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Abstract
Most pattern discovery algorithms easily generate very large
numbers of patterns, making the results impossible to un-
derstand and hard to use. Recently, the problem of instead
selecting a small subset of informative patterns from a large
collection of patterns has attracted a lot of interest. In this
paper we present a succinct way of representing data on the
basis of itemsets that identify strong interactions.

This new approach, LESS, provides a more powerful
and more general technique to data description than exist-
ing approaches. Low-entropy sets consider the data sym-
metrically and as such identify strong interactions between
attributes, not just between items that are present. Selec-
tion of these patterns is executed through the MDL-criterion.
This results in only a handful of sets that together form a
compact lossless description of the data.

By using entropy-based elements for the data descrip-
tion, we can successfully apply the maximum likelihood
principle to locally cover the data optimally. Further, it al-
lows for a fast, natural and well performing heuristic. Based
on these approaches we present two algorithms that provide
high-quality descriptions of the data in terms of strongly in-
teracting variables.

Experiments on these methods show that high-quality
results are mined: very small pattern sets are returned that
are easily interpretable and understandable descriptions of
the data, and can be straightforwardly visualized. Swap
randomization experiments and high compression ratios
show that they capture the structure of the data well.

Keywords: pattern subset selection, low-entropy sets,
MDL, maximum likelihood principle, dense data

1 Introduction
One of the central research themes in data mining has been
the discovery of frequently occurring patterns. Starting from
frequent sets and association rules [1], one of the key goals
has been completeness in discovery: the task is to find all
patterns from a pattern class that satisfy certain conditions.
This goal is, in a way, a very useful one: from the answer we
know exactly every pattern that fulfils the condition.

The drawback is that the number of patterns returned
is typically prohibitively large. Generally, there are lots of
patterns satisfying the conditions, but many patterns convey
roughly the same information about the data.

Recently, several authors have studied the pattern se-
lection problem: given a large set of patterns, find a small
subset of informative patterns. Examples of such work are
[3, 13, 15, 19, 20]. These proposals all manage to reduce the
pattern explosion significantly and achieve massive reduc-
tions in the number of patterns. However, whether these de-
scribe the data in full, or only partly, has a strong influence
on the number of selected patterns: respectively up to hun-
dreds, or only tens.

Lossy approaches, due to the small number of resulting
patterns, allow for very easy interpretation. However, they
cannot explain the data in full detail and may overlook
important and interesting interactions. Lossless approaches,
on the other hand, typically result into slightly more patterns.
While this improved level of detail allows for thorough data
analysis, interpreting or inspecting these groups of patterns
by hand can be more difficult.

In this paper we provide a lossless method for succinct
description of datasets using low-entropy itemsets. Our ap-
proach obtains very small collections of informative pat-
terns, typically in the order of tens of patterns, that are both
readable and provide intuitive descriptions of the data. The
method is inspired by two recent approaches: low-entropy
sets [10] and the MDL-based method KRIMP [19].
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Species ...

Felis Sylvestris

Microt. Arvalis

Microt. Subter.

Lutra Lutra

Mustela Putor.

Cervus Elaphus

Dama Dama

Micromys Min.

Talpa Europ.

Glis Glis

Lepus Europ.

Arvicola Terres.

Apodem. Flavic.

Castor Fiber

Capreolus Capr.

Martes Martes

Sorex Araneus

Erinac. Europ.

Martes Foina

Neomys Fodiens

Sciurus Vulgaris

Clethrio. Glar.

Nycter. Proc.
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Figure 1: Visualization of 23 sets (columns) that our method
selected to describe the occurrence interactions of 23 mam-
mal species.

Informally, a low-entropy set is a set X of variables
such that the distribution of the data on these variables is
highly skewed, i.e., has low entropy. For example, consider
a set X = {A,B,C,D,E} of binary variables. Assume
further that the data has 1000 rows where the values of these
variables are (1, 0, 0, 1, 0), and 2000 for which the values
are (1, 0, 1, 0, 0), and that the frequencies of the remaining
30 value combinations (25 in total) are all negligibly small.
Together these variables interact strongly, i.e. their values are
strongly structured, and resultantly the entropy of the dataset
on the variables in X is small: for a single row of the data
we can code the values of the variables in X using only few
bits on average (about 0.9, in this case).

Low-entropy sets can be viewed as a stark generalization
of frequent itemsets, which just look for sets X such that
there are sufficiently many rows that have a 1 in each
column of X . Unlike frequent itemsets, low-entropy sets
are symmetric with respect to 0 and 1. As above, they
can locate subsets that have just a few different dominant

values. Therefore, they are very applicable for analyzing
dense data. However, as with frequent sets, the number of
low-entropy patterns can grow prohibitively large: for higher
levels of entropy, many more sets are found than is practical
for analysis by hand.

The MDL-approach [19] to selecting pattern subsets is
based on the idea that the best subset of patterns is the one
that compresses the data best. It identifies the best collection
of itemsets as the one that requires the fewest bits to describe
all of the data. For frequent itemsets, a transaction can
be described simply by telling which itemsets together (i.e.
their union) form the transaction.

For low-entropy sets this is less straightforward; to
(re)construct a data row, we have to identify both the low-
entropy sets and their specific variable values. For example,
if a data row t would happen to have the combination
(1, 0, 1, 0, 0) on the variables of X , to describe t we can say
that low-entropy set X is to be used, with (1, 0, 1, 0, 0) as
its value combination; as this combination is so frequent, it
can be encoded in only a few bits. However, opposed to
frequent itemsets, low-entropy sets can be used to describe
any transaction: there always is one instantiation that fits
the row. We are therefore required to use a fine-grained
selection to determine which low-entropy set will be used to
encode what part of the data. Turning this to our advantage,
we provide two methods based on the maximum likelihood
principle to optimally cover the data locally.

