Intro duction to Adaptiv e Systems

Marco A. Wiering

Preface

This syllabus cortains six chapters for the course\ln troduction to Adaptiv e Systems". Other
topics which will be studied in this course are quite well covered by Tom Mitc hell's book:
Machine Learning. For the topics which are not described as complete chapters, we will
include the slidesusedfor presenations astechnical material. There are still many citations
missing and there may be occasionalerrors in the text. | would appreciate it if you could
write down corrections of this text and deliver it to me. | hope you will enjoy this courseand
passit with a high grade!

Marco A. Wiering

Contents

1

2

In tro duction

11

1.2

13

14

15
1.6

1.7

1.8

Adaptive Systems.
Intelligent Agents e e
Model for Adaptive Systems.
1.3.1 Rewardfunction
1.3.2 Theinternal state,
Total SystemPerspective
1.4.1 An example: aroom heater with athermostat
Environments
Multi-agent Systems e e
1.6.1 Model of a multi-agent system
Complex Adaptive Systems
1.7.1 Predator-Prey systems.
1.7.2 StatedynamiCs
Outline of this Syllabus

Arti cial Life

2.1

2.2

2.3

2.4

2.5
2.6

Genetic Algorithms and Articial Life
2.1.1 Interaction betweenewlution andlearning
Cellular Automata
2.2.1 Formal descriptionof CA
222 Example CA . . .
2.2.3 Dynamicsofthe CA
2.24 Processesn CA e
2.2.5 Examplesofcyclicprocesses
2.2.6 Elimination of basispatterns
227 Researbin CA e
EcologicalModels. e
2.3.1 StrategicBugs
Articial MarketModels. o

© N~

10
11
12
13
13
16
18
18
19
19
20
22

4 CONTENTS

3 Evolutionary Computation 41
3.1 Solving Optimisation Problems 42
3.1.1 Formal description of an optimisation problem 42
3.1.2 Finding asolution 43

3.2 GeneticAlgorithms 44
3.2.1 Stepsfor making a geneticalgorithm 45
3.2.2 Constructing arepresetiation 46
3.2.3 Initialisation 47
3.2.4 Evaluating anindividual 48
3.2.5 Mutation operators. 49
3.2.6 Reconbination operators oo 50
3.2.7 Selectionstrategies. 53
3.2.8 Replacemenh strategy 55
3.2.9 Reconbination versusmutation L. 55

3.3 GeneticProgramming e 56
3.3.1 Mutation inGP 57
3.3.2 Reconbination in GP 57
3.3.3 Probabilistic incremental program ewlution 57

3.4 Memetic Algorithms 59
3.5 DISCUSSION. 60
4 Physical and Biological Adaptiv e Systems 61
4.1 From Physicsto Biology 62
4.2 Non-linear Dynamical Systemsand ChaosTheory 64
421 Thelogisticmap e 66

4.3 Self-organisingBiological Systems. 69
4.3.1 Modelsof infection diseases. 70

4.4 Swarm Intelligence 71
4.4.1 Sorting behavior of ant colonies. 72
4.4.2 Ant colory optimisationo 72
4.4.3 Foragingants e 74
4.4.4 Propertiesof ant algorithms 75

45 DISCUSSION. o e 77
5 Co-Ev olution 79
5.1 From Natural Selectionto Co-ewolution 80
5.2 Replicator Dynamics 81
53 Daisyworld and Gaia 82
5.3.1 Cellular automaton model for Daisyworld 83
5.3.2 Gaiahypothesis. 84

54 RecyclingNetworks. 86
5.5 Co-ewlution for Optimisation 88

5.6 Conclusion e e e 90

CONTENTS 5

6 Unsup ervised Learning and Self Organising Net works 91
6.1 UnsupervisedLearning e 92
6.1.1 K-meansclustering 92

6.2 CompetitiveLearning e 93
6.2.1 Normalised competitivelearning 94
6.2.2 Unnormalised competitivelearning 96
6.2.3 Vector quartisation 98

6.3 Learning Vector Quantisation (LVQ) 101
6.4 KohonenNetworks 103
6.4.1 Kohonen network learning algorithm 103
6.4.2 Supervisedlearning in Kohonennetworks 105

