NEW LOWER BOUND TECHNIQUES FOR
DISTRIBUTED LEADER FINDING AND
OTHER PROBLEMS ON RINGS OF
PROCESSORS

Hans L. Bodlaender

RUU-CS-88-18
April 1988

Rijksuniversiteit Utreﬁcht

L2Wte
a 3 Vakgroep informatica
G 4

7 AV Padualaan 14 3584 CH Utrecht

Corr. adres: Postbus 80.089, 3508 TB Utrecht
Telefoon 030-531454
The Netherlands

NEW LOWER BOUND TECHNIQUES FOR
DISTRIBUTED LEADER FINDING AND
OTHER PROBLEMS ON RINGS OF
PROCESSORS

Hans L. Bodlaender

Technical Report RUU-CS-88-18
April 1988

Department of Computer Science
University of Utrecht
P.O. Box 80.089, 3508 TB Utrecht
The Netherlands

A former version of this paper appeared as “A new lowerbound technique for distributed
extrema finding on rings of processors” , technical report RUU-CS-87-11, Dept. of Comp.
Science, University of Utrecht. This version contains several new results.

New Lower Bound Techniques
for Distributed Leader F inding
and other Problems on Rings of Processors*

Hans L. Bodlaendert
Department of Computer Science, University of Utrecht
P.O.Box 80.089, 3508 TB Utrecht, the Netherlands

Abstract

Several new lower bounds are derived for deterministic and randomized extrema
finding and some other problems on asynchronous, non-anonymous rings of processors,
where the ring size n is known in advance to the Pprocessors.

With a new technique, using results from extremal graph theory, an Q(nlogn)
lower bound is obtained for the average number of messages for distributed leader
finding, on rings where the processors know the ring size n, and processors take iden-
tities from a set I with size as small as cn, for any constant ¢ > 1. Formerly, this bound
was only known for special values of n, and exponential size of I. Also, improvements
are made on the constant factor of the Q(nlogn) bound.

An elementary, but powerful result shows that the same bounds hold for ran-
domized algorithms. It is shown that §2(nlogn) lower bounds can be derived for the
expected message complexity for computing AND on an input 1, OR on an input 0"
or XOR over all inputs, even when processors have unique identities. This confirms a
conjecture of Abrahamson et. al. [2).

1 Introduction.

Consider an asynchronous ring of processors. Each processor is distinguished by a unique
identification number, taken from some index set I. In this paper we assume that the
size n of the ring is known in advance to the processors. There is no central controller.
We consider two (types of) problems(s). The first problem we consider is to design a
distributed algorithm that “elects” a unique processor as leader (e.g. the highest numbered
processor), using a minimum number of messages. The second type of problem is when
each processor has, besides its identification number, an input bit, and some cyclic boolean
function must be computed over the string of input-bits.

We assume that the processors work fully asynchronous and cannot use clocks or time-
outs. Hence we can assume that the algorithm is message-driven: except for the first
message upon initialization, a processor can only send messages as a result of the receipt

*Part of this research was done while the author was visiting the Laboratory of Computer Science of
the Massachusetts Institute of Technology, with a grant from the Netherlands Organization for Scientific
Research (N.W.0.).

tElectronic mail: mcvax!ruuinfthansb.

of a message. We also assume that processors and the communication subsystem work
error-free and that links work in a FIFO-manner.

There are basically two variants: the ring may be unidirectional (all messages go
in one direction) or bidirectional (messages can go in both directions). For bidirectional
algorithms, one has the variant where the ring has “a sense of direction”, i.e. each processor
has the same idea about “left” and “right”, and the variant where processors do not have
a sense of direction. We will assume the former case, which only strengthens the results.

Much work has been done to obtain good upper and lower bounds for the different
variants of both types of problems.

In this paper, we concentrate on the leader finding problem. In section 8 we show what
results evolve when the techniques are applied to some other problems.

In table 1, the best known upper bounds for the leader finding problem are summarized.
None of these algorithm requires that processors know the ring size. (H, is the n’th
harmonic number, i.e. H, = Y%, } ~ 0.69nlogn).

I average | worst-case
Unidirectional nH, [10] 1.356nlogn + O(n) [11]
Bidirectional with sense of direction 32énH,. [7,13] [1.356nlogn + O(n) [11]
Bidirectional without sense of direction lzénH,, [7,13] | 1.44nlogn + O(n) [16,17]

Table 1: Overview of upper bounds for leader finding problem.

Pachl, Korach and Rotem [20] obtained Q(n log n) lower bounds for the average and worst-
case number of messages on unidirectional and bidirectional rings without known ring
size, and the worst-case number of messages on rings with known ring size. Similar lower
bounds, improving with a constant factor the results in [20], can be found in [5,6] and [14].

It has long been an open problem to determine the average number of messages on
rings with a fixed ring size. Recently, Duris and Galil [12] obtained lower bounds of
(3 —¢e)nlogn — O(n) for the average number of messages on unidirectional rings with fixed
ring size, and (—)nlogn — O(n) for the average number of messages on bidirectional
rings with fixed ring size. Their proof assumes that n is a power of 2, and requires that
the size of the index set I is exponential in n.

In [19] Pachl gives a lower bound for probabilistic unidirectional algorithms. We only
deal with randomized algorithms (i.e. algorithms that succeed with probability 1, and can
use randomization).

