalizes Theorem 9 for DAGs.

30 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Theorem 15. The distances in an n-node directed graph G with path cover number
µ = µ(G) and feedback dimension φ = φ(G) can be reduced to O(δµ · dlog1+δ n/µ e)
by the addition of at most 4n

δ log1+δ n/µ + µφ arcs and a degree increase of at most 2
per node, for any δ ≥ 1.

Proof. Let G have path cover number µ = µ(G). Thus, G can be partitioned into µ
node-disjoint directed paths π1, · · · , πµ. As a first step in shortcutting G, we apply
Theorem 6 to 1-shortcut each of these paths that is longer than 1 + δ. If the paths
have lengths n1, · · · , nµ, respectively, then the number of added arcs is certainly
bounded by

2
δ

(
n1

log1+δ n1
+ · · ·+ nµ

log1+δ nµ

)
≤ 4

δ
· n

log1+δ n/µ

as in the proof of Theorem 9 and using Lemma 1. Let the shortcut arcs that are
added in this stage be colored ‘blue’. Each path πi is thus shortcut to a length
O(δ log1+δ ni).

If G has cycles, we may need to do more shortcutting. To see which extra shortcut
arcs we need, consider any path π in the path cover of G. We depict π as an ordered
line of nodes ‘from left to right’. Define the function fπ on the nodes of π as follows:

fπ(x) = “the rightmost node y > x on π such that there is a path in G from y
back to x, and ⊥ if no such node y exists.”

Assume that fπ is non-trivial on π, i.e. that fπ(x) 6=⊥ for at least one x ∈ π.
Let u1 be the first node on π for which fπ(x) 6=⊥ and v1 = fπ(u1), let u2 be the
first node to the right of v1 for which fπ(x) 6=⊥ and v2 = fπ(u2), and so on. Let
uk, vk be the last pair on π so constructed.

Claim 13 For each i (1 ≤ i ≤ k) and for each u with ui ≤ u < vi we have that
fπ(u) = vi. Also fπ(vi) =⊥.

Proof. Let the path from vi back to ui be τ . First, suppose that f(vi) = v 6=⊥, for
some node v to the right of vi. Then there must be a path τ ′ from v back to vi. Let
z be the first node where τ ′ intersects τ . Because τ ′ certainly intersects τ in vi, node
z is well-defined. Concatenating the segment of τ ′ from v to z and the segment of τ
from z to u, gives us a path from v to u. This contradicts that fπ(ui) = vi. Hence,
fπ(vi) =⊥.

Next, let u be any node with ui ≤ u < vi. We first note that there is path from
vi back to u. (To see this, let z be the first node of τ where τ intersects the segment
[ui, u] on π. By concatenating the segment of τ from vi to z and the segment from
z to u of π, we obtain a path from vi back to u.) Suppose there was a node v to the
right of vi for which there existed a path from v back to u. Like before one easily
argues that in this case there must be a path from v back to vi, contradicting that
fπ(vi) =⊥. Hence, fπ(u) = vi. ut

It immediately follows from the definition of fπ and Claim 13 that the nodes
u1, v1, · · · , uk, vk satisfy the feedback base property on π and thus that k ≤ φ(G).

We can now take the second step in shortcutting G. In this step we consider each
path π of the path cover of G. If fπ is non-trivial on π, then construct the nodes
u1, v1, · · · , uk, vk on π and add a shortcut arc from vi to ui for each 1 ≤ i ≤ k. This
adds at most µφ more shortcut arcs and further increases the in- and out-degrees
in G by at most another 1. Let the shortcut arcs added in this stage be colored
‘yellow’.

Consider the overall effect of the shortcutting we have now achieved. Let x, y be
any two nodes in G, and let τ be a shortest possible directed path from x to y in G
(i.e. before shortcutting it).

Shortcutting Networks 31

Claim 14 τ can be replaced by a path τ ′ from x to y such that for every path π in
the path cover, at most one yellow shortcut arc is used and τ ′ consists of at most
two (ordered) segments on π.

