
Complexity Results for Local Monotonicity
in Probabilistic Networks

Johan Kwisthout

Hans L. Bodlaender

Gerard Tel

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-050

www.cs.uu.nl

ISSN: 0924-3275

Complexity Results for Local Monotonicity

in Probabilistic Networks

Johan Kwisthout, Hans L. Bodlaender, and Gerard Tel
Department of Information and Computer Sciences, University of Utrecht,

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.
email: johank@cs.uu.nl, hansb@cs.uu.nl, gerard@cs.uu.nl

March 13, 2008

Abstract

Often, monotonicity is a desirable property of probabilistic networks. For example,
when medical knowledge in a particular domain dictates that more severe symptoms in-
crease the likeliness of a more serious disease, these properties should be reflected in
the network. Unfortunately, the problem to determine for a given probabilistic network
whether it is monotone is known to be a highly intractable problem. Often, approxima-
tion algorithms are employed that work on a local scale. These algorithms determine
the monotonicity of the arcs, rather than the network as a whole. However, whether
an arc is monotone may depend on the ordering of the values of the variables that it
uses. Sometimes, the choice of such an ordering is rather arbitrary. In these cases, it
is desirable to order the values of these variables such that all arcs (or as many arcs as
possible) are monotone. In this paper we discuss the concept of local monotonicity and its
computational complexity. We present an algorithm for determining whether there exists
an ordering of the values of the variables such that all arcs in a network are monotone,
and show that this can be done in time, exponential only in the treewidth of the network.
On the other hand, optimizing the number of monotone arcs is NP-complete and hard to
approximate as well. We sketch a branch-and-bound exact algorithm to find an optimal
solution for this problem.

1 Introduction

In many probabilistic networks [Pea88] that are used for classification in real problem do-
mains, the variables of the network can be distinguished into observable input variables,
non-observable intermediate variables and a single output variable. For example, in a med-
ical domain the observable variables represent clinical evidence such as symptoms and test
results, the output variable functions as a classification of a disease, and the intermediate
variables model non-observable variables that are relevant for classification. The relations
between observable symptoms and the classification variable are often monotone, e.g., higher
values for the observable variable ‘fever’ makes higher values of the classification variable
‘flu’ more likely, independent of the value of other variables such as ‘headache’. Such a net-
work is monotone in distribution [vdGBF04] if higher-ordered configurations of the observable
variables make higher-ordered outputs more (isotone) or less (antitone) likely.

2

IO

B CTLD

Figure 1: Small part of the Oesophagus network

When a domain expert indicates that a certain relation ought to be monotone, the joint
probability distribution should be such that this property is reflected in the network. If mono-
tonicity is violated, the probability distribution in the network can be revised in cooperation
with the expert. Unfortunately, determining whether a network is monotone in distribution
is, in general, highly intractable ([vdGBF04]). One approach to overcome this unfavorable
complexity, is by approximating the decision (i.e, sometimes have ‘undecidable’ as outcome)
like the algorithm discussed in [vdGBF04]. This algorithm uses qualitative influences (see e.g.
[Wel90] for an introduction in qualitative networks or QPNs) that summarize the direction
of the influence of variables by signs. However, the use of these signs of course requires an
ordering on the values of the variables under consideration. Such an ordering might be im-
plicit, for example large > medium > small or true > false. But in practice, there are often
variables in a network which do not have such ‘natural’ orderings. As it is desirable to have as
many as possible monotone influences (to minimize the offending context), it is important to
choose an ordering for the values of these variables that maximizes the number of monotone
arcs. Or, equivalently, minimizes the number of ‘?’ signs in the corresponding QPN.

In Figure 1, a small part of the so-called Oesophageal Cancer network [vdGRW+02] is
shown. In this network, clinical evidence is used to determine the development stage of the
tumor, and, as a consequence, the medical treatment. The network excerpt relates clinical
evidence to a possible invasion of the tumor from the oesophageal wall into neighbouring
organs. Laparoscopic evidence of an invasion of the tumor to the diaphragm, bronchoscopic
evidence of an invasion of the bronchi, and evidence of a CT-scan influences the probability of
an invasion of the trachea, mediastinum, diaphragm, heart, or none of these. The conditional
probabilities are shown in Table 1.

The values of the nodes ‘Invasion-Organs’ (IO) and ‘CT-organs’ (CT) do not have an
“natural” ordering. Nevertheless, when determining monotonicity in this part of the network
such an ordering is highly relevant. For example, if we order the values of ‘Invasion-Organs’
and ‘CT-organs’ as none > mediastinum > trachea > diaphragm > heart then higher val-
ues for ‘CT-Organs’ predict lower values for ‘Invasion-organs’, but the other relations violate
monotonicity. When we order the values for ‘Invasion-Organs’ as diaphragm > none > me-
diastinum > heart > trachea, then ‘Bronchoscopy’ (B) and ‘Lapa-Diaphragm’ (LD) become
monotone, with respect to ‘Invasion-organs’, but we violate monotonicity with ‘CT-organs’.

In this paper, we propose algorithms for deciding whether a network is locally monotone,
and, if not, optimize the number of monotone arcs. We show that the decision variant
of the latter problem is NP-complete and APX-hard as well. In Section 2, we introduce
some notations and definitions. We discuss our algorithm for deciding whether a network

3

CT-organs

Invasion-Organs none trachea mediastinum diaphragm heart

none 0.8 0.05 0.05 0.05 0.05
trachea 0.05 0.58 0.22 0.05 0.1

mediastinum 0.3 0.1 0.4 0.1 0.1
diaphragm 0.05 0.1 0.22 0.53 0.1

heart 0.05 0.1 0.22 0.1 0.53

Bronchoscopy Lapa-Diaphragm

Invasion-Organs yes no Invasion-Organs yes no

none 0.04 0.96 none 0.02 0.98
trachea 0.92 0.08 trachea 0.02 0.98

mediastinum 0.1 0.9 mediastinum 0.02 0.98
diaphragm 0.01 0.99 diaphragm 0.8 0.2

heart 0.25 0.75 heart 0.02 0.98

Table 1: Conditional probability tables for part of the Oesophagus network

is locally monotone in Section 3, and prove NP-completeness of the decision variants of the
optimization problems in Section 4. In Section 5, we show that the optimization problems
are hard to approximate as well, and we suggest a branch-and-bound strategy as an exact
algorithm in Section 6. Finally, we conclude our paper in Section 7.

