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Abstract. Geometric intersection graphs are graphs determined by the intersections of certain
geometric objects. We study the complexity of visualizing an arrangement of objects that induces
a given intersection graph. We give a general framework for describing classes of geometric
intersection graphs, using arbitrary finite base sets of rationally given convex polygons and
rationally-constrained affine transformations as similarity maps. We prove that for every class
of intersection graphs that fits this framework, the graphs in this class have a representation
in integers using only polynomially many bits. Consequently, the recognition problem of these
classes is in NP (and thus usually NP-complete). We also give an exponential algorithm to find
suitable plane representations (‘drawings’), if a graph class fits the framework.

1 Introduction

A geometric intersection graph is the intersection graph of a finite set of geometric objects.
That is, each vertex corresponds to one of the objects and there is an edge between two vertices
if and only if their corresponding objects intersect. The set of objects is a representation of the
graph. Class of geometric intersection graphs are obtained if one allows objects that are similar
to certain base objects specific for that class only. To visualize a geometric intersection graph,
drawing the objects of a representation can be more informative than drawing the graph
itself. Therefore we study the complexity of representations of geometric intersection graphs.
In particular, we consider the following problems: do representations in polynomial space
exist, and how can drawings be effectively found?

Understanding Geometric Intersection Graphs Geometric intersection graphs arise
naturally in many applications. They are used e.g. in modeling wireless communication net-
works, where the geometric objects model the transmission ranges of the different devices in
the network. This has lead to the study of the well-known class of (unit) disk graphs and
several other classes of intersection graphs, such as box graphs [15, 29, 32, 38, 39].

Geometric intersection graph models are normally based on the use of homothetic copies
of a single base object, thus allowing translations and scalings of this object only. Certainly
the notion of similarity is broader, and one may want to take a larger variety of base objects
into account in defining a class. To obtain a thorough understanding of geometric intersection
graphs, we aim at a more general conceptual model.

Definition 1. A signature is any 2-tuple P = 〈S, T 〉 where: (a) S is a finite base set of
geometric objects in the plane: S = {o1, · · · , om}, with each object in the base set containing
the origin, and (b) T map every object o ∈ S to a finite set of similarity templates that
determine how objects similar to o can be obtained.
? Extended version of [41], presented at the 18th Int. Symposium on Graph Drawing, Konstanz, 2010.
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A similarity template is any family of similarity transforms of some kind, e.g. a rotation over
some angle, followed by an arbitrary translation. More generally, a similarity template t is
any parametric family of bi-continuous functions t(w1, · · · , wk) : R2 → R2 (for some fixed k)
which are all shape-preserving in some sense, with the wi’s ranging over e.g. R+.

Definition 2. Given a signature P = 〈S, T 〉, a graph G is called a P-intersection graph if it
is the intersection graph of a finite set of objects O1, · · · ,On, where every Oi (1 ≤ i ≤ n) is
similar to an object o ∈ S, i.e. obtained from o using a transformation that fits a similarity
template from T (o).

Problem Definitions In order to visualize P-intersection graphs, it is crucial to know the
complexity of their representation. In particular, we want to know whether representations
exist that require only polynomial space, i.e. polynomially many bits. Let us assume from
now on that all objects we consider are fully specified, both for localizing and drawing them,
by only finitely many parameters.

Definition 3. (i) A P-intersection graph with n vertices is said to be polynomially repre-
sented (using polynomial p), if it is the intersection graph of a finite set of objects O1, · · · ,On,
where every Oi (1 ≤ i ≤ n) is similar to an object in S according to an allowed template of
T , and has all its specifying parameters equal to rationals a

b with |a|, |b| ≤ 2p(n).
(ii) A class C of P-intersection graphs is said to be polynomially represented if there is a

polynomial p = p(n) such that every graph in C is polynomially represented using p.

Given an arbitrary graph G, we like to determine whether it is a geometric intersection
graph and be able to visualize it by a set of objects in the plane if it is and can be done in a
feasible way. This leads to the following problems.

P-Intersection Graph Recognition
Given a graph G, decide whether G is a P-intersection graph.

P-Intersection Graph Construction (or -Visualization)
Given a graph G that is known to be a P-intersection graph, construct (‘draw’) a
representation of G as the intersection graph of a set of objects in the plane according
to signature P.

We consider the complexity of both problems for P-intersection graphs. In particular we
consider whether or not such graphs have a polynomial representation, for any signature P.

Previous Work The complexity of the recognition problem and the size of representations
(in bits) have been studied for many classes of geometric intersection graphs. An overview of
some of the most prominent results in this area is given in Table 1.

The recognition problem for geometric intersection graphs can be nontrivial. For example,
for disk graphs, the problem is algorithmically decidable ([38], Sect. 4.3), known to be NP-
hard [24] and in PSPACE [15, 25], but it is open whether the problem actually is in NP. This
holds even for the more restricted class of unit disk graphs.

The complexity or size of representing an intersection graph on the integer grid is an
equally challenging problem. A first question is whether various classes of geometric intersec-
tion graphs actually have a representation using only rational coordinates. This was shown
e.g. for the very general class of intersection graphs of so-called scalable objects [39]. If one
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Graph Class Objects Recognition Repr. Reference

interval intervals linear poly [1]
unit interval unit intervals linear poly [7, 10]
(unit) circular-arc (unit) arcs linear poly [16, 27, 30]
(unit) disk (unit) disks in R2 NP-h, ∈PSPACE exp. [2, 24, 15, 31]
string simple curves in R2 NP-c exp. [19–21, 15, 36]
tolerance intervals w/tolerances ∈ NP poly [14]
segment line segments in R2 NP-h exp. [23]
planar line segments in R2 linear poly [5, 9]
box (rectangle) rectangles NP-c poly [22, 28]
unit square unit squares NP-c poly [2, 8]
square squares NP-h, ∈ NP poly *
max-tolerance semi-squares NP-h, ∈ NP poly [17], *
polygon intersect. homoth. conv. polygons NP-h - [26, 34]
polygon intersect. rat. repr. conv. polygons ∈ NP poly *
convex intersect. convex sets ⊂ R2 NP-h, ∈PSPACE exp. [19, 23, 34]

Table 1. Some classes of geometric intersection graphs. The first column gives the graph class, the second
column the objects in representations of the graphs in the class, the third gives the complexity of the recognition
problem, the fourth the size of a representation of the intersection graph (polynomial or exponential), and the
fifth gives references where the results can be found. The contributions of this paper are marked in italics and
we use * to refer to the current paper.

however only allows objects to touch and not to overlap (so-called contact graphs), this is no
longer guaranteed [4].