Proof. We show how to construct τ ′. Consider any directed path π of the cover.
Suppose τ and π intersect. Let u be the first node on τ incident with π and v the
last, respectively. If u = v, we leave τ unchanged and continue with a next path in
the cover. If u 6= v, then two possibilities can arise:

– u precedes v on π. Then without even using any shortcut arcs, the entire segment
from u to v on τ can be replaced by the single segment from u to v over π. Carry
out this replacement in τ .

– v precedes u on π. Because there now is a path from u back to v, we necessarily
have that fπ is non-trivial. Let u1, v1, · · · , uk, vk be the list of nodes on π as
constructed above. It follows that there must be an i (1 ≤ i ≤ k) such that
v, u ∈ [ui, vi]. Hence, the segment from u to v on the path τ can be replaced
by: the segment from u to vi over π, followed by the yellow arc from vi back
to ui and next, the segment from ui to v over π. Carry out the corresponding
replacement in τ .

Continue the construction by considering the subsequent paths of the cover in turn.
One easily argues that the path τ ′ that is ultimately obtained, is still a path from
x to y but also satisfies the claim. ut

Finally, we shortcut path τ ′ further by shortcutting its segments on every path
of the cover, using the blue arcs. By Claim 14, the length of the resulting path after
shortcutting is certainly bounded in the order of:

µ + 2 · δ(log1+δ n1 + · · · log1+δ nµ) + 2µ(1 + δ) ≤

µ + 2δµ log1+δ n/µ + 2µ(1 + δ) = O(δµdlog1+δ n/µ e)

Note that in the estimate we account for the possibility that some of the paths in
the cover may not be longer than 1 + δ and thus are not shortcut. This completes
the proof. ut

We draw some immediate conclusions from Theorem 15.

Corollary 5. The distances in an n-node strongly connected, directed graph G with
path cover number µ = µ(G) can be reduced to O(δµ · dlog1+δ

n
µe) by the addition

of at most 4n
δ log1+δ n/µ + µ arcs and a degree increase of at most 2 per node, for any

δ ≥ 1.

Proof. For strongly connected graphs G we have φ(G) = 1. The result now follows
directly from Theorem 15. ut

We can also reformulate Theorem 15 using the stability number of a graph
instead of its path cover number.

Theorem 16. The distances in an n-node directed graph G with stability number
α = α(G) and feedback dimension φ = φ(G) can be reduced to O(δα · dlog1+δ

n
αe)

by the addition of at most 4n
δ log1+δ n/α + αφ arcs and a degree increase of at most 2

per node, for any δ ≥ 1.

Proof. By the Gallai-Milgram theorem (cf. Fact 4) one has µ(G) ≤ α(G). The path
cover used in the proof of Theorem 15 is easily transformed into one consisting of
α(G) paths, by just breaking some of the paths in multiple pieces if necessary. The
result now follows by using this cover and α instead of µ in the proof. ut

32 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Corollary 6. In any directed graph G with stability number α and feedback dimen-
sion φ, the distances between all nodes can be reduced to O(αdln n

αe) by adding only
4n

ln n/α + αφ edges and with degree increases of at most O(1) per node.

Theorem 16 can easily be modified for the case of strongly connected directed graphs
as well, by taking φ(G) = 1.

Finally, we note that more powerful applications of Theorem 15 may result if
one can augment a directed graph by a small number of arcs at every node that
preserve transitive relationships but lower the µ- and/or φ-value of the graph. We
do not digress on this type of ‘completion problem’ here.

7.3 Using Cycles and Paths

We now consider a number of useful applications of Theorem 15, mostly to graphs
with known cycles or long paths.

Graphs covered by cycles The first class of graphs we consider consists of the
directed graphs G which can be covered by γ disjoint cycles, for some γ > 1. There
is a sizeable literature on the problem of finding conditions that guarantee that an
(un-)directed graph G can be partitioned into a small number of disjoint cycles. Note
that strongly connected directed graphs can be covered by at most α(G) directed
cycles [5], but in general these cycles need not be disjoint.