Using these principled selection strategies, we employ
the MDL criterion to encode the whole data succinctly using
low-entropy sets. As such, the method requires only tens of
patterns for a detailed lossless description of the full data.
Consequently, the outcome can be interpreted very easily.

As an example, consider Figure 1. It visualizes the re-
sults of our method on a dataset concerning the geographical
presence of mammal species. In this picture, we show the
low-entropy sets (the columns) that our method selected to
describe the interactions between the 23 species. These sets
were selected by our method out of the 67677 low-entropy
patterns of entropy ≤ 3.3 bits. Indeed, it is a compact set
of species interactions that together well describe the main
essence of the data.

The reason why the data can be characterized by such
a small number of patterns is the fact that one low-entropy
set may capture multiple interactions at once for the same
attribute set. Consider for instance the left–most column
of Figure 1, showing an interaction pattern between two
Vole species (M. Arvalis and M. Subterraneus) together
with the predators Wild cat (F. Sylvestris) and European
Polecat (M. Putor.). Table 1 takes a closer look at the
usage counts of the individual variable combinations of the
set as they are used to describe the data. As the table
suggests, relevant interactions involve several occurrence
combinations, as well as absence of the species. Hence, if the
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counts
0 0 0 0 44
0 0 0 1 10
0 1 0 0 18
0 1 0 1 199
0 1 1 1 248
1 0 0 0 5
1 0 0 1 7
total # usage 531

Table 1: Detailed view of how LESS uses the left-most low-
entropy set of Figure 1 to encode the data. The set depicts
major presence-interactions of four mammal species.

same interactions would have to be described using regular
itemsets many separate sets would be required, instead of the
single low-entropy set required here.

In this study we provide the methodological and algo-
rithmic solutions necessary to use the MDL framework for
low-entropy set patterns. Experiments show that the end
result yields easily interpretable small collections of low-
entropy sets. The quality of the mined pattern groups is
first verified through compression. By swap randomization
experiments we affirm that these sets grasp the significant
structure in the data. Further, we provide evidence that these
sets together describe multiple distributions by comparing
them to the cluster centroids of the data. In summary, the
results show that our method only requires as few patterns as
lossy methods do to provide a high-quality lossless descrip-
tion of the data.

The roadmap of this paper is as follows. First we
introduce some preliminaries on low-entropy sets and how
MDL can be used to select the most interesting subset of low-
entropy sets. In Section 3 we present the LESS algorithm
for Low Entropy Set Selection, as well as a principled way
of encoding the data locally optimally. Next, in Section 4 we
empirically evaluate the proposed method. Related studies
are discussed in Section 5. We round up with discussion and
conclusions.

2 Problem Definition
In this section we introduce preliminaries and notations used
in subsequent sections.

2.1 Low-Entropy Sets Let I be a set of 0–1 valued at-
tributes. A transaction t over I is a binary vector of length
|I|. A dataset D is simply a bag of transactions, the number
of which is denoted by |D|. We denote attribute sets, i.e.,
subsets of I, by X and Y . For singleton sets we omit the

braces, e.g., we write A instead of {A}.
We use πA(t) to refer to the value of attribute A on row

t (1 or 0). Given an attribute set X , we denote by πX(t) the
projection of the transaction t onto X . In other words, πX(t)
is a 0–1 vector of values πA(t) defined by the attributes
A ∈ X .

Let ΩX be the set { 0, 1 }|X| of all 0-1 vectors of
length |X|. We call the vectors i ∈ ΩX the instantiations
of the attribute set X . We say that the instantiation i fits
transaction t iff i = πX(t). The probability pX(i) of an
instantiation i is the relative support in D of the attributes X
having the value of i. More formally,

pX(i) =
|{t ∈ D|i = πX(t)}|

|D| .

Or, simply put, the fraction of transactions in D where i fits.
For readability, we write p(i) wherever X is clear from the
context.

The entropy of an attribute set X in D is

H (X) = −
∑

i∈ΩX

p(i) log2 p(i),

where 0 log2 0 is assigned the value of 0 by convention.
Entropy is a measure of skewness in the occurrence

distribution of instantiations of X . The lower the entropy,
the more structured and more concentrated the instantiations
in the database are. From a pattern mining point of view,
attribute sets exhibitting structure in the form of low entropy
can therefore be considered interesting.

DEFINITION 1. Given an entropy threshold ε, an attribute
set X is a low-entropy set (LE-set) in D if H (X) ≤ ε.

It is straightforward to show that low-entropy sets have
a monotonicity property. Say we combine attributes A and
B into a set X . By definition, H (X) is minimal iff X has no
instantiations of lower probability than A or B separately.
In other words, no value combination of A and B is more
surprising than any of the value combinations of A or B
separately. This is only the case if A and B are either exact
copies or exact negatives, resulting in H (X) = H (A) =
H (B). Otherwise, if A and B disagree on one or more
values we have H (X) ≥ H (A) and H (X) ≥ H (B). For the
low-entropy mining task this monotonicity property allows
to use e.g. a level-wise search in similar fashion to that of
frequent items [1]. For a formal proof, and more details on
mining low-entropy sets, see [10].

2.2 MDL for Low-Entropy Sets One can summarize the
MDL approach to induction by the slogan: the best model
compresses the data best. Slightly more formal, it can be
described as follows: Given a set of models M, the best
model M ∈M is the one that minimizes

L(M) + L(D|M)
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in which

• L(M) is the length, in bits, of the description of M , and

• L(D|M) is the length, in bits, of the description of the
data when encoded with M .

