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Abstract. Generic Haskell is an extension of Haskell that supports the
construction of generic programs. These lecture notes discuss three ad-
vanced generic programming applications: generic dictionaries, compress-
ing XML documents, and the zipper: a data structure used to represent
a tree together with a subtree that is the focus of attention, where that
focus may move left, right, up or down the tree. When describing and
implementing these examples, we will encounter some advanced features
of Generic Haskell, such as type-indexed data types, dependencies be-
tween and generic abstractions of generic functions, adjusting a generic
function using a default case, and generic functions with a special case
for a particular constructor.

1 Introduction

A generic (or polytypic, type-indexed) function is a function that can be instan-
tiated on many data types to obtain data type specific functionality. Examples
of generic functions are the functions that can be derived in Haskell [45], such
as show , read , and ‘ ’. In the first part of these lecture notes, entitled Generic
Haskell: practice and theory [22], we have introduced generic functions, and we
have shown how to implement them in Generic Haskell [9]. We assume the reader
is familiar with the first part of these notes. For an introduction to a related but
different kind of generic programming, see Backhouse et al [2].

Why is generic programming important? Generic programming makes pro-
grams easier to write:

– Programs that could only be written in an untyped style can now be written
in a language with types.

– Some programs come for free.
– Some programs are simple adjustments of library functions, instead of com-

plicated traversal functions.
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Of course not all programs become simpler when you write your programs in
a generic programming language, but, on the other hand, no programs become
more complicated. In this paper we will try to give you a feeling about where
and when generic programs are useful.

These lecture notes describe three advanced generic programming applica-
tions: generic dictionaries, compressing XML documents, and the zipper. The
applications are described in more detail below. In the examples, we will en-
counter several new generic programming concepts:

– Type-indexed data types. A type-indexed data type is constructed in a generic
way from an argument data type [23]. It is the equivalent of a type-indexed
function on the level of data types.

– Default cases. To define a generic function that is the same as another func-
tion except for a few cases we use a default case [10]. If the new definition
does not provide a certain case, then the default case applies and copies the
case from another function.

– Constructor cases. A constructor case of a generic program deals with a
constructor of a data type that requires special treatment [10]. Constructor
cases are especially useful when dealing with data types with a large num-
ber of constructors, and only a small number of constructors need special
treatment.

– Dependencies and generic abstractions. To write a generic function that uses
another generic function we can use a dependency or a generic abstrac-
tion [10].

We will introduce these concepts as we go along.

Example 1: Digital searching. A digital search tree or trie is a search tree scheme
that employs the structure of search keys to organize information. Searching is
useful for various data types, so we would like to allow for keys and information
of any data type. This means that we have to construct a new kind of trie for
each key type. For example, consider the data type String defined by

data String = Nil | Cons Char String.

We can represent string-indexed tries with associated values of type v as follows:

data FMap String v = Null String
| Node String (Maybe v)

(FMapChar (FMap String v)).

Such a trie for strings would typically be used for an index on texts. The construc-
tor Null String represents the empty trie. The first component of the constructor
Node String contains the value associated with Nil . The second component of
Node String is derived from the constructor Cons :: Char → String → String.
We assume that a suitable data structure, FMapChar, and an associated look-
up function lookupChar :: ∀v .Char→ FMapChar v→ Maybe v for characters are
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predefined. Given these prerequisites we can define a look-up function for strings
as follows:

lookup String :: String→ FMap String v→ Maybe v
lookup String s Null String = Nothing
lookup String Nil (Node String tn tc) = tn
lookup String (Cons c s) (Node String tn tc)

= (lookupChar c 3 lookup String s) tc.

To look up a non-empty string, Cons c s, we look up c in the FMapChar obtaining
a trie, which is then recursively searched for s. Since the look-up functions have
result type Maybe v, we use the reverse monadic composition of the Maybe
monad, denoted by ‘3’, to compose lookup String and lookupChar .

(3) :: (a→ Maybe b)→ (b→ Maybe c)→ a→ Maybe c
(f 3 g) a = case f a of {Nothing → Nothing ; Just b → g b}

Consider now the data type Bush of binary trees with characters in the leaves:

data Bush = Leaf Char | Bin Bush Bush.

Bush-indexed tries can be represented by the following data type:

data FMap Bush v = Null Bush
| Node Bush (FMapChar v)

(FMap Bush (FMap Bush v)).

Again, we have two components, one to store values constructed by Leaf , and
one for values constructed by Bin. The corresponding look-up function is given
by

lookup Bush :: Bush→ FMap Bush v→ Maybe v
lookup Bush b Null Bush = Nothing
lookup Bush (Leaf c) (Node Bush tl tf ) = lookupChar c tl
lookup Bush (Bin bl br) (Node Bush tl tf )

= (lookup Bush bl 3 lookup Bush br) tf .

One can easily recognize that not only the look-up functions, but also the data
types for the tries are instances of an underlying generic pattern. In the following
section we will show how to define a trie and associated functions generically for
arbitrary data types.

Example 2: Compressing XML documents. The extensible markup language
XML [49] is used to mark up text with structure information. XML documents
may become (very) large because of the markup that is added to the content. A
good XML compressor can compress an XML document by quite a large factor.

An XML document is usually structured according to a DTD (Document
Type Definition), a specification that describes which tags may be used in the
XML document, and in which positions and order they have to be. A DTD is,



4 R. Hinze, J. Jeuring

in a way, the type of an XML document. An XML document is called valid with
respect to a certain DTD if it follows the structure that is specified by that
DTD. An XML compressor can use information from the DTD to obtain better
compression. For example, consider the following small XML file:

<book lang="English">
<title> Dead Famous </title>
<author> Ben Elton </author>
<date> 2001 </date>
</book>.

This file may be compressed by separating the structure from the data, and
compressing the two parts separately. For compressing the structure we can
make good use of the DTD of the document.

<!ELEMENT book (title,author,date,(chapter)*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT chapter (#PCDATA)>
<!ATTLIST book lang (English | Dutch) #REQUIRED>

If we know how many elements and attributes, say n, appear in the DTD (the
DTD above document contains 6 elements), we can replace the markup of an
element in an XML file which is valid with respect to the DTD by a natural
number between 0 and n − 1, or by log2 n bits. This is one of the main ideas
behind XMill [36]. We improve on XMill by only recording the choices made in an
XML document. In the above document, there is a choice for the language of the
book, and the number of chapters it has. All the other elements are not encoded,
since they can be inferred from the DTD. Section 3 describes a tool based on this
idea, which was first described by Jansson and Jeuring in the context of data
conversion [26, 30]. We use HaXml [51] to translate a DTD to a data type, and
we construct generic functions for separating the contents (the strings) and the
shape (the constructors) of a value of a data type, and for encoding the shape
of a value of a data type using information about the (number of) constructors
of the data type.

XML compressors are just one class of XML tools that are easily implemented
as generic programs. Other XML tools that can be implemented as generic pro-
grams are XML editors, XML databases, and XML version management tools.

Example 3: Zipper. The zipper [24] is a data structure that is used to represent a
tree together with a subtree that is the focus of attention, where that focus may
move left, right, up, or down the tree. For example, the zipper corresponding to
the data type Bush, called Loc Bush, is defined by

type Loc Bush = (Bush,Context Bush)
data Context Bush = Top

| BinL Context Bush Bush
| BinR Bush Context Bush.
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Using the type of locations we can efficiently navigate through a tree. For exam-
ple:

down Bush :: Loc Bush→ Loc Bush
down Bush (Leaf a, c) = (Leaf a, c)
down Bush (Bin tl tr , c) = (tl ,BinL c tr)
right Bush :: Loc Bush→ Loc Bush
right Bush (tl ,BinL c tr) = (tr ,BinR tl c)
right Bush m = m.

The navigation function down Bush moves the focus of attention to the leftmost
subtree of the current node; right Bush moves the focus to its right sibling.

Huet [24] defines the zipper data structure for rose trees and for the data
type Bush, and gives the generic construction in words. In Section 4 we describe
the zipper in more detail and show how to define a zipper for an arbitrary data
type.

Other applications of generic programming. Besides the applications mentioned
in the examples above, there are several application areas in which generic pro-
gramming can be used.

– Haskell’s deriving construct. Haskell’s deriving construct is used to gener-
ate code for for example the equality function, and for functions for reading
and showing values of data types. Only the classes Eq, Ord, Enum, Bounded,
Show and Read can be derived. The definitions of (equivalents of) the derived
functions can be found in the library of Generic Haskell.

– Compiler functions. Several functions that are used in compilers are generic
functions: garbage collectors, tracers, debuggers, test tools [7, 34], etc.

– Typed term processing. Functions like pattern matching, term rewriting and
unification are generic functions, and have been implemented as generic func-
tions in [31, 28, 29].

The form and functionality of these applications is exactly determined by the
structure of the input data.

Maybe the most common applications of generic programming can be found
in functions that traverse data built from rich mutually-recursive data types with
many constructors, and which perform computations on a single (or a couple of)
constructor(s). For example, consider a function which traverses an abstract
syntax tree and returns the free variables in the tree. Only for the variable
constructor something special has to be done, in all other cases the variables
collected at the children have to be passed on to the parent. This function can be
defined as an instance of a Generic Haskell library function crush [41], together
with a special constructor case for variables [10]. For more examples of generic
traversals, see Lämmel and Peyton Jones [35].

The Generic Haskell code for the programs discussed in these lecture notes
can be downloaded from the applications page on http://www.generic-haskell.
org/.
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On notation. To improve readability, the notation for generic functions we use
in these notes slightly differs from the notation used in the first part of these
notes [22]. For example, in the first part of these lecture notes we write:

equal{|Char|} = eqChar
equal{|Int|} = eqInt
equal{|Unit|} Unit Unit = True
equal{|:+:|} eqa eqb (Inl a) (Inl a ′) = eqa a a ′

equal{|:+:|} eqa eqb (Inl a) (Inr b′) = False
equal{|:+:|} eqa eqb (Inr b) (Inl a ′) = False
equal{|:+:|} eqa eqb (Inr b) (Inr b′) = eqb b b′

equal{|:*:|} eqa eqb (a :*: b) (a ′ :*: b′) = eqa a a ′ ∧ eqb b b′

equal{|Con c|} eqa (Con a) (Con b) = eqa a b.

