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Faster parameterized algorithms for Minimum Fill-In

Hans L. Bodlaender∗ Pinar Heggernes† Yngve Villanger†

Abstract

We present two parameterized algorithms for the Minimum Fill-In problem, also
known as Chordal Completion: given an arbitrary graph G and integer k, can we
add at most k edges to G to obtain a chordal graph? Our first algorithm has running
time O(k2nm + 3.0793k), and requires polynomial space. This improves the base of the
exponential part of the best known parameterized algorithm time for this problem so far.
We are able to improve this running time even further, at the cost of more space. Our
second algorithm has running time O(k2nm + 2.35965k) and requires O∗(1.7549k) space.
To achieve these results, we present a new lemma describing the edges that can safely be
added to achieve a chordal completion with the minimum number of edges, regardless of
k.

1 Introduction

The Minimum Fill-In problem asks, given as input an arbitrary graph G and an integer k,
whether a chordal graph can be obtained by adding at most k new edges, called fill edges, to
G. A chordal graph is a graph without induced cycles of length at least four. This is one of the
most extensively studied problems in graph algorithms, as it has many practical applications
in various areas of computer science. The problem initiated from the field of sparse matrix
computations, where the result of Gaussian Elimination corresponds to a chordal graph, and
minimizing the number of edges in a chordal completion is equivalent to minimizing the
number of non-zero elements in Gaussian Elimination [23]. Among other application areas are
data-base management systems [24], knowledge-based systems [18], and computer vision [6].
Since the problem was proved NP-complete [27], it has been attacked using various algorithmic
techniques, and there exist polynomial-time approximation algorithms [20], exponential-time
exact algorithms [10, 11], and parameterized algorithms [16, 5]. The current best bounds
are O∗(1.7549n) time and space for an exact algorithm [11], and O((n+m) 4k

k+1) time for a
parameterized algorithm [5], where n and m denote the number of vertices and edges of G,
respectively, and the O∗-notation suppresses factors polynomial in n.

In this paper we contribute with new parameterized algorithms to the solution of the
Minimum Fill-In problem. The field of parameterized algorithms, first formalized by Downey
and Fellows [8], has been growing steadily and attracting more and more attention recently
[9, 21]. Informally, a parameterized algorithm computes an exact solution of the problem at
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hand, but the exponential part of the running time is limited to a (hopefully small) parameter,
typically an integer. For the Minimum Fill-In problem, the natural parameter is k, the
number of fill edges. The first parameterized algorithms for this problem were given by
Kaplan et al. and appeared more than a decade ago [16, 17], with running times O(m 16k)
and O(k2nm + k616k). A refined analysis of these algorithms by Cai gave the current best
parameterized running time of O((n+m) 4k

k+1) [5].
We present two algorithms that improve on the basis of the exponential part of the running

time of these parameterized algorithms. Central in our algorithms is a new result, describing
edges that can always be added when computing a minimum solution. Based on this result,
our first algorithm is intuitive and easy to understand, and requires O(k2nm + 3.0793k) time
and polynomial space. We are able to improve the base of the exponential part even further in
a second algorithm, at the cost of more space. Our second algorithm, which is more involved,
requires O(k2nm + 2.35965k) time and O∗(1.7549k) space.

This paper is organized as follows. In Section 2, we give some preliminary definitions and
review well known results on chordal graphs and related notions. In Section 3, we give an
important and useful result, where we characterize edges that can be safely added without
disturbing optimality of a solution to the Minimum Fill In problem. Sections 4 and 5 give
the descriptions and analyses of our algorithms, each of which will be presented in its own
section: the algorithm that uses polynomial space is presented in Section 4, and Section 5
gives the algorithm that uses exponential space. For both of our algorithms, the input is an
undirected graph G = (V,E) and an integer k; each algorithm outputs either a minimum size
set of at most k fill edges, or no if each chordal completion of G requires at least k + 1 fill
edges. Finally, Section 6 gives some concluding remarks.

2 Preliminaries

All graphs in this work are undirected and simple. A graph is denoted by G = (V,E),
with vertex set V and edge set E(G) = E. For a vertex subset S ⊆ V , the subgraph of
G induced by S is G[S] = (S, {{v, w} ∈ E | v, w ∈ S}). The neighborhood of S in G is
NG(S) = {v ∈ (V \ S) | ∃w ∈ S : {v, w} ∈ E}. We write NG(v) = NG({v}) for a single
vertex v, and NG[S] = NG(S) ∪ S. Subscripts are omitted when not necessary. A vertex v is
universal if N(v) = V \ {v}.

A vertex subset S ⊆ V is a separator in G if G[V \S] has at least two connected components.
A connected component C of G[V \ S] is said to be associated to S, and it is called a full
component if N(C) = S. Vertex set S is a u, v-separator for G if u and v are in different
connected components of G[V \ S], and a minimal u, v-separator for G if no proper subset of
S is a u, v-separator. Two separators S and T are said to be crossing if S is a u, v-separator
for two vertices u, v ∈ T , in which case T is an x, y-separator for two vertices x, y in S [22].

In general, S is a minimal separator of G if there exist u and v in V such that S is a
minimal u, v-separator. If S is a u, v separator and u is not in a full component associated to
S, then S is not a minimal u, v-separator, since N(C) ⊂ S is also a u, v-separator, where C is
the component of G[V \S] that contains u. Hence the proposition below follows immediately.

Proposition 1 (Folklore) A set S of vertices in a graph G is a minimal u, v-separator if
and only if u and v are in different full components associated to S. In particular, S is a
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minimal separator if and only if there are at least two distinct full components associated to
S.

A pair of vertices {u, v} is a non-edge if u and v are not adjacent. For a vertex set S, we
let F (S) denote the set of non-edges in G[S]. S is a clique if F (S) = ∅ or |S| = 1. A clique
is a maximal clique in G if it is not a proper subset of another clique in G. A set of vertices
that is both a clique and a separator is called a clique separator. A vertex v is simplicial if
N(v) is a clique. A vertex set U ⊂ V is a moplex if G[U ] is a clique, N [v] = N [u] for any pair
of vertices in U , and N(U) is a minimal separator in G. Moplex U is simplicial if G[N(U)] is
a clique.

A perfect elimination ordering (peo) of a graph G = (V,E) is an ordering of the vertices
of G into v1, . . . , vn, such that for each i, 1 ≤ i ≤ n, the higher indexed neighbors of vi form
a clique, i.e., vi is a simplicial vertex in G[{vi, vi+1, . . . , vn}].

A tree decomposition of a graph G = (V,E) is a tree whose nodes correspond to subsets
of V , called bags, that satisfies the following: every vertex of V appears in a bag; for all
{u, v} ∈ E, there is a bag where u and v appear together; for any vertex u ∈ V , the nodes of
T corresponding to the bags that contain u induce a connected subtree of T . (We will simply
use bags to denote both bags and nodes.) It follows that for two bags X and Y of a tree
decomposition T , X ∩ Y is contained in every bag on the unique path between X and Y in
T . A clique tree is a special kind of tree decomposition with a bijection between the nodes of
the tree and the maximal cliques of G.