Note that this two-component approach is called crude MDL
in [9]. The reason we use this version is that we are
particularly interested in the set of LE-sets that yield the best
compression. That is, we are especially interested in how the
this best compression is reached.

Constructing a compression scheme that is based on LE-
sets is not trivial. Unlike for itemsets [19], unambiguous
decoding is impossible if only the sets are encoded: we
also have to identify which individual instantiations are
used. Here, we want to describe the data primarily in
terms of low-entropy sets, and are less interested in their
value instantiations. Therefore those value identifying codes
should provide as little as possible bias to which LE-sets are
chosen, while at the same time the complexity of the model
should be weighed properly. This, we reach by encoding
the sets and the instantiations separately. Most importantly,
we make the code lengths for the instantiations independent
from those of the LE-sets.

The basic idea is as follows: to describe a transaction t,
we tell which LE-sets and which instantiations are used to
obtain the values πA(t) for each attribute A. During com-
pression a code table is induced, a two-column table con-
taining a list of LE-sets and the codes used to identify them.
The codes come from a prefix-code to allow for unambigu-
ous decoding. The more often a set is used to encode the
transactions in the database, the shorter its associated code.

Example. Given a transaction t we code it by giving a
sequence of LE-sets and instantiations for these. As a
simple example, consider the attributes {ABCD} and a
transaction t = {A, D} (i.e., the vector (1, 0, 0, 1)). This
transaction can be described by the LE-sets {A,B} and
{C,D} with instantiations (1, 0) and (0, 1) respectively. Let
the code associated with {A,B} be c1 and let c2 be the
code associated with {C,D}. The naı̈ve way to store this
would be c1c2 for the coded transaction and ((1, 0), (0, 1))
as the indication of the values. This last part is simply a
representation of t as a binary vector. Although a possible
encoding, as it completely ignores any structure it is hardly
a way to compress.

So, we have to refine the encoding of the instantiations.
Note that {(0, 0), (0, 1), (1, 0), (1, 1)} is the set of instanti-
ations of all two element LE-sets. Hence, one of these will
be used whenever a two element LE-set is part of the cover
of a transaction. Therefore we assign a (prefix) code to each
of these instantiations; again, the more often an instantiation
is used, the shorter its code. The codes for instantiations are
called indicators. Continuing the example, let l1 be the code

associated with (1, 0) and l2 the one with (0, 1). The trans-
action {A, D} is then encoded by the pair of codes c1c2 and
l1l2.

From the example follows that to compress transactions
we require two code tables. The first, the LE-set code table
denoted by CTLE , is defined as a two-column table of which
the first column contains LE-sets and the second contains
their codes. Second, the indicator code table, denoted by
CTI , is analogously defined as a two-column table of which
the first column contains indicators and the second column
the associated codes. The encoding of a database D with
this pair of code tables results in a pair of encodings. The
first, DLE , contains the codes from CTLE , the second, DI

contains the codes from CTI .
As done in [19], we also require CTLE to contain

at least the singleton attribute sets, such that all possible
transactions can be encoded using any valid code table.
Similarly, if the largest LE-set in CTLE contains n attributes,
CTI is defined to contain all possible indicators for one-
element LE-sets up to those for n-element LE-sets. That is,
CTI will have 2n+1 − 1 entries.

2.3 Coding the Transactions To determine the appropri-
ate code for the elements of both CTLE and CTI we need
to know how often an LE-set and its instantiations are used.
That is, we have to define which elements of CTLE are used
to cover a transaction t and which instantiations of those el-
ements are used.

Informally, a cover function provides a set of non-
overlapping LE-sets such that they describe all attributes I of
a transaction t of database D. We formalize this as follows:

DEFINITION 2. A cover function is a function that given a
LE-set code table CTLE and an indicator code table CTI

assigns to each transaction t a list of pairs

(X, i) X ∈ CTLE , i ∈ CTI

such that the union of the instantiated LE-sets equals t.
Slightly abusing notation, we write both X ∈ cover(t) and
i ∈ cover(t) whenever (X, i) ∈ cover(t).

Since the CTLE elements in the result of a cover function
are non-overlapping, cover only needs to return a list of
CTLE elements. The associated indicators can easily be
reconstructed by considering this list and the transaction.

The number of times a CTLE element X is used in the
cover of a transaction t ∈ D is called its frequency. The
frequency of an indicator i ∈ CTI is defined similarly:

freq(X) = |{t ∈ D| X ∈ cover(t)}|
freq(i) = |{t ∈ D| i ∈ cover(t)}|
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The probability that X or i is used in the cover of a randomly
selected transaction t is thus

P (X|D) =
freq(X)∑

Y ∈CTLE
freq(Y )

,

P (i|D) =
freq(i)∑

j∈CTI
freq(j)

.

To compress the database optimally, we use a Shannon code
[9] for both code tables. That means that the length (in bits)
of the codes for X and i is

L(code(X)) = − log(P (X|D)),
L(code(i)) = − log(P (i|D)).

Note that we are only interested in the lengths of these codes,
not the actual codes themselves. Then, we can calculate
the size of the encoded databases DLE and DI , encoded
respectively by CTLE and CTI , as

L(DLE) =
∑

X∈CTLE

−freq(X) log(P (X|D)),

L(DI) =
∑

i∈CTI

−freq(i) log(P (i|D)).

