
Box-Trees for Collision Checking in Industrial

Installations

Herman J. Haverkort

Mark de Berg

Joachim Gudmundsson

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-027

www.cs.uu.nl

Box-Trees for Collision Checking in Industrial Installations∗

H. J. Haverkort M. de Berg J. Gudmundsson

Institute of Information and Computing Sciences
Utrecht University, PO Box 80.089, 3508 TB Utrecht

{herman,markdb,joachim}@cs.uu.nl

Abstract

A box-tree is a bounding-volume hierarchy that uses axis-aligned boxes as bounding
volumes. We describe a new algorithm to construct a box-tree for objects in a 3D scene,
and we analyze its worst-case query time for approximate range queries. If the input scene
has certain characteristics that we derived from our application—collision detection in
industrial installations—then the query times are polylogarithmic, not only for searching
with boxes but also for range searching with other constant-complexity ranges.

Keywords: bounding-volume hierarchy, box-tree, window query, orthogonal range query,
slicing number

1 Introduction

Motivation. Collision checking is an important operation in all applications where objects
move around in a 3D scene—virtual reality, computer animation, and robotics are obvious
examples. A popular way of doing collision checking is the following two-phase approach. In
the first phase, the filtering phase, one finds all primitive objects in the scene whose bounding
box intersects the query object (or its bounding box). In the second phase, the refinement
phase, one tests for each of these primitives (if any) whether it actually intersects the object.
To speed up the filtering phase, the set S of bounding boxes of the primitives in the scene
is often stored in a bounding-volume hierarchy. This is a binary tree whose leaves store the
boxes in S, and where each internal node ν stores the bounding box b(ν) of all boxes stored in
the subtree rooted at ν. We call such a tree a box-tree; sometimes it is more precisely called
an axis-aligned-bounding-box tree, or AABB-tree for short. A query with a query range Q is
performed by traversing the tree in a top-down manner, only visiting nodes ν such that b(ν)
intersects Q. This way we end up exactly in the leaves storing boxes that intersect Q.

The query time in a box-tree is determined by the number of nodes visited, and the goal
is therefore to organize the tree in such a way that this number is kept as small as possible.
Agarwal et al. [1] recently showed that a box-tree exists that has O(n2/3 + k) query time
for ranges that are axis-parallel boxes, where n is the total number of boxes in S and k is
the number of boxes intersecting the query range. This bound is rather disappointing: if

∗The work by H.H. is supported by the Netherlands’ Organization for Scientific Research (NWO). The
work by J.G. is supported by the Swedish Foundation for International Cooperation in Research and Higher
Education.

1

Figure 1: CAD model of a carbon black unit. Designed by OLAJTERV Process and Energy,
Hungary.

the query time would really be that bad, box-trees would not be used so much in practice.
Unfortunately, the bound is optimal. Agarwal et al. prove that there are sets of input boxes
for which the worst-case query time of any box-tree is Ω(n2/3 + k).1 This is the starting
point for our work: we want to understand what makes box-trees perform well in practical
applications even though in theory they may perform badly.

The application we have in mind comes from the MOLOG project [9]. The goal of this
project is to add motion support to CAD systems used to design large industrial installations,
such as depicted in Fig. 1.

Adding motion support will help the designer of an industrial installation to decide
whether it will be possible to move certain parts out of the installation, for maintenance
or replacement. The approach taken in the MOLOG project is based on the probabilistic path
planner [2, 8, 12], a technique for motion planning that has proved very successful in many
applications. A basic test performed many times by the probabilistic path planner is collision
checking: given a query object—the object for which we are planning a motion, at a certain
position and orientation—does it collide with the CAD model? We can now state the goal of
this paper as follows: we want to design a provably efficient box-tree for storing scenes that
are CAD models of large industrial installations.

Further background. The lower bounds of Agarwal et al. mentioned earlier imply that, to
be able to design provably efficient box-trees for CAD models of large industrial installations,
we have to make use of the properties of the bounding boxes of the primitives in such CAD
models. The realistic input models [4] suggested in the literature do not seem applicable in
our setting: the industrial installation of Fig. 1, for instance, contains many long and thin
pipes that are relatively close together. But if we forget about the pipes, the scene seems to be
well-behaved. Hence, the assumption we make is that the boxes in S can be partitioned into

1In general, the worst-case query time of a box-tree in d-dimensional space is Θ(n1−1/d + k). In this paper
we focus on 3-dimensional box-trees, because this is most natural in our application.

2

two subsets, one containing only long and thin (almost) disjoint pipes, and one forming a low-
density scene [4]. Here a pipe is defined to be an axis-aligned box whose shortest dimension
is at most a constant β times shorter than its middle dimension—see Section 2.3 for formal
definitions of these concepts. It is important to note that our algorithm to construct the
box-tree does not need this assumption; we only use it in the analysis.

Unfortunately, with the assumption just stated one still cannot prove good bounds: the
Ω(n2/3 + k) lower bound for range queries with a box even holds if the input consists of
disjoint unit squares arranged in a grid-like fashion. Therefore we analyze approximate range
queries. More precisely, instead of the parameter k in the time bound, we use kε, which is the
number of boxes intersecting the extended range Qε. For a given ε > 0, the extended range
Qε is the set of points lying at L∞-distance at most εw from Q, where w is the length of the
longest edge of Q. The expectation is that in practice kε will not be much larger than k for
moderately small ε, at least when the query range is rather fat. Note that in our application,
the query range is (the bounding box of) an object for which we are planning a motion. If
the object is a forklift truck or some other car-like device, its bounding box is likely to be
fat. The concept of approximate range searching was also used by Arya and Mount [3], who
considered approximate range queries on a set of points. The parameter ε is not used by our
query algorithm—the algorithm still visits only nodes whose bounding boxes are intersected
by Q—but it is only used in the analysis. (So perhaps approximate range searching is a slight
misnomer.)

Our results. We describe a new, simple algorithm to construct a box-tree on a set of boxes
in 3D. This algorithm generalizes the 2D kd-interval tree described by Agarwal et al. [1] to 3D,
with one additional crucial twist: We partition the input boxes into three subsets, according
to the orientation of their longest edge, and construct separate box-trees for these subsets;
these subtrees are then combined to form the final tree. Our main contribution is a rather
involved analysis of the worst-case query time of this box-tree in the setting described above,
showing it is polylogarithmic. More precisely, we prove that the number of visited nodes is
O((1/ε+λ) log4 n+ kε), where λ is a constant depending on the scene parameters. Typically,
λ will only be large if the input contains many flat ‘plates’ that are very close together—see
section 2.2 for details. Note that the choice of ε determines a trade-off between the terms in
the bound: choosing ε small will cause a large factor in the first term, but kε will be close to
k. On the other hand, choosing ε big keeps the first term down, but kε might grow to O(n).
In each situation, the best bound on the query time will be the lowest bound over all possible
values of ε; in other words: O(min0<ε≤1{(1/ε)(1/ε+ λ) log4 n+ kε}).

This result should be compared with the results for approximate range searching in a
set of points in 3-space. Here, the best result that uses boxes as bounding volumes is by
Dickerson et al. [5], who show that the query time in a so-called longest-side-first kd-tree
is O(min0<ε≤1{(1/ε

2) log3 n + kε}). Our result is more general than this, as we store boxes
instead of points and the bounds we get are only slightly worse.

We also introduce a variant of the box-tree, where an interior node uses a different type
of bounding volume: instead of a bounding box, it can use a donut-like shape, namely the
difference of two boxes. This was inspired by Arya and Mount [3], who show that a similar
structure for points—they call it BBD-tree—outperforms kd-trees in the worst case: the
time for approximate range queries in 3D in a BBD-tree is O(min0<ε≤1{log n+ (1/ε)2 + kε}).
(The same result can be obtained using BAR-trees [6, 7]. BAR-trees use convex, but not
necessarily axis-parallel, bounding volumes whose facets have a bounded number of different

3

orientations.) We prove that a similar improvement is possible in our case: our BBD-interval
tree has a worst-case query time of O(min0<ε≤1{log

3 n+ (λ/ε) log2 n+ (1/ε2) log n+ kε}).
Finally, we extend our results to constant-complexity query ranges of arbitrary shape,

showing that the time for approximate queries with such ranges is O(min0<ε≤1{(λ/ε
2) log4 n+

kε}) in a LSF-interval tree and O((log3 n+ λ log2 n)/ε2 + kε) in a BBD-interval tree. Similar
extensions were given for the case of point data by Dickerson et al. [5] and by Arya and
Mount [3], who achieved query times of O((log3 n)/ε3 + kε) and O(logn+ 1/ε3 + kε), respec-
tively. Note that the dependency on ε in our bounds is better by a factor of O(1/ε); only for
convex ranges they are able to prove the dependency we get for general ranges. Our proof
technique also applies to their structures, which implies an improvement of their query time
by a factor of O(1/ε) for non-convex ranges.

2 The LSF-interval tree

In this section we first describe how to construct a kd-interval tree with longest-side-first
splitting, or LSF-interval tree for short, for a set of boxes in 3-space. After that we analyse
its performance for approximate range queries.

2.1 The construction

Our 3-dimensional LSF-interval tree is a generalisation of the 2-dimensional kd-interval tree
with longest-side-first splitting as described by Agarwal et al. [1]. In fact, the 2-dimensional
substructures in our 3-dimensional structure are basically their 2-dimensional structures.

Our construction algorithm takes as input a set of 3-dimensional axis-parallel boxes and
their joint bounding box. The algorithm then works top-down, recursively constructing sub-
trees on subsets of the input. In a generic step of the construction, we have as input a set S
of 3-dimensional axis-parallel boxes and a defining region R. The construction is started with
the full input set as input and the bounding box of the entire scene as defining region. In the
recursive steps, the defining regions can be axis-parallel boxes, rectangles, line segments, or
points. Each input box b ∈ S will intersect R; more precisely, the defining regions will always
be such that if aff(R) denotes the affine hull of R, then b∩aff(R) ⊂ R. If the defining region R
is d-dimensional, for some d ∈ {0, 1, 2, 3}, then we call the subtree storing S a d-LSF-interval
tree, and we call its root a d-node.

We will now describe an algorithm to construct a d-LSF-interval tree for a set S of input
boxes and a defining region R. The algorithm produces a tree whose nodes have degree at
most nine; conversion to a binary tree can easily be done and does not affect the asymptotic
bounds.