A chord in a cycle (path) is an edge that is between two non-consecutive vertices of the
cycle (path). A graph is chordal, or triangulated, if every cycle on four or more vertices has a
chord. A graph H = (V, F ) is a triangulation or chordal completion of a graph G = (V,E) if
E ⊆ F and H is chordal. The edges in F \E are called fill edges. H is a minimal triangulation
of G if there is no triangulation H ′ = (V, F ′) of G with F ′ ⊂ F . A triangulation with the
minimum number of edges is called a minimum triangulation. Every minimum triangulation
is thus minimal. A set of vertices S ⊆ V is a potential maximal clique (pmc) in G if there is
a minimal triangulation H of G where S is a maximal clique in H.

For details on chordal graphs and triangulations, the reader can consult e.g., [14, 15]. Here
we give the minimum necessary background that is needed for our results and proofs.

Theorem 2 ([7, 12, 19, 4, 13, 26]) Let G = (V,E) be a graph. The following are equiva-
lent.

• G is chordal.

• Every minimal separator of G is a clique.

• Every minimal separator contained in the neighborhood of a vertex of G is a clique.

• G has a peo.

• G has a clique tree.

Hence only chordal graphs have clique trees, whereas all graphs have tree decompositions
(a trivial tree decomposition is one with a single bag containing all vertices of the graph).
A clique tree is a very useful structure since it contains all the information of the minimal
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separators of a chordal graph. If we view each edge of a clique tree as the intersection of its
endpoint maximal cliques, every edge of a clique tree of G corresponds to a minimal separator
of G, and every minimal separator of G appears as an edge in every clique tree of G [4]. It is
also important to note that chordal graphs have at most n maximal cliques [7], and hence at
most n− 1 minimal separators. It is an easy observation that every tree decomposition of an
arbitrary graph G corresponds to a triangulation H of G (not necessarily minimal) obtained
by adding edges to G so that every bag of the tree decomposition becomes a clique. The given
tree decomposition of G corresponds then to a clique tree of H.

The following characterization of minimal triangulations related to minimal separators is
important for understanding our results.

Theorem 3 ([22]) Given an arbitrary graph G, a chordal graph H is a minimal triangulation
of G if and only if H is the result of making a maximal set of pairwise non-crossing minimal
separators into cliques (by adding necessary edges to G to achieve this).

From the above theorem it follows that if there is a clique separator S in G = (V,E),
no minimal triangulation contains a fill edge between two vertices separated by S. Hence
the Minimum Fill-In problem decomposes into subproblems G[S ∪ C] for each connected
component C of G[V \ S]. The same is true for minimal separators that are completed into
cliques while computing a minimal triangulation [22].

In addition, we will use several times the following characterization of minimal triangula-
tions related to moplexes.

Theorem 4 ([1]) Given an arbitrary graph G, a chordal graph H is a minimal triangula-
tion of G if and only if H is the result of repeatedly choosing a moplex X and making the
neighborhood of X into a clique by adding the missing edges, before deleting X.

Finally, we end this section with the following easy but useful observation.

Proposition 5 (Folklore) Let v1, v2, v3, v4, . . . , vt be a chordless cycle in a graph G = (V,E),
and let H = (V, F ) be a minimal triangulation of G, where {v1, v3} 6∈ F . Then there exists a
fill edge {v2, v} ∈ F for some v ∈ {v4, . . . vt}.

Proof. Since v3, v4, . . . , vt, v1 is a path between v1 and v3 in G, there is also a path in H
between v1 and v3 involving only (a subset of) vertices v3, v4, . . . , vt, v1. Let v1, u1, u2, ..., ur, v3

be a shortest path of this kind between v1 and v3 in H[V \ {v2}]. Since v1 and v3 are not
adjacent, we can conclude that r ≥ 1. Since H is chordal and every induced subgraph of a
chordal graph is also chordal, H[{v1, u1, . . . , ur, v3, v2}] is chordal, has at least four vertices,
and contains a cycle involving all its vertices. Since H[{v1, u1, . . . , ur, v3}] is a chordless path,
H[{v1, u1, . . . , ur, v3, v2}] contains fill edges and all fill edges are incident to v2.

3 Edges that can be safely added

Before we start describing our algorithms, we present an important new result that describes
fill edges that can be safely added when computing a minimum triangulation, independent of
k. This is the first result of its kind to our knowledge, and it is crucial for our further results.
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Lemma 6 Given a graph G = (V,E), let S be a minimal separator of G such that |F (S)| = 1
and S ⊆ N(u) for a vertex u ∈ V . Then there exists a minimum triangulation of G that has
the single element of F (S) as a fill edge.

Proof. Let H = (V, F ), E ⊂ F be a minimum triangulation of G, and let F (S) = {{x, y}}. If
{x, y} ∈ F , then there is nothing to prove, so assume that {x, y} 6∈ F . Let T be a clique tree
of H, and let X and Y be the closest pair of bags in T such that x ∈ X and y ∈ Y . Notice
that S ∪ {u} \ {x, y} is a subset of every minimal x, y-separator, and by the above mentioned
properties of tree decompositions, every vertex in S ∪{u}\{x, y} appears in every bag on the
unique path from X to Y in T .

Let C0, C1, ..., Cr be the connected components of G[V \S], let u ∈ C0, and let C0, C1, ..., Cp

for p ≤ r be the connected components whose neighborhoods contain both x and y. Clearly
H[Ci ∪ S ∪ {u}] is chordal for i ∈ {1, ..., r}, since any induced subgraph of a chordal graph is
chordal.

We will now construct a tree decomposition T ′ of G where the the bags that are not
subsets of other bags will be exactly the maximal cliques of a triangulation H ′ = (V, F ′) of
G, such that {x, y} ∈ F ′ and |F ′| ≤ |F |. The first step is to make a bag S = S. The expense
of adding the edge {x, y} will be compensated at a later point in the proof.

For i ∈ {p + 1, ..., r} take a clique tree Ti of H[NG[Ci]] and add an edge from a maximal
clique of Ti containing NG(Ci) to S. Notice that NG(Ci) ⊂ S, and NG(Ci) does not contain
both x and y and thus H[NG(Ci)] is a clique. We do not make any changes in subgraphs of
this type.

For i ∈ {1, ..., p}, let Ti be a clique tree of H[NG[Ci] ∪ {u}], and let Xi, Yi be the closest
pair of maximal cliques in Ti containing x and y, respectively. Notice that u is contained
in every maximal clique on the unique path from Xi to Yi in Ti, and that u has a fill edge
to every vertex that appears in one of these maximal cliques, since S separates Ci from C0

which contains u. Obtain the new tree T ′
i by removing u from Yi, and replacing u with y in

any other maximal clique of Ti. The number of fill edges will not increase, since all edges to
u from Ci were fill edges, and these are now incident to y instead. The edge {x, y} is also
added, but as mentioned this will be compensated for later. Now add an edge from Xi in T ′

i

to S.
By Proposition 1 the minimal separator S has at least two full components, and thus

p ≥ 1, and C0 and C1 are two full components. When producing T ′
1 the vertex u was replaced

by y in all maximal cliques of T1 which contained u. Let P1 = x, v1, ..., vq, y be a shortest
path between x and y in H[NG[C1]]. Such a path must exist with q ≥ 1 since x and y are not
adjacent in H and this subgraph is connected. Each vertex vi for i ∈ {1, ..., q} is contained
in some minimal x, y-separator of H[NG[C1] ∪ {u}], and is thus also contained in a maximal
clique between X1 and Y1 by the previously mentioned properties of clique trees. Thus, it
follows that {v1, ..., vq} ⊂ NH(u)∩C1. We have now saved one edge since {u, vq} is a fill edge
removed during the creation of T ′ and {vq, y} is already an edge of H[NG[C1]]. This edge is
used to pay for the added edge {x, y}.

