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Abstract

We consider a competitive facility location problem with two players. Players alternate
placing points, one at a time, into the playing arena, until each of them has placed n points.
The arena is then subdivided according to the nearest-neighbor rule, and the player whose points
control the larger area wins. We present a winning strategy for the second player, where the
arena is a circle or a line segment. We also consider a variation where players can play more
than one point at a time for the circle arena.

1 Introduction

The classical facility location problem [5] asks for the optimum location of a new facility (police
station, super market, transmitter, etc.) with respect to a given set of customers. Typically, the
function to be optimized is the maximum distance from customers to the facility | this results in
the minimum enclosing disk problem studied by Megiddo [8], Welzl [12] and Aronov et al. [2].

Competitive facility location deals with the placement of sites by competing market players.
Geometric arguments are combined with arguments from game theory to see how the behavior of
these decision makers a�ect each other. Competitive location models have been studied in many
di�erent �elds, such as spatial economics and industrial organization [1, 9], mathematics [6] and
operations research [3, 7, 11]. Comprehensive overviews of competitive facility locations models are
the surveys by Friesz et al. [11], Eiselt and Laporte [3] and Eiselt et al. [4].

We consider a model where the behavior of the customers is deterministic in the sense that a
facility can determine the set of customers more attracted to it than to any other facility. This
set is called the market area of the facility. The collection of market areas forms a tessellation of
the underlying space. If customers choose the facility on the basis of distance in some metric, the
tessellation is the Voronoi Diagram of the set of facilities [10].

We address a competitive facility location problem that we call the Voronoi Game. It is played
by two players, Blue and Red, who place a speci�ed number, n, of facilities in a region U . They
alternate placing their facilities one at a time, with Blue going �rst. After all 2n facilities have
been placed, their decisions are evaluated by considering the Voronoi diagram of the 2n points.
The player whose facilities control the larger area wins.
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More formally, let fbig
n
i=1 and frig

n
i=1 be the respective locations of the blue and red points and

set

B = jfu 2 U : min
i

d(u; bi) < min
i

d(u; ri)gj;

R = jfu 2 U : min
i

d(u; ri) < min
i

d(u; bi)gj

where d(u; v) is an underlying metric and j � j indicates the area of a set. Blue wins if and only if
B > R, Red wins if and only if R > B and the game ends in a tie if B = R.

The most natural Voronoi Game is played in a two-dimensional arena U using the Euclidean
metric. Unfortunately nobody knows how to win this game, even for very restricted regions U . In
this note we present strategies for winning one-dimensional versions of the game, where the arena is
a circle or a line segment, and variations. In other words, we consider competitive facility location
along an Australian highway.

The next section discusses the simplest game, on the circle. It is obvious that the second player,
Red, can always achieve a tie by playing on the antipode of Blue's move. One might try to tweak
this strategy such that it results in a win for Red. This doesn't seem to work, and we present
instead a quite di�erent winning strategy for Red.

Section 3 describes how this strategy remains a winning strategy even if the rules of the game
are drastically relaxed.

In Section 4 we �nally turn to the line segment arena. It would appear that Blue has an
advantage here, because it can play the midpoint of the segment in its �rst move. We show that
this doesn't help, and prove that Red still has a winning strategy. The strategy is quite similar to
the one for the circle case, but its analysis (because of a loss of symmetry) is more detailed.

2 The basic circle game

There are two players, Blue and Red, each having n points to play, where n > 1. They alternate
placing these points on circle C, with Blue placing the �rst point, Red the second, Blue the third,
etc., until all 2n points are played. We assume that points cannot lie upon each other. Let fbig

n
i=1

be the locations of the blue points and frig
n
i=1 be those of the red ones. After all of the 2n points

have been played each player receives a score equal to the total circumference of the circle that is
closer to that player than to the other, i.e., Blue and Red have respective scores

B = jfx 2 C : min
i

d(x; bi) < min
i

d(x; ri)gj

R = jfx 2 C : min
i

d(x; ri) < min
i

d(x; bi)gj

The player with the highest score (the larger circumference) wins.

The question that we address here is, Does either player have a winning strategy and, if yes,
what is it? We will see below that the second player, Red, always has a winning strategy.