In this paper we prove Q(nlogn) lower bounds for unidirectional and bidirectional
rings with any fixed ring size 1, where the size of the set of identities I may be as small as
cn, for any constant ¢ > 1. To be precise, for unidirectional rings we have a lower bound
of (L — ¥)nlogn ~ O(n), for all n, and (1 - %)nlogn — O(n) for infinitely many n. If
we allow that |I| > n2, then we have lower bounds of %nlog n and %nlog n, respectively.
The respective coresponding lower bounds for bidirectional rings are % % - ;1,-)an -
O(n), (1 - L)nlogn — O(n), §nH, — O(n) and (% — e)nH,.

Note that if |I| — n is very small, then one can design algorithms which use less than
(nlog n) messages. For example, one can turn all processors with an identity, which is one
of the n—1 smallest in I “inactive”, and then run a variant of Petersons 1.44n logn+O(n)
unidirectional algorithm [21]. This gives an algorithm using O(nlog(|I| — n)) messages
(worst-case). (This observation was made by Gerard Tel.)

Also, we show, with an elementary but powerful result, that the same lower bounds
hold for randomized algorithms.

Next, suppose that each processor has beside its unique identity an input-bit, and
some cyclic boolean function (like AND, OR, XOR) of the sequence of input bits must
be computed distributedly. Any such function, that is not constant has a worst-case bit
complexity of (nlogn) [18], even if processors have identities taken from a set I with
[I| > nlte, for constant ¢ > o [8].

Abrahamson and al [2] define the expected bit complexity of a (randomized) algorithm
to be the maximum over all inputs of the expected number of bits transmitted on an
anonymous ring with that input. They show that every non-constant function has expected
bit complexity 2(n./Tog n) and give a function that matches this bound. They conjecture
that OR and AND have expected bit complexity ©(nlogn). We show that the conjecture
holds, even if processors have identities. Also, the expected number of messages over
all inputs of randomized algorithms computing XOR is shown to be Q(nlogn). Note
that there exist simple determinstic algorithms for AND and OR with the average bit
complexity over all inputs O(n) [4].

This paper is organized as follows. In section 2 some definitions and preliminary results
are given. In section 3 we consider leader finding on unidirectional rings with certain ring
sizes. In section 4 the results are extended to arbitrary ring sizes, and in section 5 to
bidirectional networks. In section 6 a negative result on randomized algorithms on non-
anonymous networks is given, relating the average number of messages for deterministic
algorithms, and the expected number of messages for randomized algorithms. In section
7 some other problems on rings of processors are considered.

2 Definitions and preliminary results.

For an index set I, define D(I) to be the set of finite, non-empty sequences of distinct
elements of I. The concatenation of two strings s = s;---sx and t = ¢, ---#; is denoted
by s-t=5;---8ty---t;. The I'th element of a string s is denoted by s;. The length of a
string s = s; - - - 8 is denoted by length(s) = k. The set of finite, non empty sequences of
distinct elements of I with length k is denoted by Dy(I) = {s € D(I) | length(s) = k}.

For the sake of analysis, we assume a (clockwise) numbering of the processors
1,2,...,n. (n is the size of the ring; the numbering is not known to the processors).
We say a ring is labelled with s = s;...3, € D,(I), if for each i,1 < i < n, processor i
has identity s;.

Further we denote X(I) to be the set of all sets of |_J-£-l_| disjoint strings from Dy(I),
ie. Xp(I)={S C Dx(I) | |S| = |{l] and (Vs,t € S:s# t = Vi,j < k:s; #1;))}.

For k|n, we say that a string s € D,(I) is derived from S € Xi(I), if s is formed by
concatenating £ different elements from S.

Next we review some results from extremal graph theory. The interested reader is referred
to the book of Bollobés [9], for background, proofs, etc.
Define a(m, 1) (@(m, 1)) to be the maximum number of edges in a directed (undirected)

graph with m vertices, that does not contain a cycle with length !, and let 8(m,l) =
1 _ 2] m,l)
m(m-1

Lemma 2.1
VN,I,3<I<N:oN,l)< &N,)+ iN(N -1).

Proof.

Let G = (V, E) be a directed graph with a(N,l)+ JN(N — 1) + 1 edges. It follows that
there are at least a(N,!)+ 1 pairs of nodes v, w with (v, w) € E and (w,v) € E. Hence G
contains a cycle with length [. O

Theorem 2.2 (3]
Let G = (V,E) be an undirected graph with |V| = N,|E| = M, and let Il € Nt be a

positive natural number, such that I > |1(¥ +3)], and M > l —2 1) + (n —é +2) .

Then G contains a cycle with length r, for every r,3 < r <.

Corollary 2.3
LetN>l>%N+3andlet3$r5!. Then

o< (5)+(V)?)

@ s (150) (N) e,

(i) B(N,7)> o2
=N N2
Proof.

(i), (ii) follow directly from theorem 2.2. and lemma 2.1.
(iii) can be derived as follows:

+ O(%).

FI-D+FWN -1+2)N-1+1) 1

AN = 1- NNV - 1) 2

_ 1 N4 1P -IN4+3N-3l+2+ 32 -1
T2 N(N -1)
1 IN(N-1)+3iN+12—IN+3N +331+2
T2 N(N -1)

IN 2 1
= ¥a-p v -p ToF

l 2 1

Theorem 2.4 [9]
Let G = (V,E) be an undirected graph with |V| = N,|E| = M. Let k be a natural

number and let M > 90kN#*. Then G contains a cycle of length 2! for every integer
Lk<I<knt.

Corollary 2.5
Let I beeven; 4 <1 < 4/N. Then

(i) a(N,1) < 180NV/N.
(ii) a(N,l) < 180NN +iN(N -1).

1 180vN
D == .
(ul) ﬂ(N’l)—z N—l
Proof.
Use Theorem 2.4 with k = 2.]