It remains to find a triangulation of H[NG[C0]] containing {x, y} as a fill edge. In [2] it is
shown that if we have a chordal graph that does not contain an edge between two vertices x
and y, then the graph obtained by adding an edge between x and y, and adding edges from y
to every vertex of every minimal x, y-separator is also chordal. Consequently, a chordal graph
H0 is obtained by adding edge {x, y} and an edge from y to every vertex of every minimal
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x, y-separator of H[NG[C0]]. Let T0 be a clique tree of H0, and let the final tree T ′ be obtained
by adding an edge from X0 in T0 to S. For an added fill edge {y, u′} where u′ is contained
in some minimal x, y-separator of H[NG[C0]], there exists a fill edge {u′, vi} that is removed
from H ′, where vi is a vertex of the path P1 in the other full component C1. To see this, let
P0 = x, u1, u2, ..., ut be a chordless path in H[NG[C0]], such that uj = u′ for a j ∈ {1, . . . , t}.
This path exists, since u′ is contained in a minimal x, y-separator of H[NG[C0]]. Consider
again the clique tree T of H, and let X and Y be the closest pair of bags in T that contain x
and y, respectively. Every maximal clique on the unique path X, Z1, Z2, ..., Z` from X to Y
in T contains a vertex vi of path P1 where i ∈ {1, ..., q}, and every vertex u1, ..., ut of path P0

is contained in some Zi where i ∈ {1, ..., `}. Thus, there exists a fill edge from u′ to at least
one vertex in {v1, ..., vq} which is removed when obtaining the new tree T ′.

In total we have not added more edges than we have removed. For the final justification
let us argue that T ′ is a tree decomposition of G. Every vertex is either contained in S or
one of the connected components of G[V \ S] and is thus contained in one bag of T ′. For an
edge {a, b} ∈ E(G) we have the same, it is either between vertices in S or between vertices in
G[N [C]] for some connected component C of G[V \ S]. Finally, all bags containing a vertex
z induces a connected subtree of T ′, since this holds for every T ′

i and for T ′ by the fact that
a vertex is either completely in T ′

i or the fact that every T ′
i is directly attached to S.

4 An O∗(3.0793k)-time algorithm for Minimum Fill-In

The first algorithm that we present uses polynomial time reductions and some branching
rules. The input to the algorithm is an undirected graph G = (V,E), and the algorithm
either outputs a minimum size set of fill edges of size at most k, or no if each triangulation
of G requires at least k edges.

In the subproblems generated by this branching algorithm, some vertices have a marking.
As will be clear when the subproblems are analyzed, sometimes we will have the choice of
adding a set of fill edges or concluding with a set of vertices that each must be incident to a fill
edge. These vertices will be marked, to give the desired restriction in the solution of resulting
subproblems. More precisely, subproblems can be associated with problem instances of the
form (G, k, r,M) with G = (V,E) a graph, k and r integers, and M ⊆ V a set of marked
vertices. For such an instance, we ask whether there exists a triangulation H = (V, F ) of G
with |F \E| ≤ k and 2|F \E| − |M | ≤ r, such that each vertex in M is incident to a fill edge.
We say that a vertex v is marked if v ∈ M , and r denotes the number of marks we still can
place at later steps during the algorithm. From the original problem where G and k are given,
the new initial problem instance is (G, k, 2k, ∅). Any triangulation of G which requires k fill
edges is also a solution to the new instance since r = 2k and M = ∅. Lemma 7 is a trivial
consequence of our definition of subproblems.

Lemma 7 If (G=(V,E), k, r, M) has a solution with {x, y} as a fill edge, then ((V,E ∪
{{x, y}}), k−1, r−γ, M \{x, y}) has a solution, where γ ∈ {0, 1, 2} is the number of unmarked
endpoints of {x, y}.

At several points during our algorithm, we write: add an edge e to F and update accord-
ingly. Following Lemma 7, the update consists of decreasing k by one, decreasing r by the
number of unmarked endpoints of e, and removing the marks of marked endpoints of e. If we
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add more edges, we do this iteratively. Whenever we mark a vertex, we decrease r by one.
Note that if two edges are added with a common endpoint, this endpoint is unmarked after
the first addition, and thus causes a decrease of r at the second addition. As an example
consider the triangulation of a chordless cycle with five vertices. There exist two fill edges and
thus four endpoints, but these two fill edges are incident to only three vertices altogether.

The algorithm is based on checking the existence of the structures described in the fol-
lowing paragraphs, and performing the corresponding actions. When a change is made to the
input, we start again by checking trivial cases.

Trivial cases. First, the algorithm tests whether G is chordal and k ≥ 0 and r ≥ 0. If so,
it returns ∅. Next, it tests if k ≤ 0 or r ≤ −1. If so, it returns no.

4-Cycles. Then, the algorithm branches on chordless cycles of length four (4-cycles). Sup-
pose that v, w, x, y induce a 4-cycle. Then, in any triangulation, {v, x} is an edge or {w, y}
is an edge. The algorithm recursively solves the two subcases: one where we add {v, x} as
a fill edge and update accordingly, and one where we add {w, y} as a fill edge and update
accordingly.

An invariant of the algorithm is that each 4-cycle has at least two adjacent vertices that
are not marked. Initially, this holds as all vertices are unmarked. Whenever we create a 4-
cycle by adding an edge, we unmark the endpoints of the added edge. Marks are only added
in graphs that do not have a 4-cycle.

Note that we create in this case two subproblems. In each, k is decreased by one, and r
is decreased by at least one. We will show by induction that the search tree formed by the
algorithm has at most ak · br leaves for inputs where we can use k fill edges, and place at most
r marks. Thus, this case gives as condition ak · br ≥ 2 · ak−1 · br−1, i.e, ab ≥ 2.

Moplexes with marked and unmarked vertices. As a consequence of Theorem 4 and
Proposition 5, we have the following result.

Lemma 8 Let G be a graph and U be a moplex in G. There is a minimum triangulation of
G that has a fill edge incident to each vertex in U , or there is a minimum triangulation of G
where N(U) is a clique and no fill edge is incident to any vertex in U .