Before giving the strategy we introduce some de�nitions. We parameterize the circle using
the interval [0; 1], where the points 0 and 1 are identi�ed. Arcs on the circle are written as [x; y]
implying the clockwise arc running from x to y, as in [:5; :6] or [:9; :1]:

De�nition 1 The n points ui =
i
n
; i = 0; 1; : : : ; n� 1 are keypoints.
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Figure 1: There are four keypoints when n = 4.

Figure 1 shows the keypoints for n = 4.

We call an arc between two clockwise consecutive red/blue points an interval. The interior of
an interval is free of red/blue points. At any given time during the game the circle is partitioned
into intervals. An interval is monochromatic if its endpoints have the same color, and bichromatic

if they have di�erent colors. A blue interval is a blue monochromatic one, a red interval a red
monochromatic one. We denote the total length of all red intervals by Rm, and the total length
of all the blue intervals by Bm. An interval is called a key interval if both of its endpoints are
keypoints.

The important thing to notice is that at the end of the game the length of each bichromatic
interval is divided equally among the two players, so R�B = Rm �Bm and Red wins if and only
if Rm > Bm. We devise our strategy to force this to happen.

Since we can parameterize the circle arbitrarily, we can assume without loss of generality that
Blue plays his �rst point on 0 and thus on a keypoint. We now describe Red's winning strategy.
Figure 2 shows an example.

Red's Keypoint Strategy

Stage I: If there is an empty keypoint then Red plays onto the keypoint.

Stage I ends after the last keypoint is played (by either Red or Blue).

Stage II: If there is no empty keypoint and it is not Red's last move then Red plays
her point into a largest blue interval. We call this breaking the blue interval.

Stage II ends when Blue plays his last point.

Stage III: Red's last move. There are two possibilities:

(i) if there exists more than one blue interval then Red breaks a largest one by
placing her point inside.

(ii) if there is only one blue interval de�ne ` < 1

n
to be its length. Red's move is

to go to a bichromatic key interval and claim a red interval of length larger
than ` by placing a red point closer than 1

n
� ` to the blue endpoint of the

bichromatic key interval.

The two following lemmas will be needed.
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Figure 2: There are four points to be played for both Blue and Red. The white dots represent
Blue's points and the black dots represent Red's points. We label the dots in chronological order.

Lemma 1 Let B be a set of b blue points and let R be a set of r red points currently on the circle

with b � r. Let n(R) be the number of red intervals they form and n(B) the number of blue ones.

Then n(B)� n(R) = b� r.

Proof: The proof will be by induction on r: If r = 0 then b blue points form b blue intervals so
n(B) = b; n(R) = 0 and the condition n(B)� n(R) = b� r is satis�ed.

Now suppose that the lemma is true for all con�gurations of b blue points and r � 1 red ones.
Deleting any red point p from R leaves b blue and r�1 red points, so n(B)�n(R�fpg) = b�r+1.
We now add the red point p back into the con�guration and ask how the monochromatic intervals
can change. There are three possible placements of p :

(i) inside a red interval, increasing n(R) by one and leaving n(B) unchanged.
(ii) inside a blue interval, decreasing n(B) by one and leaving n(R) unchanged.
(iii) inside a bichromatic interval, increasing n(R) by one and leaving n(B) unchanged.

After all three of these cases we �nd that n(B)� n(R) = n(B)� n(R� fpg)� 1 = b� r.

Lemma 2 Suppose that all n keypoints are covered and Blue has just moved (possibly covering the
last keypoint). If there is only one blue interval and this interval has length < 1

n
, then there exists

a bichromatic key interval.

Proof: We apply the pigeon hole principle: At most 2n� 1 points have been played, n of them on
keypoints. Consider the n circle arcs of length 1

n
formed by the n keypoints. Since the blue interval

has length < 1

n
, at least one of its endpoints is inside an arc. That leaves only n � 2 points to

have been played inside the n� 1 remaining arcs. Therefore, one of the arcs must be free of points,
forming a key interval. Since there is only one blue interval, there is no red interval by Lemma 1.
Therefore, this key interval is bichromatic.

Theorem 1 The keypoint strategy is a well-de�ned winning strategy for Red.