Theorem 17. Let G be any n-node directed graph that can be covered by γ disjoint
cycles, for some γ ≥ 1. Then the distances in G can be reduced to O(δγ · dlog1+δ

n
γ e)

by the addition of at most 4n
δ log1+δ n/γ + γ arcs and a degree increase of at most 2

per node, for any δ ≥ 1.

Proof. Suppose that G can be covered by γ disjoint cycles D1, · · · , Dγ . Now consider
the proof of Theorem 15 and use the path cover with paths π1, · · · , πγ , where πi is
obtained from Di by deleting one arc (1 ≤ i ≤ γ). Note that for each πi and nodes
u1, v1, · · · , uk, vk on πi constructed in the proof, we must have k ≤ 1. This follows
from the feedback base properties and the fact that πi can be closed to a cycle,
namely Di. The result now follows from the estimates in the proof of Theorem 15,
by substituting γ for µ and 1 for φ. ut

Theorem 18. The distances in any n-node digraph G with a Hamiltonian cycle
can be reduced to O(log1+δ n) by the addition of at most 4n

δ log1+δ n + 1 arcs and a
degree increase of at most 2 per node, for any δ ≥ 1 and provided log1+δ n ≥ 1.

Proof. Apply Theorem 17 with γ = 1. The result also follows by noting that graphs
G with a Hamiltonian cycle have µ(G) = φ(G) = 1. In this case, the result also
follows immediately from Theorem 15. ut

By Camion’s theorem, every strongly connected tournament has a Hamiltonian
cycle [12]. Thus, Theorem 17 leads to the following corollary.

Corollary 7. The distances in any n-node strongly connected tournament can be
reduced to O(log1+δ n) by the addition of at most 4n

δ log1+δ n + 1 arcs and a degree
increase of at most 2 per node, for any δ ≥ 1 and provided log1+δ n ≥ 1.

Shortcutting Networks 33

Graphs with Long Paths Theorem 15 can be applied also to e.g. directed graphs
that possess one or more very long paths. We consider only the case of ‘near-
Hamiltonian’ directed graphs, i.e. digraphs that have a simple path of length n−1−t
for some ‘small’ t with t ≥ 0. (NB The case t = 0 corresponds to graphs having a
Hamiltonian path.)

We first remark that near-Hamiltonian directed graphs are not rare. We charac-
terise a class of near-Hamiltonian graphs by means of a ‘forbidden subgraph’. Let
Hp,q,r be the directed tripartite graph with node partition A ∪B ∪C such that (i)
|A| = p, |B| = q, and |C| = r, (ii) all nodes of A are connected by an arc to all
nodes of B, and (iii) all nodes of B connected by an arc to all nodes of C. The
following Lemma extends Proposition 4.7 in [3].

Lemma 9. Let G be a digraph such that G does not contain a subgraph H1,t+1,1.
Then G has a path of length ≥ n− t− 1 (t ≥ 0).

Proof. Assume by way of contradiction that the longest path in G has length ≤
n − t − 2. Let π be such a path, beginning at node x and ending at node y. Let
A = {y}, B a set of t + 1 nodes not contained in π, and C = {x}. Consider the
Hp,q,r on A∪B ∪C. If the latter is not a subgraph of G, then G must have at least
one arc from y to some node in B or from some node of B to x. This arc could be
used to extend π, contradicting that π was longest. ut

The following observation is immediate from Theorem 15.

Theorem 19. The distances in any n-node digraph G with a near-Hamiltonian
path of length n − t − 1 (t ≥ 0) and feedback dimension φ(G) can be reduced to
O(δ(t + 1) log1+δ n), by the addition of at most 4n

δ log1+δ n + (t + 1)φ(G) arcs and a
degree increase of at most 2 per node, for any δ ≥ 1 and provided log1+δ n ≥ 1.

Proof. Graphs G with a near-Hamiltonian path of length n−t−1 have µ(G) ≤ t+1.
The result now follows from Theorem 15. ut

The following result generalizes Theorem 18.