The function equal is a generic function which recurses over the type structure
of the argument type. The recursion is implicit in the arguments eqa and eqb in
the :+: and :*: cases. In this part of the lecture notes we will instead write:

equal{|Char|} = eqChar
equal{|Int|} = eqInt
equal{|Unit|} Unit Unit = True
equal{|a :+: b|} (Inl a) (Inl a ′) = equal{|a|} a a ′

equal{|a :+: b|} (Inl a) (Inr b′) = False
equal{|a :+: b|} (Inr b) (Inl a ′) = False
equal{|a :+: b|} (Inr b) (Inr b′) = equal{|b|} b b′

equal{|a :*: b|} (a :*: b) (a ′ :*: b′) = equal{|a|} a a ′ ∧ equal{|b|} b b′

equal{|Con c a|} (Con a) (Con b) = equal{|a|} a b.

Here the recursion over the type structure is explicit: equal{|a :*: b|} is expressed
in terms of equal{|a|} and equal{|b|}. We think this style is more readable, espe-
cially when a generic function depends on another generic function. Functions
written in the latter style can be translated to the former style and vice versa, so
no expressiveness is lost or gained; the only difference is readability. The Generic
Haskell compiler does not accept explicit recursive functions yet, but probably
will do so in the near future. A formal description of Generic Haskell with explicit
recursion is given by Löh et al. [37].

Organization. The rest of this paper is organized as follows. Section 2 introduces
generic dictionaries, and implements them in Generic Haskell. Section 3 describes
XComprez, a compressor for XML documents. Section 4 develops a generic
zipper data structure. Section 5 summarizes the main points and concludes.

These lecture notes contain exercises. Solutions to the exercises can be found
on the webpage for the Generic Haskell project: www.generic-haskell.org.

2 Generic dictionaries

A trie is a search tree scheme that employs the structure of search keys to
organize information. Tries were originally devised as a means to represent a
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collection of records indexed by strings over a fixed alphabet. Based on work by
Wadsworth and others, Connelly et al. [11] generalized the concept to permit
indexing by elements built according to an arbitrary signature. In this section
we go one step further and define tries and operations on tries generically for
arbitrary data types of arbitrary kinds, including parameterized and nested data
types. The material in this section is largely taken from [18].

2.1 Introduction

The concept of a trie was introduced by Thue in 1912 as a means to represent
a set of strings, see [33]. In its simplest form a trie is a multiway branching tree
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where each edge is labelled with a character. For example,
the set of strings {ear , earl , east , easy , eye } is represented by
the trie depicted on the right. Searching in a trie starts at the
root and proceeds by traversing the edge that matches the first
character, then traversing the edge that matches the second
character, and so forth. The search key is a member of the
represented set if the search stops in a node that is marked—
marked nodes are drawn as filled circles on the right. Tries
can also be used to represent finite maps. In this case marked
nodes additionally contain values associated with the strings.
Interestingly, the move from sets to finite maps is not a mere
variation of the scheme. As we shall see it is essential for the
further development.

On a more abstract level a trie itself can be seen as a composition of finite
maps. Each collection of edges descending from the same node constitutes a
finite map sending a character to a trie. With this interpretation in mind it is
relatively straightforward to devise an implementation of string-indexed tries. If
strings are defined by the following data type:

data String = Nil | Cons Char String,

we can represent string-indexed tries with associated values of type v as follows.

data FMap String v = Null String
| Node String (Maybe v)

(FMapChar (FMap String v))

Here, Null String represents the empty trie. The first component of the con-
structor Node String contains the value associated with Nil . Its type is Maybe v
instead of v since Nil may not be in the domain of the finite map represented by
the trie. In this case the first component equals Nothing . The second component
corresponds to the edge map. To keep the introductory example manageable we
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implement FMapChar using ordered association lists.

type FMapChar v = [(Char, v)]
lookupChar :: ∀v .Char→ FMapChar v→ Maybe v
lookupChar c [ ] = Nothing
lookupChar c ((c′, v) : x )
| c < c′ = Nothing
| c c′ = Just v
| c > c′ = lookupChar c x

Note that lookupChar has result type Maybe v. If the key is not in the domain
of the finite map, Nothing is returned.

Building upon lookupChar we can define a look-up function for strings. To
look up the empty string we access the first component of the trie. To look up a
non-empty string, say, Cons c s we look up c in the edge map obtaining a trie,
which is then recursively searched for s.

lookup String :: ∀v .String→ FMap String v→ Maybe v
lookup String s Null String = Nothing
lookup String Nil (Node String tn tc) = tn
lookup String (Cons c s) (Node String tn tc) =

(lookupChar c 3 lookup String s) tc

In the last equation we use monadic composition to take care of the error signal
Nothing .

Based on work by Wadsworth and others, Connelly et al. [11] have gener-
alized the concept of a trie to permit indexing by elements built according to
an arbitrary signature, that is, by elements of an arbitrary non-parameterized
data type. The definition of lookup String already gives a clue what a suitable
generalization might look like: the trie Node String tn tc contains a finite map
for each constructor of the data type String; to look up Cons c s the look-up
functions for the components, c and s, are composed. Generally, if we have a
data type with k constructors, the corresponding trie has k components. To look
up a constructor with n fields, we must select the corresponding finite map and
compose n look-up functions of the appropriate types. If a constructor has no
fields (such as Nil), we extract the associated value.

As a second example, consider the data type of external search trees:

data Dict = Tip String | Node Dict String Dict.

A trie for external search trees represents a finite map from Dict to some value
type v. It is an element of FMap Dict v given by

data FMap Dict v = Null Dict
| Node Dict (FMap String v)

(FMap Dict (FMap String (FMap Dict v))).
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The data type FMap Dict is a nested data type, since the recursive call on the
right hand side, FMap Dict (FMap String (FMap Dict v)), is a substitution in-
stance of the left hand side. Consequently, the look-up function on external
search trees requires polymorphic recursion.

lookup Dict :: ∀v .Dict→ FMap Dict v→ Maybe v
lookup Dict d Null Dict = Nothing
lookup Dict (Tip s) (Node Dict tl tn) = lookup String s tl
lookup Dict (Node m s r) (Node Dict tl tn) =

(lookup Dict m 3 lookup String s 3 lookup Dict r) tn

Looking up a node involves two recursive calls. The first, lookup Dict m, is of
type Dict → FMap Dict X → Maybe X where X = FMap String (FMap Dict v),
which is a substitution instance of the declared type.

Note that it is absolutely necessary that FMap Dict and lookup Dict are
parametric with respect to the codomain of the finite maps. If we restrict the
type of lookup Dict to Dict → FMap Dict T → Maybe T for some fixed type
T, the definition no longer type-checks. This also explains why the construction
does not work for the finite set abstraction.

Generalized tries make a particularly interesting application of generic pro-
gramming. The central insight is that a trie can be considered as a type-indexed
data type. This renders it possible to define tries and operations on tries gener-
ically for arbitrary data types. We already have the necessary prerequisites at
hand: we know how to define tries for sums and for products. A trie for a sum
is essentially a product of tries and a trie for a product is a composition of tries.
The extension to arbitrary data types is then uniquely defined. Mathematically
speaking, generalized tries are based on the following isomorphisms.

1→fin v ∼= v
(t1 + t2)→fin v ∼= (t1 →fin v) × (t2 →fin v)
(t1 × t2)→fin v ∼= t1 →fin (t2 →fin v)

Here, t →fin v denotes the set of all finite maps from t to v. Note that t →fin v
is sometimes written v[t ], which explains why these equations are also known as
the ‘laws of exponentials’.

2.2 Signature

To put the above idea in concrete terms we will define a type-indexed data type
FMap, which has the following kind for types t of kind ?.

FMap{|t :: ?|} :: ?→ ?

So FMap assigns a type constructor of kind ?→ ? to each key type t of kind ?.
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We will implement the following operations on tries.

empty{|t|} :: ∀v .FMap{|t|} v
isempty{|t|} :: ∀v .FMap{|t|} v→ Bool
single{|t|} :: ∀v . (t, v)→ FMap{|t|} v
lookup{|t|} :: ∀v . t→ FMap{|t|} v→ Maybe v
insert{|t|} :: ∀v . (v→ v→ v)→ (t, v)→ (FMap{|t|} v→ FMap{|t|} v)
merge{|t|} :: ∀v . (v→ v→ v)→ (FMap{|t|} v→ FMap{|t|} v→ FMap{|t|} v)
delete{|t|} :: ∀v . t→ (FMap{|t|} v→ FMap{|t|} v)

The value empty{|t|} is the empty trie. The function isempty{|t|} takes a trie and
determines whether or not it is empty. The function single{|t|} (t , v) constructs a
trie that contains the binding (t , v) as its only element. The function lookup{|t|}
takes a key and a trie and looks up the value associated with the key. The
function insert{|t|} inserts a new binding into a trie, and merge{|t|} combines two
tries. The function delete{|t|} takes a key and a trie, and removes the binding
for the key from the trie. The two functions insert{|t|} and merge{|t|} take as
a first argument a so-called combining function, which is applied whenever two
bindings have the same key. For instance, λnew old → new is used as the
combining function for insert{|t|} if the new binding is to override an old binding
with the same key. For finite maps of type FMap{|t|} Int addition may also be a
sensible choice. Interestingly, we will see that the combining function is not only
a convenient feature for the user; it is also necessary for defining insert{|t|} and
merge{|t|} generically for all types!

2.3 Properties

Each of the operations specified in the previous section satisfies a number of laws,
which hold generically for all instances of t. These properties formally specify
parts of the informal descriptions of the operations given there, and can be proved
for the definitions given in the following sections using fixed point induction. See
Hinze [19, 21] for examples of proofs of properties of generic functions.

lookup{|t|} k (empty{|t|}) = Nothing
lookup{|t|} k (single{|t|} (k1, v1)) = if k k1 then Just v1 else Nothing
lookup{|t|} k (merge{|t|} c t1 t2) = combine c (lookup{|t|} k t1) (lookup{|t|} k t2),

where combine combines two values of type Maybe:

combine :: ∀v . (v→ v→ v)→ (Maybe v→ Maybe v→ Maybe v)
combine c Nothing Nothing = Nothing
combine c Nothing (Just v2) = Just v2

combine c (Just v1) Nothing = Just v1

combine c (Just v1) (Just v2) = Just (c v1 v2).