We proceed as follows:

1. We create a root node ν, storing the bounding box b(ν) of the boxes in S.

2. For each of the six directions +x, −x, +y, −y, +z, and −z we take the box in S
extending farthest in that direction. Each of these at most six boxes is stored in a
separate leaf, called a priority leaf, immediately below the root node ν. Let S ′ denote
the set of remaining boxes. Assume S ′ is non-empty; otherwise we are done.

4

3. If d = 0, we recursively build a 0-LSF-interval tree for S ′ using the point R as defining
region, and we make the root of this tree a child of ν. (In fact, for d = 0, building
a cs-priority-box-tree [1] could make a better choice, but in our analysis the better
performance of a cs-priority-box-tree would be overshadowed by other terms. In the
analysis presented in this paper, we only need the priority leaves, and the division of
boxes among the children does not matter.)

Otherwise, if d > 0, let e be a longest edge of R, where e = R if R is a line segment.
Let h be a plane orthogonal to e. Define h− to be the halfspace on one side of h, and
h+ to be the halfspace on the other side of h. Define S− to be the subset of boxes in
S′ lying completely in h−, S+ to be the subset of boxes in S ′ lying completely in h+,
and S× to be the subset of boxes intersecting h. We choose h such that |S−| < |S′|/2
and |S+| ≤ |S′|/2. We then recursively construct three subtrees whose roots become
children of the root node ν:

• The subset S− is stored in a d-LSF-interval tree with R ∩ h− as defining region.

• The subset S+ is stored in a d-LSF-interval tree with R ∩ h+ as defining region.

• The subset S× is stored in a (d−1)-LSF-interval tree with R∩h as defining region.

We could start the construction with the entire input set S and any box R completely
containing S as defining region. To achieve good performance, however, we first need to apply
one simple but crucial step: we divide S into three ‘oriented’ subsets Sx, Sy, and Sz, where
Sx, Sy and Sz contain all boxes whose longest edges are parallel to the x-axis, y-axis and
z-axis, respectively, with ties broken arbitrarily. We then build an LSF-interval tree for each
of these three subsets separately, and combine them at the top level. For each of the subsets,
we say that the primary axis is the axis that corresponds to the orientation of the longest
edges of the boxes in the set; the other axes are called secondary axes.

2.2 Analysis for box-intersection queries

We will analyse the query time in 3-dimensional LSF-interval trees for a box-intersection
query in the subtree constructed for Sx. The analysis for Sy and Sz is similar; therefore, the
asymptotic bounds we obtain hold for the entire tree as well. Recall that a query with a range
Q visits all nodes ν whose bounding box b(ν) intersects Q. In the analysis, however, we work
with a slightly extended range Qε, and we will charge the visiting of some of the nodes to
‘approximate answers’, that is, to input boxes intersecting Qε.

In the analysis we will use the following notation:

Q: the query range;

w = w(Q): the length of the longest edge of the query range;

ε > 0: the factor determining the size of the extended query range; to simplify the formulae
we assume that ε ≤ 1, although the analysis can easily be adapted to values greater
than 1. Our analysis holds for any 0 < ε ≤ 1. Since ε is only used in the analysis
and not by the algorithm, this implies that the actual query time is bounded by the
minimum over all ε with 0 < ε ≤ 1.

Qε: the extended query range, which consists of Q and all points within a distance εw from
Q in the L∞-metric;

5

kε: the number of input boxes intersecting the extended query range Qε; by kε(T) we will
denote the number of input boxes in a subtree T that intersect Qε.

We also use a parameter that describes certain properties of the distribution of the input
boxes over the space.

λ ≥ 1: the slicing number of S, defined as follows. Let the slicing number λC of S with respect
to a cube C be the maximum number of input boxes that intersect four parallel edges
of C; then the overall slicing number λ is the maximum value of λC over all possible
cubes C. Note that a box also intersects an edge if it fully contains that edge. Hence,
λ is also an upper bound on the stabbing number σ of S, which is defined as the largest
number of input boxes with a non-empty common intersection.

At the end of this section, we will show that if the input consists of a set of pipes with
small stabbing number, together with a set of arbitrary boxes with low density, the complete
input set will have low slicing number.

We will do the analysis bottom-up, first analysing the query time in 1-dimensional sub-
trees, then in 2-dimensional subtrees, then in 3-dimensional subtrees. We will denote the
subtree we are analyzing by T , and its defining region by R(T). The subtree rooted at a
node ν is denoted by Tν . Sometimes we will speak of the defining region R(ν) of a node ν,
which is simply the defining region R(Tν) of its subtree.

Before we proceed we state a lemma that we will need at various occasions.

Lemma 2.1 Let T be a d-dimensional LSF-interval-tree and let C be a k-dimensional cube,
with 1 ≤ k ≤ d ≤ 3. Then there are only O(logk−1 n) d-nodes in T whose defining regions
are disjoint and intersect opposite facets of C.

Proof: The d-nodes in an LSF-interval tree basically form a d-dimensional longest-side-first
kd-tree. Hence, the result follows from Lemma 6.6 in Duncan’s thesis [6]. This lemma is only
stated for the case k = d, but the proof holds for k < d as well. ¤

2.2.1 1-dimensional subtrees

In a 1-dimensional subtree T , the defining region R(T) is a line segment that intersects all
input boxes stored in T . The worst-case query time in T depends on the relation of R(T)
to the query range. In particular, we distinguish three cases, depending on how many of the
two axis-parallel planes containing R(T) intersect Qε.

Case 1: Two planes containing R(T) intersect Qε. This case is illustrated in Fig. 2.
Parts (a) and (b) of the figure correspond to part (i) in the lemma below, part (c) to part (ii).

Lemma 2.2 Let T be a 1-LSF-interval tree storing n boxes. Suppose we query T with a
box Q such that both axis-parallel planes containing R(T) intersect Qε.

(i) If the axis-parallel projection of Qε onto the line containing R(T) contains at least one
endpoint of R(T), we visit O(kε(T)) nodes.

(ii) Otherwise, we visit O(log n+ kε(T)) nodes.

6

Figure 2: Two planes containing the line segment R(T) intersect Qε.

Figure 3: One plane containing the line segment R(T) intersects Qε.

Proof: Since both axis-parallel planes containing R(T) intersect Qε, we know that R(T)
itself must intersect Qε. Hence, an (input or bounding) box b stored in T intersects Qε if and
only if b∩R(T) intersects Qε∩R(T). We can therefore analyse the query time in this case as
if the situation were completely 1-dimensional, that is, as if T were a 1-tree storing segments
on a line, which is queried with a segment on the same line. An analysis of this case, proving
the lemma, can be found in the paper by Agarwal et al. [1]. ¤

Case 2: One plane containing R(T) intersects Qε. This case is illustrated in Fig. 3.
Part (a) of the figure corresponds to part (i) in the lemma below, parts (b) and (c) to part (ii).

Lemma 2.3 Let T be a 1-LSF-interval tree storing n boxes with stabbing number σ. Suppose
we query T with a box Q such that one axis-parallel plane containing R(T) intersects Qε.

(i) If the axis-parallel projection of Qε onto the line containing R(T) contains R(T) com-
pletely, then we visit O(kε(T)) nodes.

(ii) Otherwise, we visit O(log n+ σ + kε(T)) nodes.

Proof: Let g be the axis-parallel plane containing R(T) and intersecting Qε. For any (input
or bounding) box b stored in T , we know that b intersects Qε if and only if b ∩ g intersects
Qε∩g. We can therefore analyse the query time in this case as if the situation were completely
2-dimensional, that is, as if T were a 1-tree storing rectangles in the plane, which is queried

7

Figure 4: No plane containing the line segment R(T) intersects Qε.

Figure 5: a. A shield on a defining region parallel to the primary axis. — b. Arrangement of
cubes intersected by shields on a defining region parallel to a secondary axis.

with a rectangle in the plane. An analysis of this case, proving the lemma, can be found in
the paper by Agarwal et al. [1]. ¤

Case 3: No plane containing R(T) intersects Qε. In the analysis of this case we will
take into account how much of the query range is ‘within reach’ of the tree. More precisely,
consider the intersection of R(T) with the projection of Qε on the line containing R(T). We
denote by CQ(T) the length of this intersection divided by the length of the longest edge of
Q—see Fig. 4. In the next subsection we will sum the bound for several different disjoint
subtrees T , and then we will use the fact that their CQ(T)-values sum up to at most 1 + 2ε.

Figure 4 illustrates the cases that arise in the next lemma, with part (a) of the figure
corresponding to part (i) of the lemma, and parts (b) and (c) corresponding to part (ii).

Lemma 2.4 Let T be a 1-LSF-interval tree storing n boxes with slicing number λ. Suppose
we query T with a box Q such that no axis-parallel plane containing R(T) intersects Qε.

(i) If the axis-parallel projection of Qε onto the line containing R(T) contains R(T) com-
pletely, then we visit CQ(T) ·O(λ/ε) +O(λ) nodes.

(ii) Otherwise, we visit O(log n+ λ/ε) nodes.

Proof: Since the maximum degree of each node is nine, the number of visited leaf nodes
is at most nine times the number of visited internal nodes. Hence, we can restrict our attention

8

to bounding the latter number. Let Qε denote the axis-parallel projection of Qε onto the line
containing R(T), and let R := Qε ∩ R(T). Let ν be a visited internal node of T , and let
b(ν) be its bounding box. We distinguish two cases: b(ν)∩R(T) ⊂ R, and b(ν) ∩R(T) 6⊂ R.
We claim that the number of nodes to which the first case applies is CQ(T) ·O(λ/ε) +O(λ),
and that the number of nodes to which the second case applies is O(σ + log n), where σ is
the stabbing number of the boxes stored in the tree. Note that in part (i) of the lemma the
second case cannot arise. Together with the fact that λ ≥ σ and CQ(T) ≤ 1+ 2ε, this means
that proving the claim above will establish the lemma.

We first bound the number of nodes for which b(ν)∩R(T) 6⊂ R, since this is the easier case.
Let ν be such a node. Since b(ν) ∩ R(T) cannot be disjoint from R—otherwise b(ν) would
not intersect Q and ν would not be visited—it follows that b(ν) must contain an endpoint p
of R. Now there are two possibilities.

One is that R(ν), the defining region of ν, is a line segment containing p. Since the
defining regions of 1-nodes at a fixed level of the tree are disjoint and the depth of the tree is
O(logn), there are only O(logn) such nodes.