3 Lower bounds for leader finding on unidirectional rings
with certain ring sizes.

In this section we consider leader finding on unidirectional rings, and assume that the ring
size n is a power of 2. We prove a lower bound of (% - EI!')"' logn — O(n) messages, for
the average case on unidirectional rings with index set I, with |[I| > en,1 < ¢ £ 2. For

|I| > n?, we prove a lower bound of jnlogn — O(n) messages, which improves a lower
bound of Duris and Galil [12).

For our analysis we first remark that as links operate in a FIFI-manner, the number
of messages sent does not depend on the relative time it takes to send messages, in the
unidirectional case. So we may as well assume that all processors start simultaneously at
time 1, and each message takes unit time. As a consequence, it only depends on the id’s
of the t — 1 processors, directly preceding a processor i, and its own id, whether or not
processor i will send a message on time t. (This technique is very similar to techniques
used in [20]).

Now consider some fixed ring size n and index set I. Let A be an asynchronous
unidirectional leader finding algorithm for ring size n and index set I.

We may assume that after completion of the algorithm, every processor knows the
identity of the leader. (Other variants differ in O(n) messages, at most.)

Lemma 3.1

For all r € Dy(I), and t < n — 1 there is at least one processor that sends a message at
time t, on a ring labelled with r, when executing A, if |I| > n + 1.

Proof.

Suppose not. Suppose processor ¢ becomes the leading processor. At time t, processor 1 —1
(or n, if ¢ = 1) cannot distinguish the case that processor i has identity r;, or processor ¢
has an identity, not in . Contradiction. |

For all k < in, we now define for each S € Xi(I) the following directed graph G(S) =
(S, E(S)), by E(S)={(s,t) | s,t € S : processor 2k will not send a message between time
k + 1 and 2k, on a ring labelled with r € Dp(I), with s = 7y ---7x and ¢ = 741 - Tk}

Lemma 3.2
Let k|n,k < 4n; let S € Xi(I). Then G(S) does not contain a cycle with length £.

Proof.
Suppose G(S) contains a cycle with length %, and let sl,...,s% be the successive nodes

on this cycle. Let r = s! . s2....s%. Now consider an execution of A on a ring labelled
with r. (Note that r € Dy(I).)

It follows from lemma 3.1. that there is at least one processor that sends a message at
time 2k. So suppose processor (ik + j),0 < j < k — 1 sends a message at time 2k. Then
processor ik (or processor n, if i = 0), sends a message between time k+1 and 2k. It follows

that (8' 173‘) = (r(1—2)k+1 «T(i-1)ks T(i-1)k41 - - rtk) ¢ E(S) (Or, if i =1, (37‘. 81) ¢ E).
Contradiction.]

Theorem 3.3
Let k|n, k < 3n. Then the number of messages, sent on a unidirectional ring with known
ring size n between time k + 1 and 2k, averaged over all ring labellings r € Dy(I), is at

least ((I_J,I;IJ v }) -

Proof.

Consider some S € Xj(I). Since a non-edge in G(S) corresponds to a message, sent by
processor 2k, between time k+ 1 and 2k the average number of messages sent by processor
2k between time k+1 and 2k, over all rings, labelled with r € D,(I), which is derived from

S, is at least §(l.J'ElJ’F) Note that each r € Dy,([) is derived from the same number of
S € Xi(I). It follows that the average number of messages, sent by processor 2k between

time k + 1 and 2k is at least §([_l,élj,}-) The result now follows by symmetry, because
each processor can be taken as processor 2k. D

We are now ready to prove the main results in this section.

Theorem 8.4

For all ¢,1 < ¢ < 2, and all leader finding algorithms on unidirectional rings, where
processors know the ring size n, the average number of messages sent on a ring of size n,n a
power of 2, over all ring labellings r € D,,(I), with |I| > cn, is at least (1 — %)nlog n—O(n).

Proof.

Denote the average number of messages, sent between time 28 + 1 and 2't1, over all
r € Dn(I), by av(2} + 1,2+1). We now have the following lower bound for the number of
messages, which must be estimated:

logn—2 logn—2

Y (@ +1,2%) >) n ﬂ(LmJ

- lo::o—z s n \? N
> &\ (Iﬁi) "o
>

logn=2 (o n x 1
> (m“m’ 'O(Ué.i)*) _0(5))

logn—2

1 1 1
> n(;logn—-—c-i-logn—— E O(E;)) — O(logn)

=1

1 1
= (Z - g)nlogn — O(n).

By taking a somewhat larger index set, one can improve the constant by a factor 2.

Theorem 3.5

For all leader finding algorithms on unidirectional rings, where processors know the ring
size n, the average number of messages sent on a ring of size n,n a power of 2, over all
ring labellings r € Dy (I), with |I] > n?, is at least inlogn — O(n).

Proof.
logn—2 |Il n logn—2 1 180 jti] 1
Bl)2 - —Y2) = —nlogn — O(n). m]
2 lzls 2 @)

4 Lower bounds for leader finding on unidirectional rings
for all fixed ring sizes.

In this section we modify the results of section 3 for the case that the ring size n is not
fixed, but any arbitrary number € N. Basically, we lose a factor of 2 in comparison to the
results in section 3, where certain assumptions on n could be made.

Let k < in, n = e1k+cg(k—1). Foreach § € Xi(I), we now define a graph Gs = (S, Es),
with Eg = {(s,t) | s,t € S,s # t, processor 2k — 1 will not send a message between time
k and 2k — 1 on a ring labelled with r € D,(I), with s = 71...7% and #1...tx_1 =
Tk41 - - -T2k—1 and processor 9k — 2 will not send a message between time k and 2k —2on
a ring labelled with 7 € Dp(I) with 81...8k-1 = T1..-Tk-1 and ty...0k—1 = Tk..-Tk—-2}

Lemma 4.1

Let k<in, n=cik+eca(k-1), S€ Xi(I). Then G(S) does not contain a simple cycle
with length ¢; + ca.