2 Preliminaries

Let B = (G,Γ) be a Bayesian network where G = (V,A) is an acyclic directed graph, and
Γ, the set of conditional probability distributions, is composed of rational probabilities. Let
Pr be the joint probability distribution of B. The conditional probability distributions in Γ
are assumed to be explicit, i.e., represented with look-up tables. For any variable X ∈ V, let
Ω(X) denote the set of values that X can take. A node Y is denoted as a predecessor of X if
(Y, X) ∈ A. The set of all predecessors of X is denoted as π(X), the set of all children of X
is denoted as σ(X). If, for a node X, π(X) is the set {Y1, . . . , Yn}, the configuration template
Y is defined as Ω(Y1)× . . .×Ω(Yn); a particular instantiation y of Y1, . . . , Yn will be denoted
as a configuration of Y.

2.1 Local monotonicity

Monotonicity can be defined as stochastical dominance (monotone in distribution) or in a
modal sense (monotone in mode). In this paper, we discuss monotonicity in distribution
only, and we focus on local effects, i.e., influences between two variables which are directly
connected. A network is locally monotone if all qualitative influences along the arcs in the
network are either positive or negative.

Definition 1 (local monotonicity). Let F be the cumulative distribution function for a

4

node X ∈ V, defined by F (x) = Pr(X ≤ x) for all x ∈ Ω(X). For any arc (X, Y) ∈ A, let
Z denote the configuration template π(Y) \X, and let z denote an individual configuration
of Z. With (X, Y), a positive influence is associated if x < x′ → F (y |xz) ≥ F (y |x′z) for all
y ∈ Ω(Y), x, x′ ∈ Ω(X), and z ∈ Z. Similarly, a negative influence is associated with this arc
if x < x′ → F (y |xz) ≤ F (y |x′z) for all y ∈ Ω(Y), x, x′ ∈ Ω(X), and z ∈ Z. We will denote
an arc associated with an positive or negative influence as a isotone, respectively antitone
arc. B = (G, Γ) is locally monotone if all arcs in A are either isotone or antitone.

2.2 Interpretations

The above notions of monotonicity assumed an implicit ordering on the values of the variables
involved. Such an ordering is often trivial (e.g., x > x̄ and always > sometimes > never) but
sometimes it is arbitrary, like an ordering of the values { trachea, mediastinum, diaphragm,
heart }. Nevertheless, a certain ordering is necessary to determine whether the network is
monotone, or to determine which parts of the network are violating monotonicity assumptions.
Thus, for nodes where no a priori ordering is given, we want to order the values of these
nodes in a way that maximizes the number of monotone arcs or the number of nodes with
only monotone incoming arcs (depending on the specific application).

We define the notion of an interpretation of X to denote a certain ordering on Ω(X), the
set of values of X. Note, that the number of distinct interpretations of a node with k values
equals k!, the number of permutations of these values. Nevertheless, in practice, the number
of values a variable can take is often small. For example, in the Alarm network [BSCC89],
the number of values is at most four, and in the Oesophageal network [vdGRW+02] it is at
most six. In this paper, we assume that k is small and can be regarded as a fixed constant.

Definition 2 (interpretation). An interpretation of X ∈ V, denoted IX , is a total ordering
on Ω(X). For arbitrary interpretations we will often use σ and τ . We use the superscript T
to denote a reverse ordering: if σ = (x1 < x2 < . . . < xn), then σT = (xn < . . . < x2 < x1).
The interpretation set IX is defined as the set of all possible interpretations of X. Note that
an arc is isotone for a given interpretation σ if and only if it is antitone for σT and vice versa,
and that the interpretations in IX are pairwise symmetric. In the remainder, when σ, τ ∈ IX
are assumed distinct, then we also assume that σ 6= τT . We use the shorthand notation
x1 <σ x2 to denote that x1 < x2 under interpretation σ.

2.3 Monotonicity functions and schemes

We define a monotonicity function, which determines whether a certain combination of inter-
pretations for the two nodes of an arc makes the arc isotone or antitone. When a node has
more than one predecessor (say π(Y) = {X1, X2}), the arc (X1, Y) is monotone for a certain
combination of interpretations σ ∈ IX1 and τ ∈ IY , when it is isotone for all values1 of X2,
or when it is antitone for all values of X2. We define the monotonicity function of (X1, Y)
for a particular given value x2 ∈ Ω(X2) as a partial monotonicity function, to emphasize the
conditional monotonicity of (X1, Y).

Definition 3 ((partial) monotonicity function). Consider the arc x1 = (X1, Y) ∈ A,
where Y has auxiliary predecessors (say x2 . . . xn), whose configuration template we denote
with ZN . Assume σ ∈ IX1 and τ ∈ IY . Then MX1Y (σ, τ) is true if and only if x1 is either

1Note that the ordering of the elements in Ω(X2) is irrelevant for the local monotonicity of (X1, Y).

5

isotone (denoted M+
X1Y

) or antitone (denoted M−
X1Y

) for interpretations σ and τ , for all
possible configurations of ZN . The partial monotonicity function MX1Y (σ, τ | zN) is true if
and only if x1 is isotone or antitone for interpretations σ and τ , given a specific configuration
zN of ZN .

Observe, that MXY (σ, τ) = MXY (σT , τ) = MXY (σ, τT) = MXY (σT , τT) since MXY =
M+
XY ∨M−

XY , and M+
XY (σ, τ)↔M−

XY (σT , τ). Partial monotonicity functions and schemes can
be combined for multiple configurations of ZN . Informally, the combined partial monotonicity
function for instantiation zφ and zψ is true for a certain combination of interpretations, if the
individual partial monotonicity functions are all isotone, or all antitone, for that combination.

Definition 4 (combining partial monotonicity functions). Consider again the arc x1

as defined before, with ZN as the configuration template of π(Y) \X1. Then, for δ ∈ {+,−},

M δ
X1Y (σ, τ |zφ) ∧M δ

X1Y (σ, τ |zψ) = M δ
X1Y (σ, τ |zφ, zψ)

and consequently, ∧
zN∈ZN

M δ
X1Y (σ, τ |zN) = M δ

x1Y (σ, τ)

With every monotonicity function MXY , a binary matrix MXY is associated, denoted
as the monotonicity scheme of MXY . Similarly, a partial monotonicity scheme MXY|zN

is associated with the corresponding partial monotonicity function. These matrices have
dimensions 1

2 | IX | ×
1
2 | IY |, since the interpretations in I are pairwise symmetric. We will

often illustrate these matrices using a grid, where shaded areas denote monotone combinations
of interpretations in IX and IY . If the monotonicity scheme MXY factorizes over values of
IX and IY than MXY will be denoted as a factorizing monotonicity scheme. An arc (X, Y)
with such a factorizing monotonicity scheme will be denoted as a factorizing arc.