The other possibility is that R(ν) is a point. But then the priority leaf immediately below
ν storing the box extending farthest into the direction of p must contain p. We charge the
visit of ν to this leaf. Since a leaf gets charged only from its parent, and there are at most σ
input boxes containing any given point, there are at most 2σ such nodes.

Thus we find a bound of O(log n+ σ) = O(log n+ λ) for the case of b(ν) ∩R(T) 6⊂ R.

Now consider the nodes ν such that b(ν) ∩ R(T) ⊂ R. We shall charge the visit of ν to
a certain priority leaf directly below it, called a shield. Each shield will be charged at most
once, namely from its parent. Bounding the maximum number of shields will then prove this
part of the claim.

We start by defining the shields. Recall that the primary axis of Sx—the axis parallel
to the longest edges of the boxes in Sx—is the x-axis. Since the two remaining (secondary)
axes play equivalent roles, we can assume that the y-axis is not parallel to R(T). Let us
also assume w.l.o.g. that the y-coordinate of R(T) is smaller than the smallest y-coordinate
of Q. A shield is now defined as a priority leaf whose corresponding input box b extends into
the positive y-direction from R(T) over a distance of at least εw. That is, if ymax(b) is the
maximum y-coordinate of b and y(R(T)) is the y-coordinate of R(T), then b is a shield if
ymax(b)− y(R(T)) ≥ εw.

We now argue that each visited internal node ν for which it holds that b(ν) ∩R(T) ⊂ R,
has at least one shield as a child. Indeed, since none of the two axis-parallel planes containing
R(T) intersects Qε, the y-distance of R(T) and Q must be at least εw. This means that
the bounding box of ν must extend over a distance at least εw into the y-direction from
R(T), otherwise ν would not be visited. Hence, the input box extending farthest into the
y-direction, extends that far; the priority leaf directly below ν storing this box is a shield.

It remains to bound the number of shields. We consider two subcases.
The first subcase is that R(T) is parallel to the x-axis, as in Fig. 5a. In this case the

length of any box in Sx along R(T) is at least its length in any other direction. In particular,
a shield will cover a portion of R of length at least εw. Since no point is contained in more
than σ input boxes, there can be at most σ · length(R)/(εw) shields in this case. Because
length(R) = CQ(T) · w by definition, the number of shields is bounded by σ · CQ(T)/ε.

9

Figure 6: The plane containing the rectangle R(T) intersects Qε.

The second subcase is that R(T) is parallel to the z-axis—see Fig. 5b. In this case, a
shield must extend over a distance of at least εw upwards from R(T) and over a distance of
at least εw/2 into either the positive of negative x-direction from R(T). Now imagine a line-
up of d2CQ(T)/εe cubes of size εw/2 whose lower right edges together cover Q’s projection
on R(T). Add a copy of this line-up shifted right over a distance of εw/2, so that in the
second line-up, the lower left edges together cover Q’s projection—see Fig. 5b. Since a shield
extends away from R(T) in both orthogonal directions over a distance greater than the size
of the cubes in the line-up, it must intersect the four edges parallel to R(T) of at least one of
these cubes. Since the slicing number of the input boxes is at most λ, there can be at most
2λd2CQ(T)/εe ≤ 2λ+ 4CQ(T)λ/ε shields in this case.

Using λ ≥ σ, we conclude that the bounds for both subcases are within O(λ) + CQ(T) ·
O(λ/ε), which finishes the proof of our claim. ¤

2.2.2 2-dimensional subtrees

Let T be a 2-dimensional subtree. As before, it will be useful to take into account how much
of the query range’s boundary is ‘within reach’ of the tree. More precisely, consider the edges
of Qε’s projection on the plane containing R(T). Denote by CQ(T) the sum of the lengths
of the intersections of these edges with R(T), divided by w, the length of the longest edge of
the query range.

We distinguish two cases, depending on whether or not the plane containing the 2-
dimensional defining region R(T) intersects Qε.

Case 1: The plane containing R(T) intersects Qε. This case is illustrated in Fig. 6.
Parts (a) and (b) of the figure correspond to case (i) in the lemma below, part (c) to case (ii),
and part (d) to case (iii).

Lemma 2.5 Let T be a 2-LSF-interval tree storing n boxes with stabbing number σ. Suppose
we query T with a box Q such that the plane containing R(T) intersects the extended query
range Qε. Let Qε denote the intersection of Qε with the plane containing R(T).

(i) If at most one edge of Qε intersects R(T), then we visit O(kε(T)) nodes.

(ii) If two opposite edges, and no other edges, of Qε intersect R(T), then we visit O(log2 n+
kε(T)) + CQ(T) ·O((log2 n)/ε) nodes.

(iii) Otherwise we visit O((log2 n)/ε+ σ logn+ kε(T)) nodes.

10

Figure 7: µ is a 1-node whose defining region cuts a 2-node intersecting opposite edges of Qε,
that is: opposite facets of Qε.

Proof: First we observe that the longest edge of Qε has length (1+2ε)w and that its shortest
edge has length at least 2εw. Hence, the aspect ratio of Qε and the aspect ratio of Qε are at
most 1 + 1/(2ε).

Since R(T) intersects Qε, we know for any (input or bounding) box b stored in T that
b intersects Qε if and only if b ∩ R(T) intersects Qε ∩ R(T). We can therefore analyse the
query time in this case as if the situation were completely 2-dimensional, that is, as if T were
a 2-tree storing rectangles in the plane, which is queried with Qε. Since Qε has aspect ratio
at most 1 + 1/(2ε), parts (i) and (iii) of the lemma now immediately follow from the results
by Agarwal et al. [1].

For part (ii), we need a bit more refined analysis. Consider the collection N of all visited
2-nodes ν in T whose defining region R(ν) intersects two opposite edges of Qε, and no other
edges. This collection forms a subgraph G(N) of T , which is a tree rooted at the root of T .
We shall first bound the number of nodes in N , and then the number of visited descendants.

To bound the number of nodes in N , we cover Qε with at most dαe squares with side
length (1 + 2ε)w/α, where α ≤ 1 + 1/(2ε) is the aspect ratio of Qε. From a bound on the
number of nodes intersecting these squares, we can derive a bound on the number of nodes in
N as follows. At most αCQ(T)+1 of the squares intersect R(T). Now consider a node ν ∈ N .
Since R(ν) intersects two opposite sides of Qε, it intersects two opposite sides of at least one
of the αCQ(T) + 1 squares used to cover Qε ∩R(T). Observe that the leaves of G(N)—that
is, the nodes that have no children in N ; they need not be leaves of T—have disjoint defining
regions. Lemma 2.1 implies that the number of such leaves is O(logn)+CQ(T) ·O(α log n). If
we include their ancestors in the count, we obtain a bound of O(log2 n)+CQ(T) ·O(α log2 n)
on the number of nodes in N .

It remains to bound the number of descendants of the nodes in N . These are organized
into subtrees whose roots are children of nodes in N and are not in N themselves. Consider
such a root node µ. Let pa(µ) ∈ N be the parent of µ. There are three cases.

• The first case is that µ is a 2-node. In this case R(µ) intersects at most one edge of Qε,
as in part (i) of the lemma; if it would intersect two opposite edges it would be in N ,
and the case where a vertex of Qε lies in R(µ) cannot occur when we are handling part
(ii) of the lemma. The total number of visited nodes of Tµ is O(kε(Tµ)) by part (i) of
the lemma. Summing over all nodes µ thus gives us a total bound of O(kε(T)) for these

11

Figure 8: The plane containing the rectangle R(T) is disjoint from Qε.

subtrees.

• The second case is that the root is a 1-node µ and R(µ) cuts R(pa(µ)) such that pa(µ)
has two children in N—see Fig. 7 case (a).

The number of nodes of degree two in G(N) is no more than the number of leaves in
G(N), so there can be at most O(logn)+CQ(T)·O(α logn) such nodes µ. Lemma 2.2(ii)
states that the query time in each such tree is O(logn+kε(Tµ)), so the total query time
in these trees is O(log2 n+ kε(T)) + CQ(T) ·O(α log2 n).

• The third case is that the root is a 1-node µ, where R(µ) cuts R(pa(µ)) such that pa(µ)
has at most one child in N—see Fig. 7 case (b).

Now R(µ) must lie completely inside the projection of Qε onto the line containing R(µ).
Lemma’s 2.2(i) and 2.3(i) state that the query time in each tree rooted at such a node
is O(kε(Tµ)). Since the number of such nodes is asymptotically bounded by the size of
N , the total query time in these 1-trees is O(log2 n+ kε(T)) + CQ(T) ·O(α log2 n).

In total, we find a bound of O(log2 n + kε(T)) + CQ(T) · O(α log2 n). With α ≤ 1 + 1/(2ε),
this proves part (ii) of the lemma. ¤

Case 2: The plane containing R(T) does not intersect Qε. This case is illustrated in
Fig. 8. Part (a) of the figure corresponds to case (i) in the lemma below, parts (b) and (c) to
case (ii), and part (d) to case (iii).

Lemma 2.6 Let T be a 2-LSF-interval tree storing n boxes with slicing number λ. Suppose
we query T with a box Q such that the plane containing R(T) does not intersect Qε. Let Qε

denote the axis-parallel projection of Qε onto the plane containing R(T).

(i) If Qε contains R(T) completely, then we visit O(kε(T)) nodes.

(ii) If R(T) intersects at least one edge but no vertex of Qε, then we visit O(λ log2 n +
kε(T)) + CQ(T) ·O(λ log2 n/ε) nodes.

(iii) Otherwise we visit O(λ log2 n/ε+ kε(T)) nodes.

Proof: (i) Without loss of generality, suppose R(T) is horizontal and lies below Q. Then
every node visited in T must have a descendant which raises high enough to intersect Q.
In particular, there is a priority leaf immediately below this node that stores an input box
intersecting Q. We can charge the visit to this node to the priority leaf. Since there are at

12

Figure 9: Covering Qε \Q with squares.

most kε(T) such priority leaves and each of them is charged at most once, the bound follows.
(ii) We can distinguish two types of visited nodes.

The first type of nodes are 2-nodes whose defining regions lie completely inside Qε and
descendants of such nodes. Here a similar argument as in the proof of part (i) applies: any
such node has a priority leaf below it that intersects Qε, so there are only O(kε(T)) such
nodes.

The second type of nodes are the remaining ones. Let N be the collection of all remaining
visited 2-nodes. For any node ν ∈ N , we know that R(ν) intersects the complement of Qε as
well as Q, the projection of Q onto the plane containing R(T).