The second question is whether the rationals or integers involved in a representation can
be stored using polynomially many bits. For (unit) disk graphs, this question was answered
negatively only recently [31].

Our Results The given framework allows us to prove various structural properties of geo-
metric intersection graphs. We apply the framework to define classes of generalized geometric
intersection graphs that use arbitrary, finite non-empty sets of rationally given convex poly-
gons as base sets (see Section 2). We will use arbitrary rationally-constrained affine similarity
transformations in the templates.

The framework allows for several topological considerations. For example, in Section 3 we
show that it is irrelevant whether the objects from which the intersection graphs are built,
i.e. convex polygons in this case, are open or closed.

As a main result, we prove that any (generalized) convex polygon intersection graph in our
framework has a polynomial-size representation on the integer grid. This contrasts the known
fact that the intersection graphs of arbitrary convex sets in R2 may require exponentially-sized
representations in the worst case [34]. The main result is presented in Section 4.

The polynomial representation result enables us to settle, in a very general way, the
question left open by the recent NP-hardness proof of the recognition problem for intersection
graphs of homothetic copies of a single convex polygon [26], namely whether this problem is
in NP3. The results of this paper immediately imply that this problem is indeed in NP and
thus NP-complete, even in the generalized case with any finite number of rationally given base
polygons. Moreover, we give an exponential algorithm to determine whether a given graph is

3 NP-completeness in this case was stated in Theorem 20 of [34] but only NP-hardness was proved there.
However, a proof of membership in NP was reportedly sketched during the oral defense of [34], based on an
extension of Theorem 1.1 (ii) sub (a) of [23], cf. [35].
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an intersection graph within the above framework. The algorithm is constructive and returns
a visualization of the arrangement of objects in a representation of the given graph, if such
a representation exists. For the case of intersection graphs of homothetic copies of a single
convex polygon the problem was proved to be in PSPACE in [23].

Finally, by applying the same techniques and ideas, one can prove for instance that max-
tolerance graphs and contact graphs of homothetic convex polygons have polynomial repre-
sentations, and that their recognition problems thus are in NP. Further applications are given
in Section 5.

2 P-intersection graphs

P-intersection graphs give a very general framework for studying geometric intersection
graphs. We use this framework to consider P-intersection graphs for signatures P = 〈S, T 〉,
where S is any finite non-empty set of (closed and) rationally given convex base polygons, i.e.
of convex polygons specified by means of vertices with rational coordinates.

We also tune the choice of similarity templates. Similarity templates were described as
being (infinite) parametric families of bi-continuous functions t = t(w̄) : R2 → R2 which
preserve shapes according to some notion of similarity. We may even go one step further and
say that similarity templates must be smooth in the sense that images of base objects under
t(w̄) and t(z̄) are ‘almost equal’ if ‖w̄− z̄‖ is ‘small’. Let D ⊂ R2 be any (open) bounded set,
in particular any such set that encloses the base objects.

Definition 4. A similarity template t = t(w̄) is called smooth on D if for every ε > 0
there exists a δ > 0 such that for all w̄, z̄, x, y with ‖w̄ − z̄‖ < δ and (x, y) ∈ D one has
‖t(w̄)(x, y)− t(z̄)(x, y)‖ < ε.

A similarity template will be called smooth if it is smooth on every D. Smoothness is a
desirable property of sets of similarity transformations, as it preserves continuity over the
base polygons.

For P = 〈S, T 〉-intersection graphs with S any finite non-empty set of convex base polygons
as above, we restrict ourselves to similarity templates that are families of linearly parameter-
ized affine transformations over the rationals as follows.

Definition 5. A linear similarity template t = tα,β,γ,δ is a family of affine transformations
of the form x → u + Q(v)x, where: (i) α, β, γ, δ are rationals such that αδ − βγ 6= 0, (ii)
u = (u1, u2) is any 2-dimensional vector, and (iii) Q(v) = v

( α γ
β δ

)
is a 2×2 matrix with factor

v satisfying v > 0.

A linear similarity template has two parameters: the vector u (the translation vector) and the
scalar v (the scaling factor of the distortion matrix). Neither of them needs to be rational.
The constraint v > 0 keeps Q(v) nonsingular and thus guarantees that template mappings
are always topological isomorphisms.

Applying linear similarity transformations x → u + Q(v)x to objects o is the same as
applying regular homothetic transformations to a base of new objects Q(o). However, the
framework gives us the conceptual generality we want. It allows us to vary the assignment of
similarity templates while keeping the set of base polygons fixed, which is attractive in mod-
eling applications . The essential generalization is that the number of distinct base polygons
can be arbitrary (but finite).
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Lemma 1. Linear similarity templates are smooth.