Definition 5 (factorizing monotonicity scheme). MXY is called factorizing over IX
and IY if there exist subsets I+

X ⊆ IX and I+
Y ⊆ IY such that MXY (σ, τ) is true if and only if

σ ∈ I+
X and τ ∈ I+

Y.

2.4 Properties of monotonicity schemes

The definition of monotonicity implies that certain monotonicity schemes are impossible,
thus restricting the number of possible interpretations in the network. More in particular, if
we look at the columns of a monotonicity scheme MXY, where each column represents an
interpretation σ ∈ IX , we will see that two columns are either equal or disjoint. That is,
either MXY (σ, τ) = MXY (σ′, τ) for all τ ∈ IY , or MXY (σ, τ) → ¬MXY (σ′, τ) for all τ ∈ IY .
This property can be used to speed up the construction of a monotonicity scheme.

First observe the following: if an arc X → Y is monotone for two distinct interpretations
σ, σ′ ∈ IX given an interpretation τ ∈ IY , then there are at least two equal columns in the
joint probability table, i.e., Pr(yk |xi) = Pr(yk |xj) for all yk ∈ Ω(Y). But then, MXY (σ, τ) =
MXY (σ′, τ) for all interpretations τ ∈ IY . Of course, in two distinct interpretations2 there
exist i and j such that xi ≤ xj in one interpretation and xj ≤ xi in the other.

Lemma 6. Assume σ, σ′ ∈ IX are distinct, and τ ∈ IY . Then, if MXY (σ, τ) ∧MXY (σ′, τ),
then there exist xi, xj ∈ Ω(X) such that Pr(yk |xi) = Pr(yk |xj) for all yk ∈ Ω(Y).

2Note that we defined σ and σ′ to be distinct only if also σ′ 6= σT .

6

Figure 2: a is impossible: columns are either disjoint (b) or equal (c)

Proof of Lemma 6. Since MXY (σ, τ) = MXY (σT , τ) = MXY (σ, τT) = MXY (σT , τT) we can
assume, without loss of generality, that MXY (σ, τ) and MXY (σ′, τ) both denote isotone rela-
tions. Since σ and σ′ are distinct, there exist i and j such that for xi, xj ∈ Ω(X) xi <σ xj and
xj <σ′ xi. Furthermore, there exist partial orderings ρ, υ1, υ2 with respect to Ω(X) such that
σ = ρxiυ1 and σ′ = ρxjυ2. For the cumulative distribution function F (Y |X) it holds that
F (Y |xi) ≤ F (Y |xj), but also that F (Y |xj) ≤ F (Y |xi). But then Pr(yk |xi) = Pr(yk |xj)
for all yk ∈ Ω(B).

From this lemma, it follows as a corollary that monotonicity functions are symmetric:
The corresponding monotonicity scheme can be described by a disjunct set of factorizing sub-
schemes, and the constraints describing these sub-schemes are symmetric. This symmetry
property is formalised in corollary 7.

Corollary 7 (Symmetry of monotonicity schemes). Assume σ, σ′ ∈ IX, τ , τ ′ ∈ IY.
Then, MXY (σ, τ) ∧MXY (σ′, τ) ∧MXY (σ, τ ′)⇒MXY (σ′, τ ′)

3 Local Monotonicity

The first problem we discuss is the problem of determining whether a network can be made
locally monotone. This problem can be stated as follows:

Local Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of rational
probabilities. Let Ω(X) denote the set of values that X ∈ V, with k = max

X
(| Ω(X) |), and

let k! denote the maximal number of interpretations of the values of a variable in the
network.
Question: Is there an interpretation IX for all X ∈ V such that B is locally monotone in
distribution?

If the number of values per variable is arbitrary large, then the number of interpretations
increases exponentially. In practice, however, the number of values per variable is limited.

7

In this paper we assume that k, the maximum number of values per node, is fixed. In the
remainder of this section, we present an algorithm, with running time (for fixed k) exponential
only in the treewidth3 of the graph. The algorithm consists of a preprocessing phase, in
which we construct a tree decomposition of (a reduced subset of) the graph, and a dynamic
programming phase. In the preprocessing phase, we calculate monotonicity schemes of all
arcs, calculate allowed sets of all variables and arc constraints between variables, reduce the
graph using these allowed sets and arc constraints, and construct a tree decomposition of
this reduced graph. In the next section, we show how monotonicity schemes are constructed,
and in Section 3.2 we discuss the calculation of allowed sets and arc constraints. Using
these monotonicity schemes, allowed sets, and arc constraints, we reduce B to a constraint
satisfaction problem C, and show how a tree decomposition TC can be constructed (Section
3.3). We present a dynamic program to decide Local Monotonicity in Section 3.4, and
illustrate the algorithm on an example network in Section 3.5.

3.1 Constructing monotonicity schemes

Trivially, computing a monotonicity scheme for any node takes O((k!)2), since there are k!
interpretations for both ends of the arc, and computing local monotonicity takes time, linear
in the size of the conditional probability table. Notice that the complexity of calculating
schemes for an arc whose endpoint has multiple predecessors, is proportional in the size of
the input (i.e., the conditional probability table). If all other variables in the graph have
an arc towards this endpoint, there are

∏n
i=1 | Xi | configurations that we need to consider.

However, the conditional probability table has size O(
∏n
i=1 | Xi |) as well, since we assumed

explicit probability representation.
This running time can be reduced to O(1

2(k!)2) in the worst case, and O(2(k!)) in the
best case, by exploiting the following observation. If a relation X → Y is monotone for
two distinct interpretations σ, σ′ ∈ IX given an interpretation τ ∈ IY , then there are at
least two equal columns in the joint probability table, i.e., Pr(yk |xi) = Pr(yk |xj) for all
yk ∈ Ω(Y). But then, MXY (σ, τ ′) = MXY (σ′, τ ′) for all interpretations τ ′ ∈ IY . Of course,
in two distinct interpretations4 there exist i and j such that xi ≤ xj in one interpretation
and xj ≤ xi in the other. From this property follows, that two columns in a monotonicity
scheme are either equal or disjoint. It suffices to observe that there exists a τ ∈ IY such that
MXY (σ, τ) = MXY (σ′, τ) = true to conclude that this is the case for all τ ∈ IY .