To bound the number of nodes in N we cover Qε \Q using at most 4(d1/εe+ 1) squares
with side length εw, which are contained in Qε \Q—see Fig. 9. For any node ν ∈ N we have
that R(ν) intersects two opposite edges of at least one of these squares. Since R(ν) ⊂ R(T)
and R(T) does not contain a vertex of Qε, we can restrict our attention to squares that are
used to cover two opposite ‘sides’ of Qε \ Q and that intersect R(T). Hence, the number of
squares we have to consider is at most 2dCQ(T)/εe. As before, we observe that the nodes of
N form a subgraph G(N) of T , which is a tree whose leaves have disjoint defining regions.
Hence, by Lemma 2.1 there are O(logn) + CQ(T) · O(logn/ε) leaves in G(N). If we include
their ancestors in the count, we find a bound of O(log2 n)+CQ(T) ·O(log2 n/ε) on the number
of nodes in N .

It remains to bound the number of descendants of nodes in N . The descendants are
organized into subtrees whose roots are children of nodes in N and are not in N themselves.
Consider such a root node ν. Let pa(µ) ∈ N be the parent of µ. There are three cases.

• The first case is that µ is a 2-node. But then µ must be of the first type—its defining
region must lie completely inside Qε—so we already counted these nodes and their
descendants earlier.

• The second case is that µ is a 1-node and R(µ) cuts R(pa(µ)) in such a way that pa(µ)
has two children in N .

The analysis for this case is done the same as in the proof of Lemma 2.5(ii), now referring
to Lemma 2.3 instead of Lemma 2.2.

Since the number of nodes of degree two in G(N) is at most its number of leaves, there
can be at most O(log n) + CQ(T) ·O(logn/ε) such nodes µ. Lemma 2.3(ii) states that

13

the query time in each such tree is O(log n + σ + kε(Tµ)), so the total query time in
these trees is

O(log2 n+ σ logn+ kε(T)) + CQ(T) ·O(log2 n/ε+ σ logn/ε).

(Note that the kε terms always add up to O(kε(T)).)

• The remaining case is that µ is a 1-node and pa(µ) is cut by R(µ) such that it has at
most one child in N .

Now R(µ) lies completely inside the projection of Qε onto the line containing R(µ).
Lemma 2.4(i) and Lemma 2.3(i) state that the query time in such trees is O(λ) +
CQ(Tµ) ·O(λ/ε) and O(kε(Tµ)), respectively. The number of nodes to which this applies
is clearly bounded by the number of nodes in N , which is O(log2 n)+CQ(T)·O(log2 n/ε).
Hence, the total query time in these 1-trees is

O(λ log2 n+ kε(T)) + CQ(T) ·O(λ log2 n/ε) +
∑

CQ(Tµ) ·O(λ/ε),

where the sum is over all 1-nodes µ that are a child of a node in N and are such that
R(µ) lies completely inside the projection of Qε onto the line containing R(µ). Note
that each point of an edge of Qε lies in O(log n) defining regions of 2-nodes (one per
level), so

∑
ν∈N CQ(Tν) = O(log n)CQ(T). The same bound holds if we sum over the

1-nodes µ that are children of nodes in N . Hence, we find a total query time for this
case of O(λ log2 n+ kε(T)) + CQ(T) ·O(λ log2 n/ε).

Putting the tree cases together, and using σ ≤ λ, we find an overall bound of O(λ log2 n +
kε(T)) + CQ(T) ·O(λ log2 n/ε).

(iii) We can distinguish three types of visited nodes: the two types that were also consid-
ered in the proof of part (ii), and a third type, namely 2-nodes containing a corner of Q and
their descendant 1-nodes and 0-nodes.

The number of nodes of the first two types can be bounded as in the proof of part (ii).
Using that CQ(T) ≤ 4(1 + 2ε), we get a bound of O(λ log2 n/ε + kε(T)) for these types. As
for the third type, we note that there are O(logn) 2-nodes containing a corner of Q. If µ is
a 1-node that is a child of such a node, then the query time in Tµ is O(logn+ σ + kε(T)) or
O(logn+ λ/ε) by Lemma 2.3 or Lemma 2.4, respectively, so we have O(log2 n+ λ log n/ε+
kε(T)) nodes of the third type. ¤

2.2.3 3-dimensional trees

Finally we can prove our main result.

Theorem 2.7 Let T be a 3-LSF-interval tree storing n boxes with slicing number λ. Then
a query in T with a box Q will visit O(min0<ε≤1{(1/ε)((1/ε) + λ) log4 n+ kε}) nodes, where
kε is the number of boxes intersecting the extended range Qε.

Proof: Fix an arbitrary 0 < ε ≤ 1. As observed before, it suffices to bound the number of
visited internal nodes. These can be partitioned into four categories, namely 3-nodes ν such
that R(ν) intersects:

(i) at most one facet of Qε,

14

Figure 10: Covering Qε with O(1/ε2) cubes.

(ii) more than one facet of Qε, but none of its edges,

(iii) at least one edge of Qε, but none of its vertices,

(iv) at least one vertex of Qε,

where each category also includes the descendant 2-nodes, 1-nodes and 0-nodes of the 3-nodes.
We will now treat these cases one by one.

(i) 3-Nodes ν such that R(ν) intersects at most one facet of Qε, plus their descendant
2-nodes, 1-nodes, and 0-nodes. Any such node must have a priority leaf directly below it that
stores a box intersecting Qε. Hence, the total number of nodes in this category is O(kε).

(ii) 3-Nodes ν such that R(ν) intersects more than one facet of Qε but none of its edges,
plus their descendant 2-nodes, 1-nodes, and 0-nodes.

Let N be the collection of 3-nodes in this category, and let G(N) be the subgraph of T
formed by these nodes. G(N) is a forest of trees.

To bound the number of nodes in N , we cover Qε by O(1/ε2) cubes that are contained in
Qε and are as big as the smallest edges of Qε — see Fig. 10. Any node in N must intersect
opposite facets of at least one of these cubes. Because the leaves of G(N) have disjoint defining
regions, their number is bounded by O((1/ε2) log2 n) by Lemma 2.1. The total number of
nodes in N is therefore bounded by O((1/ε2) log3 n).

It remains to bound the number of descendant 2-nodes, 1-nodes, and 0-nodes of the nodes
in N . These are organized in subtrees whose roots are children of nodes in N . Let µ be such
a root and let pa(µ) ∈ N be its parent. There are two cases, as illustrated in Fig. 11.

• R(µ) cuts R(pa(µ)) in such a way that pa(µ) has two children in N—see case (a) in
Fig. 11.

Since the number of nodes of degree two in G(N) is bounded by the number of leaves in
N , there are only O((1/ε2) log2 n) such roots. Lemma 2.5(ii) states that the query time
in each subtree rooted at such a node is O(log2 n+ kε(Tµ)) +CQ(Tµ) ·O((log2 n)/ε), so
the total query time in these subtrees is

O((1/ε2) log4 n+ kε) +
∑

µ

CQ(Tµ) ·O((log2 n)/ε),

15

Figure 11: 3d-nodes that intersect more than one facet of Qε, but none of its edges.

where the sum is over all 2-nodes µ in the current category such that R(Tµ) cuts opposite
facets of Qε.

We proceed to bound
∑

µCQ(Tµ). To simplify the discussion, let’s assume that the
defining regions R(µ) and R(pa(µ)) cut the top and bottom facet of Qε, as in Fig. 11,
case a. Then for each node µ we have that CQ(Tµ)w is the length of R(µ) as seen from
above. Note that R(pa(µ)) has height at least 2εw, because the height of Qε is at least
that much. Therefore, the length of the horizontal edges of R(pa(µ)) orthogonal to
R(µ) is at least 2εw as well, otherwise R(pa(µ)) would have been cut by a horizontal
plane. Cover the top facet of Qε by O(1/ε2) squares of side length εw. Since R(pa(µ))
has horizontal edges of length at least 2εw, it must intersect opposite sides of at least
one such square s. If this happens for m 2-nodes µ, then there are at least m disjoint
defining regions of 3-nodes that intersect opposite sides of s. Lemma 2.1 tells us that
s is cut by O(logn) disjoint defining regions. Hence, the total length within s of all
regions R(µ) as seen from above is O(εw log n). Summed over all squares we find that
the total length of all regions R(µ) as seen from above is O((w/ε) logn). This implies
that

∑
µCQ(Tµ) = O((1/ε) log n). It follows that the total number of nodes for this

case is O((1/ε2) log4 n+ kε(T)).

• R(T) cuts R(pa(µ)) such that pa(µ) has at most one child in N—see case (b) in Fig. 11.

In this case R(µ) lies completely inside the projection of Qε onto the plane containing
R(µ). Lemma’s 2.6(i) and 2.5(i) state that the number of visited nodes in each such
tree is O(kε(Tµ)), which adds up to O(kε(T)).

In total, there are O((log4 n)/ε2 + kε) nodes in this category.

(iii) 3-Nodes ν such that R(ν) intersects at least one edge of Qε but does not contain one
of its vertices, plus their descendant 2-nodes, 1-nodes, and 0-nodes.

In this case R(ν) must intersect an edge eε of Qε and the corresponding edge e of Q (the
edge with both endpoints lying at an L∞-distance of εw from eε), otherwise ν would not be
visited. For each pair e, eε of corresponding edges, we take a set of O(1/ε) cubes of size εw,
such that each cube has an edge contained in e and the opposite edge contained in eε, and
such that together they cover e completely — see Fig. 12. Let N be the collection of 3-nodes

16

Figure 12: Covering an edge of Q with O(1/ε) cubes.

Figure 13: 3d-nodes that intersect an edge of Qε, but none of its vertices.

in the current category, and let G(N) be the subgraph of T formed by these nodes. G(N) is
a forest of trees.

Any 3-node in N must intersect opposite edges of a facet of at least one of these cubes.
Summing over the facets of all cubes and using Lemma 2.1 again, we find that there are only
O(logn/ε) leaves in G(N) and, hence, O(log2 n/ε) 3-nodes in N in total.

The descendant 2-nodes, 1-nodes, and 0-nodes are organized in subtrees rooted at 2-nodes
µ with a node pa(µ) in N as parent. We distinguish two cases, as illustrated in Fig. 13.