Proof.

Suppose not. Let s'...sett% form a simple cycle in G(S) with length ¢; + ¢c2. Let
#i = si...si_,. Then r=s!...sata+ g1+ € D,(I). There is at least one processor
that sends a message at time 2k — 1 on a ring labelled with r. Suppose the processor has
identity .9;. j # k, else processor si_, sends a message at time 2k — 2, contradiction. We
now consider two cases.

CaseL i —1 € {1,...c1}. The processor with identity si~! sends a message at time
2k — 1 — 7, hence the processor with identity s;;’_ll sends a message at time 2k — 2 — j. It
follows that 2k—2—j < k = j > k—1, and because j # k,j = k—1. But (s-1,8') € E(S),
contradiction.

Case II. i — 1 € {0,e1 + 1,...,61 + c2 — 1}. Letzl—z—l ifi-1> 0, and
¥ =c¢ +ecifi—1=0. Now the processor with identity sk , sends a message at
time 2k — 1 — j € {k,...,2k — 2}, which is a contradiction. O

Lemma 4 2

Let k > in, n = etk + ca(k—1). Let m = [Jrl_l The number of messages, sent on a
unidirectional ring with known ring size n between time k and 2k — 1, averaged over all
ring labellings r € D,,(I), is at least B(m,c1 + ¢2) - §

Proof.

For each § € Xi(I), let A(S) = {(s,t) | s € S,t € S,s # t, processor 2k — 1 sends a
message between time k and 2k —1 on a ring labelled with r € Dn(I), with s =r;...7¢ and
t1...tk—1 = Tky1...T2k-1}, and B(S) = {(s,t) | s € S,t € S, s # t, processor 2k — 2 sends
a message between time k and time 2k — 2 on a ring labelled r € Dn(I), with 81...8k_1 =
Pi...Tk—y and ty...tk_y = Tk...T2k—2}. Clearly A(S)UB(S)UEg = {(s,t)|s,t € S,8#
t}. Hence, for each S € X(I), |A(S)| + |B(S)| = 3m(m — 1) — a(m, ¢1 + ¢2). We consider
two cases.

Case 1. The average of |[A(S)| overall S € X(I)is at least $(3m(m—1)—a(m, c;+c2)).
For S € Xx(I),let 7(S) = {r € Dp(I)| r1...Tk € S,Tk41...72x € S}. Foreach S € Xi(J),
the average number of messages sent by processor 2k — 1 between time k and 2k — 1 over
all rings r € 7(S), is at least |A(S)|/m(m—1). As each ring r € Dn(I) belongs to the same
number of sets (S), S € Xx(I), it follows that the average number of messages, sent by
processor 2k — 1 between time k and 2k — 1, is at least the average over all § € Xi(I) of
|A(S)|/m(m — 1), hence at least }(m(m — 1) — a(m, c1 + €2))/m(m — 1) = 38(m, 1+ c2).
By symmetry, the same bound holds for the average number of messages sent by any
other processor i between time k and 2k — 1. Hence, the average number of messages, sent
between time k and 2k — 1 is at least 38(m,c; + ¢2).

Case II. The average of |B(S)| is at least 3(3m(m — 1) — a(m, ¢c1 + ¢2)). Similar as in
case 1, one derives that the average number of messages, sent between time k and 2k — 2
is at least 28(m,c; + c2). So the result follows. m]

Lemma 4.3

Let t <k < —n, n=ck+cyk—1). Let m = [l,‘-lj The number of messages, sent on
a umdlrectlona.l ring with known rmg size n between time ¢t and 2t — 1, averaged over all
ring labellings r € Dy(I), is at least £ - B(m,c1+ ¢2) - §

Proof.
The result follows from lemma 4.2, by observing that if ¢; > ¢2, then the number of mes-
sages sent at time ?3 is at least the number of messages, sent at time ;. O

Lemma 4.4
vVt < —n 3k<-n,k>t n = ¢k + ca(k — 1), ¢1 + c2 is even, and;> 1—-7-;—?—
2(t—1)

n (w2 -2)

Proof.

Let t be given. Let c3 = L-(;Ei)-J H c3 is even, let ¢12 = ¢3,c4 = 1 — €12+ (T — 1). Now

0<cs<t—1.Hezisodd,let cra=c3—1,¢c4= n—cp2(t—1). Nowt <es < c2+(t-1).
So, in both cases, n = ¢12(t — 1) + ¢4, €12 is even, and 0 < ¢4 < c12+ (¢ —1). Write

cg=¢5-¢c12+¢c1, 0L ¢ <2 Let k=t+c¢5, cg =c12—¢C1. Clearly, ¢; + ¢2 = €12 is

even. We claim that n = c1k + ¢(k — 1), and § > £ — 1. First note that ek + ca(k—1) =

612(k - 1) +c = C]z(t — 1) + ¢5c12 +c = 612(t — 1) + ¢4 = n. Secondly,

APt P . +1=(t_1)(r£‘7_2) o Ae-1)

a5 +1
< =
€12 c12 o — 2 ((_itfl) (Z_thl —2) TGy (Z_'jtfl —2)
12 2(t — 1)? 2 — 1)t
s;+——(-5;1—1)—+1s%+1+—?%—1)—.
n (it—li - 2) n ((t—lj - 2)
14 i —
Hence, — = —— = 1— Cs 21_321_1__1._ 2(t— 1))
kE_ t+ecs T+ cs t n 1 m
Finally, t < in = e 23 k—1<§=> k< gn. O
Theorem 4.5

For all ¢,1 < ¢ < 2, and all leader finding algorithms on unidirectional rings, where
processors know the ring size n, the average number of messages sent on a ring of size n,
over all ring labellings r € Dn(I), with |I| > cn, is at least i é - ;1,-) nlogn — O(n).