Proof. Consider any linear similarity template u + Q(v)x, with u and v varying and Q fixed.
Let D be any bounded set, with gD ∈ R such that ‖x‖ ≤ gD for all x ∈ D, and ε > 0. Note
that ‖(u + vQx)− (u′ + v′Qx)‖ ≤ ‖u−u′‖+ ‖v− v′‖‖Q‖‖x‖ ≤ ‖u−u′‖+ ‖v− v′‖gD‖Q‖. By
choosing δ = ε

1+gD‖Q‖ , smoothness on D follows. 2

Note: From now on all similarity templates we consider are assumed to be linear.

An affine transformation u + Q(v)x ∈ t where t is any template assigned to a polygon in
S by T and v a scalar, is called a P-transformation. Many familiar types of transformations
(combined with scaling) can occur as P-transformations:

– shift: α = δ = 1, β = γ = 0, v = 1.
– scaling: α = δ = 1, β = γ = 0 (enlarging with v ≥ 1, shrinking with v < 1).
– skewed scaling: β = γ = 0.
– horizontal shear: α = δ = 1, β 6= 0, γ = 0, v = 1.
– vertical shear: α = δ = 1, β = 0, γ 6= 0, v = 1.
– rotation: α = δ ≈ cos φ, β = −γ ≈ sin φ, v = 1.
– reflexion: α = −δ ≈ cos φ, β = γ ≈ sin φ, v = 1.
– mirroring: α = δ = −1, β = γ = 0, v = 1.

T may assign different sets of templates to different objects, without any dependency be-
tween them. Compositions of standard templates i.e. of the transformations they represent
are allowed provided these are represented again in T .

Given a template t and v < v′, the transformation of a base polygon o using u+Q(v)x ∈ t
is a convex polygon strictly contained in its transformation obtained using u + Q(v′)x ∈ t. In
fact, the latter polygon is the enlargement of the former by a factor v′

v . We often write Q for
Q(v) from now on.

Definition 6. Given a signature P = 〈S, T 〉, an object O is said to be similar to an object
o ∈ S if O can be obtained from o by applying a P-transformation to it.

Lemma 2. The notion of similarity is well-founded, i.e. it is decidable, for any given signa-
ture P = 〈S, T 〉 and convex polygon O, whether O is similar to a base polygon in S under
P-transformation.

Proof. Consider any convex polygon O and suppose it is similar to base polygon o ∈ S. Let
the P-transformation that maps o to O be (u1, u2) + Qx with Q = v

( α γ
β δ

)
. Now note that

u1, u2, v are uniquely determined. To see this, let (r1, r2), (s1, s2) be two vertices of O with
r1 6= s1, and let (d1, d2), (e1, e2) be the vertices of o mapped onto them under (u1, u2) + Qx.
Then:

u1 + v(αd1 + γd2) = r1

u1 + v(αe1 + γe2) = s1

and v and hence u1 (and u2) follow by straight elimination. Consequently, to decide whether
O can be obtained from a base polygon under P-transformation it suffices to consider every
base polygon o and every similarity template t assigned to it under T , and for every choice of
vertices determine the parameters of the template as above, and verify whether the resulting
P-transformation indeed maps o to O (by checking that all vertices are mapped correctly and
in order). 2
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We will need to scale polygons in several of our later arguments. Consider the (polynomial)
representation of any P-intersection graph and an arbitrary object O that occurs in it.

Lemma 3. Let P = 〈S, T 〉 be as above, and let O be similar to o ∈ S.
(i) For every µ > 0, the scaling of O by a factor µ is similar to o as well.
(ii) If O is polynomially represented and µ > 0 a polynomially represented rational, then the
scaling of O by factor µ is also polynomially represented.
(iii) If O is polynomially represented and ρ > 0 a polynomially represented rational, then there
is an enlargement of O by an additive margin δ with 0 < δ < ρ that is again polynomially
represented. This holds similarly for reductions.

Proof. (i) Let O be obtained from o by applying P-transformation u + Qx from template t.
Now u + µQx is a P-transformation in t as well, for every µ > 0. The result follows.

(ii) Let O be polynomially represented. Let the P-transformation that maps o ∈ S to O
be (u1, u2) + Qx with Q = v

( α γ
β δ

)
. In the proof of Lemma 2 it was shown that v, u1 and

u2 are uniquely determined in terms of vertices of o and O. As (d1, d2) and (e1, e2) are fixed
rationals as part of the specification of o and (r1, r2), (s1, s2) are polynomially represented,
it easily follows that u1, u2, v are polynomially represented as well. If µ > 0 is polynomially
represented, then u + µQx applied to o makes the resulting polygon, the scaling of O by µ,
polynomially represented again. The corresponding P-transformation conforms to the original
template.

(iii) Given O, let o ∈ S and (u1, u2)+Qx be as above. Write Q = vR with R =
( α γ

β δ

)
. Now

consider the enlargement of O to the convex polygon obtained from o by using (u1, u2)+(v +
δ)Rx = (u1, u2) + vRx + δRx, for some δ > 0 to be determined. If x traverses the boundary
of o, its image (u1, u2) + vRx traverses the boundary of O and δRx is the added margin to
it. Note that, as x moves around the boundary of o, quasi-convexity of ||Rx|| implies that its
value is maximized in one the vertices of o, say (d1, d2). Thus

0 < ||δRx|| = δ||Rx|| ≤ δ||R(d1, d2)|| ≤ ρ

provided δ ≤ ρ
||R(d1,d2)|| . As the coefficients of R and d1, d2 are fixed rationals and ρ is a

polynomially bounded rational, δ > 0 can easily be chosen rational and polynomially bounded
so this holds. Observe also that, if (u1, u2)+vRx is an allowed similarity transformation, then
so is (u1, u2) + (v + δ)Rx, as v + δ > v > 0.