3.2 Calculating allowed sets and arc constraints

If all arcs (Y ∈ π(X), X) and (X, Z ∈ σ(X)) have a factorizing monotonicity scheme, an
interpretation IX for X that is an element of (

⋂
Y ∈π(X) MYX)∩ (

⋂
Z∈σ(X) MXZ) is always an

interpretation that can be chosen for X without violating local monotonicity of the network.
Of course, not all monotonicity schemes are factorizing. If π(X)f and σ(X)f denote the
predecessors, respectively children of X such that (Y ∈ π(X)f , X), respectively (X, Z ∈
σ(X)f) are arcs with factorizing monotonicity schemes, we will denote MX as the allowed
set of X, where MX = (

⋂
Y ∈π(X)f

MYX) ∩ (
⋂
Z∈σ(X)f

MXZ) ∩ IX. Note, that the allowed
set consists of interpretations that can be chosen, if all arcs without factorizing monotonicity
schemes would be removed. In other words, there exists a network G′ = (V,A′) where A′ is

3See for example [Bod06] for a discussion of treewidth and tree decompositions.
4Note that we defined σ and σ′ to be distinct, only if also σ′ 6= σT .

8

procedure CalculateMonotonicityScheme(X, Y)
m←| I(X) |;
n←| I(Y) |;
for i = 1 to m

j ← 1;
while (j ≤ n and ¬MXY (IX [i], IY [j])) do j + +;

k ← 1;
while (k ≤ i and ¬MXY (IX [k], IY [j])) do k + +;
if k < i then

MXY[i]←MXY[k];
j ← m;

else while (j ≤ n) do MXY[i][j]←MXY (IX [i], IY [j]);
endif

end procedure

Figure 3: A procedure for calculating monotonicity schemes

the (possibly empty) set of arcs with factorizing monotonicity schemes, and the allowed set
of X ∈ V is the set of interpretations that can be chosen without violating monotonicity of
G′.

On the other hand, the arcs in A \A′ have non-factorizing monotonicity schemes. For
each arc (X, Y) ∈ A \A′, the set of tuples (σ ∈ IX , τ ∈ IY) such that MXY (σ, τ), denoted as
AXY , will be defined as the arc constraints of (X, Y). For arcs in A′ (the arcs with factorizing
monotonicity schemes), AXY is defined as MX ×MY , i.e., these arcs do not have further
constraints than those implied by the allowed sets of their endpoints. The combination of
allowed set and arc constraints fully defines the possible choices for interpretations that do
not violate local monotonicity. If the allowed set is empty for any variable in V, or there is
an arc in A whose arc constraints cannot be satisfied, then B is not locally monotone.

3.3 Constructing a tree decomposition

Using these allowed sets and arc constraints, we can reduce B to a constraint satisfaction
problem (CSP) C. A CSP is a 3-tuple < VC,D,C >, where VC denotes a set of variables,
D denotes their domain, and C denotes a set of constraints, which are defined as tuples
denoting variables and restrictions on these variables. Trivially, our variable set VC can be
chosen to be equal to V, but we can further reduce VC. Variables that are not endpoints of
any arc constraints can be satisfied trivially by assigning any interpretation in their allowed
set to that variable. So, we define VC as {X | ¬∃Y ∈πX(AY X =MY ×MX ∧¬∃Y ∈σXAXY =
MX ×MY)}. The domain D of these variables is, for each variable X, the allowed setMX .
The constraint set C consists of tuples < t, R > where t are the endpoints of arcs (X, Y)
and R is a disjunction of constraints in AXY . Obviously, if a thus constructed CSP C has a
solution, then B is locally monotone. Observe that C has no solution if the allowed set MX

is empty for any variable X.
To solve C, we construct a tree decomposition5 TC of the underlying subgraph induced by

5Also known as a junction tree in the literature on probabilistic networks.

9

VC. A tree decomposition is defined as follows.

Definition 8 (Tree decomposition [RS86]). A tree decomposition of a graph G = (V,E)
is a pair < X, T >, where T = (I, F) is a tree, and X = {Xi | i ∈ I} is a family of subsets
(or bags) of V, one for each node of T , such that

•
⋃
i∈I Xi = V,

• for all edges (V,W) ∈ E there exists an i ∈ I with V ∈ Xi and W ∈ Xi, and

• for all i, j, k ∈ I: if j is on the path from i to k in T , then Xi ∩Xk ⊆ Xj .

The width of a tree decomposition ((I, F), {Xi | i ∈ I}) is max
i∈I
| Xi | −1. The treewidth of G

is the minimum width over all tree decompositions of G.

To facilitate the analysis, we will assume that TC is a so-called nice tree decomposition
(see [Bod97]). Every tree decomposition T can be converted in linear time to a nice tree
decomposition of the same width and a size linear in T , where T is rooted and binary and
has the following four node types:

• Leaf nodes i are leaves of T and have | Xi |= 1.

• Introduce nodes i have one child j with Xi = Xj ∪ {Y } for some vertex Y ∈ V.

• Forget nodes i have one child j with Xi = Xj − {Y } for some vertex Y ∈ V.

• Join nodes i have two children j1, j2 where Xi = Xj1 = Xj2 .

For each fixed W , a tree decomposition of a graph with treewidth W can be constructed
in O(n) time with the algorithm of [Bod96]. While this linear algorithm may not be very
practical, efficient heuristics and exact algorithms for small values of n are known; see e.g.
[Bod06]. In the next section, we will discuss a dynamic programming algorithm on TC .

3.4 Deciding Local Monotonicity

Here we present a dynamic programming algorithm that works on the tree decomposition
TC and decides Local Monotonicity in O(m · (k!)W · Γ), where O(Γ) is the size of the
joint probability distribution of B, W is the treewidth of VC, m is the number of arcs in G,
and k is the maximal number of values per node in VC. For each bag i ∈ I, we construct a
set of possible combinations of interpretations for the variables in that bag, according to the
following scheme:

• Leaf nodes i: the possible combinations is the allowed setM for the variable in i.

• Introduce nodes i: The set of possible combinations in i is the Cartesian product of the
‘introduced’ variable MY and the set of all possible combinations in the child j, that
satisfy the arc constraints AXY and AY X for all variables X ∈ Xj .

• Forget nodes: The set of possible combinations in i contains all possible combinations
in j, where we ignore the ‘forget’ variable MY

10

A

B C E

D

Figure 4: Example graph with monotonicity schemes

• Join nodes: The set of possible combinations in i contains the intersection of the possible
combinations in j1 and j2.