Proof.
First we estimate the average number of messages, sent between time 2¢ and 2+ — 1 as
follows (i = 1...|logn]| — 3). Let k > Pn=ck+ck—1),and & >1- E_x-

2(2'-1 as indicated by lemma 4.4.
n 69:13—2

Write L12£,1_| = m. The average number of messages, sent between time 2' and 2l _1is

at least % . -2,} . B(m, ¢y + ¢2), by lemma 4.3. As e1 +¢2 < ZFETj < #, this is at least

9i (& /82 1 1 2 /1 1 1
. 2 _ {22 _— — .= = —_
e (2- () s0(2))25-5(5-5%0(7))>

N =
|
=~}

uo%_al (1 2_1_ _22-1)) n (1 l o (2i))
b S Y A
~ 2 n 2 n(m) c ¢ en

1 1
(— - -(-:3) nlogn — O(n). m]

[

N =

10

Theorem 4.6

For all leader finding algorithms on unidirectional rings, where processors know the ring
size n, the average number of messages sent on a ring of size n, n a power of 2, over all
ring labellings r € Dp(I), with |I| < n?, is at least jnlogn — O(n).

Proof.
Similar as in theorem 3.5 and 4.5. m]

5 Lower bounds for leader finding on bidirectional rings.

The lower bounds for problems on bidirectional rings are of the type, where we average
over all rings, labelled with strings € Dy(I), but where the delay times may be chosen
in any manner, in order to obtain an as large as possible number of messages. All lower
bounds for the average number of messages for leader finding on asynchronous rings we
know of, are of this type. Here we assume that all message delay times are equal, i.e. each
message takes unit time. Further assume that when a processor receives two messages
(from both neighbors) at the same moment, it handles the left one first. In this way we
lose the implicit non-determinism, associated with asynchronous, bidirectional rings.

So we may assume that we have an asynchronous, message-driven algorithm, running
on a synchronous ring. We again assume that all processors start to send at time 1. Note
that it depends only on the id’s of the processors with distance at most £ — 1 to processor
i, whether or not processor i will send a message at time ¢ or not.

Lemma 5.1

Let |I| > n+ 1. Then, for all r € Dy(I) and ¢ < in, there is at least one processor that
sends a message at time ¢ on a ring labelled r.

Proof.
Similar to lemma 3.1. O

Now for all k < %n, 2|k, 1 < %k and each S € Xi(I) we define the following directed graph
Hi(S) = (S, E(S)), by Ei(S) = {(s,t) | 5,t € S; when a ring is labelled with r € Dn(J),
with 8 = 71...Tk,t = Tk41...T2k, then none of the processors le+1,3k+2,..., 13k -
1,1}k sends a message at time l}.

Lemma 5.2
Let kn, 2|k, [< 1k, k < 1n,8 € Xi(I). Then Hi(S) does not contain a simple directed
cycle with length £.

Proof.
Suppose Hj(S) contains a cycle with length %, say s1,... ,:EJ. Then on a ring labelled
81+ 82 - -8g NO Processor sends a message at time /. Contradiction. O

Theorem 5.3
Let k|n, 2|k, 1 < 3k, k< in. Then the average number of messages, sent at time [, over

all rings, labelled with r € D,(I), is at least % - ﬂ(l)I;l, 2

11

Proof.

Consider some S € Xi(I). Since any non-edge in Hi(S) corresponds to a message, sent at
time I, by a processor in %k +1... l%k, the average number of messages sent by processors
1k +1,...,13k at time [is at least AL, %). Again we argue that each r € Dn(I) is
derived from the same number of S € Xi(I). It follows that the average number of mes-
sages, sent by processors %k +1,..., I%k at time I, over all r € Dy(I) is at least ﬂ(J-,I‘-l, %)
The result now follows by symmetry, as every k successive processors can be taken as
processors 3k +1,...,13k. O

Theorem 5.4

For all ¢,1 < ¢ < 2, and all leader finding algorithms on bidirectional rings, where proces-
sors know the ring size n, the average number of messages sent on a ring of size n,n a power
of 2, over all ring labellings r € Dy(I), with |I| < cn, is at least 1@ - F)nlogn — O(n).

Proof.
Tt follows from theorem 5.3. that between times }k + 1 and %k, at least ,B(Jg,i‘-) -2

messages are sent, on the average over all ring labellings r € Dn(I). Now the result
follows, similar as in theorem 3.4. |

Similar as in theorem 3.5., one can improve the constant by taking |/ | > n?. In this
way one obtains basically the same lower bound as Duris and Galil [12], with the main
difference that |I| is here polynomial instead of exponential in n.

Theorem 5.5
For all leader finding algorithms on bidirectional rings, where processors know the ring

size n, the average number of messages sent on a ring of size n, n, a power of 2, over all
ring labellings r € Dy(I), with |I| 2 n?, is at least inlogn — O(n).

For n of the form 2m!, we can obtain lower bounds with (asymptotically) a better constant
factor. Define for n even: f(I,n) = min{k > 2 | 2|k and k|n}.