• For the subtrees rooted at node µ such that pa(µ) has two children in N (case (a) in
Fig. 13), we can apply Lemma 2.5(iii) to find a bound of O(log2 n/ε+ σ log n+ kε(Tµ))
for each subtree. Since the number of such nodes is bounded by the number of leaves
in G(N) we get a total of O(log3 n/ε2 + σ log2 n/ε+ kε) nodes.

• For the other subtrees, of which there are O(log2 n/ε), we apply Lemmas 2.5(i) and (ii)
(case (b1) in Fig. 13) and Lemma 2.6(ii) (case (b2)) to find a total bound for all such
subtrees of

O(λ log4 n/ε+ kε) +
∑

CQ(Tµ) ·O(λ log2 n/ε).

17

Because any point in 3-space lies in at most O(log n) defining regions of 3-nodes,∑
CQ(Tµ) = O((1 + 2ε) log n) and we get a bound of O(λ log4 n/ε+ kε).

In total, the number of nodes in this category is O((1/ε+ λ) log4 n/ε+ kε).

(iv) 3-Nodes ν such that R(ν) contains at least one vertex of Qε, plus their descendant
2-nodes, 1-nodes and 0-nodes.

At most O(logn) 3-nodes can contain a vertex of Qε. By Lemma 2.6(iii) each of them may
have a 2-subtree T with query time O(λ log2 n/ε+kε(T)), leading to a total of O(λ log3 n/ε+
kε) visited nodes in this category.

Since the number of visited nodes of each category is within the claimed bound, this proves
the theorem. ¤

Remark 2.8 If the query range has bounded aspect ratio, then it can be shown that the
number of visited nodes reduces to O(min0<ε≤1{(λ/ε) log

4 n+ kε}).

2.3 Pipes and low-density scenes

Our research is motivated by the MOLOG project [9], where we need to perform collision
checking in CAD models of industrial installations such as in Fig. 1. Let S be the set of
bounding boxes in the given scene. For the analysis we assume that S can be partitioned into
two subsets SP and SD, such that SP is a set of pipes and SD forms a low-density scene [4, 11].
These concepts are defined as follows.

Definition 2.9 Let b be a 3-dimensional axis-parallel box, and consider its length in x-, y-,
and z-direction. The box b is called a β-pipe if the shortest of these three lengths is at most
β times shorter than the shortest-but-one.

Next we define the density of a scene, specialized to sets of boxes. (The original definition by
van der Stappen and Overmars [11] uses balls instead of cubes, but this is equivalent up to a
constant.)

Definition 2.10 A set B of boxes in 3-space has density δ if the following holds: any cube
C is intersected by at most δ boxes from B whose longest edge is longer than the edge length
of C.

Recall that the stabbing number of a set of boxes is defined as the maximum number of boxes
with a non-empty intersection. Next we show that low-density sets and sets of pipes with low
stabbing number also have low slicing number, which means that we can use the analysis of
the previous subsection.

Lemma 2.11 Let S = SP ∪ SD be a set of boxes in 3-space such that SP is a set of β-pipes
with stabbing number σ and SD has density δ. Then the slicing number of S is at most
(β + 2)σ + δ.

Proof: Let C be a cube of edge length c. Since a box that slices C has edge length at
least c, the set SD has slicing number at most δ.

It remains to bound the number of pipes slicing C. A pipe slicing C has to occupy a
volume of at least c × c × c/β = c3/β in the cube, unless it contains one of the six sides

18

of the cube completely. In the latter case, the pipe has to contain either the top-right-back
corner or the bottom-left-front corner of C, so there are at most 2σ such pipes. To bound
the number of pipes in the former case, we observe that the total volume of the intersection
of the pipes with C is at most σc3. Therefore, the total number of boxes slicing the cube is
at most δ + 2σ + σc3/(c3/β) = δ + (β + 2)σ. ¤

By putting together Lemma 2.11 and Theorem 2.7, we get the following corollary.

Corollary 2.12 Let S = SP ∪SD be a set of boxes in 3-space such that SP is a set of β-pipes
with stabbing number σ and SD has density δ. There is a box-tree for S such that the number
of nodes visited by a range query with a query box Q is O(min0<ε≤1{(1/ε)((1/ε)+λ) log4 n+
kε}), where λ = δ + (β + 2)σ and kε is the number of boxes intersecting the extended range
Qε.

2.4 Analysis for other types of ranges

In the previous sections we assumed that the query range Q is an axis-parallel box. In this
section we will generalize our results to constant-complexity ranges of arbitrary shape. A
3D query range is said to have constant complexity if its boundary consists of a constant
number of algebraic surface patches of constant maximum degree, which are in turn bounded
by a constant number of curves of constant maximum degree. In the analysis we only need
the restriction that ∂Q, the boundary of Q, has a constant number of local extrema in any
orthogonal cross-section, which is a condition fulfilled by the constant-complexity requirement.

We first prove a general theorem, stating that an LSF-interval tree with good query
complexity for approximate range queries with boxes also has good query complexity for
approximate range queries with other shapes. To this end we define a node ν to be chargeable
with respect to a given range if all input boxes stored in Tν intersect that range, or if ν has
a child with this property. Nodes for which this is not the case are unchargeable.

Theorem 2.13 Let T be a d-dimensional box-tree on a set of n boxes, with d ∈ {2, 3}.
Suppose that, for any 0 < ε ≤ 1, a query with a box B visits O(f(n, ε)) nodes that are
unchargeable with respect to the extended query box Bε. Then a range query with a constant-
complexity range Q visits O(min0<ε≤1{(1/ε)

d−1f(n, 1) + kε}) nodes of T , where kε is the
number of objects intersecting the ε-extended query range Qε.

Proof: We first prove the theorem for d = 2.
Fix any 0 < ε ≤ 1. We claim that we can cover ∂Q by O(1/ε) squares of edge length

εw/3, where w is the diameter of Q (as was also shown for convex ranges by Arya and Mount
[3]). To see this, consider a regular grid whose cells have size εw/3. Then ∂Q will intersect
only O(1/ε) grid cells, because for any two adjacent cells intersected by a connected portion
of ∂Q the following holds: either they contain a local extremum of ∂Q, or the length of the
portion of ∂Q within the cells is at least εw/3. Since the total length of ∂Q is O(w), only
O(1/ε) grid cells can contain a portion of ∂Q of size O(εw).

Now consider a query with a range Q. The number of visited nodes that are chargeable
with respect to Qε is clearly O(kε). Any visited unchargeable node must have a bounding
box that intersects at least one of the squares in the covering of ∂Q. To bound the number
of such nodes, consider a square s in the covering. Define its extended square sε′ as the set
of points within L∞-distance ε′εw/3 from s. The boundary of the extended square has edge
length (1 + 2ε′)εw/3 and intersects ∂Q, so even for ε′ as large as 1, it is fully contained in

19

Qε. Hence, any node that is unchargeable with respect to Qε is unchargeable with respect to
sε′ for ε

′ = 1. The number of nodes ν such that b(ν) intersects s and that are unchargeable
with respect to sε′ is O(f(n, ε′)). Summing over all squares s and plugging in ε′ = 1, we get
a bound of O((1/ε)f(n, 1)) on the number of unchargeable nodes.

Hence, the total number of visited nodes is bounded by O((1/ε)f(n, 1)+ kε), as claimed.

The proof for d = 3 is similar. We start by covering ∂Q by cubes of edge length εw/3,
where w is the diameter of Q. We claim that ∂Q intersects O(1/ε2) cells of a regular grid with
cells of the required size. Indeed, any intersected cell must have an intersected facet, so we can
bound the number of intersected cells by summing the number of intersected facets over all
O(1/ε) grid planes intersecting Q. Since ∂Q consists of a constant number of algebraic surface
patches of constant maximum degree, which are in turn bounded by a constant number of
curves of constant maximum degree, the same must hold for the intersection of ∂Q with a
grid plane. Therefore, at most O(1/ε) facets can be intersected in each grid plane, and it
follows that Q can be covered using O(1/ε2) cubes of the required size. From here we can
follow the proof for the case d = 2. ¤

The analysis of the previous section shows that in all bounds derived there, the O(kε)
term on the number of visited internal nodes is caused solely by nodes with a priority leaf as
a child that stores a box intersecting the extended query range. Such nodes are chargeable,
so Theorem 2.13 and Corollary 2.12 together imply the following result.

Corollary 2.14 Let S = SP ∪ SD be a set of boxes in 3-space such that SP is a set of
β-pipes with stabbing number σ and SD has density δ. There is a box-tree for S such
that the number of nodes visited by a range query with a constant-complexity range Q is
O(min0<ε≤1{(λ/ε

2) log4 n + kε}), where λ = δ + (β + 2)σ and kε is the number of boxes
intersecting the extended range Qε.

Remark 2.15 The dependency on ε that we get is better by a factor of O(1/ε) than what
Dickerson et al. [5] and Arya and Mount [3] get for queries with non-convex query ranges in
point sets. Applying Theorem 2.13 to their structure, however, improves the dependency on
ε by a factor of O(1/ε), leading to the same dependency as we get.

3 The BBD-interval tree

The bounding-volume hierarchy of the previous section is based on the longest-side-first kd-
tree. It turns out that we can improve the results if we base the bounding-volume hierarchy
on the so-called BBD-tree by Arya et al. [3]. The resulting hierarchy is somewhat unorthodox,
however, as it uses non-convex bounding volumes.

Define a donut to be the set-theoretic difference of two boxes, one being contained in the
other. That is, a donut is defined as R+ \ R−, where R+ and R− are boxes and R− ⊂ R+.
The inner box R− may be empty, in which case a donut is simply a box. The inner box may
also touch the boundary of the outer box, in which case a degenerate type of donut results.
It is not allowed to split the outer box, that is, R+ \ R− should be connected. A bounding
donut of a set of objects is a donut R+ \ R− that contains all objects and whose outer box
R+ is the bounding box of the set. A donut tree for a set of objects is a bounding-volume
hierarchy that uses bounding donuts.

20

Like a kd-tree, the BBD-tree by Arya et al. is a tree representing a recursive decomposition
of space. Unlike in a kd-tree, however, the regions corresponding to the nodes of a BBD-tree
are not boxes — they are donuts. It is possible to construct a donut tree on a set of boxes
using a BBD-tree in a similar way as one can construct a box-tree from a kd-tree. The
main advantage is that BBD-trees have a stronger ‘packing property’ than kd-trees: whereas
in a longest-side-first kd-tree there can be O(logd−1 n) nodes whose regions are disjoint and
intersect opposite facets of a cube, there can be only O(1) such nodes in a BBD-tree [3]. This
is the main reason that we can show the following result.