Theorem 20. The distances in any n-node digraph G with a Hamiltonian path and
feedback dimension φ(G) can be reduced to O(δ log1+δ n), by the addition of at most

4n
δ log1+δ n + φ(G) arcs and a degree increase of at most 2 per node, for any δ ≥ 1
and provided log1+δ n ≥ 1.

Proof. Apply Theorem 19 with t = 0. ut

Corollary 8. The distances in any n-node tournament can be reduced to O(lnn),
by the addition of at most a linear number of arcs and a degree increase of at most
2 per node.

Proof. By Rédei’s theorem, every tournament has a Hamiltonian path [37]. The
result now follows by applying Theorem 20. ut

Tournaments contain many Hamiltonian paths [40], thus in the proof one may
want to use a Hamiltonian path that has a small feedback dimension in order to
keep the number of shortcut arcs low. A case in which the feedback dimension can
be guaranteed to be 1, is already covered by Corollary 7.

34 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

8 Complexity of Shortcutting

The general question of reducing the diameter of a network by adding a smallest
number of edges is well-known to be computationally hard (cf. [38, 16, 25, 23, 10]).
We show that the problem remains computationally hard even when the degree
constraint is added. We also comment on the fixed-parameter (in)tractability of the
problem, where the number of extra edges allowed is the parameter.

We consider the following basic version of the shortcutting problem which un-
derlies many of the variants we have considered.

Shortcutting

Input: connected (undirected) graph G, integer k ≥ 1.
Question: can the diameter of G be reduced by at least 1 by adding at most
k edges while increasing the degrees in G by at most 1?

We also consider the optimization version of this problem. In this problem one is
asked to minimize the number of edges that have to be added to G in order to
reduce its diameter by at least 1, while the degrees in G are still increased by at
most 1. Abusing terminology, we call this problem as Shortcutting as well.

The version of the shortcutting problem in which one is just asked to reduce
the diameter by at least 1 by adding at most k edges, is known to be NP-complete
and W[2]-hard without the degree constraint [25, 23]. We show that these facts even
hold when the degree constraint is imposed. The results follow from the following
reduction, from Hitting Set (cf. Subsection 2.2).

Lemma 10. There is a polynomial-time algorithm which achieves the following.
Given a universe U = {u1, · · · , un} and a family S of sets S1, · · · , Sm ⊆ U , the
algorithm constructs a graph G with O(n + m) vertices such that for any integer k
with 1 ≤ k ≤ n, a hitting set for (U,S) of size k can be transformed in polynomial
time into a set of k edges that reduces the diameter of G by at least 1 when added
to G while increasing the degrees in G by at most 1, and vice versa.

Proof. Construct the 5-layered graph G = 〈V,E〉 with

V = {S1, · · · , Sm} ∪ {u1, · · · , un} ∪ {a} ∪ {b1, · · · , bn} ∪ {c1, · · · , c2n+1}

and with the following edges:

– ui is connected to Sj , for all i = 1, · · · , n and j = 1, · · · ,m such that ui ∈ Sj

(i.e. the edges representing the element-set relation).
– ui is connected to ui′ , for all i, i′ with 1 ≤ i < i′ ≤ n (i.e. the nodes ui form a

clique).
– a is connected to each ui (i = 1, · · · , n).
– a is connected to each bi (i = 1, · · · , n).
– bi is connected to ci′ , for all i = 1, · · · , n and i′ = 1, · · · , 2n + 1 (i.e. the nodes

bi and ci′ induce a complete bipartite graph).

No other edges except those specified above are present in E. Observe that G has
diameter 4, where the longest distances are realized (only) between the Sj and ci′ ,
for all j = 1, · · · ,m and i′ = 1, · · · , 2n + 1.