Proof. Note first that N(U) is a minimal separator of G. By Theorem 3 and the subsequent
discussion, N(U) is turned into a clique in a minimal triangulation of G if and only if no fill
edge is added incident to a vertex of U . If N(U) is not a clique in a minimal triangulation
H of G, then every vertex u of U is involved in a chordless cycle containing u, the endpoints
of a missing edge {x, y} in N(U), and vertices of a shortest path between x and y in another
full component associated to N(U). Hence, by Proposition 5, every vertex of U is incident to
a fill edge in H.

Thus, when we have a moplex that contains marked and unmarked vertices, we mark all
vertices of the moplex.

Finding moplexes with unmarked vertices. Then, the algorithm tests whether there
is a moplex U that contains no marked vertices. If there is no such moplex, the algorithm
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returns no. Safeness of this step comes from the following lemma, which follows immediately
from Theorem 4 by simply considering the first moplex that is removed after being made
simplicial.

Lemma 9 Let G be a graph and let H be a minimum triangulation of G. There is a moplex
U in G, such that no fill edge is incident to any vertex of U in H, and N(U) is a clique in
H.

We take such a moplex U , and let S = N(U). We compute F (S), i.e., the set of non-edges
in the neighborhood of U .

Simplicial vertices. If F (S) = ∅, then all vertices in U are simplicial. We recurse on the
instance (G \ U, k, r,M).

By Theorem 3 and the subsequent discussion, this instance is equivalent to, and a minimum
set of fill edges for the new instance is also a minimum set of fill edges for, the original instance.

Moplexes missing one edge. Next, we test if |F (S)| = 1. By Lemma 6 it is always safe
to add the edge in F (S), but in some cases we need to compensate for this by removing one
mark from a vertex. The proof of the following Lemma relies heavily on Lemma 6.

Lemma 10 Let G = (V,E) be a graph and let M ⊆ V be the set of marked vertices in G.
Suppose there exists a minimum triangulation of G such that each vertex in M is incident to
a fill edge. Let u ∈ V be an unmarked vertex, and let S ⊆ N(u) be a minimal separator with
F (S) = {{x, y}}.

1. If there is a unique vertex v∗, such that v∗ is the last vertex on each chordless path
from x to y through a full component of S not containing u, then there is a minimum
triangulation of G that contains {x, y} as a fill edge, and such that each vertex in M\{v∗}
is incident to a fill edge.

2. If there is no unique vertex v∗, such that v∗ is the last vertex on each chordless path
from x to y through a full component of S not containing u, then there is a minimum
triangulation of G that contains {x, y} as a fill edge, and such that each vertex in M is
incident to a fill edge.

Proof. Let H = (V, F ), E ⊂ F , be a minimum triangulation of G, such that every vertex in
M is incident to at least one edge in F \E. If {x, y} ∈ F , then there is nothing to prove, so let
us assume that {x, y} 6∈ F . We will now analyze the triangulation H ′ = (V, F ′) constructed
in the proof of Lemma 6, and compare it to H. If every vertex in M is incident to a fill edge
in F ′ \ E, then the proof of Lemma 6 can be applied directly.

Let us start by listing the vertices that in H ′ might loose their incident fill edges compared
to H. For each connected component Ci, for i ∈ {1, ..., p}, fill edges incident to u in H[NG[Ci]∪
{u}] are moved to be incident to y instead in H ′. This is unproblematic for any vertex not
adjacent to y in G, but for neighbours of y, this means that they loose an incident fill edge.
We used this saved edge in the proof of Lemma 6 to pay for the new and added fill edge
{x, y}, and thus there exists exactly one such saved edge, one such neighbor of y, and such
component containing such a neighbor, since H is an minimum triangulation. Let {v1, ..., vq}
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be a chordless path from x to y in H[NG[C1] ∪ {x, y}]. It follows that vq is the single vertex
that has lost one incident fill edge in H ′ compared to H.. In the case of two different first
vertices on a chordless path from x to y through C1, two edges can be saved, which is a
contradiction to H being a minimum triangulation. Taking v∗ = vq completes the proof.

Suppose we have a moplex U , with F (N(U)) consisting of the single edge {x, y}. The
condition of Lemma 10 now becomes: there is a vertex v∗ that is the last vertex on each
chordless path in G[V \U ] from x to y. A simple modification of standard breadth first search
allows us to find v∗ in linear time, if it exists. If v∗ exists, we remove its marking. Then, in
both cases, we add the edge {x, y} and update accordingly.

In this case, we possibly decrease k by one, and increase r by one. This gives us as
condition on the running time constants: a ≥ b.

The condition is not symmetric. We can apply the condition with roles of x and y switched
and save a marking in some cases.

Branching on moplexes. If none of the earlier tests succeeds, we arrive at the last branch-
ing, performed on a moplex U with all vertices in U unmarked.

Recall Lemma 8. It dictates which two subproblems we consider. In the first subproblem,
we mark all vertices in U . In the second subproblem, we add all edges in F (N(U)) and update
accordingly. In the first, r is decreased by |U |. In the second, |F (N(U))| ≥ 2, as otherwise
there is no pair of edges with a common endpoint in F (N(U)), so k is decreased by two. Note
that there must be a vertex that is common to two elements of F (N(U)): if not, then suppose
{x, y} and {v, w} are elements in F (N(U)), but no other combination of x, y, v, and w is
an element of F (N(U)). Then, these four vertices form a 4-cycle, which is a contradiction.
Thus, in the second subproblem, r is also decreased by at least one.

This gives us as condition for the running time analysis: ak · br ≥ ak−2 · br−1 + ak · br−1,
or a2b ≥ 1 + a2.

Each of these subproblems is solved recursively, and from these solutions, we then return
the best one, adding F (N(U)) to the set returned by the second subproblem except when it
returned no.

Analyzing the running time. By standard graph algorithmic tools, each recursive call
can be performed in time O(nm), except that the checking for all 4-cycles before any other
operation is done requires O(m2) time, once. We now analyze the number of recursive calls in
the search tree. We start with an instance with r = 2k, so the running time of the algorithm
is bounded by ak · b2k. Each of the steps gave a condition on a and b, and we get as minimum
ab2 = 3.0793 when we set a = 1.73205 and b = 1.33334. Thus, the total running time becomes
O(m2 + nm · 3.0793k).

By the results of [17] and [20] it is possible to reduce a given instance (G = (V,E), k)
of Minimum Fill-In to an equivalent instance (G′ = (V ′, E′), k′) where k′ ≤ k and |V ′| =
O(k2), in O(k2nm) time. By preprocessing the input by such an algorithm we get an additive
time cost of O(k2nm) but the size of n and m have been reduced to respectively O(k2) and
O(k4). Thus, the time complexity for our algorithm becomes O(k2nm + 3.0793k).

Theorem 11 The Minimum Fill-In problem can be solved in O(k2nm+3.0793k) time, using
polynomial space.
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5 An O∗(2.35965k)-time algorithm for Minimum Fill-In

In this section, we give a second algorithm for the Minimum Fill-In problem. This algorithm
uses less time as a function of k, at the cost of exponential space as a function of k. Like the
previous algorithm, we create subinstances with some vertices marked and with an additional
parameter r, which is the number of marks that still can be handed out.