Lemma 5.6

in
1 1
Let n = 2(m!). Then Y =———— > =Hn — O(m).
=1 f(l’ n) 2
Proof.
Write
A mo i GG
Y T h& X Tum
I=5-(gay)+1
m—-1 1 -l-n 1
2 (=) :
iE-_-:l ,Z_-; G+ 1)V G+ e+ 1)

12

m-1 1

= 2_: S(Hi— 1)
> 'Y Lin(i) - o(m)
=1

- %ln((m ~ 1)) - O(m)

= %H,. — O(m).
(In(z) denotes the logarithm of z to the base e.) a
in g
Note that ;f(l,) = E) +0(1)
Theorem 5.7

For every € > o, there are infinitely many n € Nt, such that for all leader finding
algorithms on bidirectional rings, where processors know the ring size n, the average
number of messages sent on a ring with size n, over all ring labellings 7 € D, (I), with
|I| > n2, is at least (5 — €)nHn.

Proof.
It follows from theorem 5.3. that one can estimate the desired average by

Eon sy, (1 oy
~ f(l,n) " \f(,n)’ f(l,n)) T i fin) |2 _—711%-—1

Note that

fn 180, /7L
VA _ o).

When we take n of the form 2 - (m!), then from lemma 5.6 and the observation that

in in
S = Y 7 — 00
I=1 f(,n) =1 f(tm)
it follows that
in 11
n
= = —nH, — O(m).
L im 21 (m)
The result follows now easily; by taking m large enough by given € > o. O

Note that nH, ~ 0.173nlogn. Combining the techniques of section 4 and of this section
one can also obtain the following results:

13

Theorem 5.8

For all ¢,1 < ¢ < 2, and all leader finding algorithms on bidirectional rings, where proces-
sors know the ring size n, the average number of messages, sent on a ring of size n over all
ring labellings 7 € Dy(I) with |I| > cn, is at least : (% - ;1,-) nHy, — O(n).

Theorem 5.9
For all leader finding algorithms on bidirectional rings, where processors know the ring

size n, the average number of messages, sent on a ring of size n over all ring labellings
r € Doa(I), with |I| > n2, is at least 3nH, — O(n) ~ 0.081nlogn — O(n).

6 Randomized versus deterministic algorithms on non-
anonymous networks.

In this section we give a negative result on randomization for problems on non-anonymous
networks. To ease presentation, we again assume that the algorithm is message-driven,
and the average or expected number. of messages is counted when each message takes unit
time, and all processors become active at the same moment. However, similar results can
be proved when weaker assumptions hold.

We can limit ourselves to randomized algorithms that always terminate within a bounded
number of steps. The following lemma justifies this assumption.

Lemma 6.1

If there exists a randomized algorithm A that solves problem P on networks of type N,
that uses an expected number of messages o on network G € N, and terminates with
probability 1, and a deterministic algorithm B that solves P on networks of type N, then
for every € > 0, there exists a randomized algorithm C that solves problem P on networks

of type N, that uses an expected numer of messages o + € on G, and always terminates
in a finite number of steps.

Proof.
Run A until termination, or if a processor has sent >> a messages. In the latter case,
stop A, start B, and broadcast to stop A. a

A message-driven algorithm A can be seen as an effectively computable function, which
maps each pair, consisting of a state S of a processor and the (non-empty) set m of
incoming messages to the set A((s,m)) of 3-tupples, consisting of a new state S/ of a
processor, a (possibly empty) set of messages m/ it sends, and the probability p € (0,1],
that a processor with state s’ and incoming messages m goes to state s’ and sends messages
m’. We must have for each pair (3,m) : ¥ (4',m' p)eA((s;m)) P = 1-

For a deterministic algorithm, | A((s, m)S| = 1for all (s, m). The entry “1” is sometimes
dropped.

A function A of the form, described above, which is not necessarily computable, is
called a pseudo-algorithm. For each (pseudo-) algorithm A we have a set of deterministic
pseudo-algorithms P.S(A), which are obtained by chosing for each (s, m) a unique possible
transition of A((s,m)) : B € PS(A) & ¥Y(s,m) € dom(A) : (s, m',p) € A((s,m)) :
(s',m',1) € B((s,m)).

If A solves a distributed problem P and always terminates in a bounded number of
steps, then all B € PS(A) solve P too.

14

The set of all input configurations (= the set of all possible labellings of all processors
with an identity and an input) is denoted by I. I is assumed to be of finite size for a given
network G. We assume the identity of a processor to be part of its state. By giving each
processor an extra counter that is increased by one with each state-transition, we may
assume that no state is reached more than once in any run of the algorithm. The set of
possible runs of (pseudo)- algorithm A on input ¢, when each message takes unit time and
all processors start simultaneously is denoted by r(i, A). The set of all pairs (state, set of
incoming messages) reached in run r is denoted by s(r), the set of all actions (state, set of
incoming messages) — (new state, set of outgoing messages) that occur in run r is denoted
by a(r). An action (s,m) — (s',m’) is also somtimes denoted as (s,m) — (8',m,p), if
(s',m',p) € A((s,m)). The probability of an action a = (s,m) — (8',m') is denoted by
p(a), ie. (¢',m',p((s,m) — (s',m'))) € A((s,m)). The set of all actions, possible from
(s,m) is a(A(s,m)) = {(s,m) — (&',m',p) | (¢',m',p) € A((s,m))}. The set of all actions
is a(A) = U a(A,(s,m)).