The encoded size of the full database then is

L(D) = L(DLE) + L(DI). (2.1)

For the two code tables, we already know the size of the
codes, viz., L(code(X)) and L(code(i)) as defined above.
To compute, respectively, the sizes of the LE-sets and the
indicators these codes stand for, we have to define how we
encode them.

For CTLE , we encode the LE-sets by what we define
as the standard code table ST , which is the simplest valid
code table: the code table that only contains the singleton
attribute sets. Hence, the size of CTLE is (ignoring elements
X ∈ CTLE with freq(X) = 0)

L(CTLE) =
∑

X∈CTLE

L(code(X)) + L(codeST (X)).

For CTI , we simply use the bit-representation of the instan-
tiations. That is, the instantiation (0, 1) is represented by 01.
We denote the bit-representation of i ∈ CTI by bit(i). Note
that if the largest LE-set in CTLE has n items, then

∑

i∈CTI

bit(i) =
∑

j=1

nj2j = 2 + (n− 1)2n+1.

Hence, the size of CTI is

L(CTI) =
∑

i∈CTI

L(code(i)) + bit(i).

Then, we have as the total size for the code tables,

L(CT ) = L(CTLE) + L(CTI).

2.4 The Formal Problem Statement Now that all the
details of MDL for LE-sets have been defined, we can
formally state our problem.

Let D be a transaction database, and cover a
cover function. Find the code tables CTLE and
CTI minimizing the total encoded size

L(D, CT ) = L(D) + L(CT ).

So, the actual problem is now to find the best code table.
Note that given CTLE and a cover function determining
CTI is trivial.

Still, the search space we have to consider for this
problem is huge. First, it consists of all possible code tables
CTLE : all possible subsets of P(I) that contain at least the
singleton sets I. So, there are

2|I|−|I|−1∑

k=0

(
2|I| − |I| − 1

k

)

possible code tables. In order to determine which one
minimizes the total encoded size, we have to consider these
using every possible cover function. This translates to using
every possible cover order per transaction. Since there are
n! possible orders for a set of length n, the total size of the
search space is

2|I|−|I|−1∑

k=0

((
2|I| − |I| − 1

k

)
× (k + |I|)!× |D|

)
.

In short, it is prohibitively large. To make matters worse,
there is no useable structure that allows us to prune this
search space. Hence, we need to use heuristics.

3 Algorithms
Our approach for finding the best possible code table can be
divided into two main important elements:

• transaction encoding phase, where a good compression
for each transaction (cover) is found using the patterns
in the code table.

• the search strategy, which is the way in which the
search space of all possible pattern subsets is traversed
to find a good code table.
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The method follows the general framework of [19].
However, we apply very different technical solutions within
the different parts of the approach. We will discuss trans-
action encoding in Subsection 3.1 and the search strategy in
3.2.

3.1 Transaction Encoding As discussed in Section 2.2,
when encoding the database the task is to compress the
data as well as possible using only the LE-sets in the code
table. This is done by encoding each transaction with a set
of patterns from the code table. However, as pointed out
in that section, an LE-set always has an instantiation that
can be used to describe a transaction. Therefore, there are
often many different ways (depending on the order in which
we use sets from the code table) that a transaction can be
covered, and hence compressed.

Our strategy to select good covers for each transaction is
to take advantage of the statistical nature of low-entropy pat-
terns and use the maximum likelihood (ML) principle. The
idea is to take the cover C that maximizes the conditional
probability p(t|C) (likelihood) of the transaction given all
possible covers. We define the likelihood of transaction t as
follows:

DEFINITION 3. Let t be a transaction and C a cover of t.

llh(t, C) =
∑

X∈C

log p(πX(t)) (3.2)

is the loglikelihood of t given C.

For each transaction t, the task is then to find the optimal
cover

C∗ = arg max
C

llh(t, C)

from the set of all possible covers, such that llh is maxi-
mized.

Maximum likelihood is a widely used and well prin-
cipled way of selecting between alternative models for the
data. That is, in our case to choose between different covers
of a transactions. Moreover, the ML-principle has an intu-
itive connection to the overall task of minimizing the total
encoded length of the data.

In more detail, the connection is as follows. First, let
us consider a set of LE-sets that form a cover C of some
transaction t. In order for C to provide a good compression
of both this transaction and the whole of the data, the
associated codes should be as short as possible. Hence, both
the LE-sets X ∈ C and the instantiations πX(t) should
be used as often as possible. Now, let’s assume that for
all the rest of the transactions in the data the instantiation
πX(t) and LE-set X ∈ C are used to cover every transaction
where πX(t) fits, and that the instantiation πX(t) is not used
anywhere else. That is, more formally for the case of the
instantiation,

freq(πX(t)) = |D| · p(πX(t)),

where p(πX(t)) is the frequency of the transactions for
which πX(t) fits. From this it follows that the code length of
πX(t) will be strictly proportional1 to its negative loglikeli-
hood. More formally,

L(code(πX(t))) ∝ −log
freq(πX(t))

|D| = − log p(πX(t)).

Therefore, optimizing equation 3.2 also optimizes the entire
coding length of transaction t. Assuming this for every
transaction in the database, the encoding size of the entire
database will be proportional to the negative loglikelihood
of the data.

The above assumption will not strictly hold in every
case. However, in general patterns with instantiations of high
likelihood (high support) are likely to behave approximately
like this and will consequently optimize the encoded length
of the data well.

3.1.1 Finding the Best Cover It is quite clear that finding
an optimal cover for a transaction is NP-complete [7] and
hence exact solutions cannot be computed for large datasets.
However, many covering problems are known to be well
approximable using greedy heuristics.