An important difference to the algorithm of Section 4 is that the mark is a vertex set
containing the vertices which are candidates to add a fill edge incident to. I.e., marks are
annotated. This is to properly execute the steps where we partition on clique separators. The
algorithm involves a more extensive analysis of subproblems, a mixing of eliminating moplexes
with partitioning the graph on clique separators, resolution of cycles with four vertices, and
a resolution of certain cases with the exact algorithm, recently given by Fomin and Villanger
[11]. We also allow that the algorithm returns solutions that do not respect marks. When
there is a solution respecting marks with α fill edges, the algorithm may return any solution
with at most α fill edges. If the algorithm returns no, we know there is no solution that
respects marks. This is needed for the step where we use the exact algorithm by Fomin and
Villanger [11], as we ignore the marks in that step.

With our algorithm description, we will also make the first steps towards the time analysis.
We derive a number of conditions on a function T (k, r), such that the running time of all
recursive calls that originate at a node with parameters k (number of fill edges) and r (number
of marks that still can be placed) is bounded by T (k, r) times a function, polynomial in n, not
depending on k. As the time for non-leaf nodes of the search tree is bounded by a polynomial
in n times the time for leaf nodes, we only count the time at leaf nodes. We want to show
that T (k, r) ≤ ak · bk · o(k) and derive some conditions on a and b.

The algorithm consists of carefully handling subproblems of various types. We describe in
the next paragraphs which conditions are tested, in what order, and what steps are executed if
a certain condition holds. First we will present some polynomial-time reduction rules. Several
cases are similar to or the same as in our previous algorithm.

Trivial cases. Exactly like in the algorithm of Section 4, if G is chordal and k ≥ 0 and
r ≥ 0, then we return the empty set. If G is not chordal, and k ≤ 0 or r ≤ −1, we return no.

Universal vertex. If G contains a universal vertex then we simply remove this vertex. This
is safe, since no chordless cycle of length at least 4 contains such a vertex.

Simplicial vertices. If an unmarked vertex is simplicial then we remove the vertex, and
obtain an equivalent instance. If a marked vertex is simplicial then we return no, since no
minimal triangulation will add fill edges incident to a simplicial vertex by Theorem 3.

Clique separators. Then, the algorithm tests if there is a clique separator. If there is
a clique separator S, then let V1, . . . , Vr be the vertex sets of the connected components of
G[V \ S]. We create now r subinstances, with graphs G[S ∪ V1], . . . , G[S ∪ Vr].

Vertices in subinstances in V \S keep their marks. A marked vertex in S is marked in only
one subinstance, containing the annotated vertex set related to the mark. We will describe
this more in detail when the annotated vertices are defined.
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These subproblems are now independent by Theorem 3 and its subsequent discussion.
First, we test for each subproblem if there is a solution with at most two fill edges. If so,
we solve this subproblem in polynomial time and use the obtained solution to reduce the
parameter of the remaining problems.

When we have α subproblems each of whose solutions requires at least three fill edges, each
can add at most k− 3α+3 fill edges. For each of these subinstances is solved with parameter
k − 3α + 3; we answer yes if the total of all minimum triangulation for all subinstances is at
most k.

Thus, we need to choose a and b such that T (k, r) ≤ α · T (k − 3α + 3, r) for all α > 1.
This gives a3α−3 ≥ α, which holds for every integer α > 1 and a ≥ 1.3.

A minimal separator missing one edge. The next step is similar to the steps in our
previous algorithm that use Lemma 10, but now we apply it also to vertices that do not belong
to a moplex.

We test if there is an unmarked vertex v and a minimal separator S ⊆ N(v), such that
F (S) contains only one edge. If we have such a minimal separator S, we add the edges in
F (S), test if vertex v∗ described in Lemma 10 exists, if v∗ exists, we remove the mark of v∗,
update accordingly, and solve recursively the remaining instance.

If this instance returns no, we return no, otherwise we return the union of F (S) and the
solution found by the instance. This again gives as condition for the running time analysis:
a ≥ b.

Above, we have given a number of reduction steps. We repeat applying reductions, until
none of the above reduction steps applies, and then consider, in the given order, the following
branching steps.

4-Cycles. Exactly like in the algorithm of Section 4, we now test if there is a chordless
4-cycle, and branch on the two ways of adding an edge between non-adjacent vertices in the
cycle. Again, we get as condition ab ≥ 2.

Minimal separator S with |F (S)| ≥ 3. Next we test if there is an unmarked vertex v,
and a minimal separator S ⊆ N(v) with |F (S)| ≥ 3. If so, we branch on this vertex, similarly
as in the previous algorithm: we create two subinstances and recurse on each of these, and
then output the smallest fill set of these instances, treating no as a solution of size ∞.

In one subinstance, we add all fill edges in F (S), and k is decreased by |F (S)|. For each
unmarked vertex incident to an edge of F (S), r is decreased by one. For each vertex incident
to j > 1 edges in F (S), r is decreased by j − 1. We also remove all marks from vertices
incident to edges in F (S).

In the other subinstance, we mark vertex v, but we also have to define the annotation for
the mark of v. Let W be a connected component of G[V \N [v]] not containing v such that
N(W ) = S. The connected component W exists by definition of S. The annotated vertices
for the mark of v will be W . Let us justify this:

Since S is not completed into a clique, there is an edge {x, y} ∈ F (S) which is not used as
a fill edge in the optimal solution we are searching for. Vertex set W is a full component of
S, and thus there exists a chordless path u1, u2, ..., ur from x to y only containing vertices of
W . Vertex set {y, v, x, u1, u2, ..., ur} induces a cycle in G. By Proposition 5, v has a fill edge
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to one of the vertices in {u1, u2, ..., ur} if {x, y} is not a fill edge. Since we do not know which
one of the edges in F (S) is not added when v is marked, we use W as the annotation and in
this way ensure that the correct vertex is in the set.

Lemma 12 Given a graph G, let S ⊂ V be a clique separator, let v ∈ S be a marked vertex,
and let X be the annotation of v. Then there exists a connected component W of G[V \ S]
such that X ⊆ W .

Proof. Note first that S ∩ X = ∅, since no vertex of X is adjacent to v when v is marked.
Secondly, the mark of v is removed when fill edge {x, v}, where x ∈ X, is added. Finally, S
does not separate any pair of vertices in X, since S contains no vertices in X, and G[X] is
connected.

Again, we return the smallest solution found by the two subinstances, treating no as a
solution of size ∞.

Similar arguments as before show correctness of this step. In a minimum triangulation,
we must either add all edges in F (S) or vertex v will be incident to a fill edge. In the
first subinstance, we have k reduced by |F (S)| ≥ 3, and r reduced by at least two. This
can be seen as follows. There are no chordless 4-cycles in G, and thus the edges of F (S)
form a connected graph with vertex set S. A consequence of this is that at most |F (S)| − 1
vertices will be incident to the edges in F (S). When updating, r is decreased by 2 · |F (S)|
minus the number of marked vertices that are endpoint of an edge in F (S), which is at least
two. In the second subinstance, r is decreased by one, as we place one mark. This gives:
T (k, r) ≤ T (k − 3, r − 2) + T (k, r − 1), leading to the condition a3b2 ≥ 1 + a3b.