If, during the iteration over the bags, the set of possible combinations becomes empty,
then the network is not locally monotone; in the other case a satisfying interpretation for
all variables exists. Such an interpretation can be found by a slightly adapted constructive
algorithm. For a complexity analysis, only the introduce nodes are relevant. Observe that
there are (k!)|Xj | possible combinations in Xj . There are at most k! possible interpretations
in the allowed set of the introduced variableMY , and there are at most | Xj | arcs (and thus
sets of arc constraints) from Y to variables in Xj . Due to the symmetry of the monotonicity
schemes, we can construct the possible combinations in Xi by testing all (k!) · (k!)|Xj | =
(k!)|Xj |+1 = (k!)|Xi| elements of the Cartesian product against the Xj arc constraints, which
can be done in O(m · (k!)W). Calculating the monotonicity schemes and the allowed sets for
all variables can be done O((k!)2 ·n) ·O(Γ) and calculating the arc constraints in O((k!)2 ·m),
hence the running time of the algorithm is O(m · (k!)W · Γ).

3.5 An Example Network

In Figure 4 a small example network with monotonicity schemes is given to illustrate the
algorithm. To construct a tree decomposition TC of the reduced graph, we first construct the
allowed sets of all variables. In the initial situation, the allowed set for each variable X is the
set IX. In the next step, we calculate for each node the allowed set, by considering arcs with
factorizing monotonicity schemes and intersecting the original allowed sets of both vertices
covered by these arcs with the factorizing rows (for arcs entering X) respectively columns
(for arcs leaving X). This step is illustrated in Figure 5 where the factorizing arcs and the
allowed sets induced by the monotonicity schemes of these arcs are shown.

Furthermore, there are non-factorizing arcs which induce arc constraints. In the network,
these arcs are (A,B), (A,C) and (B,D) and the corresponding arc constraints are AAB =
{(a1, b2), (a2, b3), (a3, b4)}, AAC = {(a2, c3), (a3, c1), (a4, c4)}, and ABD = {(b3, d1), (b3, d2),
(b4, d1)}. The variables that are endpoints of non-factorizing arcs are A, B, C and D and
they induce the underlying graph in Figure 6. From this graph, we construct a nice tree
decomposition as in Figure 7. We calculate, for each bag (1 to 5), the possible combinations
of interpretations of the variables in that bag, starting with the leaf node.

11

A

B C E

D A = {a1, a2, a3, a4}
B = {b3, b4}
C = {c1, c2}
D = {d1}
E = {e2, e3}

Figure 5: factorizing arcs and allowed sets

A

B C

D

Figure 6: The underlying graph

i node type possible combinations comments
5 leaf (d1) allowed set of D
4 introduce (d1, c1), (d1, c2) factorizing arc
3 introduce (d1, c1, b3) b4 and c2 are impossible
2 forget (c1, b3) just forget d1

1 introduce (a3, c1, b3) solution found!

Since none of the sets is empty, the graph is locally monotone, with as interpretation of
the variables (a3, b3, c1, d1, e2) or (a3, b3, c1, d1, e3).

4 Max-Local Monotonicity

In this section, we formalize the problem of optimizing the number of monotone arcs, and show
that it is NP-complete, i.e., infeasible in general. A similar complexity result is established for
the derived problem of optimizing the number of nodes with only monotone incoming arcs.
Both problems can be used as a measure for the size of the monotonicity-violating context.
Furthermore, we prove that these problems — apart from infeasible to solve exactly — are
hard to approximate as well. In the remainder of this section, we assume that the reader
is familiar with NP-completeness proofs; more background can be found in textbooks like
[GJ79] and [Pap94].

In the formal problem definitions, we assume that the (conditional) probabilities in the
network are specified using rationals, rather than reals, to ensure an efficient coding of these

12

A, B, C B, C C, B, D C, D D

54321

Figure 7: A tree decomposition

probabilities. Since these probabilities are often specified by experts or approximated using
learning methods, this is a realistic constraint. Furthermore, we assume that the conditional
probabilities in the network are coded explicitly, i.e., using look-up tables, rather than using
some computable function. Lastly, for technical reasons we formulate our problems as deci-
sion problems (returning ‘yes’ or ‘no’), rather than functions (returning a number).

Max-Local Monotonicity
Instance: Let B = (G,Γ) be a Bayesian network where Γ is composed of rational
probabilities, and let Pr be its joint probability distribution. Let Ω(X) denote the set of
values that X ∈ V can take, and let k be a positive integer ≤| A |.
Question: Is there an interpretation IX for all X ∈ V such that the number of arcs in G
that are monotone in distribution is at least k?

Max-Nodes-Local Monotonicity
Instance: Let B and Ω(X) be as above, and let k be a positive integer ≤| V |.
Question: Is there an interpretation IX for all X ∈ V (G) such that the number of nodes in
G that have only incoming arcs that are monotone in distribution, is at least k?

Furthermore, we note that a network where some nodes are fixed (i.e., an interpretation
is given) can be translated in an equivalent network with non-fixed interpretations, where the
number of monotone arcs will be optimal if and only if that particular interpretation is chosen.
F or example, if the ordering of a node C with values {low ,mid , high} and degree n is to be
fixed at low < mid < high, we can enforce this condition by adding n + 1 dummy nodes D
with Ω(D) = {T, F} and arcs from C to these nodes that are only monotone if C has ordering
low < mid < high, for example Pr(T | low) = 0.2, Pr(T |mid) = 0.4, Pr(T | high) = 0.6. It
can be easily verified that the optimal number of monotone arcs enforces the given ordering
on C. In a similar way, a partial order can be guaranteed, e.g., the variable ‘Stereo Sound’
with values {none, left , right , both} where no obvious ordering for ‘left ’ and ‘right ’ exists, but
none ≺ left ≺ both and none ≺ right ≺ both.

In our hardness proof, we use the Graph 3-Colorability problem, defined in [GJ79]. In
this problem, the instance is an undirected graph G = (V,E), and we want to know whether
there is a function f : V → {1, 2, 3} such that f(U) 6= f(V) whenever (U, V) ∈ E, i.e., all
nodes can be colored with three colors such that no adjacent nodes have the same color.

4.1 NP-completeness proof

Let G = (V,E) be an instance of the Graph 3-Colorability problem. From this undi-
rected graph G, we construct the directed graph G′ = (V′,A) as follows (See Figure 8):

13

Pr(E |y1, X) Pr(E |y2, X) Pr(X |y3, X)

e1 e2 e3 e1 e2 e3 e1 e2 e3

x1 0.42 0.30 0.28 v1 0.44 0.28 0.28 v1 0.44 0.28 0.28
x2 0.28 0.44 0.28 v2 0.28 0.44 0.28 v2 0.28 0.44 0.28
x3 0.28 0.30 0.42 v3 0.28 0.28 0.44 v3 0.28 0.28 0.44

Table 2: Conditional probability table for node E1 with incoming arcs from X and Y

• for X ∈ V, V′ contains a node X.