6.5 DISCUSSION. e 105

CONTENTS

Chapter 1

In tro duction

Everywherearound us we can obsene change,in fact without changelife would be extremely
boring. Life implies change, sinceif there would not be any changeanymore in the universe,
ewerything would be dead. Physiciststhink it is likely that after very many years(think about
10°90 years), the universewould stop changing and enter a state of thermal equilibrium in
which it is extremely cold (near the absolute minimum temperature) and in which all particles
(electrons, neutrinos and protons) are isolated and stable (in this stable state even dark holes
will have evaporated). This meansthat the particles will not interact anymore and change
will stop. This view relieson the theory that the universeis expanding| and this expansion
is accelerating which is implied by a positive cosmologicalconstart (the energy density of
vacuum). The theory that the universewould corntract again after somewhile (which may
imply a harmonic universe)is not taken very seriousanymore nowadays. So,after along time,
the universewill readh a stable state without change. Fortunately sincethis takessolong, we
should not worry at the moment. Furthermore, there are somethoughts that intelligent life
may changeall of this.

A realistic model of any changing system (e.g. the weather or the stock market) consists
of a description of the state at the current time step and some function or model which
determinesin a deterministic way (only 1 successorstate is possible)or in a stochastic way
(there are multiple possiblesuccessostateswhich may occur with someprobability) the next
state given the current state. We will call the state of the system at time-step t: S(t). It
is clear that if we examine the state of the system over time, that there is a sequenceof

state-trajectory of the system. Note that we often considertime to be discrete, that is that all
time-stepsare positive natural numbers:t 2 f0;1;2;:::;1g . Weonly usediscretetime dueto
computational reasonsand simplicity, sincerepreserting cortinuous numberson a computer
using bit-represertations is not really feasible (although very precise approximations are of
coursepossible). Mathematically, we could also considertime as being continuous, although
the mathematics would involve somedi erent notation.

1.1 Adaptiv e Systems

Although the \ob jective" state of the universewould consistof a single represernation of all
elemerts, and therefore a single state, in reality we can obsene di erent objects which can
be modelled as separate elemerts. Therefore instead of a single state at time t: S(t), we

7

8 CHAPTER 1. INTRODUCTION

may consider the world to consist of | objects and write S;(t) wherel i [, to denote
the state of object i at time t. In this way there are trajectories for all di erent objects. If
all these objects would ewlve completely separately the universewould basically consist of
many sub-universes,and we can look at the trajectory of every single object alone. Howeer,
in most real systems, the objects will interact . Interaction meansthat the state of some
object in uences the trajectory of another object, e.g. think about Newton's laws in which
gravity causesattraction from oneobject to another one.
At this point we are ready to understand what an adaptive systemis.

An adaptiv e system is asystemin which there is interaction betweenthe system
and its environment sothat both make transitions to changing states.

Of courseit may happen that after a long period of time, the adaptive system enters a
stable state and doesnot changeanymore. In that casewe still speak of an adaptive system,
but if the adaptive system never made transitions to dierent states, it would not be an
adaptive system. Sothe rst requiremert is that an adaptive systemis dynamic (changing),
at least for a while. Sometimesan adaptive system is part of another system. Think for
example about somerobot which walks in a room, but doesnot displaceany objects in that
room. We have to think about this situation asa room which hasa robot inside of it. Since
the robot is changing its position, the room is also changing. Soin this casethe robot is the
adaptive systemand the room is the changing ervironment.

Another requiremert for an adaptive systemis that the adaptive systemwill changeitself
or its ervironment using its trajectory of states in order to attain a goal that may be to
simulate someprocess| to understand what will happen under someconditions, (e.g. we
can simulate what happensif we put ten sharksin a pool and do not feedthem), or the goal
to optimize something (e.g. a robot which keepsthe o ors clean).

Finally there can be learning adaptive systemsthat have the ability to measuretheir
own performanceand are able to change their own internal knowledge parametersin order
to improve their performance. In this casewe say that the adaptive systemis optimizing its
behavior for solving a particular task. If we call the state of the internal knowledgeparameters:
S (1) then learning meansto changethe state of the internal knowledge parametersafter eah

nal state S,;(T) may bea stable state and has(near)-optimal performanceon the task. When

you are not acquairted with machine learning, a learning computer systemmay seemstrange.
Howewer, macdiine learning receives a lot of interest in the arti cial intelligence community
nowadays, and learning computer programscertainly exist. A very simple exampleof learning
is a computer program which can decide betweenoption 1 and option 2. Each time it selects
option 1 the ervironment (possiblya human teacder) tells the systemthat it wasa successand
ead time the program selectsoption 2 it is told that it is a failure. It will not be surprising
that with a simple learning program the system will quickly always select option 1 and
optimizes its performance. More advanced learning systemssud as for speed recognition,
facerecognition, or handwritten text recognition are also widely spread.