Suppose that (U,S) has a hitting set H = {uh1 , · · · , uhk
} of size k, with 1 ≤ k ≤

n. Shortcut G by adding edges from bi to uhi for i = 1, · · · , k. Denote the resulting
graph by G′. To show that G′ has diameter less than 4 it suffices to show that
the distances between the Sj and the ci′ are reduced (cf. the above observation).
Indeed, let j ∈ {1, · · · ,m} and i′ ∈ {1, · · · , 2n + 1}, and let i ∈ {1, · · · , k} be such
that uhi ∈ Sj . (Note that i exists because H is a hitting set). Then the path from

Shortcutting Networks 35

ci′ to bi to uhi to Sj exists in G′ and has length 3. Therefore, the diameter of G′ is 1
less than the diameter of G. Moreover, we added k edges and increased the degrees
by at most 1.

Conversely, suppose that there is a set F of k edges (1 ≤ k ≤ n) that reduces the
diameter of G by at least 1 when added to G while increasing the degrees in G by
at most 1.4 Let G′ be the graph obtained from G by adding the edges of F . Because
k ≤ n, there is a node ci′ for some i′ ∈ {1, · · · , 2n + 1} that is not an endpoint of
any edge in F . For j = 1, · · · ,m, let Pj be any shortest path in G′ between ci′ and
Sj , and let ej denote the last edge of Pj (i.e. the one that is incident on Sj). We
now construct a hitting set H as follows. For j = 1, · · · ,m, if ej ∈ F , then we add
any element of Sj to H; otherwise, ej is an edge (of G) between Sj and ui for some
i ∈ {1, · · · , n}, and we add ui to H. By construction, H is a hitting set for (U,S).

Claim 15 H has size at most k

Proof. We start with the basic observation for each j ∈ {1, · · · ,m}, that Pj contains
at most three edges (since the diameter of G′ is at most three by the definition of F
and G), and that the first edge of Pj must be an edge of G by the definition of ci′ .
Hence, if ej = ej′ for distinct j, j′ ∈ {1, · · · ,m}, then this edge must be an edge
between Sj and Sj′ , and thus Pj and Pj′ contain exactly three edges. Furthermore,
the middle edge of Pj′ must be an edge f ∈ F from bi to Sj for some i ∈ {1, · · · , n}.
But then ci′ to bi to Sj is a path from ci′ to Sj of two edges, contradicting that Pj

is a shortest such path. Therefore, the ej are distinct.
From the basic observation, it also follows that if ej 6∈ F for some j ∈ {1, · · · ,m},

then the edge fj of Pj that precedes ej must be in F (as no path in G between ci′

and Sj has at most three edges). In particular, fj is incident to the element that
we added to H for j and to a bi node for some i ∈ {1, · · · , n}, and thus not equal
to ej′ for any j′ ∈ {1, · · · ,m}. Therefore, each element in H can be charged to a
unique edge from F , and thus |H| ≤ |F | = k. ut

Finally, we can add some arbitrary elements of the universe to H to make it have
size exactly k.

To complete the proof, we only need to observe that G has m + 4n + 2 vertices
and can be constructed in polynomial time, and that both transformations described
above take polynomial time as well. ut

Lemma 10 has the following three consequences for the complexity of Short-
cutting, refining and improving on the results for diameter reduction in general
(cf. [23, 10]).

Theorem 21. Shortcutting is NP-complete.

Proof. It is easily seen that Shortcutting is in NP. To see that Shortcutting
is NP-hard, recall that Hitting Set is NP-hard [26]. Consider an instance (U,S, k)
of Hitting Set. If k > |U |, then the instance is a trivial “yes”-instance, and we
return a trivial “yes”-instance of Shortcutting. Otherwise, apply the algorithm
of Lemma 10 to (U,S) and let G be the resulting graph. It takes polynomial time to
compute G. Moreover, by Lemma 10, (U,S, k) is a “yes”-instance of Hitting Set
if and only if (G, k) is a “yes”-instance of Shortcutting. Hence, Shortcutting
is NP-complete. ut

Theorem 22. Shortcutting is W[2]-hard.