Notice that after this step has been carried out, for any remaining minimal separator S
contained in the neighborhood of an unmarked vertex, |F (S)| = 2.

Split the problem into two non-chordal subproblems. Let v be an unmarked vertex,
let S be a minimal separator in N(v), and let G′ be the resulting graph where the elements
of F (S) are added to G as fill edges. We test if there are two connected components W1 and
W2 of G[V \S] where G′[N [W1]] and G′[N [W2]] are non-chordal. This test can be carried out
in polynomial time [24].

If this test fails for all unmarked v and minimal separators in N(v), we continue with the
next step. Suppose now that we have found a vertex v and two connected components W1

and W2 of G[V \ S] with G′[N [W1]] and G′[N [W2]] non-chordal.
We will then know that at least one fill edge will be required for each of the connected

components W1 and W2 in the case where S is completed into a clique. The algorithm proceeds
as follows: Check if one of the subproblems G′[N [W1]] or G′[N [W2]] can be triangulated by
adding at most three fill edges. We can use any FPT-algorithm for Minimum Fill-In to do
this in polynomial time.

First, suppose this check holds. Without loss of generality, suppose G′[N [W1]] can be
triangulated by adding k1 ≤ 3 fill edges. We recurse on two subinstances. The first subinstance
handles the case where S is completed into a clique. Here we need to recurse on G′[N [W2]],
where k is reduced by |F (S)| + k1 ≥ 3. Similar as above, the at least three fill edges form a
connected graph on the set of its endpoints, and hence we save at least two marks. In the
second subinstance, we mark v. Thus, in this case, we get the recursive condition: T (k, r) ≤
T (k − 3, r − 2) + T (k, r − 1), giving a3b2 ≥ 1 + a3b.
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Suppose neither G′[N [W1]] nor G′[N [W2]] can be triangulated by adding at most three
fill edges. We consider again two subinstances, but directly split the first instance again. In
the first main subinstance, we complete S into a clique. Now, S is a clique separator. Thus,
we can instead solve two smaller subinstances, and recurse on G′[N [W1]] and G′[V \N [W1]].
In each of these subinstances, the parameter k is reduced by six: we used two fill edges for
completing S and must use at least four fill edges in the other subinstance. As the two fill
edges in S share an endpoint, we decrease r by one. In the second main subinstance, we
mark v. This gives the recursive condition: T (k, r) ≤ 2T (k − 6, r − 1) + T (k, r − 1), giving
a6b ≥ 2 + a6.

Using a list of potential maximal cliques. Suppose now that none of the steps above
could be applied. In this case, we use another algorithm to solve the Minimum Fill-In
problem. This algorithm is a variant of the exact algorithm for Minimum Fill-In by Fomin
and Villanger [11].

This step consists of a number of substeps:

1. We return no if there are more than k + 1 marked vertices.

2. We partition the unmarked vertices into groups, and return no if there are more than
3k/2 + 1 groups.

3. We make a list of minimal separators of G: this list will in general not contain all
minimal separators, but it contains all that are needed to make step 5 succeed.

4. We make a list of potential maximal cliques of G. Again, this list does not need all
potential maximal cliques, separators, but it contains all that are needed to make step
5 succeed.

5. We use the two lists above as input to an algorithm by Fomin et al. [10] and determine if
there is a triangulation with fill at most k, and if so, find a triangulation with minimum
fill.

Each of these steps, with details and correctness, will be discussed extensively below, but
we start with deriving a number of graph theoretic lemmas.

From the fact that none of the above steps can be applied, several conclusions can be
drawn. Let Sv be a minimal separator contained in N(v) for an unmarked vertex v, and let
Wv be a connected component of G[V \ N [v]] which is full for Sv. The graph obtained by
adding the two edges in F (Sv) to G[N [Wv]] will not be chordal, since that would imply a
vertex w ∈ Wv, where Sv ⊆ N(w), and thus the endpoints of an edge of F (Sv) and vertices
v, w would induce a 4-cycle. Since all connected components of G[V \ N [v]] generate non-
chordal subproblems by the argument above, we can notice that G[V \N [v]] contains exactly
one connected component, since zero components would imply that v is universal, and more
than one would imply that the previous described rule could be applied.

As a consequence of the above, for any unmarked vertex v, N(v) contains only one minimal
separator, which we will denote by Sv, and there is only one connected component in G[V \
N [v]] which is full for Sv; we will denote this connected component by Wv. Notice also that
G[N [v]] = G[V \ Wv] becomes chordal when the two elements of F (Sv) are added to G as
fill edges. Before starting to describe the subroutine to handle this final case, we need more
knowledge about the problem instance.

13



Lemma 13 Given a graph G = (V,E) where none of the rules above can be applied, let u and
v be unmarked vertices, where Su ⊂ N [v]. Then u and v are contained in the same connected
component Wv of G[V \ Sv].

Proof. Let Cv be the full component of Sv containing v, and let Wv be the full component
not containing v. Let Cu and Wu be defined in the same way for u.

Vertices u and v are adjacent by definition if v ∈ Su. If v 6∈ Su, then both u and v have
the endpoints of the edges in F (Su) in their neighborhood, and thus u and v are adjacent,
since there are no chordless 4-cycles.

Vertex v is contained in Cv by definition, and by the edge {u, v} vertex u is contained in
N [Cv] = Cv∪Sv. If u ∈ Cv then the lemma follows. Let us on the contrary assume that u ∈ Sv.
Since u ∈ Sv and Sv is a minimal separator, then there exists a neighbour w of u in Wv. This
implies that Wv ⊂ Cu, since G[V \N [u]] only contains one component Wu and Wv ∩ Su = ∅.
Since Wv ⊂ Cu, then by the previous observation that G[V \N [u]] only contains one component
Wu and the fact that Wv ⊂ Cu, we have that Wv ∪ Sv ⊆ N [u]. This again implies that Su

and Sv are non crossing, and thus Wu ⊆ N [v] \Sv. Now we have a contradiction by Theorem
of [22], since completing Sv into a clique makes the graph G[N [v]] where the edges F (Sv) are
added chordal, while adding the edges F (Su) where Su ⊂ N [v], Su, Sv are non crossing, and
Wu ⊂ N [v], makes G[N [Wu]] non chordal.

Lemma 14 Given a graph G = (V,E) where none of the rules above can be applied, let u
and v be unmarked vertices. Then N [u] = N [v], or F (Su) ∩ F (Sv) = ∅.

Proof. Suppose that the lemma does not hold for unmarked vertices u and v with corre-
sponding minimal separators Su and Sv. We consider two cases. Note that |F (Su)| = 2 and
|F (Sv)| = 2.

In the first case, we assume that |F (Su) ∩ F (Sv)| = 1. Let {x, y} be the edge in F (Su) ∩
F (Sv). Then edge {u, v} is contained in E, since the graph would otherwise contain a 4-cycle.