• for (X, Y) ∈ E, V′ contains nodes E1, E2, E3, E4, E5, E6.

• for (X, Y) ∈ E, ∈ A contains (X, E1), . . . , (X, E6), (Y, E1), . . . , (Y, E6).

• Ω(X) = {x1, x2, x3} for all X ∈ V′.

We number the interpretations of all nodes in V′ as follows:

• i1 = x2 < x1 < x3.

• i2 = x1 < x2 < x3.

• i3 = x1 < x3 < x2.

Now, for all nodes Ei we construct a conditional probability table such that M(IX , IEi) has
the following monotonicity scheme:

Ei E1 E2 E3 E4 E5 E6

IX {i1, i2} {i1, i2} {i1, i3} {i1, i3} {i2, i3} {i2, i3}
IEi {i2, i3} {i1, i3} {i1, i2} {i2, i3} {i1, i2} {i1, i3}

and the probability table for the arc (Y, Ei) is such that (Y, Ei) is a monotone relation if
and only if IY = IEi . An example of such a table is given in Table 2; the other tables can be
generated likewise. Observe, that a graphical representation of these schemes would be a 2×2
square, which is transposed from the origin. We claim that, in the thus constructed network,
there is a maximum of eight arcs that have a monotone relation, if IX = IY , and nine arcs
if IX 6= IY . We assume, without loss of generality, that IY = i1. If we choose IEi = i1 for
all Ei, then all six outgoing arcs from Y to Ei have monotone relations. Now there are two
cases:

• IX = i1. There are two monotone relations: (X, E2) and (X, E3). Both E2 and E3

have only monotone incoming arcs.

• IX = i2 or i3. There are three monotone relations: either (X, E2), (X, E5) and (X,
E6); or (X, E3), (X, E5) and (X, E6), which all have only monotone incoming arcs.

Note that there is no way to make more than three monotone arcs. We will use this construct
to prove NP-hardness.

14

Y

X

E1 E2 E3 E4 E5 E6

Figure 8: Construction with 6 extra nodes

Theorem 9. Max-Local Monotonicity and Max-Nodes-Local Monotonicity are
NP-complete.

Proof. Membership of NP is trivial for both problems. Using a certificate that consists of
interpretations for all vertices, we can easily test whether at least k arcs are monotone in
distribution, or at least k nodes have the property that all incoming arcs are monotone
in distribution. To prove NP -hardness, we construct a transformation from the Graph 3-
Colorability problem. Let G = (V,E) be an instance of this problem, and let G′ = (V′,A)
be the directed acyclic graph the is constructed from this instance, as described above. If and
only if 9· | E | arcs in G′ are monotone, then all nodes X and Y that were adjacent in G, have
different interpretations, hence G would be 3-colorable. Since G′ = (V′,A) can be computed
from G = (V,E) in polynomial time, we have a polynomial-time transformation from Graph
3-Colorability to the Max-Local Monotonicity problem, which proves NP-hardness
of the latter. A similar argument holds for the number of nodes with only monotone incoming
arcs, therefore Max-Nodes-Local Monotonicity is NP-hard as well.

Note that the above proof construct ensures that the problems remain NP-complete if k,
the maximal number of values per node, is at most three.

5 Non-Approximability of Max-Local Monotonicity

For an optimization problem that is NP-complete, the question arises, how close the solution
can be approximated in polynomial time. In this section, we will show that Max-Local Mo-
notonicity is APX-hard, which means that it cannot be approximated to a factor arbitrarily
close to 1 (unless P = NP). The result will be obtained by an L-reduction from Max-3-Color-
ability.

In Subsection 5.1 we recall the definitions of APX-hardness. In Subsection 5.2 we introduce
L-reductions. In Subsection 5.3 we show that the reduction given in the previous section
actually is an L-reduction, and consequently, Max-Local Monotonicity is APX-hard.

5.1 The Class APX-Hard

The results from this subsection are taken from Crescenzi and for more details we refer to
his work [Cre97]. A maximization problem is characterized by the set of its instances and

15

a measurement function m on solutions. If y is a (feasible) solution for instance x, m(x, y)
gives its value. The value of the best solution to instance x is denoted opt(x), and the quality
of any solution y can be measured by the ratio R(x, y) = opt(x)

m(x, y) .
The best solution can be hard to find, but an algorithm with performance guarantee r

will find a solution that is within a factor r of the best one. Formally, if A is an algorithm
that returns a solution A(x) for instance x, A has performance guarantee r if m(x, A(x)) ≥
opt(x)/r, or equivalently, R(x, A(x)) ≤ r for every instance x.

A relevant distinction exists between problems that can be approximated with some ratio
(class APX) and problems that can be approximated with every ratio (PTAS). A polyno-
mial time approximation scheme is an algorithm that can be parameterized with any desired
performance guarantee r > 1.

Definition 10. Problem Mx belongs to APX if there exists an r > 1 and a polynomial time
algorithm A that has performance guarantee r.
Problem Mx belongs to PTAS if for every r > 0 there exists a polynomial time algorithm Ar

that has performance guarantee r.

(The running time of Ar must be polynomial in the input size for fixed r, but may
grow large when r gets closer to 1.) PTAS membership is a stronger property than APX
membership, and if P 6= NP, Max-3-Colorability (see below) is in APX but not in PTAS.
Actually, Max-3-Colorability is APX-hard [PY91].

An optimization problem Mx to which Max-3-Colorability can be reduced is also
APX-hard, and has no polynomial time approximation scheme (unless P = NP). We shall
discuss approximation preserving reductions in the next subsection, including the L-reduction
that we use to prove APX-hardness of Max-Local Monotonicity

5.2 Reductions: The L-Reduction

The general idea of a reduction is to see if problem MaxA can be solved using a MaxB
oracle; again we heavily rely on Crescenzi [Cre97]. The reduction uses efficiently computable
functions f and g, where f maps an instance of problem MaxA to an instance of problem
MaxB and g maps a solution to problem MaxB to a solution of MaxA. If B is an algorithm
that computes solutions to instances of MaxB, A(x) = g(B(f(x))) is an algorithm that
computes solutions to instances of MaxA. The reduction should allow conclusions about the
performance of this algorithm, assuming a certain performance of B. In the following, let φ
mean a function from Q>1 to Q>1.