In this subsection, we first study covering a transaction
optimally according to the maximal likelihood principle,
with an exhaustive search strategy using pruning. In the next
subsection, we discuss a greedy heuristic that can be applied
for larger datasets.

To compute the optimal cover for transaction t, we
start with a code table that is ordered on the per attribute
likelihood addition. The idea is that given a transaction t we
assign to LE-set X ∈ CTLE a weight w(t, X) that is equal
to the per attribute addition in likelihood that X would give,
if it were to be added to the cover. More formally

w(t, X) = log
(
p(πX(t))

)
/|X|. (3.3)

Given this ordered code table, we need to enumerate all
possible covers in a depth first manner. We start from LE-set
X with the largest weight w(t,X) and greedily continue to
add, non-overlapping, sets to the cover in decreasing order;
backtracking the search at each time when reaching a full
cover.

By taking this order into account, we can cut the search
space down considerably using the following proposition.

1Notice that in Subsection 2.3 the probability P (i|D) is normalized with
the cover frequencies of all of the elements in CTI instead of the size of the
data |D|. Hence, the code length is proportionally but not exactly the same
as the negative loglikelihood.
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Algorithm 1 The OPTIMALCOVER Algorithm

1: OptimalCover(I, CT, t) :
2: OrderOnLikelihoodPerAttribute(CT, t)
3: return Optimal(I,CT ,∅,∅)
4:
5: Optimal(I, CT, C, BestC) :
6: if |C| = |I| then
7: return C
8: end if
9: ∆ = ∅

10: m = |I| − |C|
11: for e ∈ CT do
12: ∆ = e ∪∆
13: if e ∩ C = ∅ then
14: if m · w(e) + llh(C) > llh(BestC) then
15: CandC = Optimal(CT\∆,C ∪e,BestC)
16: BestC =arg min(llh(BestC), llh(CandC))
17: end if
18: end if
19: end for
20: return BestC

PROPOSITION 3.1. Consider covering transaction t with
disjunct attribute sets in strictly decreasing order according
to the weight function w. Now, when at the ith attribute set,
already having covered attributes Y with cover CY , we know
that the resulting cover will have an apriori coding length of
at most

llh(t, C) ≤ m · w(t,Xi) + llh(t, CY ), (3.4)

where m is the number of previously uncovered attributes.

The proposition follows straightforwardly from the fact
that, if Xi covers all the previously uncovered attributes
without overlapping Y , the likelihood of the resulting cov-
ering will be exactly the right hand side of inequality 3.4.
Otherwise, we’ll have to include some other set, which by
the ordering on w will provide an equal or smaller addition
in likelihood per attribute. Hence, this will result in a smaller
overall likelihood for the transaction. Thus, Proposition 3.1
defines an upper bound that we can compare to the best found
solution so far; and thus to decide whether it makes sense to
continue building the current cover or to start backtracking
already.

Written in pseudo code, this optimal covering approach
is depicted in Algorithm 1. However, as the optimal cover-
ing method considers a prohibitively large search space, it
only makes sense to apply it to moderately sized databases
of up to about 25 attributes. To allow for more practi-
cal application, we present a fast, heuristic alternative that
follows very naturally from the minimum apriori encoding
length/maximum likelihood principle.

Algorithm 2 The GREEDYCOVER Algorithm

1: GreedyCover(I, CT, t) :
2: OrderOnCodelengthPerAttribute(CT, t)
3: Cover = ∅
4: for e ∈ CT do
5: if e ∩ Cover = ∅ then
6: Cover = e ∪ Cover
7: if |Cover| = |I| then
8: return Cover
9: end if

10: end if
11: end for

3.1.2 Approximating the Best Cover Recall that our goal
is to cover using elements that provide as high a gain as
possible in the overall likelihood. The initial order used by
the optimal algorithm provides us a very nice approximation,
as it orders the elements on the gain in likelihood per
attribute. If we use this order in a greedy fashion (without
overlap), the resulting cover is the same as the first full cover
the optimal cover strategy considers.

We present, as Algorithm 2, the translation of this
simple scheme into pseudo code. Note that for an actual
implementation a lot of speed can be gained as one can easily
cache the per-transaction orders. As code tables remain very
small this is fully feasible.

3.2 Search Strategy To cut down a large part of the search
space, we use the following simple greedy search strategy:

• Start with the code table consisting only of the singleton
attribute sets

• Add the low-entropy sets one by one. If the resulting
codes lead to a better compression, keep it. Otherwise,
discard the set.

By its iterative nature, the success of this strategy largely
depends on the order in which the patterns are considered.

3.2.1 Ordering the Candidate Sets Using the strategy
above, the optimal compression can be approximated best
by trying all possible orders. However, as the number of
possible orders of a set of size n equals n! this clearly is
infeasible for but the smallest of pattern collections. So,
our last step to reduce the search space of our problem
heuristically is to introduce an order on the candidate set
J . We order the candidates such that sets that have a good
chance of being used – those with high likelihood addition
over size – are at the top of the list. On the candidate set level,
this translates into preferring sets that have a low entropy
over size, or H (X)/|X|. For a set J of low-entropy sets,
CandidateOrder(J) returns the version of J in this order.
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Algorithm 3 The LESS Algorithm

1: LESS(I, J,D) :
2: J = CandidateOrder(J)
3: CT = CreateStandardCodeTable(I,max |j ∈ J |)
4: compressedSize = L(D, CT )
5: for candidate low-entropy set c ∈ J do
6: CT = CT ∪ c
7: if L(D, CT ) < compressedSize then
8: compressedSize = L(D, CT )
9: else

10: CT = CT \ c
11: end if
12: end for
13: return CT

3.3 The Low-Entropy Set Selection Algorithm Now the
main ingredients for our low-entropy set based compression
algorithm are in place, we can assemble these into the Low-
Entropy Set Selection (LESS for short) algorithm. We
present it in pseudo–code as Algorithm 3.