By the same argument, one can obtain a polynomially represented polygon that is a
reduction of O by a nonzero reducing margin bounded by ρ, by a similarity transformation of
the same template, provided that δ is chosen so v−δ > 0 as well. This can always be achieved
by imposing the additional constraint that δ ≤ 1

2v. 2

Given any P-intersection graph, it is important to note that its representations allow scaling
(i.e. of the entire configuration), by any scaling factor > 0.

We will later need the following observation. Because the matrices Q(v) in similarity
templates are nonsingular, P-transformations map convex polygons 1-1 onto convex polygons.
Thus vertices of the latter are images of vertices of the former and edges of the latter are
images of edges of the former, and vice versa. Recall from convex analysis that a convex
polygon can be given by its defining inequalities.

Lemma 4. (i) Let Q be a nonsingular 2×2 matrix, and o a plane convex polygon containing
the origin. When Q transforms o and det Q > 0, then defining inequalities are mapped to
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defining inequalities with preservation of the inequality sign. If det Q < 0, the inequality signs
are reversed.
(ii) A P-transformation (u1, u2) + Qx with Q = v( α γ

β δ ) maps the line ax + by + c = 0 onto
the line (aδ − bβ)x + (bα− aγ)y + (αδ − βγ)vc− (aδ − bβ)u1 − (bα− aγ)u2 = 0.

Proof. (i) Let Q =
( e1 f1

e2 f2

)
be nonsingular. Qx maps points to points and lines to lines. In

particular, given a line defined by ax + by + c = 0, this line is mapped 1-1 onto the line of
points (x′, y′) with the property that Q−1

(
x′

y′
)

= 1
det Q

( f2x′−f1y′

−e2x′+e1y′

)
satisfies ax + by + c = 0.

Thus line ax + by + c = 0 is mapped to line (af2 − be2)x + (be1 − af1)y + (detQ)c = 0.
Let ax+ by + c = 0 be an edge of o. Because the origin is ∈ o, the edge leads to a defining

inequality ax + by + c ≤ 0 (if c < 0) or ax + by + c ≥ 0 (if c > 0) of o, respectively. Now
apply Q. As the origin is contained in Qo, the ≤- and ≥-signs in the defining inequalities of
Qo remain as they were for o or are reversed, depending on the sign of det Q.

(ii) This follows by applying the above calculation and extending it to x → u + Qx, with
u and Q as specified. 2

Lemma 4 enables one to determine exactly how the defining inequalities of a base polygon
are transformed under a P-transformation.

3 Open versus closed objects

Let P = 〈S, T 〉 be a signature as above. What happens if we let S consist of open convex
polygons instead of closed ones? In the case of disk graphs, it is known that taking open or
closed disks does not change the class of intersection graphs [40]. In [39] this was shown for
the intersection graphs of all ‘scalable’ geometric objects. Also, it was shown that in the case
of disk and unit disk graphs, even polynomial representation is preserved.

We consider here the case of P-intersection graphs, emphasizing polynomial representa-
tion. We show that for P-intersection graphs the closed and open cases are again equivalent.
We use the following facts.

Lemma 5. Let O1 and O2 be two disjoint convex polygons in the plane, both having nonempty
interior. The (shortest) distance between O1 and O2 is realized as the distance between a vertex
of one polygon and an edge of the other.

Proof. This follows by a simple extension of the proof of Lemma 2.1 in [12]. 2

Lemma 6. Let a, b, c, v1, v2 be rationals with numerator and denominator bounded in absolute
value by q for some q > 0. If the following fraction is 6= 0, then

|av1 + bv2 + c|√
a2 + b2

≥ 1
2q5

.

Proof. Write each a, b, c, v1, v2 in rational form α
β with |α|, |β| ≤ q and substitute this into the

given fraction. This leads to a formula of the form

|w1|
|z1z2z3z4z5|

· |z1z2|√
z2
6z

2
7 + z2

8z
2
9

with w1 and zi (1 ≤ i ≤ 9) integers, and the zi all numerators or denominators of the given
numbers (or 1). If the fraction is not 0, then |w1| ≥ 1. By using that |zi| ≤ q for every i
(1 ≤ i ≤ 9), the lower bound follows. 2
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We prove the equivalence of the closed and open cases for P-intersection graphs in two
steps.

Lemma 7. Every polynomially represented P-intersection graph using a base set of closed
convex polygons can be obtained as a polynomially represented P-intersection graph using a
base set of open convex polygons.

Proof. Let P = 〈S, T 〉 be a signature, S = {o1, · · · , om} its base set of closed convex polygons.
Let G be the intersection graph defined by the objects O1, · · · ,On, where Oi (1 ≤ i ≤ n)
is similar to object osi ∈ S for some si ∈ {1, · · · ,m} and only has vertices with rational
coordinates ai

bi
with |ai|, |bi| ≤ 2p(n), for some fixed polynomial p(n).

Let P ′ = 〈S′, T 〉 be the signature obtained from P in which every (closed) base polygon
o is replaced by its interior o◦. G can now be viewed as the intersection graph of the objects
O◦

1, · · · ,O◦
n, provided that no intersections of the polygons are lost by restricting to the

interiors. Intersections are lost precisely when there are (closed) polygons Oi and Oj that
touch. We show that we can slightly alter the polygons Oi so this does not occur, while
preserving G as the intersection graph.

Suppose any of the closed polygons, say Oi, touches several of the other polygons Oj . By
enlarging Oi by a small but nonzero margin µ, we can eliminate the touchings and make Oi

have a nontrivial overlap with each Oj . However, in enlarging it (and enlarging all other poly-
gons for which a similar step is carried out) we must make sure that no spurious intersections
with any objects Or disjoint from Oi are created. Suppose Oi and Or do not intersect (and
thus are fully disjoint). By Lemma 5, the distance between the two polygons is realized by
the distance between a vertex, say v = (v1, v2) of one of them and the line of an edge, say
ax + by + c = 0 of the other. By common analytic geometry, this distance is given by:

|av1 + bv2 + c|√
a2 + b2

.