Proof: We start with a simple observation. Since the circle contains only n keypoints and Blue's
�rst move covers the �rst keypoint, Red will play onto at most n�1 keypoints. Thus Stage I always
ends before Red plays her last point.
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Consider Stage II. Lemma 1 implies that after each play by Blue (b = r + 1) there is always at
least one blue interval on the circle, so Stage II of the strategy is indeed well de�ned.

We make two observations concerning the situation after Stage II, when Red has played her
n � 1'st point. The �rst is that there is no blue key interval. Let k be the number of keypoints
played by Blue during the game. Red has covered the remaining n � k keypoints by the end of
Stage I. If k = 1 (the only case in which Red skips Stage II), then there certainly is no blue key
interval as there is only one blue keypoint. When k > 1, Blue can de�ne at most k � 1 blue key
intervals with its k keypoints (since Red has at least one keypoint). Note that since all keypoints are
played by the end of Stage I, all intervals in Stages II and III have length at most 1

n
. In particular

a blue key interval is longer than any other blue interval. Since Red plays k� 1 points in Stage II,
all blue key intervals are broken during Stage II.

The second observation concerning the situation after stage II is that all red intervals are key

intervals. This statement is true at the end of Stage I, as Red has so far only played onto keypoints,
and all keypoints are covered. During Stage II, Red uses her points to break blue intervals, and
therefore creates bichromatic intervals only. Blue cannot create red intervals, and so, at the end of
Stage II, all red intervals are indeed key intervals.

We now show why Stage III is well de�ned and why Red wins. Suppose that Blue has just
played his last point and it is now time for Stage III, Red's last move. From Lemma 1 we know
that n(B) � 1.

If n(B) > 1 before Red's last move then the strategy is well de�ned: Red breaks a largest
blue interval. This decreases n(B) by 1 so the game ends with n(B) � 1: By Lemma 1 we have
n(R) = n(B) � 1. But now note that from the observations in the preceding paragraphs all existing
red intervals are key intervals while all existing blue intervals have length strictly less than 1

n
. Since

all red intervals are longer than all blue intervals and there are the same number of red ones and
blue ones we �nd that Rm > Bm and Red wins.

If n(B) = 1 before Red's last move the strategy requires that the unique blue interval has length
` < 1

n
, and that there exists a bichromatic key interval. The �rst fact was already observed above,

the second fact follows from Lemma 2.

After Red places her last point Blue still has one blue interval of length ` while Red has one
red interval of length > `. Thus Rm > ` = Bm and Red wins.

3 A modi�ed circle game

The basic game can be modi�ed in many di�erent ways. The simplest modi�cation allows the
players to play more than one point at a time. More complicated modi�cations permit the players
(both or one) to choose before each turn, how many points they play.

Suppose that there are k � n rounds. Let �i and i be the numbers of points that Blue and
Red play respectively in round i. Suppose that the following restrictions are placed.

� 81 � i � k; �i; i > 0.

� 81 � j � k;
Pj

i=1 �i �
Pj

i=1 i.

�
Pk

i=1 �i =
Pk

i=1 i = n.

� �1 < n.
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Then Red still wins by following exactly the same strategy as in the previous section of �rst
�lling in the keypoints and then breaking the largest blue intervals until Red plays it's last point
when it follows the Stage III rules. The proof that the strategy is well de�ned and wins is almost
exactly the same as the one in the previous section so we will not repeat it here.

Note that this generalization includes both the original game and the \batched" version in
which each player plays the same number (> 1) of points at each turn. Note, too, that k; �i; and
i need not be �xed in advance. For example, Blue may decide at every move how many points he
will play and then Red plays the same number.

We conclude this section by noting that the condition �1 < n is essential since otherwise Blue
would play the keypoints, forcing a tie.

4 The line segment version

We now move on to the version of the game played on a line segment. We consider it to be horizontal
and parameterized as [0; 1]. The scoring is the same as in the basic circle game except that the
player with the leftmost point claims everything between 0 and the point, and the player with the
rightmost point claims everything between the point and 1. We assume that n > 1, and points
cannot lie upon each other. When n = 1, Blue wins by placing onto 1

2
.

We modify some of the old de�nitions and introduce new ones:

De�nition 2 The n points ui =
1

2n
+ i

n
; i = 0; 1; : : : ; n� 1 are keypoints.