As input, it requires the attribute set I, the candidate
set of low-entropy sets J , and a database D. Also, one of
the above discussed cover strategies for transaction encoding
has to be chosen. Our naive compression process starts with
the simplest description of the data, using only singletons to
encode the data, together with the fully initialized indicator
code table. Then, iteratively (in CandidateOrder) low-
entropy sets are added to the code table one by one. Each
time, using this new code table the new total compressed
size of the database is calculated. If this addition improves
the attained compression, the set is kept, otherwise it is
permanently discarded.

In the course of this iterative process it is very well pos-
sible that by adding a new element, the usage of other pat-
terns in the code table suddenly strongly decreases; thereby
increasing their code lengths and possibly hindering over-
all compression. We therefore introduce a pruning variant
of our method. Once an element of J is accepted into the
code table, we reconsider all other elements e ∈ CTLE it-
eratively by temporarily removing them and calculating the
compressed size. By MDL-principle, we then go for the best
compression, permanently removing those elements that no
longer help the compression.

4 Experiments
In this section we experimentally evaluate our methods. We
first investigate the differences between OPTIMALCOVER
and GREEDYCOVER. Next, we evaluate whether our method
models relevant structure of the data. Thirdly, we look at the
size of the resulting pattern sets and compare these to two
other existing methods. Last, we examine these pattern sets
in detail.

Dataset |I| |D| density L(D, ST )

adult 97 48842 15.3 34229566
course 83 2405 20.5 1422594
heart 50 303 28.0 134588
letter recog 102 20000 16.7 14954124
mammals 40 2183 47.0 552457
mammals20 20 2183 53.1 248665
mushroom 119 8124 19.3 7898102
pen digits 86 10992 19.8 6757243

Table 2: Statistics of the datasets used in the experiments.
Per dataset the number of attributes, the number of transac-
tions, the density (percentage of 1’s) and the number of bits
required by LESS to compress the data using the singleton-
only standard code table ST .

4.1 Datasets For the experimental validation of our meth-
ods we use a wide range of datasets. From the widely used
UCI repository [5] we take some of the largest and most
dense databases. Further, we use two databases for which
we know low-entropy analysis is well suited: the mammals
and Helsinki CS-course databases. The former consists of
presence/absence records of European mammals2 within ge-
ographical areas of 50x50 kilometers [16]. The course data
describes courses taken by students at the Department of
Computer Science of the University of Helsinki. As we want
to focus on interesting variable interactions, we disregard at-
tributes with extremely high (about 1.0) or very low (about
0.0) support.

The details for these datasets are depicted in Table 2.
For each database we show the number of attributes, the
number of rows and the density: the percentage of ‘present’
attributes. The next column indicates the total compressed
size in bits by using the singletons – only standard code table
ST .

Due to the high density most of these datasets, they are
not well suited for analysis by frequent itemset mining: far
too many co-occurences exist. For example, at 10% support
already over 11 million frequent itemsets are discovered in
the mammals dataset and up to 5.5 billion can be extracted
from the mushroom data.

When mining for low-entropy sets, those itemsets of
which the attributes are too weakly correlated (i.e. their
entropy is above the threshold) are ignored. In order to
compress the data optimally, we have to allow LESS to
consider as many low-entropy sets as possible. We therefore
set the entropy threshold ε as low as feasible with our current
low-entropy set mining implementation.

2The full version of the mammal dataset is available for research
purposes upon request from the Societas Europaea Mammalogica.
http://www.european-mammals.org
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Figure 2: The likelihood scores for each transaction in the mammals20 dataset using the OPTIMALCOVER Algorithm, the
GREEDYCOVER Algorithm and singleton (all attributes independent) covering. The transactions have been sorted according
to the likelihood score of GREEDYCOVER.

4.2 Optimal and Greedy Covering To compare the per-
formance between the optimal and the greedy covering
strategies (Algorithms 1 and 2), we use mammals20, which
constains the 20 most varying attributes of the full mammals
dataset. On this data we mine low-entropy sets using a max-
imum entropy threshold of 3 1

3 bits, resulting in 2321 low-
entropy sets.

For each transaction we compute a cover using both
GREEDYCOVER and OPTIMALCOVER on all of the 2321
sets as the code table, as well as a baseline cover of only
singleton sets. The results for each single transaction are
presented in Figure 2. First of all, we see that using sets
pays off both for the optimal and the greedy methods with
an increase in log–likelihood for each transaction. Moreover,
we see that the optimal transaction cover does indeed result
in the highest log–likelihood scores. However, the much
faster greedy approach finds covers that approximate the
optimal score closely.

Next, we test these strategies with LESS using the LE-
sets as candidates, but without pruning. In two hours, the
optimal variant selected 25 sets to compress the data into
184572 bits. In one minute, the greedy approach finds a
description of only 163908 bits, using 148 sets. By using
a larger number of sets, it attains a higher likelihood over
the data (-22091 and -19767, respectively). Analyzing the
resulting code tables, it is evident that the optimal method
is more picky and less promiscuous: if a set is allowed into
the code table, it will stay in use and will not be fully traded
in, opposed to what the greedy method does. However, the
resulting code tables are very similar to those of the greedy
algorithm when pruning is enabled. The greedy approach
seems to concatenate the ‘optimal’ sets together into 12 sets
to achieve a likelihood of -22330, while using only 145940
bits. Overall, the greedy cover algorithm allows MDL to
condense the data better. When considered together, this tells
us that GREEDYCOVER can be used as a fast and high quality

1.6 1.7 1.8 1.9 2

x 10
5

0
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100

150

total compression size in bits

Original data

Figure 3: Distribution of the compressed sizes of the swap
randomized mammals20 datasets. The compressed size of
the original dataset as indicated by the arrow, and is 1.64 ×
105 bits.

alternative for OPTIMALCOVER. For the remainder of this
section, we’ll therefore use GREEDYCOVER.