4 We actually do not use the assumption that the degrees have increased by at most 1 in
the proof.

36 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

Proof. Recall that Hitting Set is W[2]-complete [19]. Consider an instance (U,S, k)
of Hitting Set. If k > |U |, then the instance is a trivial “yes”-instance, and we
return a trivial “yes”-instance of Shortcutting. Otherwise, apply the algorithm
of Lemma 10 to (U,S) and let G be the resulting graph. It takes polynomial time
to compute G. Moreover, by Lemma 10, (U,S, k) is a “yes”-instance of Hitting
Set if and only if (G, k) is a “yes”-instance of Shortcutting. This constitutes a
parameterized reduction, and thus Shortcutting is W[2]-hard. ut

Observe that the above result implies that Shortcutting is not in FPT, unless
FPT = W[1] = W[2] which is considered unlikely (cf. [19, Ch 23]). It follows that
the optimization version is unlikely to admit a ‘fully polynomial-time approximation
algorithm’ (FPTAS), as this would imply the existence of an FPT-algorithm for the
problem (cf. [19, Theorem 9.3.1]). We can make the following further statement
about the approximation hardness.

Theorem 23. Shortcutting has no (1− ε) ln N -factor approximation algorithm
for any ε > 0, unless NP ⊆ DTIME(N log log N), where N is the number of vertices
of the Shortcutting instance.

Proof. Observe that using Lemma 10, it follows that a (1−ε) ln N -factor approxima-
tion algorithm for Shortcutting for some ε > 0 implies a (1− ε′) ln(n+m)-factor
approximation algorithm for Hitting Set for some ε′ > 0. The lemma now follows
from Fact 5, based on Feige’s classic result for Set Cover [21]. ut

The results hold for the analogous problem for directed graphs as well. This
follows by modifying Lemma 10 to the case of DAGs. The construction uses a
similar 5-layered graph G but now the edges between the u-nodes are omitted and
all remaining edges are directed ‘upwards’, from the c-nodes to the b nodes, from the
b-nodes to the a-node and so on. The correctness proof simplifies because shortcut
arcs must obey the transitive relationships.

9 Conclusions

The δ-shortcutting problem for directed and undirected graphs is motivated by the
practical concern of balancing distances in networks while adding only a bounded
number of extra links per node. Our analysis has shown that the problem is inti-
mately related to many classical issues in graph decomposition and covering with
core structures like paths and cycles.

We proved that all undirected graphs as well as all strongly connected directed
graphs can be shortcut to a logarithmic diameter, by adding at most a sublinear
number of edges while keeping degree increases bounded by a constant. For general
directed graphs we have proved similar results, depending on parameters like the
width of their condensed graph or their stability number. Although the diameter
bounds seem tight in several cases, they can most likely be tuned or improved
further.

For example, if the precise bounds for δ-compressing rooted directed trees (The-
orem 7 and Theorem 8) can be improved, then the results for strongly connected
digraphs (Theorem 11) and for general digraphs (Theorem 13) can automatically be
improved as well. This may well be the case when attention is restricted to special,
e.g. bounded-degree graphs. Of course the strength of the present results is that
they do not rely on any such restrictions.

Many interesting problems remain for further study. For example, Thorup [43]
showed that by adding at most n edges, the distances in a rooted directed planar
graph can be reduced to O(log n). Does this result remain valid if degree increases

Shortcutting Networks 37

must remain bounded by a constant? Theorem 15 indicates that degree increases of
even 1 or 2 per node enable substantial shortcuts in general digraphs. Can better
bounds be achieved when higher degree increases are allowed?

Finally, we have proved only the most essential facts for the parameterized com-
plexity of δ-shortcutting. There are many further questions here, notably about the
minimum diameters achievable by adding some specified number of edges, cf. [18,
33, 23]. The ‘δ-perspective’ might be of considerable interest for further study.

References

1. N. Alon, A. Gyárfás, M. Ruszinkó, Decreasing the diameter of bounded degree graphs,
J. Graph Theory 35:3 (2000) 161-172.

2. G. Ausiello et al., Complexity and approximation - Combinatorial optimization prob-
lems and their approximability properties, Springer-Verlag, Berlin, 1999.

3. J. Balogh, J. Barát, D. Gerbner, A. Gyárfás, G. Särközy, Partitioning 2-edge-colored
graphs by monochromatic paths and cycles, Combinatorica (to appear).