Other terms which are very related to adaptive systemsare: cybernetics, self-organising
systems,and complex adaptive systems. The term cybernetics asit is used nowadays stems
from Norbert Wiener and is motivated in his book: Cybernetics: or, Control and Commu-
nication in the Animal and the Machine (1948). Before Norbert Wiener worked on gun re
control. Freuderthal wrote about this:

1.2.

INTELLIGENT AGENTS 9

While studying anti-air craft r e control, Wiener may have conceived the idea of
considering the operator as part of the steering mechanism and of applying to
him suchnotions as feedback and stability, which had been devisel for mechanical
systemsand electrical circuits. ... As time passel, such ashes of insight were
more consciously put to usein a sort of biological resarch ... [Cybernetics] has
contributed to popularising a way of thinking in communication theory terms, such
as feedback, information, control, input, output, stability, homeostasis, prediction,
and ltering. On the other hand, it also has contributed to spreading mistaken
ideas of what mathematicsreally means.

There are many adaptive systemsto be found, someexamplesare:

1.2

Robots which navigate through an ervironment with someparticular goal (e.g. showing
visitors of a museuma sequenceof di erent objects or helping peoplein elderly homes
to walk around in the corridors)

Learning systemswhich receiwe data and output knowledge, e.g. classifyingthe gender
of humansusing photos of their faces,or recognisingspeet from recordedand annotated
speet fragmerts

Automatic driving cars or unmanned aerial vehicles(UAVS)

Evolutionary systemsin which the distribution of the gene-mol adapts itself to the
ervironment

Economical systemsin which well performing companiesexpand and bad performing
onesgo out of business

Biological systemssud as earthquakes or forest res

Intelligen t Agents

A fairly new conceptin arti cial intelligenceis an Agent. The de nition of an agen is a
computer systemthat is situated in someenvironment, and that is capable of autonomous
action in this environment in order to meetits designobjectives. An agert possesseparticular
characteristics sud as:

Autonomy: The agert makesits own choicesbasedon its (virtual) inputs of the envi-
ronment; even if a usertells the agert to drive of a cli, the agert canrefuse

Reactivity: Agents are able to perceiwe their environment, and respond in a timely
fashionto changesthat occur in it in order to satisfy their designobjectives

Pro-activeness:Agerts are able to exhibit goal-directedbehavior by taking the initiativ e
in order to satisfy their designobjectives

Sccial Ability: Intelligent agens are capable of interacting with other ageris (and
possibly humans)

10 CHAPTER 1. INTRODUCTION

Examples of ageris are robots, mail-clients, and thermostats. The advantages of using
the ageri metaphor becomesclear when we have to cortrol a system (e.g. a robot). First
of all it becomeseasierto speak about the sensoryinputs which an agert receiwes from its
environment though its (virtual) sensors.Using the inputs and possibly its current internal
state, the ager selectsan action. The action leadsto a changein the ervironment. The agert
usually has goalswhich it should accomplish. There can be goalsof achievemert (reaching a
particular goal state) or maintenancegoals(keepinga desiredstate of the system). The goals
can often be easily modelled as a reward function which sendsthe ager utilit y values for
reaching particular states. The reward function could also give a reward (or penalty which is
a negative reward) for individual actions. E.g. if the task for a robot-agert is to goto o ce
R12 as soon as possible,the reward function could emit -1 for every step (a penalty) and a
big reward of +100 if the agert reachesthe desiredo ce.

An intelligent agert can perceiwe its ernvironment, reason, predict, and act (using its
actuators). A rational agent acts to maximize its performance measureso that it will
reac its goal with the leastamount of e ort. An autonomous agent acts accordingto its
own experiences. So it doesnot executea xed algorithm which always performs the same
operations (such as a sorting algorithm), but usesits perceptionsto direct its behavior. The
agert is modelledin aprogram which is executedon an arc hitecture (computer, hardware).
The program, architecture, and ervironment determine the behavior of the agen.