4.3 Modeling Relevant Structure To evaluate whether
LESS models the relevant structure in the data, we compare
the compression scores of the actual data to those obtained
from 1000 swap randomized [8] versions of that data. This
process preserves the row and column margins of the given
data set, but obscures the internal dependencies of the data.
The idea is that if the true structure in the data is captured,
there should be significant differences between the models
found on the original and randomized datasets.

For this large number of experiments we used the
mammals20 dataset. We applied as many swaps as there are
1’s in the data. Figure 3 shows the histogram of the com-
pressed sizes of these 1000 databases.

The picture shows that the original data can be com-
pressed significantly better than that of the randomized
datasets (p-value of 0). Also, we noted that the loglikelihood
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Candidates LESS KRIMP

Dataset ε # LE-sets pruning |CT | L(D, CT ) % compr. min-sup |CT |

adult 2.9 143766 no 153 27149706 79.3 1 1941
yes 10 26678350 77.9 1303

course 2.8 455709 no 918 1003730 70.6 100 551
yes 28 877284 61.7 285

heart 3.3 414589 no 115 117343 87.2 1 108
yes 49 115539 85.8 79

letter recog 3.3 368889 no 838 11375860 76.1 50 3395
yes 21 10547561 70.5 1259

mammals 3.8 250628 no 488 359116 65.0 200 536
yes 30 314932 57.0 254

mushroom 2.8 437239 no 241 5802484 73.5 1 689
yes 10 5474484 69.3 424

pen digits 2.5 71994 no 160 4088429 60.5 50 2667
yes 28 3778077 55.9 1091

Table 3: Results of LESS, using the GREEDYCOVER algorithm and a variety of datasets, with comparison to the frequent
itemset based method KRIMP. Shown are the threshold ε (in bits) for mining low-entropy sets and the number of sets
discovered. For LESS, we show for both pruning disabled and enabled, the number of LE-sets selected into the code table,
the total compressed size of the data and the achieved compression ratio. For KRIMP we show the minimal support threshold
for mining frequent itemsets and the number of selected itemsets.

score was much higher for the real data, even though we di-
rectly optimize the compression and not this score. Further,
analyzing the contents of the code tables, we also note a sig-
nificant difference in set cardinality. For the real data, the
average set was 2.35 attributes long, while for the random-
ized data we see elements with an average length of 1.89.

4.4 Reduction and Improvement In Table 3 we present
the quantified results of running LESS using the GREEDY-
COVER algorithm. The main outcome this table shows is the
large reduction in number of low-entropy sets that the algo-
rithm attains. Even for relatively low entropy thresholds, up
to 5 orders of magnitude fewer sets are selected. At the same
time, the small compressed sizes of the databases show the
quality of these descriptions.

We also see that enabling pruning has a strong effect
on the number of selected sets: roughly an order of magni-
tude. Inspection of the code tables shows that the two strate-
gies provide slightly different views on the data. Without
pruning, the likelihood maximization process selects more
specific sets. Consequently, we see that of the selected sets
typically only a few (one or two) very characteristic instan-
tiations find major use. With pruning enabled the process is
forced to select more general patterns. This effect is clearly
illustrated by the much smaller number of returned sets, of
which now multiple instantiations are used often. The much
better compression scores show that pruning results in better

data descriptions.
Next, we compare the number of patterns our method re-

turns to two other data description methods. First, we com-
pare to KRIMP [19], a lossless approach based on frequent
itemsets. Table 3 shows that our method requires far fewer
patterns, even although these do describe all interactions in
the data, instead of just the 1’s. It also illustrates that our
method is well suited to deal with dense databases, for which
the differences grow even larger. For example, at a min-sup
of 10% already over 11 million frequent itemsets are mined
on mammals. Entropy recognises the structure in the data
and returns a fraction of this amount in low-entropy sets.

Second, we compare our scores to those of the lossy
method proposed by Bringmann and Zimmermann [3] on
the largest dataset they considered: mushroom. Depending
on the selection criterium, their approach returns 21 to 71
itemsets to describe only part of the dataset. Our method, on
the other hand, requires only 10 LE-sets to provide a detailed
lossless description of the data.

The runtimes of the experiments ranged from one
minute up to ten hours. Analysis shows that the runtime is
mainly dependent on the number of transactions and particu-
larly the size of the code tables. Hence, the time required for
the experiments where pruning keeps the code tables small
are in the order of few minutes up to one hour – typically
45 minutes. The experiments with pruning disabled (where
the code tables are allowed to grow to hundreds of elements)
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typically took up to three hours, with an exception for mush-
room of ten hours.

4.5 Examining the Code Tables The code tables pro-
duced by LESS are small enough for human analysis, for in-
stance through visualization. Figure 1 in Section 1 provides a
good example of such a visualization. Each column in the ta-
ble presents a LE-set with bullets marking the species (rows)
that are included in the set. Moreover, as Table 1 shows,
one can also zoom in further and investigate the interaction
combinations between the variables in full detail.