Theorem 3.1 Let S be a set of boxes in 3-space with slicing number λ. There exists a donut-
tree for S such that a query with a query box Q visits O(min0<ε≤1{log

3 n + (λ/ε) log2 n +
(λ/ε2) log n+kε}) nodes, where kε is the number of boxes intersecting the extended range Qε.

This theorem can also be combined with Theorem 2.13 to get the following result:

Corollary 3.2 Let S be a set of boxes in 3-space with slicing number λ. There ex-
ists a donut-tree for S such that a query with a constant-complexity range Q visits
O(min0<ε≤1{(1/ε

2) log3 n+ (λ/ε2) log2 n+ kε}) nodes, where kε is the number of boxes inter-
secting the extended range Qε.

Because the details of the construction of the donut-tree and the analysis of its performance
are similar to those of the LSF-interval tree, but still rather technical, we defer the details to
Appendix A.

4 Concluding remarks

We have developed a new algorithm to construct box-trees, and analyzed its performance
for approximate range queries when the input is a low-density scene combined with (almost)
disjoint pipes. We proved that in such a setting—which was motivated by the need to perform
collision checking in CAD models of industrial installations—one can achieve polylogarithmic
query times. This is in sharp contrast with the Ω(n2/3 + k) lower bound for the query time
in box-trees for arbitrary input proved by Agarwal et al. [1]. Our bounds almost match the
best known bounds for range queries using box-trees in the much simper case of point data.

The assumptions we use in the analysis cannot be relaxed much further. In particular, we
can give a lower bound construction showing that it is not possible to achieve polylogarithmic
performance for box-trees when the input is uncluttered [4] instead of having low-density,
even for approximate queries.

Our results can be used to perform ε-approximate nearest-neighbor searching, using the
techniques described for instance in Duncan’s thesis [6]. Thus, for input scenes satisfying the
requirements above, approximate nearest-neighbor queries take time O((λ/ε2)(log4 n)(log λ+
log(1/ε) + log logn)) in our LSF-interval-tree, or O(((1/ε2) log3 n + (λ/ε2) log2 n)(log λ +
log(1/ε) + log log n)) in our BBD-interval-tree. (Note that for nearest-neighbor searching,
ε is given as part of the query.)

In our future work we plan to investigate the performance of box-trees experimentally.
We want to fine-tune our algorithm for constructing box-trees—in particular, we want to
investigate whether the use of priority leaves, which are so convenient in the theoretical
analysis, pays off in practice—and we want to compare it to existing heuristics.

21

References

[1] P.K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammar, and H.J. Haverkort. Box-trees
and R-trees with near-optimal query time. In Proc. 17th Annu. Symp. Comput. Geom.,
pages 124-133, 2001. Accepted for publication in Discrete Comput. Geom..

[2] N. Amato and Y. Wu. A randomized roadmap method for path and manipulation
planning. In Proc. IEEE Int. Conf. Robot. Autom., pages 113–120, 1996.

[3] A. Arya and D. Mount. Approximate range searching. Comput. Geom. Theory Appl.,
17(3-4):135–152, 2000.

[4] M. de Berg, M.J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input models
for geometric algorithms. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages
294–303, 1997. Accepted for publication in Algorithmica.

[5] M. Dickerson, C.A. Duncan, and M.T. Goodrich. K-D trees are better when cut on the
longest side. In Proc. 8th European Sympos. Algorithms, volume 1879 of LNCS, pages
179–190, 2000.

[6] C.A. Duncan. Balanced Aspect Ratio Trees. PhD thesis, John Hopkins University, Bal-
timore, Maryland, 1999.

[7] C.A. Duncan, M.T. Goodrich, and S.G. Kobourov. Balanced aspect ratio trees: Combin-
ing the advantages of k-d trees and octrees. In Proc. 10th Annu. ACM-SIAM Sympos.
Discrete Algorithms, pages 300–309, 1999.

[8] L. Kavraki. Random networks in configuration space for fast path planning. PhD thesis,
Stanford University, 1995.

[9] MOLOG: Motion for Logistics. Esprit LTR Project 28226. http://www.laas.fr/molog/

[10] A.F. van der Stappen. Motion Planning amidst Fat Obstacles. PhD thesis, Utrecht
University, 1994.

[11] A.F. van der Stappen, M.H. Overmars, M. de Berg, and J. Vleugels. Motion planning
in environments with low obstacle density. Discrete Comput. Geom. 20:561–587 (1998).

[12] P. Švestka. Robot motion planning using probabilistic roadmaps. PhD thesis, Utrecht
University, 1997.

A BBD-Interval-Trees

A.1 The construction of BBD-interval-trees

The concept of BBD-trees can serve as a basis for BBD-interval-trees, just like kd-trees with
longest-side-first splitting can be used to construct LSF-interval trees. The construction
algorithm is very similar to that for LSF-interval-trees. It will produce trees whose nodes
have degree more than nine—but still O(1). Conversion to a binary tree can easily be done
and does not affect the bounds.

22

First, we divide the set of input boxes S into three oriented subsets Sx, Sy and Sz, as
with LSF-interval-trees. We build a 3-BBD-interval-tree, that is, a BBD-interval tree whose
defining region is 3-dimensional, for each of the oriented subsets separately, and combine them
only at the top level.

A 3-BBD-interval-tree is now constructed as follows. We first build a 3-dimensional BBD-
tree on the vertices of the input boxes. Then we convert the BBD-tree into a BBD-interval-tree
in a top-down manner, as described below. Note that each node ν in the BBD-tree represents
a donut-shaped cell, which is the set-theoretic difference of an outer box R+(ν) and a possibly
empty inner box R−(ν).

Starting with the root and the set Sx (or Sy, or Sz), we handle each node ν as follows.
From now on, let S be the set of boxes to be stored in the subtree rooted at ν.

1. If S is empty, the subtree rooted at ν can be ignored: it has no corresponding nodes
in the BBD-interval-tree. Otherwise, we make a corresponding node ν ′ in the BBD-
interval-tree, in which we store a bounding donut b(S) \ R−(ν), where b(S) is the
bounding box of S. Note that b(S) ⊂ R+(ν). In the analysis, the BBD-tree cell
associated with ν will be referred to as the defining region R(ν ′) of ν ′.

2. For each of the six directions +x, −x, +y, −y, +z, and −z we take the box in S
extending farthest in that direction. Each of these at most six boxes is stored in a
separate leaf, called a priority leaf, immediately below the subtree’s root node ν ′. Let
S′ denote the set of remaining boxes in S.

3. In the BBD-tree, the region R+(ν) \ R−(ν) corresponding to node ν is split into two
subregions with a splitting surface. This is either a rectangle or a box; in the latter
case the box always contains the inner box R−(ν). Let R1 and R2 be the two resulting
subregions; they are the regions corresponding to the children ν1 and ν2 in the BBD-
tree. Define S1 to be the subset of boxes in S that lie completely inside R1, define S2

to be the subset of boxes that lie completely inside R2, and define S× to be the subset
of boxes that intersect the splitting surface.

• We construct one subtree for ν ′ by recursively calling the procedure with child ν1

and subset S1.

• We construct another subtree for ν ′ by recursively calling the procedure with child
ν2 and subset S2.

• The set S× is handled as follows. In the LSF-interval tree, we could construct a
2-dimensional LSF-interval tree for the complete set S×, but now we need to be
more careful.

First of all, we need to ensure that any bounding donut that may be constructed
when handling a subset of S× is contained fully inside the region R+(ν) \ R−(ν).
To this end, we first partition S× into six subsets such that the bounding box of
each subset is disjoint from R−(ν). This is possible because each box in S× can
be separated from R−(ν) by a plane through one of the six facets of R−(ν).

Consider one subset, let’s call it S̃, of the resulting six subsets.

If the splitting surface is a rectangle r, we simply store S̃ in a 2-dimensional BBD-
interval tree with r as defining region.

23

If the splitting surface is a box b, we proceed as follows. We cannot only construct a
2-BBD-interval tree for each facet f of b, because the intersection of a box in S̃ with
aff(f) need not be fully contained in f . Hence, we construct twenty-six subtrees:
one for each vertex of b, one for each edge of b, and one for each facet of b. If a
box in S̃ contains one or more vertices of b, it is stored in the subtree constructed
for one of these vertices (it doesn’t matter which one); if it does not contain a
vertex but intersects one or more edges, it is stored in the subtree constructed for
one of these edges; otherwise it is stored in the subtree onstructed for one of the
facets. Note that this means that a 3-node in a BBD-interval tree can have not
only 3-nodes and 2-nodes, but also 1-nodes and 0-nodes as direct children.

It remains to describe the construction of d-BBD-interval-trees for d < 3.
2-BBD-interval-trees are built like 3-BBD-interval-trees, except that the underlying BBD-

tree is a 2-dimensional tree subdividing a rectangle r instead of a 3-dimensional bounding
box. Note that the bounding donuts stored in a 2-BBD-interval-tree are still 3-dimensional:
the 2-dimensional defining regions are extended in the third dimension just enough to fit the
3-dimensional boxes stored in the corresponding subtree. Priority leaves are still created for
both directions in all three dimensions.

1-BBD-interval-trees and 0-BBD-interval-trees are constructed just like LSF-interval-
trees: there is nothing to be gained from using donuts here.

A.2 Analysis for range searching with boxes

The following lemma results from the packing constraints proven for the original BBD-tree
by Arya et al. [3]:

Lemma A.1 Let T be a d-dimensional BBD-interval-tree and let C be a k-dimensional cube,
with 1 ≤ k ≤ d ≤ 3. Then there are only O(1) d-nodes in T whose defining regions are disjoint
and intersect opposite facets of C.

The analysis for searching with boxes in BBD-interval trees now resembles the analysis
for LSF-interval trees very much. The essential differences we have to take into account are
the following.

First, wherever the analysis of a LSF-interval trees refers to Lemma 2.1 for the fact that
only O(logn) or O(log2 n) disjoint cells can intersect opposite sides of a square or cube,
respectively, an analysis for a BBD-interval tree would refer to Lemma A.1 for the fact that
only O(1) disjoint cells can intersect opposite sides of a square or cube.

Second, the donut-shaped nodes introduce additional cases in the analysis.
We will now show how to derive the bounds for the BBD-interval-trees. The reader will

be assumed to be familiar with the analysis of LSF-interval-trees, so we will not explain all
arguments and notation in full detail anymore. Since 1-BBD-interval trees are the same as
1-LSF-interval trees, we start with the analysis of 2-BBD-interval-trees.