(a,m)edom(A)
For given A, enumerate the pseudo-algorithms from PS (A) : By, By, Bs,.... In order to
handle PS(A) with infinite size, we use the following notations:

a(4,q)= |J a(B:)

1<i<q
r(i, A, q) = {r € r(i, A) | r uses only actions from a(A)}

Sy = {(s,m) € § | 3(s',m’,q) with ((s,m) — (s',m',q)) € a(4,9)} = |J dom(B;).
1<i<q

PS(A’q)= {Bl"-'7Bq}

a(A,(s,m),q) = a(A,(s,m))N a(4,q).

Theorem 6.2
Suppose that for every deterministic pseudo-algorithm for problem P, the average message
complexity (bit complexity) over all inputs on network G is at least §. Then for every

randomized (pseudo)- algorithm for problem P, the expected message complexity (bit
complexity) over all inputs on network G is at least 8.

Proof.
By lemma 6.1 it is sufficient to prove the result for randomized (pseudo)- algorithms that
always terminate in a bounded number of steps.

Denote the complexity of a run r with compl(r). Let S = dom(A). For a run r €
(i, A), the probability that run r occurs with input ¢ is H p(a).

a€a(r

We prove the result for the case that PS(A) is infinite. 'f‘l:e proof for the finite case is

easily derived from this case. We write:
S compl(r) [] pa)=

rer(i,Aq) a€a(r)

> Y compl(r)- I] w(a)-]I >,

rer(i,Aq) a€a(r) (s,m)€Sq—3(r) aca(A,(s,m),q)

15

_ E compl(r) - H Z { p(a) if (s,m) ¢ s(r) or a € a(r)

rer(i,Aq) (8,m)€Sq a€a(A,(s,m),q) 0 if (s, m) € 8(1‘) and ¢ ¢ a(r)

, if (s,m) ¢ s(r) or a € a(r)
> Z compl(r) E H { p(a) :
rer) BePSiAg)aca(B) 0, if (s,m) € s(r)and a € a(r)
= Z compl(r) - H p(a).
Beps(A,q) rer(i,B) a€a(B)

Hence the average complexity of algorithm A is:

lim, (2 Y compl(r)- I p(a)) /il

i€l rer(i,Ayq) a€a(r)
> lim, (z S % compi) I p(a)) i
i€l BePS(A,g)rer(i,B) a€a(B)
_im Y ((z > compl(rmn)- I p(a))
Beps(A.q) i€l rer(s,B) acax(B)
> lim E H p(a)-6 =4. . a
? Beps(A,q) aca(B)

In other words, for any network G, if there exists a randomized algorithm that solves
problem P on a class of networks including G, then there exists a deterministic pseudo-
algorithm B for P, with the same or better expected bit complexity or message complexity
on G. In several cases one can strengthen the result a little such that B is an algorithm
and not merely a pseudo-algorithm, e.g. if the network size and the number of possible
input-configurations are finite. For instance, we have:

Corollary 6.3

For all n, if there exists a randomized leader finding algorithm on bidirectional (unidi-
rectional) rings with fixed size n with expected message complexity 6, then there exists
a deterministic leader finding algorithm on bidirectional (unidirectional) rings with fixed
ring size n with average message complexity < é.

An important corollary of this result is that theorems 3.4, 3.5, 4.5, 4.6, 5.5, 5.7, 5.8 and
5.9 hold also for randomized algorithms.

7 Other problems on rings of processors.

The same techniques can be used to prove lower bounds for several other problems on
rings of processors. A well-studied problem is the complexity of cyclic functions on rings
of processors, i.e. functions f : I* — ¥’ (2, X' some given alphabets), such that for all
z,y € I" with z is a cyclic shift of y, f(z) = f(y).

We require all processors to decide on the output. Note there is a reduction from the
case where at least one processor must decide on the input to this case, using O(n) extra
messages.

For upper and lower bounds on the message and bit complexity of boolean functions
of this type, see e.g. [2,3,4,8,18].

16

Definition. :

A cyclic function £* — ¥’ is a -global on v C 3%, if for all z € (X")", there is
an y € I°, with f(z) # f(y) and 3k,1 < k' < T Tkmodntl' ' T(k+a—1)modntl =
Ykmodn+1 * * " Y(k+a—1)modn+1-

Theorem 7.1

Let f : " — X' be a cyclic function, thatis o -global on X" C X. Then for any distributed
algorithm that computes f on non-anonymous unidirectional or bidirectional rings, for any
labelling of the processors with identities, any input € (=")", and any possible execution
on a ring with this labelling and input, for every t < %a, there is at least one processor
that sends a message at time .

Proof.
Suppose not, for input z € (X”)". Then every processor must have decided upon time ¢

on the output. But processor (k + 1a — 1)mod n + 1 will be in the same state at time ¢
on a ring with input z or y. Contradiction. O

Similar as in section 3, 4 and 5 one can derive a lower bound for the average number of
messages, sent on unidirectional or bidirectional rings with identities. With the results of
section 6, it follows that the same bound holds for randomized algorithms as well.

Theorem 7.2

Let f : ¥ — ' be a cyclic function, that is a- global on 7 C . For every deterministic,
or randomized algorithm that computes f on bidirectional non-anonymous rings with
identities taken from a set I, with |I| > cn, the average or expected number of messages
over all inputs € (£”)", and all labellings € Dn(I) is at least 1@ - F)nHy - O(n) =
(nlog a). '

Similar, but slightly better bounds follow if the ring is unidirectional, |I| > n2, and/or n
is of a special type. Basically, replace the factor logn by a factor log a in the bounds of
theorem 3.4, 3.5, 4.5, 4.6, 5.5, 5.7 and 5.9. We have some new results for the well-studied
case of cyclic boolean functions.