Now the numerators and denominators of v1, v2 are ≤ q = 2p(n). Also, ax + by + c = 0
connects two vertices of a polygon in the set, thus two points with rational coordinates with
numerators and denominators ≤ q. It follows that a, b, c are all rational, with numerators
and denominators ≤ 4q4. By Lemma 6 the distance is thus at least 1

dq20 for some constant
d > 0. Hence, if we enlarge Oi by a nonzero margin of µ ≤ 1

3dq20 , then disjointness with every
disjoint Or is maintained (taking into account that the latter may also be enlarged by the
same factor).

As the margin µ is independent of the specific Oi chosen, the enlargement can be carried
out simultaneously for all polygons. For every Oi, it preserves all the intersections with other
polygons, introduces no new ones, and has the effect that every polygon Oi that it touched
now has a nontrivial overlap with it as well (and thus their interiors overlap). By Lemma 2,
the enlargement of every Oi by a nonzero margin at most µ can be achieved while preserving
similarity and polynomial representation. Thus, G is a P ′-intersection graph and polynomially
represented. 2

Lemma 8. Every polynomially represented P-intersection graph with a base set of open con-
vex polygons can be obtained as a polynomially represented P-intersection graph with a base
set of closed convex polygons.
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Proof. Let S = {o1, · · · , om} be the base set of open convex polygons. Let G be the intersection
graph defined by objectsO1, · · · ,On, whereOi (1 ≤ i ≤ n) is similar to object osi ∈ S for some
si ∈ {1, · · · ,m} and only has vertices with rational coordinates ai

bi
with |ai|, |bi| ≤ p(n), for

some fixed polynomial p(n). Let Oi be obtained by applying an allowed affine transformation
Ai to osi .

Let P ′ = 〈S′, T 〉 be the signature obtained from P in which every (open) base polygon o is
replaced by its closure o. P ′ now has a base set of closed convex polygons. Clearly Ai(x) maps
osi to Oi and we can view G as the intersection graph of the objects O1, · · · ,On, provided
we can avoid the ‘unwanted’ intersections we get from pairs of open polygons Oi and Oj that
touch.

Suppose any of the open polygons, Oi, touches several other polygons Oj . By reducing Oi

by a small but nonzero margin µ, we can eliminate the touchings. However, we must make
sure that in doing so existing intersections with objects Or are preserved. Thus, suppose Oi

and Or intersect. Their intersection is an open, thus nontrivial convex polygon, say Ci,r. We
note that the vertices of Ci,r are easily computed and are either a vertex of Oi, a vertex of Or,
or the intersection of two edges of these two polygon. In all cases the vertices are (rational
and) polynomially represented again.

Let Gi,r be the geometric centroid of Ci,r, i.e. of its vertices. Gi,r lies inside the (convex)
polygon, and its coordinates are the average of the coordinates of Ci,r, thus polynomially
represented again. The shortest distance of Gi,r to any of the edges ax + by + c = 0 of Ci,r

(which necessarily is an edge of Oi or Or) is at least µ = 1
dq20 as in the previous proof, for some

constant d > 0 and q = q(n) polynomial in 2p(n). The (open) ball around Gi,r with radius µ
will be entirely contained in Ci,r. If we reduce (‘shrink’) both Oi and Or by a nonzero margin
of, say, at most 1

3µ, then their intersection remains nonempty, as it continues to contain Gi,r

and the ball of radius 2
3µ around it.

As µ is independent of the specific Oi and Or, this can be done simultaneously for all
polygons. By Lemma 2, reducing every Oi by the nonzero margin of at most 1

3µ can be done
in a way that preserves similarity and polynomial representation. Thus, G is a P ′-intersection
graph and polynomially represented. 2

From the two lemmas we conclude:

Theorem 1. Every polynomially represented P-intersection graph with a base set of closed
convex polygons can be obtained as a polynomially represented P-intersection graph with a
base set of open convex polygons, and vice versa.

In the sequel we will only work with base sets of closed convex polygons.

4 Representing P-intersection graphs

Let G be a P-intersection graph as above and let some geometric representation of G as
P-intersection graph be given. The representation of G can be viewed as a feasible solution
of a model, namely of the model that defines the exact pattern of intersections and non-
intersections between the polygons O in the representation. In this section, we will design
a suitable LP model for this. Every feasible solution of the model will imply a geometric
representation of G 9and vice versa). We will show that the model, if it has a feasible solu-
tion, also has a feasible solution that is polynomially represented, thus implying a geometric
representation of G with this property. A similar approach was used in [14, 23, 40].
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We heavily rely on the following fact. We include a proof for the sake of completeness,
although the result appears to be folklore (cf. [17, 25])4.

Lemma 9. Two closed convex polygons Oi and Oj in the plane are disjoint if and only if
they can be separated by a line that precisely coincides with an edge of one of them.

Proof. The only if-part is the only nontrivial part. Let Oi and Oj be disjoint polygons as
given. As Oi and Oj are compact, the Separating Hyperplane Theorem tells us that they can
be strictly separated by a line l. Orient the plane so l is vertical, and assume w.l.o.g. that Oi

is strictly to the left and Oj strictly to the right of l. Let p be a vertex of Oi or Oj closest to
l (say p ∈ Oi). Let m and m′ be the two edges of Oi incident to p. If one of these edges runs
parallel to l, we are done. Thus we may assume that both m and m′, when extended to full
lines of the same name, intersect l. Assume w.l.o.g. that to the right of p, m′ runs above m.

If Oj lies strictly above line m or strictly below line m′, then m respectively m′ is the
desired separating line and we are done. Thus assume that Oj is incident to both m and m′.