We observe in Figure 1 that some attributes are included
in more than just one set in the code table. At first this looks
like redundancy in the description. However, computing a
centroid vector for each LE-set in the code table according to
the rows it covers and comparing these to the centroids found
from the data by the k-means algorithm [14] we notice that
the overlapping sets are mostly used in different clusters in
the data. For instance the LE-sets {F. Sylvestris, M. Arvalis,
G. Glis, M. Foina} and {F. Sylvestris, M. Subter., G. Glis,
M. Foina} are associated to different clusters. Thus, these
mappings show that the overlapping sets are not redundant
but tuned to describe specific parts of the data.

5 Related Work
Lately, the pattern explosion problem has attracted a lot
of research. For frequent pattern mining, lossless methods
such as closed [18] and non-derivable [4] itemsets were
proposed to remove the redundancy within the pattern set.
However, the attained reduction deteriorates heavily under
noise. Methods that provide a lossy representation of the
complete pattern set include maximal itemsets [2]. Yan
et al. [20] proposed a method that selects k representative
patterns that together summarize the pattern set well.

Low-entropy sets [10] are a more expressive, entropy-
based, generalization of frequent patterns. These allow for
more thorough data analysis and reduce the pattern explosion
at the same time. However, at high entropy levels the
pattern set may still grow prohibitively large. Other related
information-theoretic pattern definitions include [12, 17] as
well as work on correlated pattern mining [11].

Recently, the approach of finding small subsets of in-
formative patterns has attracted a significant amount of re-
search [3,13,15,19]. Pattern Teams [13] are groups of k non-
redundant patterns that have been exhaustively (k<10) opti-
mized according to criterions such as joint entropy. Bring-
mann et al. [3] proposed a greedy variant that can consider
larger (100’s) pattern sets. Either method is lossy, in the
sense that it finds pattern sets that cover only part of the data.

Alternatively, pattern sets can be selected to describe the
data best, which falls naturally in the compression approach
to data mining [6]. Recently, Siebes et al. [19] introduced the
MDL based itemset selection algorithm KRIMP. Although

we follow a similar selection approach, the generality and
applicability of the methods is rather different. By consider-
ing data 0/1–symmetric we can capture all major interactions
between attributes, not just co-occurences. Partly thanks to
this generalization, LESS yields in the order of tens of pat-
terns, opposed to hundreds to thousands for KRIMP [19].
Through these much smaller numbers inspection by hand is
now possible. Also, these pattern sets have a different mean-
ing, as they view the data in terms of strongly interacting
variables; not just present items.

Further, the technical solutions we propose are more
general. Instead of using ad-hoc order heuristics to deter-
mine which patterns describe what part of the data, we in-
troduce a principled way of finding locally optimal covers of
the data through the maximum likelihood principle. By using
two separate encodings, one identifying the pattern and the
other its value instantiation, our framework is more generally
applicable. For instance, a promising future research direc-
tion would be to expand it to other pattern selection settings
where the patterns lack a one-to-one mapping to a specific
value, like selecting the most interesting subgroups identi-
fied by SQL queries.

6 Discussion
Our novel combination of compression and entropy finds
very short, high-quality descriptions of the data. As these
descriptions are easily visualized, they can easily be inter-
preted by humans. They show what is going on in the data,
on two levels of detail: providing an overview of the strongly
interacting variables in general, and specifying in detail what
are the most prominent interactions.

By basing our cover strategies on the maximum likeli-
hood principle, we have a very natural approach to only use
instantiations to describe data where this makes sense. Con-
sequently, the code tables capture the significant structure in
the data, as the swap-randomization experiments show.

Reconsidering older code table elements once a new
LE-set has been admitted increases the quality of the data
description even further. Although our method needs to
compress the data for each candidate, the measured running
times show this approach to be realistic for analysis of
large and dense datasets in particular. The candidate set is
determined by the max entropy parameter, which may be
set as high as is feasible for mining, or makes sense from
an analysis point of view. Further, besides the decision of
whether or not to prune, there are no parameters: MDL
selects the best code table.

LESS combines the best of the lossless and lossy ap-
proaches to data description; the number of returned patterns
is comparable to the latter, while at the same time our pattern
sets do provide a lossless description of the data. Further,
these patterns consider both 0’s and 1’s.

Even though our current implementation is unpolished,
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the recorded running times show the method can already re-
alistically be applied for data analysis. However, many pos-
sible optimizations are available. One of the most promising
would be to just calculate the change the current candidate
implies to the previously found best optimum; opposed to
calculating a full database cover every time. Speedup on the
subset matching could be gained by using a true bitmap rep-
resentation of the database and the instantiations. Thirdly,
paralellization can easily be applied to LESS, both in respect
to distributing parts of the database, as well as considering
of the candidates distributedly. Using either, or all, these op-
timizations LESS would become even more applicable for
analysis of very large dense databases.

7 Conclusions
We presented LESS, a method for selecting very small col-
lections of highly descriptive low-entropy sets through com-
pression. The small size of these collections facilitates
thorough analysis by experts. The interpretability of low-
entropy sets makes this analysis even easier. By using en-
tropy instead of frequency, it is particularly suited for min-
ing dense datasets. Further, by regarding data 0/1 symmetric,
LESS captures all major interactions in the data, not just co-
occurences.

Clearly, entropy is not just defined for binary data,
but also for other types, such as real-valued data. Hence,
the generalization of this work to such other types of data
would make for a both useful and challenging future research
direction. Another promising direction would be to apply
our framework to other pattern types that lack one-to-one
value associations, such as for instance the queries used in
subgroup discovery.
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