The last law, for instance, states that looking up a key in the merge of two tries
yields the same result as looking up the key in each trie separately and then
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combining the results. If the combining form c is associative,

c v1 (c v2 v3) = c (c v1 v2) v3,

then merge{|t|} c is associative, as well. Furthermore, empty{|t|} is the left and
the right unit of merge{|t|} c:

merge{|t|} c (empty{|t|}) x = x
merge{|t|} c x (empty{|t|}) = x

merge{|t|} c x1 (merge{|t|} c x2 x3) = merge{|t |} c (merge{|t|} c x1 x2) x3.

The functions insert and delete satisfy the following laws: for all k , v , and c,

insert{|t|} c (k , v) (empty{|t|}) = single{|t|} (k , v)
delete{|t|} k (single{|t|} (k , v)) = empty{|t|}.

The operations satisfy many more laws, but we will omit them here.

2.4 Type-indexed tries

We hqe already noted that generalized tries are based on the laws of exponentials.

1→fin v ∼= v
(t1 + t2)→fin v ∼= (t1 →fin v) × (t2 →fin v)
(t1 × t2)→fin v ∼= t1 →fin (t2 →fin v)

In order to define the notion of finite map it is customary to assume that each
value type v contains a distinguished element or base point ⊥v, see [11]. A finite
map is then a function whose value is ⊥v for all but finitely many arguments. For
the implementation of tries it is, however, inconvenient to make such a strong
assumption (though one could use type classes for this purpose).

Instead, we explicitly add a base point when necessary motivating the fol-
lowing definition of FMap, our first example of a type-indexed data type.

FMap{|t :: ?|} :: ?→ ?
FMap{|Unit|} v = Maybe v
FMap{|Int|} v = Patricia.Dict v
FMap{|Char|} v = FMapChar v
FMap{|t1 :+: t2|} v = FMap{|t1|} v ×• FMap{|t2|} v
FMap{|t1 :*: t2|} v = FMap{|t1|} (FMap{|t2|} v)
FMap{|Con t|} v = FMap{|t|} v

Here, (×•) is the type of optional pairs.

data a ×• b = Null | Pair a b

Instead of optional pairs we could also use ordinary pairs in the definition of
FMap:

FMap{|t1 :+: t2|} v = FMap{|t1|} v :*:FMap{|t2|} v.
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This representation has, however, two major drawbacks: (i) it relies in an essen-
tial way on lazy evaluation and (ii) it is inefficient, see [18].

We assume there exists a suitable library implementing finite maps with
integer keys. Such a library could be based, for instance, on a data structure
known as a Patricia tree [44]. This data structure fits particularly well in the
current setting since Patricia trees are a variety of tries. For clarity, we will use
qualified names when referring to entities defined in the hypothetical module
Patricia.

A few remarks are in order. FMap is a type-indexed data type [23]. The
only way to construct values of type FMap is by means of the functions in the
interface.

Furthermore, in contrast with type-indexed functions, the constructor index
Con doesn’t mention a constructor description anymore. This is because a type
cannot depend on a value, so the constructor description can never be used in
the definition of a type-indexed data type.

Since the trie for the unit type is given by Maybe v rather than v itself,
tries for isomorphic types are, in general, not isomorphic. We have, for in-
stance, Unit ∼= Unit :*:Unit (ignoring laziness) but FMap{|Unit|} v = Maybe v 6∼=
Maybe (Maybe v) = FMap{|Unit :*:Unit|} v. The trie type Maybe (Maybe v) has
two different representations of the empty trie: Nothing and Just Nothing . How-
ever, only the first one will be used in our implementation. Similarly, Maybe v ×•
Maybe v has two elements, Null and Pair Nothing Nothing , that represent the
empty trie. Again, only the first one will be used.

As mentioned in Section 2.2, the kind of FMap for types of kind ? is ?→ ?. For
type constructors with higher-order kinds, the kind of FMap looks surprisingly
similar to the type of type-indexed functions for higher-order kinds. A trie on
the type List a is a trie for the type List, applied to a trie for the type a:

FMap{|f :: ?→ ?|} :: (?→ ?)→ (?→ ?).

The ‘type’ of a type-indexed type is a kind-indexed kind. In general, we have:

FMap{|f :: κ|} :: FMAP{[κ]} f

FMAP{[κ :: 2]} :: 2

FMAP{[?]} = ?→ ?
FMAP{[κ→ ν]} = FMAP{[κ]} → FMAP{[ν]},

where the box 2 is the type of a kind, a so-called super-kind.

Example 1. Let us specialize FMap to the following data types.

data List a = Nil | Cons a (List a)
data Tree a b = Tip a | Node (Tree a b) b (Tree a b)
data Fork a = Fork a a

data Sequ a = EndS | ZeroS (Sequ (Fork a)) | OneS a (Sequ (Fork a))
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These types are represented by (see also section 3.1 in the first part of these
lecture notes [22]):

List = Fix (ΛList . Λa .Unit :+: a :*: List a)
Tree = Fix (ΛTree . Λa b . a :+:Tree a b :*: b :*:Tree a b)
Fork = Λa . a :*: a

Sequ = Fix (ΛSequ . Λa .Unit :+:Sequ (Fork a) :+: a :*:Sequ (Fork a)).

Recall that (:*:) binds stronger than (:+:). Consequently, the corresponding
trie types are

FMap List = Fix (ΛFMap List . Λfa .Maybe ×• fa · FMap List fa)
FMap Tree = Fix (ΛFMap Tree . Λfa fb .

fa ×•
FMap Tree fa fb · fb · FMap Tree fa fb)

FMap Fork = Λfa . fa · fa
FMap Sequ = Fix (ΛFMap Sequ . Λfa .

Maybe ×•
FMap Sequ (FMap Fork fa) ×•
fa · FMap Sequ (FMap Fork fa)).

As an aside, note that we interpret a ×• b ×• c as the type of optional triples
and not as nested optional pairs:

data a ×• b ×• c = Null | Triple a b c.

Now, since Haskell permits the definition of higher-order kinded data types, the
second-order type constructors above can be directly coded as data types. All
we have to do is to bring the equations into an applicative form.

data FMap List fa v = Null List
| Node List (Maybe v)

(fa (FMap List fa v))
data FMap Tree fa fb v = Null Tree

| Node Tree (fa v)
(FMap Tree fa fb

(fb (FMap Tree fa fb v)))

These types are the parametric variants of FMap String and FMap Dict defined
in Section 2.1: we have FMap String ≈ FMap List FMapChar (corresponding to
String ≈ List Char) and FMap Dict ≈ FMap Tree FMap String FMap String (cor-
responding to Dict ≈ Tree String String). Things become interesting if we con-
sider nested data types.

data FMap Fork fa v = Node Fork (fa (fa v))
data FMap Sequ fa v = Null Sequ

| Node Sequ (Maybe v)
(FMap Sequ (FMap Fork fa) v)
(fa (FMap Sequ (FMap Fork fa) v))
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The generalized trie of a nested data type is a second-order nested data type!
A nest is termed second-order, if a parameter that is instantiated in a recursive
call ranges over type constructors of first-order kind. The trie FMap Sequ is
a second-order nest since the parameter fa of kind ? → ? is changed in the
recursive calls. By contrast, FMap Tree is a first-order nest since its instantiated
parameter v has kind ?. It is quite easy to produce generalized tries that are
both first- and second-order nests. If we swap the components of Sequ’s third
constructor—OneS a (Sequ (Fork a)) becomes OneS (Sequ (Fork a)) a—then the
third component of FMap Sequ has type FMap Sequ (FMap Fork fa) (fa v) and
since both fa and v are instantiated, FMap Sequ is consequently both a first- and
a second-order nest.

2.5 Empty tries

The empty trie is defined as follows.

type Empty{[?]} t = ∀v .FMap{|t|} v
type Empty{[κ→ ν]} t = ∀a .Empty{[κ]} a→ Empty{[ν]} (t a)
empty{|t :: κ|} :: Empty{[κ]} t
empty{|Unit|} = Nothing
empty{|Char|} = [ ]
empty{|Int|} = Patricia.empty
empty{|a :+: b|} = Null
empty{|a :*: b|} = empty{|a|}
empty{|Con c a|} = empty{|a|}

The definition already illustrates several interesting aspects of programming with
generalized tries. First, the explicit polymorphic type of empty is necessary to
make the definition work. Consider the line empty{|a :*: b|}, which is of type
∀v .FMap{|a|} (FMap{|b|} v). It is defined in terms of empty{|a|}, which is of type
∀v .FMap{|a|} v. That means that empty{|a|} is used polymorphically. In other
words, empty makes use of polymorphic recursion!

Suppose we want to define a function emptyI that is almost the same as the
function empty , but uses a different value, say emptyIntTrie, for the empty trie
for integers. The definition of FMap says that emptyIntTrie has to be a Patricia
tree, but that might be changed in the definition of FMap. Then we can use a
default case [10] to define emptyI in terms of empty as follows:

emptyI {|t :: κ|} :: Empty (κ) t
emptyI {|Int|} = emptyIntTrie
emptyI {|a|} = empty{|a|}.

So the function emptyI is equal to the function empty in all cases except for the
Int case, where it uses a special empty trie.
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Example 2. Let us specialize empty to lists and binary random-access lists.

empty List :: ∀fa . (∀w . fa w)→ (∀v .FMap List fa v)
empty List ea = Null List
empty Fork :: ∀fa . (∀w . fa w)→ (∀v .FMap Fork fa v)
empty Fork ea = Node Fork ea
empty Sequ :: ∀fa . (∀w . fa w)→ (∀v .FMap Sequ fa v)
empty Sequ ea = Null Sequ

The second function, empty Fork , illustrates the polymorphic use of the param-
eter: ea has type ∀w . fa w but is used as an element of fa (fa w). The functions
empty List and empty Sequ show that the ‘mechanically’ generated definitions
can sometimes be slightly improved: the argument ea is not needed.