There are now two subcases: either v ∈ Su (equivalently u ∈ Sv) or not. If v 6∈ Su, then
v is contained in the connected component Cu of G[V \ Su] that contains u, because of the
edge {u, v}. By the previous rules we know that G[N [Cu]] is chordal when the two edges in
F (Su) are added. Since v does not have any neighbors outside of N [Cu], and |F (Sv)| = 2,
then F (Su) = F (Sv), which is a contradiction to the assumption. If v ∈ Su, then Su ⊂ N [v],
since an edge {v, z} ∈ F (Su) for z ∈ {x, y} would make either x or y non adjacent to v. By
Lemma 13 u and v are contained in the same connected component of G[V \ Sv], and thus
the arguments of the first case, where u 6∈ Sv, can be applied again.

In the second case, we assume that |F (Su) ∩ F (Sv)| = 2. We will now show that N [u] =
N [v] and thus obtain a contradiction. Like in the first half of the proof we can notice that
{u, v} ∈ E, since otherwise a 4-cycle exists, consisting of u, v and the endpoints of an edge in
F (Sv). Also there is no vertex w in Su \N(v) (equivalently Sv \N(u)) since this would create
a 4-cycle with v, w (equivalently, u, w) and the endpoints of an edge of F (Su).

Finally we consider the case where there is a vertex w ∈ (N(u) \ Su) \ N(v). There are
two subcases again, either v ∈ Su or v 6∈ Su. Let us first consider the case where v is not
in Su. Then u, v, w are in G[N [u]], which becomes chordal after adding the fill edges F (Su).
There exists a minimal separator Sw in N [w] ⊆ N [u] that separates w and v. Notice that Sw

becomes a clique after adding the fill edges F (Su) to G[N [u]], since none of these fill edges
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are incident to w. This construction requires that v, w and the endpoints of an edge in F (Sw)
induce a 4-cycle, which is a contradiction.

The second subcase is when v ∈ Su. Since F (Su) = F (Sv), then none of the elements of
F (Su) or F (Sv) are incident to u or v. As a result Su ⊆ N [v] if v ∈ Su. By Lemma 13 u is
not contained in Sv, and the arguments for the case where u 6∈ Sv can be applied.

Lemma 15 Given a graph G = (V,E) where none of the rules above can be applied, let v be
an unmarked vertex. Then the number of unmarked vertices in Sv is at most 3.

Proof. Let us on the contrary assume that four unmarked vertices w1, w2, w3, w4 are
contained in Sv. By Lemma 14 F (Su) ∩ F (Sv) = ∅ for u ∈ {w1, w2, w3, w4}, since otherwise
N(u) = N(v) which would be a contradiction to the existence of u ∈ Sv. If Sv ⊂ N [u] for
u ∈ {w1, w2, w3, w4}, then by Lemma 13 N [v] ⊆ N [u], and since |F (Sv)| = 2 and G[N [u]] is
triangulated by adding the two edges in F (Su), then F (Su) = F (Sv). This is not possible
since by Lemma 14 N [u] = N [v] in this case. We can now conclude that Sv 6⊂ N [u] for
u ∈ {w1, w2, w3, w4}. A consequence of this is that F (Sv) have elements incident to all four
vertices {w1, w2, w3, w4}, which is a contradiction to the fact that |F (Sv)| = 2 and that these
two elements have a common endpoint.

Lemma 16 Given a graph G = (V,E) with no chordless 4-cycle or clique separator, let
H = (V, F ) be a triangulation of G with E ⊂ F . Then only one connected component of
(V, F \ E) contains edges.

Proof. Notice that every minimal separator of H contains a fill edge, and thus every maximal
clique of H also contains a fill edge. Since every minimal separator of H is contained in at least
two maximal cliques of H [4, 13, 26], it is enough to show that the fill edges inside any maximal
clique induce a connected graph. For fill edges that belong to different maximal cliques, there
is a series of minimal separators between the two cliques (in any clique tree) containing fill
edges, and hence if the fill edges of each maximal clique are connected, so are the fill edges of
the whole graph. Let X be a maximal clique of H, and assume that {u, v} and {x, y} are fill
edges in X. There are two cases; either one of the edges {x, u}, {u, y}, {y, v}, {v, x} is a fill
edge and the lemma holds, or {x, u}, {u, y}, {y, v}, {v, x} are edges of G that induce a 4-cycle
which is a contradiction.

A consequence of this lemma is that there are at most k + 1 vertices incident to a fill
edge. Hence the first substep: we return no at this point if there are more than k +1 marked
vertices. So assume there are at most k + 1 marked vertices.

The next step of the algorithm is to control the unmarked vertices. What we will do is to
partition the unmarked vertices into groups, bound the number of groups, and show that an
algorithm by Fomin et. al. [10] has a running time that can be bounded by a function of the
number of groups and marked vertices.

For each unmarked vertex v we know that |F (Sv)| = 2, and by Lemma 14, we know that
for pairs of unmarked vertices u and v, F (Sv) = F (Su), or F (Sv) ∩ F (Su) = ∅. Partition the
unmarked vertices into groups, where F (Sv) = F (Su) for all pairs u, v of vertices in the same
group.

Lemma 17 If G has a triangulation with at most k fill edges, then there are at most 3k/2+1
groups of unmarked vertices.
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Proof. Consider a minimum triangulation H, which respects all given marks. By Lemma 16
there are at most k + 1 vertices incident to fill edges of H. Since N [u] = N [v] for a pair of
unmarked vertices in the same group, we can notice that either all or none of them will have
an incident fill edge in H. There are at most k + 1 groups that have fill edges incident to its
vertices. The number of groups that do not have fill edges incident to its vertices is at most
k/2, since each such group has two private fill edges in its neighborhood.

So, if we have more than 3k/2 + 1 groups, we return no.
The final step of our algorithm is to apply an algorithm by Fomin et al. [10] to compute a

minimum triangulation, with one important modification concerning the groups of unmarked
vertices. Fomin et al. [10] have shown that a minimum triangulation can be computed in
O((|∆G| + |ΠG|) · n3) time, where ∆G is the set of minimal separators of G, and ΠG is the
set of potential maximal cliques of G. The algorithm of [10] is more powerful than stated.
Inspection of this algorithm shows that it also can be used to obtain the following result.

Theorem 18 (See Fomin et al. [10]) There is an algorithm that, given a graph G = (V,E),
a list L1 of potential maximal cliques in G, and a list L2 of minimal separators in G, returns
in time O(n3(|L1|+ |L2|)) a triangulation H of G, such that

• each maximal clique in H is an element of L1

• each minimal separator in H is an element of L2

• the fill of H is minimal amongst all triangulations that fulfil the above two criteria.

We can use this result as follows: we list potential maximal cliques and minimal separators
of G, but we can avoid listing such potential maximal cliques and minimal separators when
they would imply more than k fill edges. As minimal separators in a chordal graph are cliques,
we only have to list minimal separators S with |F (S)| ≤ k and potential maximal cliques Ω
with |F (Ω)| ≤ k, when we want to solve the Minimum Fill-In problem with parameter k.