Consider any half-space h that defines (an edge of) Oj , but does not contain p. (Such a
halfspace exists because p 6∈ Oj .) Let q (resp. q′) be an intersection point of m (resp. m′)
with Oj . As h necessarily contains q and q′, but not p, the entire wedge enclosed by m and
m′ to the left of p is not contained in h. Since Oi is contained in this wedge, the line defining
h satisfies the lemma. 2

Let G be the P-intersection graph of the convex polygons O1, · · · ,On, where Oi (1 ≤ i ≤
n) is similar to polygon osi ∈ S for some si ∈ {1, · · · ,m}. Let Oi be the result of applying
the transformation ui + Qix =

( ui,1
ui,2

)
+ vi

( αi γi
βi δi

)( x
y

)
to osi , with suitable ui,1, ui,2 and vi

(1 ≤ i ≤ n), all conforming to some template t = ti applicable to osi . Let osi (1 ≤ i ≤ n) have
ki vertices and (thus) ki edges. All data related to osi (vertices, edges, defining inequalities)
will be super-indexed by (i).

4.1 Helpful inequalities

Consider any two polygons Oi,Oj and suppose we want to express that they are disjoint. By
Lemma 9 there must be a defining inequality of (say) Oi such that all of Oj does not satisfy
it, precisely expressing that the polygons do not intersect. Which of Oi,Oj to take and which
of their defining inequalities, follows from the given geometric representation of G. Say the
polygon to take is Oi and that the relevant defining inequality to take is the one obtained by
applying ti to the defining inequality a(i)x + b(i)y + c(i) ≤ / ≥ 0 of osi . Lemma 4 implies that
this defining inequality of Oi can then be written as

(a(i)δi−b(i)βi)x+(b(i)αi−a(i)γi)y+(αiδi−βiγi)vic
(i)−(a(i)δi−b(i)βi)ui,1−(b(i)αi−a(i)γi)ui,2 ≤ / ≥ 0.

Each vertex of Oj is obtained from a vertex
(

d(j)

e(j)

)
of osj under the mapping uj +Qjx, and can

thus be written as
(

uj,1+αjd(j)vj+γje(j)vj

uj,2+βjd(j)vj+δje(j)vj

)
. To express that Oj is disjoint of Oi it now suffices

to express that none of the kj vertices of Oj satisfy this particular, defining inequality. It
leads to kj constraints of the form

DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) :=

(a(i)δi − b(i)βi)(uj,1 + αid
(j)vj + γje

(j)vj) + (b(i)αi − a(i)γi)(uj,2 + βjd
(j)vj + δje

(j)vj)

+ (αiδi − βiγi)vic
(i) − (a(i)δi − b(i)βi)ui,1 − (b(i)αi − a(i)γi)ui,2 > / < 0,

4 A more general result for all dimensions was recently given in [42].
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one for every vertex of Oj . In fact we can strengthen each inequality to “≥ some positive

margin or “≤ some negative margin” respectively (for some real nonzero margin), by evaluating
the inequalities in the given geometric representation of G. Note that the inequalities are
homogeneous in ui,1, ui,2, vi, uj,1, uj,2, vj . Thus, by multiplying all ui,1, ui,2, vi, uj,1, uj,2, vj (1 ≤
i, j ≤ n) by a same factor µ ≥ 1 large enough and rescaling the variables, the constraints
continue to express that the embedding realizes G (by homogeneity of the inequalities), but
now we can assume w.l.o.g. that the inequalities can be written as

DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1 for kj nodes and relevant 1 ≤ i, j ≤ n.

(We will in fact choose µ large enough so a number of further goals w.r.t. the other constraints
are all achieved as well, as explained below.)

Next suppose we want to express that Oi,Oj overlap. Now we must express that there
is a point (xi,j , yi,j) of (say) Oi, satisfying the defining inequalities of both Oi and Oj . This
leads to a set of ki + kj linear constraints

INi(xi,j , yi,j , ui,1, ui,2, vi) ≤ / ≥ 0,
INj(xi,j , yi,j , uj,1, uj,2, vj) ≤ / ≥ 0,

one for each defining inequality ofOi andOj . The inequalities are homogeneous in xi,j , yi,j , ui,1,
ui,2, vi, uj,1, uj,2, vj and thus they scale along with the scaling of the DISJ-inequalities.

Observe that the constraints “vi > 0” may be replaced by “vi ≥ some positive margin” in
all cases as before, by using the data from the given embedding. If we multiply all variables
by a factor µ ≥ 1 large enough and rescale the variables accordingly, we can achieve that
the constraints continue to express that the model realizes G, but now we can also assume
w.l.o.g. that vi ≥ 1 for 1 ≤ i ≤ n.

Finally, note that the entire arrangement of polygons in the plane realizing G can be
shifted over any fixed vector we want. Thus, in particular and without loss of generality we
may assume that ui,1, ui,2 ≥ 0 for every 1 ≤ i ≤ n.

The resulting LP model so far describes a possible geometric representation of G and has
at least one feasible solution (which was used to define the model).