The function isempty{|t |} takes a trie and determines whether it is empty.

type IsEmpty{[?]} t = ∀v .FMap{|t |} v→ Bool
type IsEmpty{[κ→ ν]} t = ∀a . IsEmpty{[κ]} a→ IsEmpty{[ν]} (t a)

isempty{|t :: κ|} :: IsEmpty{[κ]} t
isempty{|Unit|} v = isNothing v
isempty{|Char|} m = null m
isempty{|Int|} m = Patricia.isempty m
isempty{|a :+: b|} Null = True
isempty{|a :+: b|} d = False
isempty{|a :*: b|} d = isempty{|a|} d
isempty{|Con c a|} d = isempty{|a|} d

Function isempty assumes that tries are in ‘normal form’, so the empty trie is
always represented by Null , and not, for example, by Pair Null Null .

Example 3. Let us specialize isempty to lists and binary random-access lists.

isempty List :: ∀fa . (∀w . fa w→ Bool)→
(∀v .FMap List fa v→ Bool)

isempty List iea Null List = True
isempty List iea (Node List tn tc) = False
isempty Fork :: ∀fa . (∀w . fa w→ Bool)→

(∀v .FMap Fork fa v→ Bool)
isempty Fork iea (Node Fork tf ) = iea tf
isempty Sequ :: ∀fa . (∀w . fa w→ Bool)→

(∀v .FMap Sequ fa v→ Bool)
isempty Sequ iea Null Sequ = True
isempty Sequ iea (Node Sequ tv tf ts) = False
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2.6 Singleton tries

The function single{|t|} (t , v) constructs a trie that contains the binding (t , v)
as its only element. To construct a trie in the sum case, we have to return a
Pair , of which only one component is inhabited. The other component is the
empty trie. This means that single depends on empty . Generic Haskell supports
dependencies, so we can use both the empty trie and the single trie in the sum,
product, and constructor cases of function single. The dependency shows in the
type of the function single: on higher-order kinds, the type mentions the type of
empty .

type Single{[?]} t = ∀v . (t, v)→ FMap{|t|} v
type Single{[κ→ ν]} t = ∀a .Empty{[κ]} a→ Single{[κ]} a→ Single{[ν]} (t a)

Plain generic functions can be seen as catamorphisms [38, 42] over the structure
of data types. With dependencies, we also get the power of paramorphisms [40].

single{|t :: κ|} :: Single{[κ]} t
single{|Unit|} (Unit , v) = Just v
single{|Char|} (c, v) = [(c, v)]
single{|Int|} (i , v) = Patricia.single (i , v)
single{|a :+: b|} (Inl a, v) = Pair (single{|a|} (a, v)) (empty{|b|})
single{|a :+: b|} (Inr b, v) = Pair (empty{|a|}) (single{|b|} (b, v))
single{|a :*: b|} (a :*: b, v) = single{|a|} (a, single{|b|} (b, v))
single{|Con c a|} (Con b, v) = single{|a|} (b, v)

Example 4. Let us again specialize the generic function to lists and binary
random-access lists.

single List :: ∀k fa . (∀w . fa w)→ (∀w . (k,w)→ fa w)
→ (∀v . (List k, v)→ FMap List fa v)

single List ea sa (Nil , v) = Node List (Just v) ea
single List ea sa (Cons k ks, v) =
Node List Nothing (sa (k , single List ea sa (ks, v)))

single Fork :: ∀k fa . (∀w . fa w)→ (∀w . (k,w)→ fa w)
→ (∀v . (Fork k, v)→ FMap Fork fa v)

single Fork ea sa (Fork k1 k2, v) = Node Fork (sa (k1, sa (k2, v)))
single Sequ :: ∀k fa . (∀w . fa w)→ (∀w . (k,w)→ fa w)

→ (∀v . (Sequ k, v)→ FMap Sequ fa v)
single Sequ ea sa (EndS , v) = Node Sequ (Just v) Null Sequ ea
single Sequ ea sa (ZeroS s, v) =

Node Sequ Nothing
(single Sequ (empty Fork ea) (single Fork ea sa) (s, v))
ea

single Sequ ea sa (OneS k s, v) =
Node Sequ Nothing

Null Sequ
(sa (k , single Sequ (empty Fork ea) (single Fork ea sa) (s, v)))
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Again, we can simplify the ‘mechanically’ generated definitions: since the defini-
tion of Fork does not involve sums, single Fork does not require its first argument,
ea, which can be safely removed.

2.7 Look up

The look-up function implements the scheme discussed in Section 2.1.

type Lookup{[?]} t = ∀v . t→ FMap{|t|} v→ Maybe v
type Lookup{[κ→ ν]} t = ∀a . Lookup{[κ]} a→ Lookup{[ν]} (t a)

lookup{|t :: κ|} :: Lookup{[κ]} t
lookup{|Unit|} Unit fm = fm
lookup{|Char|} c fm = lookupChar c fm
lookup{|Int|} i fm = Patricia.lookup i fm
lookup{|a :+: b|} t Null = Nothing
lookup{|a :+: b|} (Inl a) (Pair fma fmb) = lookup{|a|} a fma
lookup{|a :+: b|} (Inr b) (Pair fma fmb) = lookup{|b|} b fmb
lookup{|a :*: b|} (a :*: b) fma = (lookup{|a|} a 3 lookup{|b|} b) fma
lookup{|Con d a|} (Con b) fm = lookup{|a|} b fm

On sums the look-up function selects the appropriate map; on products it ‘com-
poses’ the look-up functions for the components. Since lookup has result type
Maybe v, we use monadic composition.

Example 5. Specializing lookup{|t|} to concrete instances of t is by now probably
a matter of routine.

lookup List :: ∀k fa . (∀w . k→ fa w→ Maybe w)
→ (∀v . List k→ FMap List fa v→ Maybe v)

lookup List la ks Null List = Nothing
lookup List la Nil (Node List tn tc) = tn
lookup List la (Cons k ks) (Node List tn tc) = (la k 3 lookup List la ks) tc
lookup Fork :: ∀k fa . (∀w . k→ fa w→ Maybe w)

→ (∀v .Fork k→ FMap Fork fa v→ Maybe v)
lookup Fork la (Fork k1 k2) (Node Fork tf ) = (la k1 3 la k2) tf
lookup Sequ :: ∀fa k . (∀w . k→ fa w→ Maybe w)

→ (∀v .Sequ k→ FMap Sequ fa v→ Maybe v)
lookup Sequ la s Null Sequ = Nothing
lookup Sequ la EndS (Node Sequ te tz to) = te
lookup Sequ la (ZeroS s) (Node Sequ te tz to) =

lookup Sequ (lookup Fork la) s tz
lookup Sequ la (OneS a s) (Node Sequ te tz to) =

(la a 3 lookup Sequ (lookup Fork la) s) to

The function lookup List generalizes lookup String defined in Section 2.1; we
have lookup String ≈ lookup List lookupChar .



18 R. Hinze, J. Jeuring

2.8 Inserting and merging

Insertion is defined in terms of merge and single.

insert{|t :: ?|} :: ∀v . (v→ v→ v)→ (t, v)→ FMap{|t|} v→ FMap{|t|} v
insert{|t|} c (x , v) d = merge{|t|} c (single{|t|} (x , v)) d

Function insert is defined as a generic abstraction. A generic abstraction is
a generic function that is defined in terms of another generic function. The
abstracted type parameter is, however, restricted to types of a fixed kind. In
the above case, insert only works for types of kind ?. In the exercise at the end
of this section you will define insert as a generic function that works for type
constructors of all kinds.

Merging two tries is surprisingly simple. Given the function combine defined
in section 2.3, and a function for merging two association lists

mergeChar :: ∀v . (v→ v→ v)→
(FMapChar v→ FMapChar v→ FMapChar v)

mergeChar c [ ] x ′ = x ′

mergeChar c x [ ] = x
mergeChar c ((k , v) : x ) ((k ′, v ′) : x ′)

| k < k ′ = (k , v) : mergeChar c x ((k ′, v ′) : x ′)
| k k ′ = (k , c v v ′) : mergeChar c x x ′

| k > k ′ = (k ′, v ′) : mergeChar c ((k , v) : x ) x ′,

we can define merge as follows.

type Merge{[?]} t = ∀v .
(v→ v→ v)→ FMap{|t|} v→ FMap{|t|} v→ FMap{|t|} v

type Merge{[κ→ ν]} t = ∀a .Merge{[κ]} a→ Merge{[ν]} (t a)

merge{|t :: κ|} :: Merge{[κ]} t
merge{|Unit|} c v v ′ = combine c v v ′

merge{|Char|} c fm fm ′ = mergeChar c fm ′ fm
merge{|Int|} c fm fm ′ = Patricia.merge c fm ′ fm
merge{|Con d a|} c e e ′ = merge{|a|} c e e ′

For the sum case, we have to distinguish between empty and nonempty tries:

merge{|a :+: b|} c d Null = d
merge{|a :+: b|} c Null d = d
merge{|a :+: b|} c (Pair x y) (Pair v w) =

Pair (merge{|a|} c x v) (merge{|b|} c y w).

The most interesting equation is the product case. The tries d and d ′ are of
type FMap{|a|} (FMap{|b|} v). To merge them we can recursively call merge{|a|};
we must, however, supply a combining function of type ∀v .FMap{|b|} v →



Generic Haskell: applications 19

FMap{|b|} v → FMap{|b|} v. A moment’s reflection reveals that merge{|b|} c
is the desired combining function.

merge{|a :*: b|} c d d ′ = merge{|a|} (merge{|b|} c) d d ′

The definition of merge shows that it is sometimes necessary to implement op-
erations more general than immediately needed. If Merge{[?]} t had been the
simpler type ∀v .FMap{|t|} v → FMap{|t|} v → FMap{|t|} v, then we would not
have been able to give a defining equation for :*:.