The reduction (f, g) is an A-reduction if an assumed performance guarantee r of B implies
some performance guarantee φ(r) for A:

RB(f(x), y) ≤ r ⇒ RA(x, g(y)) ≤ φ(r).

If such a reduction exists and MaxB is in APX, also MaxA is in APX. However, an A-
reduction does not imply that if MaxB can be arbitrarily well approximated (PTAS), then
also MaxA can be arbitrarily well approximated. The definition of the A-reduction does
not imply that even if r get very close to 1, then also φ(r) gets arbitrarily close to 1. (For
example, if φ(r) = r + 1, even a PTAS for MaxB would not approximate MaxA better than
with performance guarantee 2.)

16

PTAS membership is preserved with a very similar reduction, the P-reduction, where
a desired performance r for A is considered, and the necessary performance for B can be
computed as φ(r). Formally, the reduction is a P-reduction if there exists a φ such that

RB(f(x), y) ≤ φ(r)⇒ RA(x, g(y)) ≤ r.

If such a reduction exists and MaxB is in PTAS, also MaxA is in PTAS. Indeed, assume
we desire to approximate MaxB with some performance guarantee r. Because MaxB is in
PTAS, MaxB can be approximated (by algorithm Bφ(r)) with performance guarantee φ(r),
and now the algorithm Ar(x) = g(Bφ(r)(f(x))) computes the desires approximation.

Conversely, if a P-reduction exists and MaxA is APX-hard, then also MaxB is APX-
hard. We will show in the next subsection that our reduction in Section 4 is a P-reduction.
It is quite straightforward to show that for our reduction, the absolute error in the computed
coloring is equal to the absolute error in the computed Max-Local Monotonicity instance.
Here the absolute error of a computed solution y is defined as E(x, y) = opt(x) −m(x, y).
But a small absolute error can still mean a very bad ratio if the value of the optimal solution
of the original problem is small. Therefore, conclusions from absolute errors can be drawn
only if the value of an optimal solution is lower bounded. The reduction is an L-reduction if
there exist α, β such that:

1. optA(x) ≥ optB(f(x))/α;

2. EA(x, g(y)) ≤ β · EB(f(x), y)).

An L-reduction is also a P-reduction [Cre97] because performance φ(r) = (1− 1
αβ (1− 1

r))
−1

for problem MaxB implies ratio r for problem MaxA.

5.3 Max-3-Colorability L-Reduces to Max-Local Monotonicity

Max-3-Colorability asks to color graph G, with n nodes and m edges, using three colors,
maximizing the number of bichrome edges.

Lemma 11. optM3C(G) ≥ 2/3m.

Proof. A probabilistic argument uses that in a random coloring, each edge has probability
2/3 to be bichrome. Consequently, the expected number of bichrome edges in a coloring is
2/3 ·m, so the best possible coloring has at least 2/3 ·m bichrome edges.

A constructive argument colors the nodes greedily, giving each node the color that occurs
least often among its (already colored) neighbors. This makes monochrome at most 1/3 of
the edges that become completely colored in this step. Consequently, the resulting coloring
has at least 2/3 ·m bichrome edges.

Let f(G) denote the probabilistic network constructed in Section 4. This network has
n + 6m nodes and 12m edges, of which at most 9m can be made monotone. A solution I for
this Max-Local Monotonicity instance is an interpretation; our function g colors each
node in G with the interpretation of the corresponding node in f(G).

Corollary 12. optM3C(G) ≥ optMLM(f(G))/13.5.

Proof. Follows from optM3C(G) ≥ 2/3 ·m and optMLM(f(G)) ≤ 9m.

17

The construction guarantees that in f(G), exactly 8m+opt(G) edges can be made mono-
tone. Any solution with 8m + k monotone edges necessarily has exactly m − k of the edge
widgets with 8 monotone edges, and k of them with 9 monotone edges. Function g then
returns a coloring with k bichrome edges.

Corollary 13. EM3C(G, g(I)) = EMLM(f(G), I).

We conclude that our reduction (f, g) is a P-reduction of Max-3-Colorability to Max-
Local Monotonicity. As Max-3-Colorability is an APX-hard problem, Max-Local
Monotonicity is also APX-hard, which means that it does not have a polynomial time
approximation scheme (unless P = NP). We do not know if Max-Local Monotonicity is
in APX.

We finally remark that the formal definition of the class APX-hard is based on a slightly
more general type of reduction, where also the computation of the functions f and g (and
their time complexity) can depend on the required performance r. Because these reductions
are not needed to prove non-approximability of Max-Local Monotonicity, we refer to
[Cre97] for details.

6 A branch-and-bound algorithm

In the previous section we proved that there does not exist a PTAS for Max-Local Mo-
notonicity unless P = NP. However, there might exist approximations for Max-Local
Monotonicity that are within a fixed ratio r. Nevertheless, r may be very large and
such approximations may not be particularly useful. Therefore, we now construct an exact
algorithm for this problem, based on a so-called branch-and-bound strategy (see for example
[WN88]). In such a strategy, the set of possible solutions is partitioned (the branch step),
and upper (or lower, for minimalization problems) bounds for this partition are calculated.
Whenever these bounds are lower than or equal to the current best solution (i.e., further
exploration of these branches will not lead to a better solution) the branch is terminated,
and other, yet unvisited branches are explored. This procedure continues until all branches
terminate (we can return an optimal solution), or a given ratio between current best solution
and upper bound is reached (we can return a ‘good enough’ solution).

6.1 Initial heuristic - a lower bound

In this section we discuss how a lower bound on the number of monotone arcs can be calculated
in polynomial time (for fixed k). To compute a lower bound heuristic, we consider only arcs
that have factorizing monotonicity schemes. For a network G we construct G′ = (V,A′)
where A′ is the (possibly empty) set of arcs with factorizing monotonicity schemes, and the
allowed set of all Z ∈ V is the set of interpretations that can be chosen without violating
monotonicity of G′. Now, we can calculate a lower bound for the maximal number of arcs in
G that can be made monotone as follows. We initialise MZ to IZ for all Z ∈ V′ and A+ to
the empty set, and iteratively consider arcs in A′. If an arc does not cause any allowed set to
become empty, it is added to A+, and M is adapted for both endpoints of that arc. On the
other hand, if the arc does lead to an empty allowed set, it is dismissed. After considering all
arcs in A′, | A+ | is a lower bound on the optimal number of monotone arcs in G.