It is not hard to see that if u and v have the same closed neighborhood, then each potential
maximal clique that contains u also contains v; the same holds for each minimal separator in
a minimal triangulation of G. A vertex is for instance contained in a minimal u, v-separator
S if and only if it has a neighbor in the connected components of G[V \ S] which contains
respectively u and v. For potential maximal cliques there exists a similar definition. A vertex
is contained in the potential maximal clique if and only if it can reach all other vertices in
the potential maximal clique by direct edges or paths consisting only of vertices that are
not contained in the potential maximal clique. Given these arguments, no vertex set that
contains only a part of a group of unmarked vertices are candidates to be minimal separators
or potential maximal cliques. Thus, when listing minimal separators and potential maximal
cliques, we can treat vertices with the same closed neighborhood as a single vertex.

By Lemma 15, for each group of unmarked vertices, there are at most three unmarked
vertices not in this group that are incident to some vertices in the group. Consider a collection
of 4

√
k of the 3k/2 + 1 groups of unmarked vertices. The set of vertices in these groups can

never belong to a clique in a triangulation with at most k fill edges, as there are more than
k pairs of vertices in this set that are non-adjacent. Thus, we can limit our lists of minimal
separators and potential maximal cliques to sets that contain at most 4

√
k of the 3k/2 + 1

groups of unmarked vertices.
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Lemma 19 Given a graph G, let M be the set of marked vertices, let q be the number of
groups of unmarked vertices, and let k ≤ |M | − 1. Then all minimal separators and po-
tential maximal cliques containing at most ` groups of unmarked vertices can be listed in
O∗

(
1.7549k+1 ·

∑`
i=0

(
q
i

))
time and space.

Proof. To prove Lemma 19, we show that all minimal separators and potential maximal
cliques containing W ⊂ (V \ M) where |W | ≤ ` can be listed in O∗(1.7549k+1) time and
space. For the rest of this proof we assume W is the intersection between V \ M and the
minimal separator or potential maximal clique we are searching for.

Due to Proposition 1 every minimal separator S has two full components C1 and C2.
Without loss of generality let C1 be the component such that |C1 ∩ M | ≤ |C2 ∩ M |. Fomin
and Villanger [11] give an algorithm that lists all minimal separators by searching for C1,
starting from every vertex of G. Since the inclusion/exclusion of unmarked vertices is already
decided, we only have to branch on marked vertices, and thus the algorithm of [11] can be
adapted to list all the minimal separators containing W and not V \(M∪W ) in O∗(1.6181k+1)
time and space.

Listing potential maximal cliques is done in the same way, but is slightly more involved.
The set of potential maximal cliques can be partitioned into two sets, nice potential maximal
cliques and non nice potential maximal cliques. A potential maximal clique is defined as nice
if it is not an induced clique when all but one minimal separator completely contained in
the potential maximal clique is completed into a clique. By [3, 10, 11] the set of non nice
potential maximal cliques containing at most ` unmarked vertices can be generated from the
set of minimal separators and nice potential maximal cliques contains at most ` unmarked
vertices with a polynomial delay for each potential maximal clique. Our problem is then
reduced to listing nice potential maximal cliques where the graph induced over these contains
at most ` unmarked vertices.

One property for a nice potential maximal clique Ω is the existence of a connected vertex
set Z and a vertex x 6∈ Ω such that Ω = N(Z) ∪ {x}, and Z ∩ Ω = ∅ and Z contains at most
2/3 of the vertices not in Ω [25].

Again we use the algorithm in [11] and search for the connected vertex set Z. In the same
way as for minimal separators we do not have to branch on unmarked vertices (V \M). As
a result, the algorithm for listing potential maximal cliques in [11] can be adapted to list all
nice potential maximal cliques containing the unmarked vertices W in O∗(1.7549k+1) time
and space. Given the set of minimal separators and nice potential maximal cliques containing
at most ` unmarked vertices the set of non nice potential maximal cliques containing at most
` unmarked vertices can be generated with a polynomial delay [11].

As discussed above, minimal separators and potential maximal cliques that contain vertices
from more than 4

√
k groups cannot belong to a triangulation with at most k fill edges. Hence,

we apply Lemma 19 with ` = 4
√

k. Thus, in O∗(1.7549k) time, we list all minimal separators
and potential maximal cliques that can contribute to a triangulation with at most k fill edges.
Given these lists, we now employ the algorithm of Fomin et al. [10] (see Theorem 18) and
compute a triangulation with minimum fill of G; this algorithm uses time, polynomial in n
times the size of the list of potential maximal cliques.

Note that the algorithm in Theorem 18 does not need to respect the marks. Thus, we
possibly obtain for the subproblem a solution while there is no solution for this subproblem
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respecting the mark; as discussed at the start of this section, this does not harm the overall
correctness of the algorithm.

We obtain the following condition for the running time: T (k, r) ≤ 1.7549k, and thus
a ≥ 1.7549.

Analyzing the running time. We derived the following conditions on a and b, such that,
if these hold, then by induction it follows that T (k, r) ≤ akbk · o(k): for all integers α ≥ 2:
a3α−3 ≥ α, a ≥ b, ab ≥ 2, a3b2 ≥ 1 + a3b, a6b ≥ 2 + a6, a ≥ 1.7549. As we start with
an instance with k and r = 2k, the running time is a polynomial in n times T (k, 2k). We
get as minimum ab2 = 2.35965 when we set a = 1.7549 and b = 1.15956. Rounding this up
allows to ignore the o(k) term, and thus the algorithm requires O∗(2.35965k) time. By the
same arguments as the ones used for the polynomial part of the running time of our previous
algorithm, we can conclude that this algorithm has running time O(k2nm + 2.35965k), and
requires O∗(1.7549k) space.

Theorem 20 The Minimum Fill-In problem can be solved in O(k2nm + 2.35965k) time,
using O∗(1.7549k) space.

6 Conclusions

In this paper, we presented parameterized algorithms for the Minimum Fill-In problem.
The first algorithm is relatively simple and uses polynomial space; the second algorithm uses
for one step exponential space, but less time as a function of k. We expect that the first
algorithm is practical for small variants of k. Using some of the steps of the second algorithm
in combination with the first algorithm probably gives speedup for many inputs. It would be
an interesting study to experimentally evaluate the first algorithm, and variants of it where
some of the steps of the second algorithm are added to it.

The bounding conditions in the analysis of the running time of the second algorithm
are a ≥ 1.7549, and a3b2 ≥ 1 + a3b. Thus, a faster algorithm could be possibly obtained
by either finding a faster version of the algorithm that lists the minimal separators and
potential maximal cliques (i.e., speeding up the algorithm from Fomin and Villanger [11], see
Lemma 19), or the two steps that give the condition a3b2 ≥ 1 + a3b: minimal separators S
with |F (S)| = 3 and the first case where we split into two non-chordal graphs.

We obtain running times of the form O(k2nm+ck) time by first applying the kernelization
algorithm for Minimum Fill-In by Kaplan et al. [17], see also [20]. To obtain an algorithm
with a better asymptotic running time, it would be useful to have an algorithm that obtains
a kernel of size polynomial in k for Minimum Fill-In whose running time is o(k2nm).
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