Example 6. To complete the picture let us again specialize the merging operation
for lists and binary random-access lists. The different instances of merge are
surprisingly concise (only the types look complicated).

merge List :: ∀fa . (∀w . (w→ w→ w)→ (fa w→ fa w→ fa w))
→ (∀v . (v→ v→ v)
→ FMap List fa v→ FMap List fa v→ FMap List fa v)

merge List ma c Null List t = t
merge List ma c t Null List = t
merge List ma c (Node List tn tc) (Node List tn ′ tc′) =

Node List (combine c tn tn ′)
(ma (merge List ma c) tc tc′)

merge Fork :: ∀fa . (∀w . (w→ w→ w)→ (fa w→ fa w→ fa w))
→ (∀v . (v→ v→ v)
→ FMap Fork fa v→ FMap Fork fa v→ FMap Fork fa v)

merge Fork ma c (Node Fork tf ) (Node Fork tf ′) =
Node Fork (ma (ma c) tf tf ′)

merge Sequ :: ∀fa . (∀w . (w→ w→ w)→ (fa w→ fa w→ fa w))
→ (∀v . (v→ v→ v)
→ FMap Sequ fa v→ FMap Sequ fa v→ FMap Sequ fa v)

merge Sequ ma c Null Sequ t = t
merge Sequ ma c t Null Sequ = t
merge Sequ ma c (Node Sequ te tz to) (Node Sequ te ′ tz ′ to′) =

Node Sequ (combine c te te ′)
(merge Sequ (merge Fork ma) c tz tz ′)
(ma (merge Sequ (merge Fork ma) c) to to′)

2.9 Deleting

Function delete{|t|} takes a key and a trie, and removes the binding for the key
from the trie. For the Char case we need a help function that removes an element
from an association list:

deleteChar :: ∀v .Char→ FMapChar v→ FMapChar v,
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and similarly for the Int case. Function delete is defined as follows:

delete{|t :: κ|} :: Delete{[κ]} t
delete{|Unit|} Unit fm = Nothing
delete{|Char|} c fm = deleteChar c fm
delete{|Int|} i fm = Patricia.delete i fm.

All cases except the product case are straightforward. In the product case, we
have to remove a binding for a product (a :*: b). We do this by using a to lookup
the trie d in which there is a binding for b. Then we remove the binding for b
in d , obtaining a trie d ′. If d ′ is empty, then we delete the complete binding
for a in d , otherwise we insert the binding (a, d ′) in the original trie d . Here
we pass as a combining function λx y → x , which overwrites existing bindings
in a trie. From this description it follows that the function delete depends on
the functions lookup, insert (which depends on function empty), and isempty .
Here we need the kind-indexed typed version of function insert , as defined in
the exercise at the end of this section.

type Delete{[?]} t = ∀v . t→ FMap{|t|} v→ FMap{|t|} v
type Delete{[κ→ ν]} t = ∀a . Lookup{[κ]} a

→ Insert{[κ]} a
→ IsEmpty{[κ]} a
→ Empty{[κ]} a
→ Delete{[κ]} a
→ Delete{[ν]} (t a)

delete{|a :+: b|} t Null = Null
delete{|a :+: b|} (Inl a) (Pair x y) = Pair (delete{|a|} a x ) y
delete{|a :+: b|} (Inr b) (Pair x y) = Pair x (delete{|b|} b y)
delete{|a :*: b|} (a :*: b) d =
case (lookup{|a|} a 3 delete{|b|} b) d of

Nothing → d
Just d ′ | isempty{|b|} d ′ → delete{|a|} a d

| otherwise → insert{|a|} (λx y → x ) (a, d ′) d
delete{|Con c a|} (Con b) d = delete{|a|} b d

Function delete should also maintain the invariant that the empty trie is repre-
sented by Null , and not by Pair Null Null , for example. It is easy to adapt the
above definition such that this invariant is maintained.

Since the type of delete is rather complex because of the dependencies, we
only give the instance of delete on List.
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delete List :: ∀k fa . (∀w . k→ fa w→ Maybe w)
→ (∀w . (w→ w→ w)→ (k,w)→ fa w→ fa w)
→ (∀w . fa w→ Bool)
→ (∀w . fa w)
→ (∀w . (k→ fa w→ fa w))
→ (∀v . List k→ FMap List fa v→ FMap List fa v)

delete List la ia iea ea da Nil Null List = Null List
delete List la ia iea ea da Nil (Node List tn tc) = Node List Nothing tc
delete List la ia iea ea da (Cons a as) Null List = Null List
delete List la ia iea ea da (Cons a as) (Node List tn tc) =

case (la a 3 delete List la ia iea ea da as) tc of
Nothing → tc
Just tc′ | iea tc′ → da a tc

| otherwise → ia (λx y → x ) (a, tc′) tc

2.10 Related work

Knuth [33] attributes the idea of a trie to Thue who introduced it in a pa-
per about strings that do not contain adjacent repeated substrings [47]. De la
Briandais [13] recommended tries for computer searching. The generalization of
tries from strings to elements built according to an arbitrary signature was dis-
covered by Wadsworth [50] and others independently since. Connelly et al. [11]
formalized the concept of a trie in a categorical setting: they showed that a trie
is a functor and that the corresponding look-up function is a natural transfor-
mation.

The first implementation of generalized tries was given by Okasaki in his
recent textbook on functional data structures [43]. Tries for parameterized types
like lists or binary trees are represented as Standard ML functors. While this
approach works for regular data types, it fails for nested data types such as Sequ.
In the latter case data types of second-order kind are indispensable.

Exercise 1. Define function insert as a generic function with a kind-indexed
kind. You can download the code for the functions described in this section from
http://www.generic-haskell.org, including the solution to this exercise. You
might want to avoid looking at the implementation of insert while solving this
exercise.

Exercise 2. Define a function update, which updates a binding in a trie.

update{|t|} :: ∀v . (t, v)→ FMap{|t|} v→ Maybe (FMap{|t|} v)

If there is no binding for the value of type t in trie of type FMap{|t|} v, update
returns Nothing .
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3 XComprez: a generic XML compressor

The extensible markup language XML is a popular standard for describing doc-
uments with markup (or structure). XML documents may become (very) large
because of the markup that is added to the content. A lot of diskspace and
bandwidth is used to store and send XML documents. XML compressors reduce
the size of an XML document, sometimes by a considerable factor. This section
describes a generic XML compressor based on the ideas described in the context
of data conversion by Jansson and Jeuring [26, 30].

This section shows how an XML compressor is implemented as a generic
program, and it briefly discusses which other classes of XML tools would profit
from an implementation as a generic program. The example shows how Generic
Haskell can be used to implement XML tools whose behaviour depends on the
DTD or Schema of the input XML document. Example tools include XML edi-
tors, databases, and compressors.

Generic Haskell is ideally suited for implementing XML tools:

– Knowledge of the DTD can be used to provide more precise functionality,
such as manipulations of an XML document that preserve validity in an
XML editor, or better compression in an XML compressor.

– Generic Haskell programs are typed. Consequently, valid documents are
transformed to valid documents, possibly structured according to another
DTD. Thus Generic Haskell supports constructing type correct XML tools.

– The generic features of Generic Haskell make XML tools easier to implement
in a surprisingly small amount of code.

– The Generic Haskell compiler may perform all kinds of advanced optimi-
sations on the code, such as partial evaluation or deforestation, which are
difficult to conceive or implement by an XML tool developer.

3.1 Implementing an XML compressor as a generic program

We have implemented an XML compressor, called XComprez, as a generic pro-
gram. XComprez separates structure from contents, compresses the structure
using knowledge about the DTD, and compresses the contents using the Unix
compress utility [52]. Thus we replace each element, or rather, the pair of open
and close keywords of the element, by the minimal number of bits required for
the element given the DTD. We distinguish four components in the tool:

– a component that translates a DTD to a data type,
– a component that separates a value of a data type into its structure and its

contents,
– a component that encodes the structure replacing constructors by bits,
– and a component for compressing the contents.

Of course, we have also implemented a decompressor, but since it is very similar
to the compressor, we omit its description. See the website for XComprez [32]
for the latest developments on XComprez. The Generic Haskell source code for
XComprez can be obtained from the website.
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Translating a DTD to a data type. A DTD can be translated to one or more
Haskell data types. For example, the following DTD:

<!ELEMENT book (title,author,date,(chapter)*)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT date (#PCDATA)>
<!ELEMENT chapter (#PCDATA)>
<!ATTLIST book lang (English | Dutch) #REQUIRED> ,

can be translated to the following data types:

data Book = Book Book Attrs Title Author Date [Chapter ]
data Book Attrs = Book Attrs{bookLang :: Lang}
data Lang = English | Dutch
newtype Title = Title String
newtype Author = Author String
newtype Date = Date String
newtype Chapter = Chapter String.

We have used the Haskell library HaXml [51], in particular the functionality in
the module DtdToHaskell to obtain a data type from a DTD, together with func-
tions for reading (parsing) and writing (pretty printing) valid XML documents
to and from a value of the generated data type. For example, the following value
of the above DTD:

<book lang="English">
<title> Dead Famous </title>
<author> Ben Elton </author>
<date> 2001 </date>
<chapter>Introduction </chapter>
<chapter>Preliminaries</chapter>
</book> ,

is translated to the following value of the data type Book:

Book Book Attrs { bookLang = English }
(Title "  Dead Famous  ")
(Author " Ben Elton    ")
(Date "   2001         ")
[Chapter "Introduction "
,Chapter "Preliminaries"
].

An element is translated to a value of a data type using just constructors and no
labelled fields. An attribute is translated to a value that contains a labelled field
for the attribute. Thus we can use the Generic Haskell constructs Con and Label
to distinguish between elements and attributes in generic programs. We have
not introduced the Label construct in these lecture notes. It it used to represent
record labels in data types, and is very similar to the Con construct.
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Separating structure and contents. The contents of an XML document is ob-
tained by extracting all PCData (Parsable Character Data: characters without
tags) and all CData (Character Data: characters with possibly tags, starting
with ‘<![CDATA[’ ending in ‘]]>’) from the document. In Generic Haskell, the
contents of a value of a data type is obtained by extracting all strings from the
value. For the above example value, we obtain the following result:

["  Dead Famous  "
, " Ben Elton    "
, "   2001         "
, "Introduction "
, "Preliminaries"
].