The left segment is the segment from 0 to the leftmost red or blue point. The right segment is
the segment from the rightmost red or blue point to 1. The border interval is the union of the left
and right segments. An interval is a section of the line segment with red/blue endpoints and no
red/blue points in its interior. We consider the border interval an interval. An interval, including
the border interval, is monochromatic if its endpoints have the same color, and bichromatic if they
have di�erent colors. With this de�nition of intervals, Lemmas 1 and 2 are true for the line segment
as well.

We denote the total length of all of the blue intervals|including, if appropriate, the border
interval|by Bm, the total length of all of the red intervals|again including, if appropriate, the
border interval|by Rm. When the border interval is bichromatic, we use Bb to denote the length of
the left/right segment with a blue endpoint and Rb to denote the length of the left/right segment
with a red endpoint. If the border interval is monochromatic, then Bb = Rb = 0: Since all
bichromatic non-border intervals are equally shared by both players R�B = (Rm+Rb)�(Bm+Bb)
and, as in Section 2, we design our strategy so that Red �nishes with the right hand side of the
equation > 0:

We now introduce the line strategy, a modi�ed version of the circle strategy. Figure 3 shows an
example.

Red's Line strategy

Stage I: If there is an empty keypoint then Red plays the keypoint. If u0 or un�1 have
not yet been played then Red should play onto one of them �rst. Stage I ends after
the last keypoint is played by either Red or Blue. Note that the game may �nish
in Stage I.
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Figure 3: There are four points to be played for both Blue and Red. The white dots represent
Blue's points and the black dots represent Red's points. We label the dots in chronological order.

Stage II: If there is no empty keypoint and it is not Red's last move then

(i) if there exists at least one blue non-border interval, then Red should break a
largest blue non-border interval by placing her point inside.

(ii) if the border interval is the only blue interval, then there are two possible
cases:

(a) One of the blue endpoints of the blue border interval is a keypoint:
Without loss of generality assume that it is u0 (the other case is symmetric)
and the other endpoint is 1 � `: From Stage I the other endpoint cannot
be the keypoint un�1 so ` < 1

2n
: Red now places her new point at x where

x is anywhere in (`; u0):

(b) Neither of the endpoints of the border interval are keypoints: Let ` be
the length of the blue border interval; ` < 1

n
. There must then exist a

bichromatic key interval (Lemma 2). Red places her new point in that
interval to form a new red interval of length > `:

Stage II ends after Blue plays his last point.

Stage III: If Red is placing her last point, we have two mutually exclusive cases:

(i) if there exists more than one blue interval, then Red should break a largest
non-border one.

(ii) if there exists only one blue interval, then let its length be `; we will see below
that ` < 1

n
: Red should go to a bichromatic key interval (one will exist from

Lemma 2) and claim a red interval of length > ` as follows.

{ If the bichromatic key interval is not the border one, Red can do this by
creating a new red interval of length > `:

{ If the bichromatic key interval is the border one, then Red already pos-
sesses 1

2n
of it because it has all of either [0; u0] or [un�1; 1]: Red can

therefore go to the other side it does not possess, and grab enough length
to have a red border interval of length > `.

Theorem 2 The line strategy is a well-de�ned winning strategy for Red.
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Proof: Note that this strategy di�ers in at least one major aspect from the circle strategy: since
we have lost circular symmetry it cannot be guaranteed that Blue plays onto at least one keypoint,
and so it is possible that the game will end in Stage I, with Red playing all n keypoints. In this case,
all red intervals (including, possibly, the border interval) are key intervals and all blue intervals
have length < 1

n
. By Lemma 1 Blue and Red have the same number of monochromatic intervals,

so Bm < Rm. If the border interval is monochromatic, then Bb = Rb = 0 and Red wins. If the
border interval is bichromatic, then one of its endpoints must be the red point u0 or un�1. This
implies that Bb < Rb =

1

2n
, and Red wins.

In what follows we may therefore assume that Blue plays onto at least one keypoint during the
game. We will show that at the end of the game it will always be true that Bm < Rm and, if the
border interval is bichromatic, then Bb � Rb. The theorem will follow.

First note that under this assumption Stage I always ends with all keypoints covered, and
Stage III is reached. Note further that Red's �rst move is onto either u0 or un�1.