A.2.1 2-dimensional subtrees

We distinguish two cases, depending on whether or not the plane containing the 2-dimensional
defining region R(T) intersects Qε.

24

Case 1: The plane containing R(T) intersects Qε.

Lemma A.2 Let T be a 2-BBD-interval tree storing n boxes with stabbing number σ. Sup-
pose we query T with a range Q such that the plane containing R(T) intersects Qε. Let Qε

denote the intersection of Qε with the plane containing R(T).

(i) If no edge of Qε intersects R(T), then we visit O(kε(T)) nodes.

(ii) If no vertex of Qε lies in R(T), then we visit O(logn + kε(T)) + CQ(T) · O((log n)/ε)
nodes.

(iii) In all cases—that is, there might be a vertex of Qε lying inside R(T)—we visit O(log2 n+
(1/ε+ σ) log n+ kε(T)) nodes.

Proof: As observed before, it suffices to bound the number of visited internal nodes.

(i) In this case, R(T) must lie completely inside Qε, otherwise T would not be visited at
all. The bound follows trivially.

(ii) We can distinguish two kinds of visited nodes: those in 2-subtrees whose defining regions
lie completely inside Qε, and those in 2-subtrees whose defining regions intersect the
boundary of Qε.

For the first type, the same argument as in part (i) of the Lemma applies; their number
is bounded by O(kε(T)).

Let N be the collection of all remaining visited 2-nodes, and G(N) be the subgraph of T
formed by those nodes. We bound the number of leaves in G(N) by the same argument
as in the proof of Lemma 2.6, now referring to Lemma A.1 instead of Lemma 2.1. The
number of leaves in G(N) is therefore bounded by O(1)+CQ(T) ·O(1/ε), and the total
number of nodes in N is bounded by O(log n) + CQ(T) ·O((log n)/ε).

It remains to bound the number of descendants of the nodes in N . These are organized
in subtrees whose roots are children of nodes inN and are not inN themselves. Consider
such a root node µ, and let pa(µ) be its parent. There are four cases.

case 1: µ is a 2-node. Then µ must either lie completely inside Qε, in which case we
already counted it, or completely outside Qε, in which case it is not visited. So we can
ignore this case.

case 2: µ is a 1-node and aff(R(µ)) cuts Qε. If R(µ) itself does not cut any edge of Qε,
it lies either inside or outside Qε and the number of nodes visited is trivially bounded
by O(kε(Tµ)). Otherwise, if one or two edges of Qε are cut, we know by Lemma 2.2
that the number of nodes visited in Tµ is bounded by O(logn + kε(Tµ)). Note that
in this case R(µ) cuts R(pa(µ)) in such a way that pa(µ) has two children in N , so
the number of such nodes µ is bounded by the number of leaves in G(N), which is
O(1) + CQ(T) ·O(1/ε). Hence, the total number of nodes visited in subtrees rooted at
such nodes µ must be O(log n+ kε(T)) + CQ(T) ·O((log n)/ε).

case 3: µ is a 1-node and aff(R(µ)) does not cut Qε. This implies that R(µ) lies ‘next
to Qε’, on a line parallel to the closest edge of Qε. In principle, R(µ) could contain the
projection of a vertex of Qε on aff(R(µ)). But in that case, the vertex should have to
lie inside the inner box of R(pa(µ)), since we are in case (ii) of the Lemma. By the

25

construction of the 1-subtrees, there must then be a plane through one of the facets
of the inner box which separates the bounding box of all boxes in Tµ from the inner
box, and thus, also from Qε. Hence, the subtree rooted at µ will be visited only if R(µ)
is completely contained in the projection of Qε on aff(R(µ)). Therefore, we can apply
Lemma 2.3(i) and find that the number of nodes visited in Tµ is O(kε(Tµ)). Hence, the
total number of nodes visited in subtrees rooted at such nodes µ is O(kε(T)).

case 4: µ is a 0-node. Similar to case 3, either there must be a plane that separates
the bounding box of Tµ from Qε (so that Tµ is not visited at all), or there must be an
axis-parallel line through R(µ) that intersects Qε. Then, any node visited in Tµ must
have a priority leaf directly below it that stores a box intersecting Qε. Hence, the total
number of nodes visited in such subtrees is O(kε(T)).

In total, we find the claimed bound of O(log n+ kε(T)) + CQ(T) ·O((logn)/ε).

(iii) We can distinguish three types of visited nodes: the two types that were also considered
in the proof of part (i) and (ii), and a third type, namely 2-nodes containing a corner
of Qε and their descendant 1-nodes and 0-nodes.

The number of nodes of the first two types can be bounded as in the proof of part
(ii). As for the third type, we note that there are O(logn) 2-nodes containing a corner
of Qε. If µ is a 0-node or 1-node that is a child of such a node, then the query time
in Tµ is bounded to O(logn + σ + kε(Tµ)) by Lemmas 2.2 and 2.3). This leads to a
total of O(log2 n + σ log n + kε(T)). Using CQ(T) ≤ 4 + 8ε, we get a final bound of
O(log2 n+ (1/ε+ σ) log n+ kε(T)).

¤

Case 2: The plane containing R(T) does not necessarily intersect Qε.

Lemma A.3 Let T be a 2-BBD-interval tree storing n boxes with slicing number λ. Let Qε

denote the projection of Qε onto the plane containing R(T).

(i) If no edge of Qε intersects R(T), then we visit O(kε(T)) nodes.

(ii) If no vertex of Qε intersects R(T), then we visit O(λ log n + kε(T)) + CQ(T) ·
O((λ log n)/ε) nodes.

(iii) In all cases — that is, there might be a vertex of Qε lying inside R(T) — we visit
O(log2 n+ (λ log n)/ε+ kε(T)) nodes.

Proof:

(i) In this case, R(T) must lie completely inside Qε, otherwise T would not be visited at
all. Using the priority leaves as with LSF-interval-trees, we find a bound of O(kε(T)).

(ii) This case is handled basically as in the proof of Lemma A.2(ii), now referring to
Lemma 2.4 instead of Lemma 2.3 and to Lemma 2.3 instead of Lemma 2.2.

Again, we will worry only about 2-nodes visited that are not addressed by part (i) of
the lemma, and their descendants. Let N be the collection of such 2-nodes, and G(N)
be the subgraph of T formed by those nodes. The number of leaves in G(N) is O(1) +
CQ(T) ·O(1/ε), and the total number of nodes in N is O(logn) +CQ(T) ·O((log n)/ε).

26

The descendants of the nodes in N are organized in subtrees whose roots are children
of nodes in N and are not in N themselves. Consider such a root node µ, and let pa(µ)
be its parent.

case 1: µ is a 2-node. As before, this case can be ignored.

case 2: µ is a 1-node and aff(R(µ)) cuts Qε. If R(µ) itself does not cut any edge of
Qε, it lies either inside or outside Qε and the number of nodes visited is bounded by
O(kε(Tµ)). Otherwise, if one or two edges of Qε are cut, we know by Lemma 2.3(ii)
that the number of nodes visited in Tµ is bounded by O(logn + σ + kε(Tµ)). Note
that in this case R(µ) cuts R(pa(µ)) in such a way that pa(µ) has two children in N ,
so the number of such nodes µ is bounded by the number of leaves in G(N), which is
O(1) + CQ(T) ·O(1/ε). Hence, the total number of nodes visited in subtrees rooted at
such nodes µ must be O(log n+ σ + kε(T)) + CQ(T) ·O((log n)/ε+ σ/ε).

case 3: µ is a 1-node and aff(R(µ)) does not cut Qε. This implies that R(µ) lies
‘next to Qε’, on a line parallel to the closest edge of Qε. As explained in the proof
of Lemma A.2, we may assume that R(µ) does not contain the projection of a vertex
of Qε on aff(R(µ)). Therefore, we can apply Lemma 2.4(i) and find that the number
of nodes visited in Tµ is O(λ) + CQ(Tµ) · O(λ/ε). As in the proof of Lemma 2.6,
we can use the fact that the number of such nodes µ is bounded by |N | and that∑
{µ|pa(µ)∈N} CQ(Tµ) = O(log n)CQ(T). Hence, we find a total query time for this case

of O(λ logn) + CQ(T) ·O(λ(log n)/ε).

case 4: µ is a 0-node. Clearly, the total asymptotic query time in the subtrees rooted
at such nodes cannot be worse than the number of boxes stored in such trees, which is
O(|N | · σ) = O(σ log n) + CQ(T) ·O(σ(log n)/ε).

Using σ ≤ λ, we find an overall bound of O(λ log n+ kε(T)) + CQ(T) ·O(λ(logn)/ε).

(iii) Again, we can distinguish between the types of nodes that were also considered in the
proof of part (ii), and another type, namely the 2-nodes containing a corner of Qε and
their descendant 1-nodes and 0-nodes.

The number of nodes of the first types can be bounded as in the proof of part (ii), using
that CQ(T) ≤ 4 + 8ε. As for the other type, we note that there are O(logn) 2-nodes
containing a corner of Qε. If µ is a 0-node or 1-node that is a child of such a node, then
the query time in Tµ is bounded to O(log n + λ/ε + kε(Tµ)) by Lemmas 2.3 and 2.4.
This leads to a total of O(log2 n+ λ(log n)/ε+ kε(T)).

¤

A.2.2 3-dimensional trees

Theorem A.4 Let T be a 3-BBD-interval tree storing n boxes with slicing number λ and let ε
be any positive real number. Then a query in T with a range Q will visit O(min0<ε≤1{log

3 n+
(λ/ε) log2 n + (λ/ε2) log n + kε}) nodes, where kε is the number of boxes intersecting the
extended range Qε.

Proof: As observed before, it suffices to bound the number of visited internal nodes.

There is a one-to-one correspondence between facets of Q and facets of Qε, between edges
of Q and edges of Qε, and between vertices of Q and vertices of Qε. Suppose that the defining

27

region of a node ν intersects a face fε of Qε but not the corresponding face f of Q. Then
fε and f must be separated by a plane through a boundary facet of R(ν). If this is a plane
through a facet of R+(ν), the node must lie completely outside Q and will not be visited. If it
is a plane through a facet of R−(ν), then for each child of ν that is a 0-node, 1-node or 2-node
intersecting fε, the plane that separates it from R−(ν) will also separate it from Q, so it will
not be visited. Therefore, when discussing bounds on the query time in 0-nodes, 1-nodes or
2-nodes which are visited, we may assume that whenever a facet fε of Qε is intersected, the
corresponding facet f of Q is intersected as well.