The generic function extract , which extracts all strings from a value of a data
type, is defined as follows:

type Extract{[?]} t = t→ [String ]
type Extract{[κ→ ν]} t = ∀a .Extract{[κ]} a→ Extract{[ν]} (t a)
extract{|t :: κ|} :: Extract{[κ]} t
extract{|Unit|} Unit = [ ]
extract{|String|} s = [s ]
extract{|a :+: b|} (Inl x ) = extract{|a|} x
extract{|a :+: b|} (Inr y) = extract{|b|} y
extract{|a :*: b|} (x :*: y) = extract{|a|} x ++ extract{|b|} y
extract{|Con c a|} (Con b) = extract{|a|} b.

Note that it is possible to give special instances of a generic function on a partic-
ular type, as with extract{|String|} in the above definition. Furthermore, because
DtdToHaskell translates any DTD to a data type of kind ?, we could have de-
fined extract just on data types of kind ?. However, higher-order kinds pose no
problems. Finally, the operator ++ in the product case is a source of inefficiency.
It can be removed using a standard transformation, see Exercise 8 in the first
part of these lecture notes.

The structure from an XML document is obtained by removing all PCData
and CData from the document. In Generic Haskell, the structure, or shape, of
a value is obtained by replacing all strings by empty tuples. Thus we obtain a
value that has a different type, in which occurrences of the type String have been
replaced by the type (). This is another example of a type-indexed data type [23].
For example, the type we obtain from the data type Book is isomorphic to the
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following data type:

data ShapeBook = ShapeBook ShapeBook Attrs
ShapeTitle
ShapeAuthor
ShapeDate
[ShapeChapter ]

data ShapeBook Attrs = ShapeBook Attrs{bookLang :: ShapeLang}
data ShapeLang = SHAPEEnglish | SHAPEDutch
newtype ShapeTitle = ShapeTitle ()
newtype ShapeAuthor = ShapeAuthor ()
newtype ShapeDate = ShapeDate ()
newtype ShapeChapter = ShapeChapter (),

and the structure of the example value is

shapeBook = ShapeBook ( ShapeBook Attrs{bookLang = SHAPEEnglish })
( ShapeTitle ())
( ShapeAuthor ())
( ShapeDate ())
[ ShapeChapter ()
, ShapeChapter ()
] .

The type-indexed data type Shape replaces occurrences of String in a data type
by Unit.

Shape{|Unit|} = Unit
Shape{|String|} = ()
Shape{|a :+: b|} = Shape{|a|} :+:Shape{|b|}
Shape{|a :*: b|} = Shape{|a|} :*:Shape{|b|}
Shape{|Con a|} = Con (Shape{|a|})

The generic function shape returns the shape of a value of any data type. It has
the following kind-indexed type.

type Shape{[?]} t = t→ Shape{|t|}
type Shape{[κ→ ν]} t = ∀a .Shape{[κ]} a→ Shape{[ν]} (t a)

Note that we use the same name both for the kind-indexed type of function
shape, as well as the type-indexed data type Shape. They can be distinguished
based on their index.

shape{|t :: κ|} :: Shape{[κ]} t
shape{|Unit|} Unit = Unit
shape{|String|} s = ()
shape{|a :+: b|} (Inl a) = Inl (shape{|a|} a)
shape{|a :+: b|} (Inr b) = Inr (shape{|b|} b)
shape{|a :*: b|} (a :*: b) = (shape{|a|} a :*: shape{|b|} b)
shape{|Con c a|} (Con b) = Con (shape{|a|} b)
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Given the shape and the contents (obtained by means of function extract) of a
value we obtain the original value by means of function insert :

insert{|t :: ?|} :: Shape{|t|} → [String ]→ t.

The generic definition (with a kind-indexed type) of insert is left as an exercise.

Encoding constructors. The constructor of a value is encoded as follows. First
calculate the number n of constructors of the data type. Then calculate the
position of the constructor in the list of constructors of the data type. Finally,
replace the constructor by the bit representation of its position, using log2 n
bits. For example, in a data type with 6 constructors, the third constructor is
encoded by 010. We start counting with 0. Furthermore, a value of a data type
with a single constructor is represented using 0 bits. Consequently, the values
of all types except for String and Lang in the running example are represented
using 0 bits.

We assume there exists a function constructorPosition which given a con-
structor returns a pair of integers: its position in the list of constructors of the
data type, and the number of constructors of the data type.

constructorPosition :: ConDescr→ (Int, Int)

Function constructorPosition can be defined by means of function constructors,
which returns the constructor descriptions of a data type. This function is defined
in the module Collect , which can be found in the library of Generic Haskell.

constructors{|t :: ?|} :: [ConDescr ]

Function constructors is defined for arbitrary kinds in module Collect. We omit
the definitions of both function constructors and function constructorPosition.

The function encode takes a value, and encodes it as a value of type Bin, a
list of bits, defined in the first part of these lecture notes. The difference with
the function encode that is defined in the first part of these lecture notes is that
here we encode the constructors of the value, and not the choices made in the
sum. On average, the function encode given here compresses much better than
the function encode from the first part of these lecture notes.

type Encode{[?]} t = Shape{|t|} → Bin
type Encode{[κ→ ν]} t = ∀a .Encode{[κ]} a→ Encode{[ν]} (t a)

The interesting case in the definition of function encode is the constructor case.
We first give the simple cases:

encode{|t :: κ|} :: Encode{[κ]} t
encode{|Unit|} = [ ]
encode{|String|} = [ ]
encode{|a :*: b|} (a :*: b) = encode{|a|} a ++ encode{|b|} b
encode{|a :+: b|} (Inl a) = encode{|a|} a
encode{|a :+: b|} (Inr b) = encode{|b|} b.
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For Unit and String there is nothing to encode. The product case encodes the
components of the product, and concatenates the results. The sum case strips
of the Inl or Inr constructor, and encodes the argument.

The encoding happens in the constructor case of function encode. We use
function intinrange2bits to calculate the bits for the position of the argument
constructor in the constructor list, given the number of constructors of the data
type currently in scope. The definition of intinrange2bits is omitted.

encode{|Con c a|} (Con a) =
intinrange2bits (constructorPosition c) ++ encode{|a|} a

intinrange2bits :: (Int, Int)→ Bin

We omit the definition of the function to decode a list of bits into a value of a
data type. This function is the inverse of function encode defined in this section,
and is very similar to the function decodes given in the first part of these lecture
notes.

Compressing the contents. Finally, it remains to compress the contents of an
XML document. At the moment we use the Unix compress utility [52] to com-
press the strings obtained from the document.

3.2 Analysis

How does XComprez perform, and how does it compare with other XML com-
pressors? The analysis given in this section is limited: XComprez is used as
an example of a generic program, and not as the latest development in XML
compression. Furthermore, we have not been able to obtain the executables or
the source code of most of the existing XML compressors.

Existing XML compressors. Structure-specific compression methods give much
better compression results [4, 15, 14, 46] than conventional compression meth-
ods such as the Unix compress utility [52]. There exist many XML compres-
sors; we know of XMLZip [12], XMill [36], ICT’s XML-Xpress [25], Millau [16],
XMLPPM [6], XGrind [48], and lossy XML compression [5]. We will not perform
an exhaustive comparison between our compressor and these compressors, but
we will briefly compare our compressor with XMill.

Compression ratio. We have performed some initial tests comparing XComprez
and XMill. The tests are not representative, and it is impossible to draw hard
conclusions from the results. However, on our test examples XComprez is 40%
to 50% better than XMill. We think this improvement in compression ratio is
considerable. When we replace HaXml by a tool that generates a data type for
a schema, we expect that we can achieve better compression ratios.
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Code size. With respect to code size, the difference between XMill and XCom-
prez is dramatic: XMill is written in almost 20k lines of C++. The main func-
tionality of XComprez is less than 300 lines of Generic Haskell code. Of course,
for a fair comparison we have to add some of the HaXml code (which is a library
distributed together with almost all compiler and interpreters for Haskell), the
code for handling bits, and the code for implementing the as yet unimplemented
features of XMill. We expect to be able implement all of XMill’s features in
about 20% of the code size of XMill.

Extensions of XComprez. A relatively simple way to improve XComprez it
is to analyze some source files that are valid with respect to the DTD, count
the number of occurrences of the different elements (constructors), and apply
Huffman coding. We have implemented this rather simple extension [32].

XMill stores the strings in the elements in so-called containers. The standard
approach in XMill is to use different containers for different elements, so that,
for example, all authors are stored in the author container, all dates in the date
container, etc. Since the strings in for example the container for dates are very
similar, standard compression methods can compress the containers with a larger
factor than the single file obtained by storing all strings that appear in the XML
document. Again, it is easy to implement this feature as a generic program [32].

Finally, we have also used (Adaptive) Arithmetic Coding [3] to compress the
constructors.

Specializing XComprez. XComprez can not only be used for compressing
XML documents, but also for compressing values of arbitrary data types that
have not necessarily been generated by DtdToHaskell.

Suppose we have a data type that contains a constructor Age, which takes
an integer as argument and denotes the age of a human being. Since 128 is
currently a safe upperbound for the age of a human being, it suffices to use 7
bits for the integer argument of Age. Suppose compressAge calculates these 7
bits from an age. Then we can reuse the definition of encode together with a
constructor case [10] to define a function specialEncode.

specialEncode{|t :: κ|} :: Encode{[κ]} t
specialEncode{|case Age|} (Age i) = compressAge i
specialEncode{|a|} = encode{|a|}

Function specialEncode is still a generic encoding function, but on values of the
form Age i it uses a different compress function.

3.3 Conclusions

We have shown how to implement an XML compressor as a generic program.
XComprez compresses better than for example XMill because it uses the infor-
mation about an XML document present in a DTD.
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There exist several other classes of XML tools that can be implemented as
generic programs, and that would benefit from such an implementation. Exam-
ples of such tools are XML editors and XML databases [17]. The combination
of HaXml and generic programming as in Generic Haskell is very useful for
implementing the kind of XML tools for which DTDs play an important rôle.
Using generic programming, such tools become easier to write, because a lot
of the code pertaining to DTD handling and optimisation is obtained from the
generic programming compiler, and the resulting tools are more effective, because
they directly depend on the DTD. For example, a DTD-aware XML compres-
sor, such as XComprez described in this paper, compresses considerably better
than XML compressors that don’t take the DTD into account, such as XMill.
Furthermore, our compressor is much smaller than XMill.