4. I. Ben-Arroyo Hartman, Variations on the Gallai-Milgram theorem, Discrete Mathe-
matics 71 (1988) 95-105.

5. S. Bessy, S. Thomassé, Spanning a strong digraph by α circuits: A proof of Gallai’s
conjecture, Combinatorica 27:6 (2007) 659-667.

6. D. Bilò, L. Gualà, G. Proietti, Improved approximability and non-approximability
results for graph diameter decreasing problems, Theor. Comp. Sci. 417 (2012) 12-22.

7. H.L. Bodlaender, G. Tel, N. Santoro, Trade-offs in non-reversing diameter, Nordic J.
Comput. 1:1 (1994) 111-134.

8. S.H. Bokhari, A.D. Raza, Reducing the diameters of computer networks, IEEE Trans-
actions on Computers C-35:8 (1986) 757-761.

9. M.L. Bonet, S.R. Buss, The serial transitive closure problem for trees, SIAM J. Com-
puting 24:1 (1995) 109-122.

10. R. Brauer, G. D’Angelo, D. Delling, A. Schlumm, D. Wagner, The shortcut problem
- complexity and algorithms, J. Graph Algorithms Applic. 16:2 (2012) 447-481.

11. K. Cameron, An algorithmic note on the gallai-milgram theorem, Networks 20:1 (1990)
43-48.

12. P. Camion, Chemins et circuits hamiltoniens de graphes complets, C. R. Acad. Sci.
Paris 249 (1959) 21512152.

13. B. Chazelle, Computing on a free tree via complexity preserving mappings, Algorith-
mica 2:3 (1987) 337-361.

14. C.C. Chen, P. Manalastras Jr, Every finite strongly connected digraph with stability
2 has a Hamilton path, Discrete Mathematics 44 (1983) 243-250.

15. F.R.K. Chung, Diameters of graphs: old problems and new results, Congressus Nu-
merantium 60 (1987) 295-317.

16. F.R.K. Chung, M.R. Garey, Diameter bounds for altered graphs, J. Graph Theory 8
(1984) 511-534.

17. E.D. Demaine, M. Zadimoghaddam, Minimizing the diameter of a network using short-
cut edges, in: H. Kaplan (Ed.), Algorithm Theory - SWAT 2010, Proc. 12th Scandi-
navian Symposium and Workshops, Lecture Notes in Computer Science Vol. 6139,
Springer-Verlag, Berlin, 2010, pp. 420-431.

18. Y. Dodis, S. Khanna, Designing networks with bounded pairwise distance, in: 31st
Ann. Symposium on Theory of Computing (STOC ’99), Proceedings, ACM Press, pp.
750-759. USA

19. R.G. Downey, M.R. Fellows, Fundamentals of parameterized complexity, Springer, Lon-
don, 2013.

20. A. Farzan, J.I. Munro, A uniform approach towards succinct representation of trees,
in: J. Gudmundsson (Ed.), Algorithm Theory - SWAT 2008, Proc. 11th Scandinavian
Workshop, Lecture Notes in Computer Science Vol. 5124, Springer-Verlag, Berlin,
2008, pp. 173-184.

21. U. Feige, A threshold of ln n for approximating set cover, J. ACM 45:4 (1998) 634-652.
22. A.D. Flaxman, A.M. Frieze, The diameter of randomly perturbed digraphs and some

applications, Random Structures & Algorithms 30:4 (2007) 484 - 504.

38 R.B. Tan, E.J. van Leeuwen, and J. van Leeuwen

23. F. Frati, S. Gaspers, J. Gudmundsson, L. Mathieson, Augmenting graphs to minimize
the diameter, in: L. Cai et al. (Eds.), Algorithms and Computation (ISAAC 2013),
Proc. 24th International Symposium, Lecture Notes in Computer Science Vol. 8283,
Springer-Verlag, Berlin, 2013, pp. 383393.

24. T. Gallai, A.N. Milgram, Verallgemeinerung eines graphentheoretischen Satzes von
Rédei, Acta Sc. Math. (Szeged) 21 (1960) 181-186.