1.3 Mo del for Adaptiv e Systems

We now want to make a formal model of an adaptive system which interacts with an envi-
ronment. The objective state of the world is the state of the world at sometime-step. Often
the adaptive system doesnot perceiwe this complete state, but receives (partial) inputs from
the ervironment. Next to current inputs from the ervironment, the system can have beliefs
about the world from its past interaction with the ervironment. Furthermore, the agert can
perform a number of actions, and choosesone of them at every time-step. The cortrol method
which usesbeliefs and inputs to selectan action is often referred to asthe policy. There is
also a transition function which changesthe state of the world according to the previous
state and the action that the agert executed. Then there is a reward function which provides
rewards to the agert after executing actions in the ervironment. Finally the systemrequires
a function to update the internal (belief) state. So when we put these together, we get a
model M = < t; S;1;B;A; ;T;R;U > with:

A time-element t = f1;2;3;:::9

A state of the ervironment at time t: S(t)

An input of the environment received at time t: 1 (t)

An internal state (belief) of the agert at time t: B(t)

A number of possibleactions A with A(t): the action executedby the agert at time t.
A policy which mapsthe input and beliefto an action of the agert: (1 (t);B(t)) ! A(t)

A transition-rule which maps the state of the ervironment and the action of the agert
to a new state of the ervironment: T(S(t);A(t)) ! S(t+ 1)

1.3. MODEL FOR ADAPTIVE SYSTEMS 11

A reward-function which givesrewards to the system,for this there are two possibilities,
depending on whether the reward function is located in the ervironment sothat we get:
R(S(t);A(t)) ! R(t) or whenthe reward function is located in the agernt and the agert
cannot know S(t) we have to use: R(I (t);B(t); A(t)) ! R(t).

An update function for the internal (belief) state of the agert U(l (t);B(t);A(t)) !
B(t+ 1).

We can note a number of causalrelations in the model which are depicted in Figure 1.1.

Causality in time Causal Graph
t t

A—
A

B

Figure 1.1: The relations betweenthe di erent elemerts of an adaptive system.

If we study the gure, we can seethat there is one big feedbad loop, going from Belief
to Action to State to Input to Belief. So Belief in uences belief on a later time-step. Note
that not all adaptive systemsusean internal state (belief), we will go into this in more detalil
later.

1.3.1 Reward function

An agert usually has one or more goals which it wants to achieve or maintain. To for-
malise the notion of goal, one could use qualitativ e goalswhich can be true or false, suc as
Goal(go_home). Such qualitativ e goalsare usually usedin logical agerts that try to make a
plan using operators which bring the current state to a goal state (the plan can be computed
forwards from the current state to the goal or alternatively backwards from the goal state to
the current state). Another possibility is to use a more quantitativ e notion of a goal using
a reward signal which is emitted after ead time-step. The advantage of the latter is that it
becomeseasierto distinguish between multiple plans which bring about a trajectory which
attains a speci ¢ goal. E.g. if an agert uses100 stepsor 20 stepsto nd the kitchen, then
clearly using 20 steps should be preferred. However, when qualitativ e goals are used, they
both becometrue after sometime. Even if the planner tries to comeup with the shortest
plan, e orts to executethe plan are not easily incorporated. Using a reward function we can
emit after eat step a reward of -1 (so a cost of 1) and for reacing the goal, the agert may

12 CHAPTER 1. INTRODUCTION

be rewarded with a high bonus. In this way shorter paths are preferred. Furthermore, when
di erent actions require dierent e ort, we can usedierent costsfor di erent actions (e.g.
when climbing a mountain it costsusually a lot of e ort to take steep paths). In decision
theory usually utilities or reward signals are used. The goal for the agert then becomesto
maximize its obtained rewards in its future. Soits policy should maximize:

'R(1) (1.1)
t=0

Where 0 1 is the discourt factor which determineshow future rewards are traded o
against immediate rewards. E.g. if we nd it is important to get a lot of reward during the
current day and are not interested in the examination tomorrow, we will set the discournt
factor to a very low number, maybe resulting in drinking a lot of beerin a bar and failing the
examination tomorrow. Howevwer, if we are interested in life-long happiness,we should usea
high discourt factor (closeto 1).