The internal nodes visited can now be partitioned into four categories.

• 3-nodes ν such that R(ν) intersects no facet ofQε, and their descendant 2-nodes, 1-nodes
and 0-nodes.

In this case R(ν) must lie completely inside Qε, otherwise ν would not be visited at all.
A bound of O(kε) on the number of such nodes and their descendants follows trivially.

• 3-nodes ν such that R(ν) intersects at least one facet of Qε, but none of its edges, and
their descendant 2-nodes, 1-nodes and 0-nodes.

Let N be the collection of all 3-nodes in this category, and G(N) be the subgraph of T
formed by those nodes. We bound the number of leaves in G(N) by a similar argument
as in the proof of Theorem 2.7, part (iii), now covering Qε \ Q with O(1/ε2) cubes
and referring to Lemma A.1 instead of Lemma 2.1. The number of leaves in G(N)
is therefore bounded by O(1/ε2), and the total number of nodes in N is bounded by
O((log n)/ε2).

It remains to bound the number of visited nodes in the 2-subtrees, 1-subtrees and 0-
subtrees rooted at the children of the nodes in N . Let µ be such a root child and let
pa(µ) ∈ N be its parent. There are six cases.

case 1: µ is a 2-node and aff(R(µ)) intersects Qε. If R(µ) does not intersect any facet
of Qε, it lies either inside Qε or outside Q and the number of nodes visited is trivially
bounded by O(kε(Tµ)). Otherwise, if one or two facets of Qε are intersected, we know by
Lemma A.2(ii) that the number of nodes visited in Tµ is bounded by O(log n+kε(Tµ))+
CQ(Tµ) · O((logn)/ε). Note that in this case R(µ) cuts R(pa(µ)) in such a way that
pa(µ) has two children in N , so the number of such nodes µ is bounded by the number
of leaves in G(N), which is O(1/ε2). Hence, the total number of nodes visited in subtrees
rooted at such nodes µ is O((logn)/ε2 + kε) +

∑
{µ|pa(µ)∈N} CQ(Tµ)O((log n)/ε).

We proceed to bound
∑

µCQ(Tµ). To simplify the discussion, let’s assume that the
defining regions R(µ) and R(pa(µ)) intersect the top facet of Qε. As explained above,
we may assume that they intersect the top facet of Q as well. We can bound

∑
µCQ(Tµ)

as follows. For each node µ we have that CQ(Tµ)w is the length of R(µ) as seen from
above. The defining regions R(µ) cut the top facet of Qε into a number of cells. Since
these cuts intersect the top facets of both Qε and Q, they must have height at least εw.
We now use the property that BBD-trees have fat donuts. In particular, if the inner
box does not touch a given facet of the outer box of a donut, then the distance between
the inner box and the facet is not smaller than the size of the inner box. Hence, parallel
cuts of height at least εw cannot be arbitrarily close together — in fact, the total length
of the cuts through any Θ(εw) size square of the top facet of Qε must be O(εw). The

28

top facet of Qε can be covered by O(1/ε2) squares of size Θ(εw), so the total length∑
µCQ(Tµ)w is O(1/εw), and

∑
µCQ(Tµ) is O(1/ε).

With this, we find a total bound of O((log n)/ε2 + kε) for this case.

case 2: µ is a 2-node and aff(R(µ)) does not intersect Qε. This implies that R(µ) lies
‘next to Qε’, on a plane parallel to the closest facet of Qε. Following a similar argument
as in the analysis of case 3 in Lemma A.2(ii), we conclude that R(µ) does not intersect
the projection of any edge of Qε on aff(R(µ)). Therefore, we can apply Lemma A.3(i)
and find that the number of nodes visited in Tµ is O(kε(Tµ)). Hence, the total number
of nodes visited is O(kε) for this case.

case 3: µ is a 1-node and aff(R(µ)) intersects Qε. If R(µ) does not intersect any facet
of Qε, it lies either inside Qε or outside Q and the number of nodes visited is bounded
by O(kε(Tµ)). If one or two facets of Qε are intersected, we know by Lemma 2.2(ii) that
the number of nodes visited in Tµ is bounded by O(logn + kε(Tµ)). Note that in this
case R(µ) must be (part of) an edge of a box-shaped cut that cuts R(pa(µ)) in such a
way that pa(µ) has two children in N , so the number of such nodes µ is bounded by the
number of leaves in G(N), which is O(1/ε2). Hence, the total number of nodes visited
in subtrees rooted at such nodes µ is O((log n)/ε2 + kε).

case 4: µ is a 1-node and only one axis-parallel plane containing R(µ) intersects Qε.
Consider the projection ofQε on the other axis-parallel plane containingR(µ). Following
a similar argument as in the analysis of case 3 in Lemma A.2(ii), we conclude that R(µ)
does not intersect any edge of this projection, and therefore, R(µ) does not contain any
vertex of the projection of Qε on aff(R(µ)). Therefore, we can apply Lemma 2.3(i) and
find that the number of nodes visited in Tµ is O(kε(Tµ)). Hence, the total number of
nodes visited is O(kε) for this case.

case 5: µ is a 1-node and both axis-parallel planes containing R(µ)) are disjoint from
Qε. Consider the edge e of Qε which is parallel to R(µ) and closest to aff(R(µ)). Since
R(pa(µ)) does not intersect any edge of Qε by definition, e must intersect its inner box
R−(pa(µ)). By the construction of the 1-subtrees, there must be a plane through one
of the facets of the inner box which separates the bounding box of all boxes in Tµ from
the inner box, and thus, also from Qε. Therefore, such subtrees Tµ are not visited at
all.

case 6: µ is a 0-node. Clearly, the total asymptotic query time in the subtrees rooted
at such nodes cannot be worse than the number of boxes stored in such trees, which is
O(|N | · σ) = O(σ(log n)/ε2).

• 3-nodes ν such that R(ν) intersects at least one edge of Qε, but none of its vertices, and
their descendant 2-nodes, 1-nodes and 0-nodes.

Let N be the collection of all 3-nodes in this category, and G(N) be the subgraph of T
formed by those nodes. We bound the number of leaves in G(N) by the same argument
as in the proof of Theorem 2.7, part (iii), now referring to Lemma A.1 instead of
Lemma 2.1. The number of leaves in G(N) is therefore bounded by O(1/ε), and the
total number of nodes in N is bounded by O((log n)/ε).

It remains to bound the number of visited nodes in the 2-subtrees, 1-subtrees and 0-
subtrees rooted at the children of the nodes in N . Let µ be such a root child and let
pa(µ) ∈ N be its parent. There are four cases.

29

case 1: µ is a 2-node and aff(R(µ)) intersects Qε. If R(µ) does not intersect any facet
of Qε, it lies either inside Qε or outside Q and the number of nodes visited is trivially
bounded by O(kε(Tµ)).

Otherwise, if R(µ) is (part of) a cut that divides pa(µ) such that it has two children in
N , we know by Lemma A.2(iii) that the number of nodes visited in Tµ is bounded by
O(log2 n + (1/ε + σ) log n + kε(Tµ)). Since the number of such cuts is bounded by the
number of leaves in G(N), the total number of nodes visited in subtrees rooted at such
nodes µ is O((log2 n)/ε+ (log n)/ε2 + (σ logn)/ε+ kε).

The remaining subcase is that R(µ) is part of a cut such that pa(µ) has one child in
G(N) and one child piercing a facet (that is: one child in N as defined in the category
handled above). By Lemma A.2(ii) we know that the number of nodes visited in each
such tree Tµ is O(log n + kε(Tµ)) + CQ(Tµ) · O((log n)/ε). From the analysis of case 1
in the previous category we know that

∑
µCQ(Tµ) is O(1/ε), and we find that the total

number of nodes visited for this subcase can be bounded by |N |O(logn)+
∑

µ kε(Tµ)+∑
µCQ(Tµ)(log n)/ε) = O((log2 n)/ε+ (log n)/ε2 + kε).

In total, we obtain a bound of O((log2 n)/ε+ (log n)/ε2 + (σ logn)/ε+ kε) for this case.

case 2: µ is a 2-node and aff(R(µ)) does not intersect Qε. This implies that R(µ)
lies ‘next to Qε’, on a plane which is parallel to the closest facet of Qε. Following a
similar argument as in the analysis of case 3 in Lemma A.2(ii), we conclude that R(µ)
does not intersect the projection of any vertex of Qε on aff(R(µ)). Therefore, we can
apply Lemma A.3(ii) and find that the number of nodes visited in Tµ is O(λ logn +
kε(Tµ)) + CQ(Tµ) · O(λ(log n)/ε). Because any point on an edge of Qε lies in at most
O(log n) defining regions of 3-nodes, it holds that

∑
µCQ(Tµ) = O((1 + 2ε) log n) and

we get a total bound of |N |O(λ logn) + O(
∑

µ kε(Tµ)) +
∑

µCQ(Tµ) · O(λ(log n)/ε) =

O((λ log2 n)/ε+ kε) for this case.

case 3: µ is a 1-node. In the worst-case, the query time in each subtree Tµ is O(log n+
λ/ε) (Lemma 2.4). Therefore, the total query time for this case is at most |N | ·O(logn+
λ/ε) +

∑
O(kε(Tµ)) = O((log2 n)/ε+ (λ log n)/ε2 + kε).

case 4: µ is a 0-node. Clearly, the total asymptotic query time in the subtrees rooted
at such nodes cannot be worse than the number of boxes stored in such trees, which is
O(|N | · σ) = O(σ(log n)/ε).

• 3-nodes ν such that R(ν) intersects at least one vertex of Qε, and their descendant
2-nodes, 1-nodes and 0-nodes not included in the previous categories.

At most O(log n) 3-nodes can contain a vertex of Qε. Each of them may have O(1)
2-subtrees with query time O(log2 n + (λ log n)/ε + kε(Tν)) each (by Lemma A.3(iii)),
O(1) 1-subtrees with query time O(log n+ λ/ε) each in the worst case (Lemma 2.4(ii))
and O(1) 0-subtrees whose query times are trivially bounded by O(σ) each. This leads
to a total of O(log3 n+ (λ log2 n)/ε+ kε) visited nodes in this category.

Since the number of visited nodes of each category is within the bound claimed, this proves
the theorem. ¤

30