We consider Stage II. After Blue's every move there exists at least one blue interval (possibly
the border interval) by Lemma 1. If there is only one such blue interval, there is no red interval.
Thus, one of the two conditions (i) or (ii) of Stage II holds. The strategy is clearly well de�ned in
cases (i) and (ii)(a), the validity of (ii)(b) follows from Lemma 2.

We will need one more observation.

Lemma 3 After Blue's last move, there is no blue key interval.

Proof: Let k be the number of keypoints played by Blue, where 1 � k � dn
2
e. There

are therefore at most k�1 blue key intervals after Stage I. Red occupies n�k keypoints
in Stage I, and so Stage II lasts for k � 1 rounds. This is suÆcient for all blue key
intervals to be broken, since a blue key interval is longer than any other blue interval
in Stage II (i) and Stage II (ii)(a).

We now prove that Red wins. There are two cases.

Lemma 4 Assume that case (ii) of Stage II never occurs. Then all red intervals are

key intervals after Blue's last move.

Proof: After Stage I all red intervals are key intervals, since Red has only played
keypoints and all keypoints are covered. During Stage II Red uses all her points to
break blue intervals (since case (ii)(b) does not occur), and so creates only bichromatic
intervals. As Blue cannot create red intervals, all red intervals remaining after Stage II
are indeed key intervals.

We examine the result of Stage III, assuming that case (ii) of Stage II did not occur. Assume �rst
that Red plays case (i) of Stage III. There are then equal numbers of red and blue intervals left
after the last move. Since all blue intervals have length < 1

n
by Lemma 3, and all red intervals

are key intervals by Lemma 4, we have Bm < Rm. If the border interval is monochromatic, then
Bb = Rb = 0 and Red wins. If the border interval is bichromatic, then its red endpoint must be u0
or un�1 (since Red plays case (i) of Stage II only), and so Bb � Rb =

1

2n
and Red wins.

On the other hand, assume now that Red plays case (ii) of Stage III. Then Blue has total length
`, Red has > `, and so Red wins.

We now consider the remaining case, where case (ii) of Stage II does occur.
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Lemma 5 Assume that case (ii) of Stage II occurs at least once. After Red's last move

in Stage II, there is no blue non-border interval and B < R.

Proof: We prove that the statement is true after the last occurrence of case (ii) in
Stage II, and after each subsequent move by Red.

Consider the last occurrence of case (ii). Before Red's move, the border interval is the
only blue interval.

If Red plays case (ii)(a), there is no blue interval at all after Red's move. We have then
Bm = Rm = 0 and Bb < Rb, which implies B < R.

If Red plays case (ii)(b), Red claims a red interval longer than the blue border interval.
So after Red's move we have B < R, as Bm < Rm and Bb = Rb = 0.

Consider now the remaining moves of Stage II. In all these moves Red plays case (i),
and so we can deduce that Blue uses his move to create a new blue non-border interval.
Red immediately breaks this blue interval. This leaves Bm, Rm, Bb, and Rb unchanged
and destroys the only blue non-border interval. The claim therefore remains true after
each subsequent move by Red, and in particular after Red's last move in Stage II.

We consider the situation right before Blue's last move. By Lemma 5, there is no blue non-
border interval, and B < R.

If the border interval is blue before Blue's last move and Blue uses that move to create a blue
non-border interval move, Red plays case (i) of Stage III. This breaks the new blue non-border
interval, returning B and R to their state before Blue's last move, and so Red wins.

In all other cases there is a single blue interval after Blue's last move. It cannot be a key interval
by Lemma 3, and so, by Lemma 2, there is a bichromatic key interval. Red claims a red interval
longer than the blue interval, and wins.

5 Conclusions

We have given strategies for one-dimensional competitive facility location, allowing the second
player, Red, to win. The margin by which Red wins is very small, however, and in fact Blue can
make it as small as he wants. Is there a strategy that would allow Red to win by a larger margin?
The answer is no|our arguments can easily be transformed into a strategy that allows the �rst
player, Blue, to lose by an arbitrarily small margin.

Do our �ndings have any bearing on the two-dimensional Voronoi Game? The concept of
keypoints turned out to be essential to our strategies. We have seen that a player governing all
keypoints cannot possibly lose the game. Is there a similar concept in two dimensions? A natural
attempt would be to de�ne a uniform square grid of keypoints. Perhaps surprisingly, a player
governing this grid can still lose the game by a considerable margin.
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