4.2 Assembling the model

The model is completely defined when we define the situation (intersection or non-intersection)
for every pair Oi,Oj . First include all constraints of the defining affine transformations ui +
Qix =

( ui,1
ui,2

)
+ vi

( αi γi
βi δi

)( x
y

)
, following the templates ti that are used and taking the scalings

into account the conditions αiδi − βiγi 6= 0 hold by definition):

ui,1, ui,2 ≥ 0

vi ≥ 1

Next consider all 1
2n(n− 1) pairs Oi,Oj and express the model inequalities for each pair. For

any given pair Oi,Oj we have a set of kij or li,j inequalities respectively of the following form:

if Oi,Oj must be disjoint:
kij ≤ max{ki, kj} inequalities of type

DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1.

if Oi,Oj must intersect (m cases):
lij = ki + kj inequalities of type

INi(xi,j , yi,j , ui,1, ui,2, vi) ≤ / ≥ 0, respectively
INj(xi,j , yi,j , uj,1, uj,2, vj) ≤ / ≥ 0.
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We now bring the linear system into standard form by introducing nonnegative slack variables
zi, wij1, · · · , wijkij

, zij1, · · · , zijlij that turn the inequality constraints into equality constraints:

vi − zi = 1,

if Oi,Oj must be disjoint:
kij inequalities DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj)±wijr = ∓1 (where wijr is used in the r-th inequal-
ity),

if Oi,Oj must intersect:

lij inequalities INi(xi,j , yi,j , ui,1, ui,2, vi) ± zijr = 0 and INj(xi,j , yi,j , uj,1, uj,2, vj) ± zijr = 0 (where

zijr is used in the r-th inequality),

now with the standard constraints

ui,1, ui,2, vi, xi,j , yi,j , zi ≥ 0 for all 1 ≤ i ≤ n,
wij1, · · · , wijkij ≥ 0 for all 1 ≤ i < j ≤ n,

zij1, · · · , zijlij ≥ 0 for all 1 ≤ i < j ≤ n.

The linear equations of the model all have rational coefficients.

4.3 Solving the model

Because S is finite, there is a constant k such that ki ≤ k for every 1 ≤ i ≤ n. As T only has
finite many different templates, there is a constant q ≥ 1 such that for every 1 ≤ i ≤ n, the
numerators and denominators of the (rational) coefficients of the defining inequalities of every
osi and of the rationals αi, βi, γi, δi are all ≤ 2q. This implies that the coefficients in the linear
inequalities DISJi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤ −1/ ≥ 1 and INi,j(ui,1, ui,2, vi, uj,1, uj,2, vj) ≤
0/ ≥ 0 are all rationals with numerators and denominators ≤ 2dq for a small integer constant
d ≥ 1. The same bound holds for the coefficients in the standard form.

Let N = n +
∑

ij kij +
∑

ij lij ≤ n + 1
2kn(n − 1). The system of linear equalities can be

written in matrix-vector form: Ax = b with the constraint x ≥ 0, where

A is a N by N + 3n + 2m all-rational matrix

all entries a of A have numerator and denominator ≤ 2dq

N columns of A are unit vectors, namely the columns corresponding to the variables zi, wij1, · · · , wijkij ,
zij1, · · · , zijlij (1 ≤ i ≤ n and 1 ≤ i ≤ j ≤ n resp.)

x = (· · · , ui,1, ui,2, · · · , vi, · · · , xi,j , yi,j , · · · , zi, · · · , wij1, · · · , wijkij , · · · , zij1, · · · , zijlij , · · · )T

b = (· · · , 1, · · · ,∓1, · · · , 0, · · · )T , with all entries rational, in fact ±1 or 0.

The term ‘unit vector’ is used to denote any column that has only one nonzero entry, with
this entry being ±1. It follows that rank(A) = N = O(n2).

Theorem 2. The LP model has an all-rational solution for ui,1, ui,2, vi with numerators and
denominators bounded in absolute value by 2O(n4).

Proof. Because Ax = b with x ≥ 0 has a feasible solution (by the given geometric represen-
tation of G), the Fundamental Theorem of Linear Programming ([6]) implies that it also has
a basic feasible solution. As rank(A) = N (= the number of rows), this basic feasible solution
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has (at least) 3n + 2m of the coordinates of x equal to 0, whereas the N -by-N submatrix
A′ consisting of the columns corresponding to the other coordinates is invertible and satisfies
A′x′ = b (with x′ ≥ 0), where x′ is the subvector of x consisting of these other coordinates.
Hence, by Cramer’s rule [37], it follows that (x′)i = detA′

i
detA′ , where A′

i is the matrix formed by
replacing the i-th column of A′ by b. This leads to a solution ui,1, ui,2, vi (1 ≤ i ≤ n) of the
model that satisfies:

ui,1 = 0 or ui,1 =
detA′

i1
detA′

ui,2 = 0 or ui,2 =
detA′

i2
detA′

vi = 0 or vi =
detA′

i3
detA′

for suitable indices i1, i2, i3 for every i. (We omit the similar statements for the other variables
in the model because they are not needed here. By the constraints vi − zi = 1, none of the vi

can be zero. Thus, in particular the n columns corresponding to these variables must all occur
in the basis.) Observe that, because A′ and A′

i are rational matrices, their determinants are
rational as well.

Recall that the nonzero entries of A′ are all of the form f
h with f, h integer and |f |, |h| ≤

2dq. Let Hi be the product of all |h|-values that occur as denominators in the i-th column
and let H =

∏N
1 Hi, thus H ≤ 2dq·N ·N . Then detA′ = 1

H detA′′, where A′′ is obtained from
A′ by multiplying the elements in the first column by H1, the elements in the second column
by H2, etc. Now A′′ is an all-integer matrix with elements bounded by 2dq·N (noting that in
every entry one h-factor of Hi cancels against the denominator of that entry).

By Hadamard’s inequality for matrices U = (u1 · · ·uN), |detU| ≤ ‖u1‖ · · · ‖uN‖. Apply
this to detA′′ or the similar determinant in the case of each A′

i. The matrices have N columns
with integer entries bounded by 2dq·N . Thus:

F = |detA′′| ≤
(√

N22dqN
)N

≤ N
1
2
N2dqN2 ≤ 22dqN2

.

This shows that detA′ = F
H with F,H integers with |F |, |H| ≤ 2gn4

for some constant g. The
same bounds hold for the other determinants. The theorem now follows. 2

The bound in Theorem 2 can be improved (cf. [33]) but is sufficient for obtaining the following,
main result.

Theorem 3. Let G be a P-intersection graph. Then G has a polynomial representation, even
fully in integers.