Although we think Generic Haskell is very useful for developing DTD-aware
XML tools, there are some features of XML tools that are difficult to express
in Generic Haskell. Some of the functionality in the DOM, such as the meth-
ods childNodes and firstChild in the Node interface, is hard to express in
a typed way. A flexible extension of type-indexed data types [23] might offer
a solution to this problem. We believe that fusing HaXml, or a tool based on
Schemas, with Generic Haskell, obtaining a ‘domain-specific’ language [8] for
generic programming on DTDs or Schemas is a promising approach.

For tools that do not depend on a DTD we can use the untyped approach
from HaXml to obtain a tool that works for any document. However, most of
the advantages of generic programming no longer apply.

Exercise 3. Adapt the function extract such that it returns a list of containers,
where a container is a list of strings. Return a (possibly empty) container for
every constructor name.

Exercise 4. There might be many empty containers when using the approach
from the previous exercise. Analyse a data type for occurrences of the type String
under constructors. Use this analysis to only return containers for constructor
names that might contain strings.

Exercise 5. Function insert takes the shape and the contents (a list of strings)
of a value, and inserts the strings at the right positions in the shape. Define
function insert as a a generic function with a kind-indexed type.

Exercise 6. Adapt the current version of XComprez such that it can use Huff-
man coding instead of the standard constructor encoding used in this section.
Make sure other encodings can be used as well.

4 The zipper

This section shows how to define a so-called zipper for an arbitrary data type.
This is an advanced example demonstrating the full power of a type-indexed
data type together with a number of generic functions working on it.
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The zipper is a data structure that is used to represent a tree together with a
subtree that is the focus of attention, where that focus may move left, right, up
or down in the tree. The zipper is used in tools where a user interactively manip-
ulates trees, for instance, in editors for structured documents such as proofs or
programs. For the following it is important to note that the focus of the zipper
may only move to recursive components. Consider as an example the data type
Tree:

data Tree a b = Tip a | Node (Tree a b) b (Tree a b).

If the left subtree of a Node constructor is the current focus, moving right means
moving to the right tree, not to the b-label. This implies that recursive positions
in trees play an important rôle in the definition of a generic zipper data structure.
To obtain access to these recursive positions, we have to be explicit about the
fixed points in data type definitions. The zipper data structure is then defined
by induction on the so-called pattern functor of a data type.

The tools in which the zipper is used, allow the user to repeatedly apply
navigation or edit commands, and to update the focus accordingly. In this section
we define a type-indexed data type for locations, which consist of a subtree (the
focus) together with a context, and we define several navigation functions on
locations.

4.1 The basic idea

The zipper is based on pointer reversal. If we follow a pointer to a subterm, the
pointer is reversed to point from the subterm to its parent so that we can go
up again later. A location is a pair (t , c) consisting of the current subterm t
and a pointer c to its parent. The upward pointer corresponds to the context of
the subterm. It can be represented as follows. For each constructor K that has
m recursive subcomponents we introduce m context constructors K1, . . . ,Km .
Now, consider the location (K t1 t2 . . . tm , c). If we go down to t1, we are left
with the context K • t2 . . . tm and the old context c. To represent the combined
context, we simply plug c into the hole to obtain K1 c t2 . . . tm . Thus, the new
location is (t1,K1 c t2 . . . tm). The following picture illustrates the idea (the
filled circle marks the current cursor position).

c

K

t1 t2 · · · tm

up⇐=

down
=⇒

c

K1

t1 t2 · · · tm

left⇐=
right
=⇒

c

K2

t1 t2 · · · tm

4.2 Data types as fixed points of pattern functors

As mentioned above, in order to use the zipper, we have to be explicit about the
fixed points in data type definitions. Therefore, we introduce the data type Fix,
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which is used to define a data type as a fixed point of a pattern functor. The
pattern functor makes the recursion explicit in a data type.

newtype Fix f = In{out :: f (Fix f)}

This is a labelled variant of the data type Fix defined in Section 1.2 of the first
part of these lecture notes. For example, the data types of natural numbers and
bushes can be defined using explicit fixed points as follows:

data NatF a = ZeroF | SuccF a
type Nat = Fix NatF

data BushF a = LeafF Char | BinF a a
type Bush = Fix BushF.

It is easy to convert between data types defined as fixed points and the original
data type definitions of natural numbers and bushes. However, nested data types
and mutually recursive data types cannot be defined in terms of this particular
definition of Fix.

4.3 Type indices of higher kinds

The types that occur in the indices of a generic function have kind ? as their
base kind. For example, Int, Char and Unit are all of kind ?, and :+: and :*:
have kind ? → ? → ?. In this section we are going to define generic functions
which have ?→ ? as their base kind. We need slightly different type indices for
generic functions operating on types of kind ?→ ?:

K t = Λa . t
f1 :+: f2 = Λa . f1 a :+: f2 a
f1 :*: f2 = Λa . f1 a :*: f2 a
Con c f = Λa .Con c (f a)
Id = Λa . a.

We have the constant functor K, which lifts a type of kind ? to kind ?→ ?. We
will need K Unit as well as K Char (or more general, K t for all primitive types).
We overload :+:, :*:, and Con, to be lifted versions of their previously defined
counterparts. The only new type index in this set of indices of kind ?→ ? is the
identity functor Id. Hinze [20] shows that these types are the normal forms of
types of kind ?→ ?.

4.4 Locations

A location is a subtree, together with a context, which encodes the path from
the top of the original tree to the selected subtree. The type-indexed data type
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Loc returns a type for locations given an argument pattern functor.

Loc{|f :: ?→ ?|} :: ?
Loc{|f|} = (Fix f,Context{|f|} (Fix f))
Context{|f :: ?→ ?|} :: ?→ ?
Context{|f|} r = Fix (LMaybe (Ctx{|f|} r))
data LMaybe f a = LNothing | LJust (f a),

where LMaybe is the lifted version of Maybe. The type Loc is defined in terms of
Context, which constructs the context parameterized by the original tree type.
The Context of a value is either empty (represented by LNothing in the LMaybe
type), or it is a path from the root down into the tree. Such a path is constructed
by means of the argument type of LMaybe: the type-indexed data type Ctx. The
type-indexed data type Ctx is defined by induction on the pattern functor of the
original data type. It can be seen as the derivative (as in calculus) of the pattern
functor f [39, 1]. If the derivative of f is denoted by f′, we have

const′ = 0
(f + g)′ = f′ + g′

(f × g)′ = f′ × g + f × g′.

It follows that in the definition of Ctx we will also need access to the type
arguments themselves on the right-hand side of the definition.

Ctx{|f :: ?→ ?|} :: ?→ ?→ ?
Ctx{|Id|} r c = c
Ctx{|K Unit|} r c = Void
Ctx{|K Char|} r c = Void
Ctx{|f1 :+: f2|} r c = Ctx{|f1|} r c :+:Ctx{|f2|} r c
Ctx{|f1 :*: f2|} r c = (Ctx{|f1|} r c :*: f2 r) :+:(f1 r :*:Ctx{|f2|} r c)

This definition can be understood as follows. Since it is not possible to descend
into a constant, the constant cases do not contribute to the result type, which
is denoted by the ‘empty type’ Void, a type without values. The Id case denotes
a recursive component, in which it is possible to descend. Hence it may occur
in a context. Descending in a value of a sum type follows the structure of the
input value. Finally, there are two ways to descend in a product: descending left,
adding the contents to the right of the node to the context, or descending right,
adding the contents to the left of the node to the context.

For example, for natural numbers with pattern functor K Unit :+: Id, and
for trees of type Bush with pattern functor BushF, which can be represented by
K Char :+:(Id :*: Id) we obtain

Context{|K Unit :+: Id|} r = Fix (LMaybe (NatC r))
Context{|K Char :+: Id :*: Id|} r = Fix (LMaybe (BushC r))
data NatC r c = ZeroC Void | SuccC c
data BushC r c = LeafC Void | BinCL (c, r) | BinCR (r, c).
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The context of a natural number is isomorphic to a natural number (the context
of m in n is n − m), and the context of a Bush applied to the data type Bush
itself is isomorphic to the type Context Bush introduced in Section 1.

McBride [39, 1] also defines a type-indexed zipper data type. His zipper
slightly deviates from Huet’s and our zipper: the navigation functions on McBride’s
zipper are not constant time anymore. The observation that the Context of a data
type is its derivative (as in calculus) is due to McBride.

4.5 Navigation functions

We define generic functions on the type-indexed data types Loc, Context, and
Ctx for navigating through a tree. All of these functions act on locations. These
are the basic functions for the zipper.

Function down. The function down is a generic function that moves down to
the leftmost recursive child of the current node, if such a child exists. Otherwise,
if the current node is a leaf node, then down returns the location unchanged.

down{|f :: ?→ ?|} :: Loc{|f|} → Loc{|f|}

The instantiation of down to the data type Bush has been given in Section 1.
The function down satisfies the following property:

∀m . down{|f|} m 6= m =⇒ (up{|f|} · down{|f|}) m = m,

where the function up goes up in a tree. So first going down the tree and then
up again is the identity function on locations in which it is possible to go down.

Since down moves down to the leftmost recursive child of the current node,
the inverse equality down{|f|} · up{|f|} = id does not hold in general. However,
there does exist a natural number n such that

∀m . up{|f|} m 6= m =⇒ (right{|f|}n · down{|f|} · up{|f|}) m = m,

where the function right goes right in a tree. These properties do not completely
specify function down. The other properties it should satisfy are that the selected
subtree of down{|f|} m is the leftmost tree-child of the selected subtree of m, and
the context of down{|f|} m is the context of m extended with all but the leftmost
tree-child of m.