25. Y. Gao, D.R. Hare, J. Nastos, The parametric complexity of graph diameter augmen-
tation, Discr. Appl. Math. 161 (2013) 1626-1631.

26. M.R. Garey, D.S. Johnson, Computers and intractability: A guide to the theory of
NP-completeness, W.H. Freeman & Co, San Francisco, 1979.

27. R.F. Geary, R. Raman, V. Raman, Succinct ordinal trees with level-ancestor queries,
ACM Trans. Algorithms 2:4 (2006) 510-534.

28. W. Hesse, Directed graphs requiring large numbers of shortcuts, in: SIAM-ACM Sym-
posium on Discrete Algorithms (SODA’03), Proceedings, SIAM, Philadelphia, 2003,
pp. 665 - 669.

29. J.L.W.V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes,
Acta Math. 30 (1906) 175-193.

30. J. Kleinberg, E. Tardos, Algorithm design, Addison-Wesley, Boston, 2006.
31. D.E. Knuth, The art of computer programming, Vol 1: Fundamental algorithms, 3rd

Edition, Addison-Wesley, Reading, MA, 1997.
32. D.E. Knuth, The art of computer programming, Vol 3: Sorting and searching, 2nd

Edition, Addison-Wesley, Reading, MA, 1998.
33. C-L. Li, S.T. McCormick, D. Simchi-Levi, On the minimum-cardinality-bounded-

diameter and the bounded-cardinality-minimum-diameter edge addition problems, Op-
erations Research Letters 11 (1992) 303-308.

34. A. Meyerson, B. Tagika, Minimizing average shortest path distances via shortcut edge
addition, in: I. Dinur et al. (eds), APPROX’09/RANDOM’09, Lecture Notes in Com-
puter Science Vol. 5687, Springer-Verlag, Berlin, 2009, pp 272 - 285.

35. M. Parnas, D. Ron, Testing the diameter of graphs, Random Structures & Algorithms
20:2 (2002) 165-183.

36. S. Raskhodnikova, Transitive-closure spanners: a survey, in: O. Goldreich (Ed.), Prop-
erty Testing - Current Research and Surveys, Lecture Notes in Computer Science Vol.
6390, Springer-Verlag, Berlin, 2010, pp 176 - 196.

37. L. Rédei, Ein kombinatorischer Satz, Acta Litteraria Szeged 7 (1934) 3943.
38. A.A. Schoone, H.L. Bodlaender, J. van Leeuwen, Diameter increase caused by edge

deletion, J. Graph Theory 11:3 (1987) 409-427.
39. A. Schrijver, Combinatorial optimization: polyhedra and efficiency, Vol. A: Paths,

flows, matchings, Chapters 1-38, Springer, Berlin, 2003.
40. T. Szele, Kombinatorische Untersuchungen über den gerichteten vollständigen

Graphen, Mat. Fiz. Lapok 50 (1943) 223256 (German translation: Publ. Math. De-
brecen 13 (1966) 145-168).

41. R.E. Tarjan, Efficiency of a good but not linear set union algorithm, J. ACM 22:2
(1975) 215-225.

42. M. Thorup, On shortcutting digraphs, in: E. W. Mayr (Ed.), Graph-Theoretic Concepts
in Computer Science (WG’92), Proceedings, Lecture Notes in Computer Science Vol.
657, Springer-Verlag, 1993, pp. 205-211.

43. M. Thorup, Shortcutting planar digraphs, Combinatorics, Probability and Computing
4 (1995) 287-315.

44. M. Thorup, Parallel shortcutting of rooted trees, J. Algorithms 23:1 (1997) 139-159.
45. E.J. van Leeuwen, J. van Leeuwen, Structure of polynomial-time approximation, The-

ory of Computing Systems 50:4 (2012) 641-674.
46. A.C. Yao, Space-time tradeoff for answering range queries (Extended abstract), in:

ACM Symposium on Theory of Computing (STOC’82), ACM Press, New York, 1982,
pp. 128-136.