Proof. By Theorem 2, G has a representation as P-intersection graph using similarity trans-
formations with ui,1, ui,2, vi rational numbers and numerators and denominators bounded in
absolute value by 2O(n4). By scaling the space by a factor equal to the product of the 3n
denominators of these rational numbers, we obtain a representation in which all ui,1, ui,2, vi

are integer, with absolute values bounded by 2O(n4)+3nO(n4) ≤ 2O(n5).
To obtain an all integer representation, apply a final scaling by a factor equal to the

product of the denominators of all nonzero coefficients α, β, γ, δ that occur in the templates
and all denominators of the nonzero coordinates of the vertices of the polygons in S. This
factor is bounded by a constant, given P. 2

Corollary 1. The recognition problem for every class of P-intersection graphs is in NP .
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Although the above arguments seem to rely on being given some representation of the
P-intersection graph, this is in fact not necessary. It suffices to know for each vertex of G
which base polygon of S and which transformations of T to use, and for any nonadjacent
pair of vertices which defining inequality of the objects representing these vertices to use to
express disjointness. Given G and a signature P = 〈S, T 〉, this information is easily quantified
over to find a representation of P.

Corollary 2. The construction (‘drawing’) problem of any class of P-intersection graphs can
be solved algorithmically, in exponential time.

5 Applications

The notions of signatures and P-intersection graphs are very useful in modeling classes of
intersection graphs, particularly when combined with the generic theorems presented above.
We list a few applications.

Square intersection graphs It is known that unit square graphs have polynomial size
representations [8]. We can easily extend this now to square intersection graphs. Recall that
NP-hardness of the recognition problem of unit square intersection graphs was proved in [2].
For general square graphs, NP-hardness follows from the recent results in [26].

Theorem 4. Square intersection graphs have polynomial-size integer representations. Their
recognition problem is in NP (and thus NP -complete).

Proof. Define signature P = 〈S, T 〉 with S consisting of a unit square around the origin,
and T consisting of the template t : u + v

(
1 0
0 1

)
. Square intersection graphs are precisely the

P-intersection graphs for this signature P. Now apply Theorem 3 and Corollary 1. 2

Polynomial representation for unit square graphs follows more directly but may also be shown
by the LP-based argument, provided we add the equations vi = vj to the LP model.

Max-tolerance graphs Kaufmann et al. [17] showed that max-tolerance graphs are precisely
the intersection graphs of so-called semi-squares. (A semi-square is ‘a square with one half
cut off along the bottom-right to top-left diagonal’.) In the same way as in the previous
example, one can show that semi-square intersection graphs, thus max-tolerance graphs, have
polynomial-size integer representations and an NP-recognition problem.

As Kaufmann et al. [17] proved the recognition problem for max-tolerance graphs to be
NP-hard, it follows that this problem is in fact NP-complete.

Intersection graphs of homothetic polygons Kratochv́ıl and Pergel [26] initiated a
general study of the intersection graphs that can be formed using homothetic copies of a
single convex polygon P , or Phom-intersection graphs. (We assume that P is always finitely
given, in rational coordinates.) They show that the recognition problem for Phom-intersection
graphs is NP-hard. One can strengthen this as follows (see also the footnote on page 3):

Theorem 5. Phom-intersection graphs have polynomial-size integer representations. Their
recognition problem is in NP (and thus NP -complete).
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Proof. Define a signature P = 〈S, T 〉 with S = {P} and T assigning the homothetic trans-
formations to P . Phom-intersection graphs are precisely the P-intersection graphs for this
signature. The result follows as before. 2

In [26], Kratochv́ıl and Pergel also define Phom-contact graphs, where intersections are re-
stricted to being contacts only. They pose as an open problem to determine the complexity
of recognizing Phom-contact graphs. By modifying the LP model, one can show by the same
technique as developed in Section 4 that Phom-contact graphs have polynomial-size integer
representations. Thus the recognition problem for Phom-contact graphs is in NP. It remains
open whether this problem is NP-complete.

Note added in proof. In recent work jointly with Tobias Müller (CWI, Amsterdam), tight
upper- and lower bounds have been obtained on the number of bits needed for representing
convex polygon intersection graphs [33].

Acknowledgement. We thank Jan Kratochv́ıl for several useful comments.
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6. V. Chvátal, Linear Programming, W.H. Freeman & Company, San Francisco, 1983.
7. D.G. Corneil, H. Kim, S. Natarajan, S. Olariu, A.P. Sprague, Simple linear time recognition of unit interval

graphs, Information Processing Letters 55 (1995) 99-104.
8. J. Czyzowicz, E. Kranakis, D. Krizanc, J. Urrutia, Discrete realizations of contact and intersection graphs,

Int. Journal of Pure and Applied Mathematics 13:4 (2004) 429-442.
9. N. de Castro, F.J. Cobos, J.C. Dana, A. Márquez, Triangle-free planar graphs as segment intersection

graphs, Journal of Graph Algorithms and Applications 6:1 (2002) 726.
10. C.M.H. De Figueiredo, J. Meidanis, C.P. De Mello, A linear-time algorithm for proper interval graph

recognition, Information Processing Letters 56 (1995) 179-184.
11. X. Deng, P. Hell, J. Huang, Linear time representation of proper circular arc graphs and proper interval

graphs, SIAM Journal of Computing 25 (1996) 390-403.
12. H. Edelsbrunner, Computing the extreme distances between two convex polygons, J. of Algorithms 6

(1985) 213-224.
13. M.C. Golumbic, A.N. Trenk, Tolerance graphs, Cambridge University Press, Cambridge, 2004.
14. R.B. Hayward, R. Shamir, A note on tolerance graph recognition, Discrete Applied Mathematics 143 (2004)

307-311.
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