Corollary 7.3
Let A be any distributed algorithm that computes XOR on a bidirectional ring of pro-
cessors, where each processor has a unique identity taken from I, with |I| > ¢n for some

constant ¢ > 1. Then the average number of messages sent by A over all ring labellings
€ Dn(I), and inputs € {0,1}" is Q(nlogn).

Abrahamson et. al. [2] define the expected complexity of an algorithm to be the maximum
over all inputs of the expected number of bits sent on a ring with that input. They
conjecture that the expected complexity of AND and OR is Q(nlogn). We are even able
to prove a stronger result. Let the expected message omplexity of an algorithm be the
maximum over all inputs of the expected number of messages sent on a ring with that
input.

Corollary 7.4
For any distributed algorithm A, that computes AND, OR or solves the orientation prob-
lem (see e.g. [3,4]) on a bidirectional ring, the expected message complexity is Q(nlogn).

17

Proof.
Take £” = {1} (AND), =" = {0} (OR) or X" = {—} (orientation problem). AND and
OR are (n — 1) -global on X”, the orientation problem is (} — 1)- global on P O

Corollary 7.4 can be extended to non-anonymous rings. In that case the expected message
complexity must be defined as the maximum over all inputs (€ {0,1}") of the average
over all ring labellings € Dn(I) ({I| > en, or |I| > n?) of the expected number of messages
sent on a ring with that input and labelling. Again Q(nlogn) lower bounds follow.

Acknowledgements

This work benefitted very much from suggestions of and discussions with Zui Galil, Anneke
Schoone, Gerard Tel, Marinus Veldhorst and Manfred Warmuth.

References

[1] Abrahamson, K., A. Adler, R. Gelbart, L. Higham, and D. Kirkpatrick, The bit
complezity of probabilistic leader election on a unidirectional ring, Techn. Rep. 86-3,
Univ. of British Columbia, Vancouver B.C., 1986.

[2] Abrahamson, K., A. Adler, L. Higham, and D. Kirkpatrick, Randomized function
evaluation on a ring, (preliminary version), in proceedings 2nd Int. Workshop on
Distributed Algorithms, 1987.

[3] Attiya, C., M. Snir, and M.K. Warmuth, Computing on an anonymous ring, to appear
in J.ACM; a preliminary version appeared in Proc. 4th Ann. ACm Symp. on Principles
of Distributed Computation, pp. 196-203, 1985.

[4] Attiya, H., and M. Snir, Bounds for the average message complezity of distributed
algorithms, to appear in proceedings Agean Workshop on Computing, 1988.

[5] Bodlaender, H.L., Distributed Computing: Structure and Complezity, (Ph.D.Thesis).
CWI Tract 43, CWI, Amsterdam, the Netherlands, 1987.

[6] Bodlaender, H.L., A beiter lowerbound for distribured leader finding in bidirec-
tional asynchronous rings, Techn. Rep. RUU-CS-87-13, Dept. of Comp. Sc., Univ.
of Utrecht, Utrecht, 1987, to appear in Inform. Proc. Letters.

[7] Bodlaender, H.L., and J. van Leeuwen, New upperbounds for decentralized extrema
finding in a ring of processors, in Proc. 3rd Ann. Symp. on Theoretical Aspects of
Computer Science, 1986, pp. 119-129, Lect. otes in Comp. Sc. 210, Springer Verlag,
Berlin.

[8] Bodlaender, H.L., S. Moran, and M. Warmuth, The inherent complezity of asyn-
chronous computations on non-anonymous rings, draft paper.

[9] Bollobas, B., Eztremal Graph Theory, Academic Press, London, 1978.

[10] Chang, E., and R. Roberts, An improved algorithm for decentralized eztrema-finding
in circular configurations of processes, C.ACM 22 (1979) 281-283.

[11] Dolev, D., M. Klawe, and N. Rodeh, An O(nlog N) unidirectional distributed algo-
rithm for exirema finding in a circle, J. Algorithms 3 (1982) 245-260.

18

e o et e

[12] Duris, P., and Z. Galil, Two lowerbounds in Asynchronous Distributed Computation,
Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science, 1987, pp. 326-330.

[13] Flayolet, P., Personal communication, 1986.

[14] Frederickson, G.N., and N.A. Lynch, Electing a leader in a synchronous ring, J.ACM
34 (1987) 95-115.

[15] Korach, E., D. Rotem, and N. Santoro, A probabilistic algorithm for decentralized
extrema-finding in a circular configuration of processors, Res. Rep. CS-81-19. Dept.
of Computer Science, Univ. of Waterloo, Waterloo, 1981.

[16] van Leeuwen, J., and R.B. Tan, An improved upperbound for decentralized exirema-
finding in bidirectional rings of processors, Techn. Rep. RUU-CS-85-23, Dept. of Com-
puter Science, Univ. of Utrecht, Utrecht, 1985. To appear in Distributed Computing.

[17] Moran, S., M. Shalom, and S. Zaks, An algorithm for distributed leader finding in
bidirectional rings without common sense of direction, Techn. Rep. Technion, Haifa,
1985.

[18] Moran, S., and M. Warmuth, Groep theorems for distributed computation, Proc. 5th
Ann. ACM Symp. on Principles of Distributed Computing, 1986, pp. 131-140.

[19] Pachl, J., A lowr bound for probabilistic distributed algorithms, J. Alg. 8 (1987) 53-65.

[20] Pachl, J., E. Korach, and D. Rotem, Lowerbounds for distributed mazimum-finding
algorithms, J. ACM 31 (1984) 905-918.

[21] Peterson, G.L., it An O(nlogn) unidirectional algorithm for the circular extrema
problem, ACM Trans. Prog. Lang. & Syst. 4(1982) 758-762.

19