18

A

B C E

D

Figure 9: An example graph

6.2 Branching and bounding

Using this lower bound, we consecutively branch on the possible interpretations of the nodes,
terminating branches whose upper bound is not higher than the current best solution (or
lower bound). While different strategies can be followed to choose a node to branch on at any
step in the algorithm, a reasonable heuristic is to pick the node that has the highest degree of
all unexplored nodes. We fix the interpretation of the variable we branch on (i.e., the allowed
set is a singleton, corresponding with the branch value) and calculate how many factorizing
arcs remain monotone in the network. This value is added to the number of non-factorizing
arcs; this is an upper bound for the total number of monotone arcs in the network.

Of course, there are many degrees of freedom in this branch-and-bound strategy. We chose
to compute rather loose bounds; one can compute tighter bounds by considering a number of
non-factorizing arcs that can be made monotone. Nevertheless, the constraints imposed by
these arcs might require re-evaluation of all allowed sets in the network, so there is a tradeoff
between the tightness of the bounds - and thus the number and depth of the branches - and
the time needed to calculate such bounds.

6.3 An example

We will use the graph in Figure 9 as a example to sketch our branch-and-bound algorithm.
We assume that, for every variable, only four interpretations are relevant; we will denote a
particular interpretation with indexed lowercase variables, e.g., IC = {c1, c2, c3, c4}. On the
right part of Figure 9, the monotonicity schemes for the arcs in the graph are shown. For
example, (A,B) is monotone if IA = a1 and IB = b2.

We start with the heuristic lower bound calculated in Section 6.1. The factorizing arcs are
(B,C), (C,D), (C,E), and (D,E), and if we consider these in this order and calculate the
allowed sets for all nodes, we will find that we can make at least three arcs monotone, namely
(B,C), (C,D), and (D,E). The lower bound will thus be three in this example. Now we
branch on one of the nodes with maximal degree, say C, and explore the branches IC = c1,
IC = c2, IC = c3, and IC = c4, terminating branches with an upper bound lower than three.
Eventually, the algorithm will find the optimal solutions {IA = a3, IB = b4, IC = c3, ID =
d1, IE = e2 ∨ e3}.

19

7 Conclusion

Optimizing the number of monotone arcs in a network, and thus minimizing the number of
‘?’s in the corresponding QPN, is a computationally hard problem, and hard to approximate
as well, even when the number of values per variable is no more than three. The infeasibility
of this problem corresponds to the even harder problem of determining whether a network
is globally monotone [vdGBF04], or whether the values of the variables can be ordered such
that this is the case [Kwi07]. We proposed a branch-and-bound approach to calculate optimal
orderings. This approach may work rather well in practice with ‘real world’ networks, provided
that the number of values per node is small. For example, in the Alarm-network [BSCC89]
the maximum number of values per variable is four, and our implementation of the algorithm
will find the optimal ordering in a few seconds. However, for networks where some nodes
have a large range of possible values, this approach will be infeasible. Other methods must
be used in such cases to calculate or approximate an optimal solution.

Acknowledgements

This research has been (partly) supported by the Netherlands Organisation for Scientific
Research (NWO). An earlier version of this paper appeared in the Proceedings of the Ninth
ECSQARU conference [KBT07]. The authors wish to thank Linda van der Gaag and Silja
Renooij for their insightful comments on this subject and access to the information stored in
the Oesophageal Cancer network, and Jesper Nederlof for his work on the implementation of
the algorithm.

References

[Bod96] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM Journal on Computing, 25(6):1305–1317, 1996.

[Bod97] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In Proceed-
ings of the Twenty-second International Symposium on Mathematical Founda-
tions of Computer Science, volume LNCS 1295, pages 19–36. Springer-Verlag,
1997.

[Bod06] Hans L. Bodlaender. Treewidth: Characterizations, applications, and compu-
tations. In Fedor V. Fomin, editor, Proceedings 32nd International Workshop
on Graph-Theoretic Concepts in Computer Science (WG 2006), pages 1–14.
Springer, Lecture Notes in Computer Science, volume 4271, 2006.

[BSCC89] I. Beinlich, G. Suermondt, R. Chavez, and G. Cooper. The ALARM mon-
itoring system: A case study with two probabilistic inference techniques for
belief networks. In Proceedings of the Second European Conference on AI and
Medicine, pages 247–256. Springer-Verlag, 1989.

[Cre97] P. Crescenzi. A short guide to approximation preserving reductions. In 12th
Annual IEEE Conference on Computational Complexity (CCC’97), pages 262–
273. IEEE, 1997.

20

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability. A Guide to the
Theory of NP-Completeness. W. H. Freeman and Co., San Francisco, 1979.

[KBT07] J. Kwisthout, H. Bodlaender, and G. Tel. Local monotonicity in probabilistic
networks. In K. Mellouli, editor, Ninth European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty. October 31-November
2, 2007, Hammamet, Tunisia, volume 4724 of LNCS, pages 548–559. Springer-
Verlag, 2007.

[Kwi07] J. Kwisthout. The computational complexity of monotonicity in probabilis-
tic networks. In E. Csuhaj-Varj and Z. Esik, editors, Sixteenth International
Symposium on Fundamentals of Computation Theory, August 27-30, 2007, Bu-
dapest, Hungary, volume 4639 of LNCS, pages 388–399. Springer-Verlag, 2007.

[Pap94] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[Pea88] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, Palo Alto, 1988.

[PY91] C. H. Papadimitriou and M. Yannakakis. Optimization, approximation, and
complexity classes. Journal of Computer and System Sciences, 43:425–440,
1991.

[RS86] N. Robertson and P.D. Seymour. Graph minors II: Algorithmic aspects of
tree-width. Journal of Algorithms, 7:309–322, 1986.

[vdGBF04] L. C. van der Gaag, H.L. Bodlaender, and A. Feelders. Monotonicity in
Bayesian networks. In Twentieth Conference on Uncertainty in Artificial In-
telligence, pages 569–576. AUAI Press, 2004.

[vdGRW+02] L. C. van der Gaag, S. Renooij, C. L. M. Witteman, B. M. P. Aleman, and
B. G. Taa. Probabilities for a probabilistic network: a case study in oesophageal
cancer. Artificial Intelligence in Medicine, 25:123–148, 2002.

[Wel90] M. P. Wellman. Fundamental concepts of qualitative probabilistic networks.
Artificial Intelligence, 44(3):257–303, 1990.

[WN88] L. A. Wolsey and G. L. Nemhauser. Integer and Combinatorial Optimization.
Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley,
1988.

21