The function down is defined as follows.

down{|f|} (t , c) = case first{|f|} (out t) c of
Just (t ′, c′)→ (t ′, In (LJust c′))
Nothing → (t , c)

To find the leftmost recursive child, we have to pattern match on the pattern
functor f, and find the first occurrence of Id. The helper function first is a generic
function that possibly returns the leftmost recursive child of a node, together
with the context (a value of type Ctx{|f|} c t) of the selected child. The function
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down then turns this context into a value of type Context by inserting it in the
right (‘non-top’) component of a sum by means of LJust , and applying the fixed
point constructor In to it.

first{|f :: ?→ ?|} :: ∀c t . f t→ c→ Maybe (t,Ctx{|f|} c t)
first{|Id|} t c = return (t , c)
first{|K Unit|} t c = Nothing
first{|K Char|} t c = Nothing
first{|f1 :+: f2|} (Inl x ) c = do {(t , cx )← first{|f1|} x c; return (t , Inl cx )}
first{|f1 :+: f2|} (Inr y) c = do {(t , cy)← first{|f2|} y c; return (t , Inr cy)}
first{|f1 :*: f2|} (x :*: y) c = do {(t , cx )← first{|f1|} x c

; return (t , Inl (cx , y))}
++ do {(t , cy)← first{|f2|} y c

; return (t , Inr (x , cy))}

Here, return is obtained from the Maybe monad, and the operator (++) is the
standard monadic plus, called mplus in Haskell, given by

(++) :: ∀a .Maybe a→ Maybe a→ Maybe a
Nothing ++ m = m
Just a ++ m = Just a.

The function first returns the value and the context at the leftmost Id position.
So in the product case, it first tries the left component, and only if it fails, it
tries the right component.

The definitions of functions up, right and left are not as simple as the defini-
tion of down, since they are defined by pattern matching on the context instead
of on the tree itself. We will just define functions up and right , and leave function
left as an exercise.

Function up. The function up moves up to the parent of the current node, if the
current node is not the top node.

up{|f :: ?→ ?|} :: Loc{|f|} → Loc{|f|}
up{|f|} (t , c) = case out c of

LNothing → (t , c)
LJust c′ → do {ft ← insert{|f|} c′ t ;

c′′ ← extract{|f|} c′;
return (In ft , c′′)}

Remember that LNothing denotes the empty top context. The navigation func-
tion up uses two helper functions: insert and extract . The latter returns the
context of the parent of the current node. Each element of type Ctx{|f|} c t has
at most one c component (by an easy inductive argument), which marks the
context of the parent of the current node. The generic function extract extracts
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this context.

extract{|f :: ?→ ?|} :: ∀c t .Ctx{|f|} c t→ Maybe c
extract{|Id|} c = return c
extract{|K Unit|} c = Nothing
extract{|K Char|} c = Nothing
extract{|f1 :+: f2|} (Inl cx ) = extract{|f1|} cx
extract{|f1 :+: f2|} (Inr cy) = extract{|f2|} cy
extract{|f1 :*: f2|} (Inl (cx , y)) = extract{|f1|} cx
extract{|f1 :*: f2|} (Inr (x , cy)) = extract{|f2|} cy

The function extract is polymorphic in c and in t.
Function insert takes a context and a tree, and inserts the tree in the current

focus of the context, effectively turning a context into a tree.

insert{|f :: ?→ ?|} :: ∀c t .Ctx{|f|} c t→ t→ Maybe (f t)
insert{|Id|} c t = return t
insert{|K Unit|} c t = Nothing
insert{|K Char|} c t = Nothing
insert{|f1 :+: f2|} (Inl cx ) t = do {x ← insert{|f1|} cx t ; return (Inl x )}
insert{|f1 :+: f2|} (Inr cy) t = do {y ← insert{|f2|} cy t ; return (Inr y)}
insert{|f1 :*: f2|} (Inl (cx , y)) t = do {x ← insert{|f1|} cx t ; return (x , y)}
insert{|f1 :*: f2|} (Inr (x , cy)) t = do {y ← insert{|f2|} cy t ; return (x , y)}

Note that the extraction and insertion is happening in the identity case Id; the
other cases only pass on the results.

Since up{|f|} · down{|f|} = id on locations in which it is possible to go down,
we expect similar equalities for the functions first , extract , and insert . We have
that the following computation

do {(t , c′)← first{|f|} ft c;
c′′ ← extract{|f|} c′;
ft ′ ← insert{|f|} c′ t ;
return (c c′′ ∧ ft ft ′ ) },

returns true on locations in which it is possible to go down.

Function right. The function right moves the focus to the next (right) sibling
in a tree, if it exists. The context is moved accordingly. The instance of right on
the data type Bush has been given in Section 1. The function right satisfies the
following property:

∀m . right{|f|} m 6= m =⇒ (left{|f|} · right{|f|}) m = m,

that is, first going right in the tree and then left again is the identity function on
locations in which it is possible to go to the right. Of course, the dual equality
holds on locations in which it is possible to go to the left. Furthermore, the
selected subtree of right{|f|} m is the sibling to the right of the selected subtree
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of m, and the context of right{|f|} m is the context of m in which the context is
replaced by the selected subtree of m, and the first subtree to the right of the
context of m is replaced by the context of m.

Function right is defined by pattern matching on the context. It is impossible
to go to the right at the top of a tree. Otherwise, we try to find the right sibling
of the current focus.

right{|f :: ?→ ?|} :: Loc{|f|} → Loc{|f|}
right{|f|} (t , c) = case out c of

LNothing → (t , c)
LJust c′ → case next{|f|} t c′ of

Just (t ′, c′′)→ (t ′, In (LJust c′′))
Nothing → (t , c)

The helper function next is a generic function that returns the first location that
has the recursive value to the right of the selected value as its focus. Just as there
exists a function left such that left{|f|} · right{|f|} = id (on locations in which it
is possible to go to the right), there exists a function previous, such that

do {(t ′, c′)← next{|f|} t c ;
(t ′′, c′′)← previous{|f|} t ′ c′;
return (c c′′ ∧ t t ′′)},

returns true (on locations in which it is possible to go to the right). We will
define function next , and omit the definition of function previous.

next{|f :: ?→ ?|} :: ∀c t . t→ Ctx{|f|} c t→ Maybe (t,Ctx{|f|} c t)
next{|Id|} t c = Nothing
next{|K Unit|} t c = Nothing
next{|K Char|} t c = Nothing
next{|f1 :+: f2|} t (Inl cx )

= do {(t ′, cx ′)← next{|f1|} t cx ; return (t ′, Inl cx ′)}
next{|f1 :+: f2|} t (Inr cy)

= do {(t ′, cy ′)← next{|f2|} t cy ; return (t ′, Inr cy ′)}
next{|f1 :*: f2|} t (Inl (cx , y) )

= do {(t ′, cx ′)← next{|f1|} t cx ; return (t ′, Inl (cx ′, y))}
++do {c ← extract{|f1|} cx ;

x ← insert{|f1|} cx t ;
(t ′, cy)← first{|f2|} y c;
return (t ′, Inr (x , cy))}

next{|f1 :*: f2|} t (Inr (x , cy))
= do {(t ′, cy ′)← next{|f2|} t cy ; return (t ′, Inr (x , cy ′))}

The first three lines in this definition show that it is impossible to go to the
right in an identity or constant context. If the context argument is a value of a
sum, we select the next element in the appropriate component of the sum. The
product case is the most interesting one. If the context is in the right component
of a pair, next returns the next value of that context, properly combined with
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the left component of the tuple. On the other hand, if the context is in the left
component of a pair, the next value may be either in that left component (the
context), or it may be in the right component (the value). If the next value is in
the left component, it is returned by the first line in the definition of the product
case. If it is not, next extracts the context c (the context of the parent) from the
left context cx , it inserts the given value in the context cx giving a ‘tree’ value
x , and selects the first component in the right component of the pair, using the
extracted context c for the new context. The new context that is thus obtained
is combined with x into a context for the selected tree.

Exercise 7. Define the function left :

left{|f :: ?→ ?|} :: Loc{|f|} → Loc{|f|}.

Exercise 8. If you don’t want to use the zipper, you can alternatively keep track
of the path to the current focus. Suppose we want to use the path to determine
the name of the top constructor of the current focus in a value of a data type.
The path determines which child of a value is selected. Since the products used in
our representations of data types are binary, a path has the following structure:

data Dir = L | R
type Path = [Dir ].

The to be defined function selectCon takes a value of a data type and a path, and
returns the constructor name at the position denoted by the path. For example,

data List = Nil | Cons Char List

selectCon{|List|} (Cons 2 (Cons 3 (Cons 6 Nil))) [R,R,R ]
=⇒ "Nil"

data Tree = Leaf Int | Node Tree Int Tree

selectCon{|Tree|} (Node (Leaf 1) 3 (Node (Leaf 2) 1 (Leaf 5))) [R,R ]
=⇒ "Node"

selectCon{|Tree|} (Node (Leaf 1) 3 (Node (Leaf 2) 1 (Leaf 5))) [R,R,L ]
=⇒ "Leaf".

Define the generic function selectCon, together with its kind-indexed type.

Exercise 9. Define the function left , which takes a location, and returns the
location to the left of the argument location, if possible.

Exercise 10. For several applications we have to extend a data type such that
it is possible to represent a place holder. For example, from the data type Tree
defined by

data Tree a b = Tip a | Node (Tree a b) b (Tree a b),

we would like to obtain a type isomorphic to the following type:

data HoleTree a b = Hole | Tip a | Node (HoleTree a b) b (HoleTree a b).
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– Define a type-indexed data type Hole that takes a data type and returns a
data type in which also holes can be specified. Also give the kind-indexed
kind of this type-indexed data type. (The kind-indexed kind cannot and does
not have to be defined in Generic Haskell though.)

– Define a generic function toHole which translates a value of a data type t
to a value of the data type Hole{|t|}, and a function fromHole that does the
inverse for values that do not contain holes anymore:

toHole{|t :: κ|} :: ToHole{[κ]} t
fromHole{|t :: κ|} :: FromHole{[κ]} t

type ToHole{[?]} t = t→ Hole{|t|}
type FromHole{[?]} t = Hole{|t|} → t.

5 Conclusions

We have developed three advanced applications in Generic Haskell. In these
examples we use, besides generic functions with kind-indexed kinds, type-indexed
data types, dependencies between and generic abstractions of generic functions,
and default and constructor cases. Some of the latest developments of Generic
Haskell have been guided by requirements from these applications.

We hope to develop more applications using Generic Haskell in the future,
both to develop the theory and the language. Current candidate applications are
more XML tools and editors.
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