1.3.2 The internal state

Often no internal state (IS) is used, but without internal state we can only construct a
reactiv e agent. A reactive agert usesa policy which mapsthe current input to an action.
It doesnot useany memory of previous inputs or actions. For a game like chess,a reactive
agert is perfect, becauseit does not really matter how a particular board-position came
about, the best move only dependson the current state of the board which is fully accessible
(completely obsenable) for the agert. Howewer, in caseyou are looking for a restaurant and
someonetells you \go straight until the secondtrac light and then turn left." Then you
have to usememory, becausef you would seea trac light you cannot know whether to turn
left or not without knowing (remembering) that you have seenanother trac light before.

In more complex agerts, internal state is very important. Note that we de ne the internal
state as a recollection of past inputs and performed actions and not the knowledge learned
by the agert about how to perform (this knowledgeis in the adaptive policy). If an agen
hasto count to ten, it can map the next number using the previous one and does not need
to remenber what was before. In sud casesthere is therefore only a previous state which
is the input for the policy. If the agert has to remenber the capital of the United States,
and usesit a long time afterwards, then it usessomekind of internal memory, but in some
casesit would use long-term memory that is stored in the policy by learning the response
to the question \what is the capital of the US?" Therefore we can speak of long-term and
short-term memory, and the long-term memory residesusually in the policy (or knowledge
represenation) whereasshort-term information which needsto be remenbered only for a
while is stored in short-term memory or the internal state. When we speak about belief (e.g.
facts which are believed by the agert with someprobability), however, it canalsobe storedin
long-term memory, and therefore it would be better to make a distinction betweenshort-term
internal state and long-term belief. For acting one would still use knowledge stored in the
policy, although this would usually be procedural knowledge (for learned skills) in cortrast
to declarative knowledge (knowledge and beliefs about the world). For now we just usethe
distinction betweeninternal state (to rementber facts) which is the short-term changing belief
or a policy for acting.

Humans possess very complex internal state. If you closeyour eyesand ears, and stop
focusing on your senses,then you do not receive any inputs from the environment. But

1.4. TOTAL SYSTEM PERSPECTIVE 13

still, thoughts arise. These thoughts come from the internal state, most often the thoughts

are about things which happenednot so long ago (like a minute ago, today or yesterda).

Of courseyou can also act and direct your thoughts, in this way your brain becomesthe

environment and there is an interaction betweenyou and your brain. Therefore when you

think about how it would be to walk on the bead, you useyour imagination and somepolicy

for choosingwhat to do next. In that case,the internal state is only there to remind you of

the start of the walk on the bead and whether you sav the sun shining or not. In many

forms of meditation, one should close her eyes and concerrate on breathing. In this way,

there is no information at all in the brain, basically one starts to think about nothing at

all. In that case,there is no input and a diminishing internal state until it becomesempty

too, and this may causea very relaxing experience. Note that meditation is not the sameas
sleeping, some people say that sleepingis inside the inactive consciousnes@and meditation

is in the subconsciouswhere people are still experiencing things, but can concerrate on

somethoughts (such as nothingness)much better. Finally, the opposite of a yogi is someone
who has sdizophrenia. In schizofrenia, one believes very much in the current internal state,

and the actions focus on the information preser in the internal state. So new inputs which

disprove strange ideasresiding in the internal state are almost not taken into accourt, and it

is very di cult to corvince such peoplethat they are living in a reality set up by themsehes
without any logic or correspondenceto the real world.

1.4 Total System Perspective

An adaptive system(e.g. an agen) interacts with an environment. In principle there may be
multiple agerts acting in the ernvironment, and it is important to understand the interaction
betweenthe agens and their ervironment. Therefore we usually have to look at the total
system which consistsof the smaller parts. Looking at the complete system gives di erent
possibleviews on what the ageris are and what they should do. For example, examine forest
re corrol, the ertities which play a role are the trees, re-men, bulldozers, air-planes, re,
smoke columns, the weather etc. If we examine these ertities, we can easily seethat only
the bulldozers, re-men, and air-planes can be cortrolled, and therefore we can make them
an agern with their own behavior, goals, etc. Sometimesit is not so easyto abstract from
reality; we do not want to model all details, but we want a realistic interaction betweenthe
agert and the ervironment.

Example 1. Examine arestaurant, which ertities play arole and which could be modelled
asan agert? If we examine possiblescenarioswe can exploit our creativity on this topic. For
examplethe entities may bethe kitchen, tables, chairs, cook, waiter, lights, etc. Now we might
considerto make them all agerts, e.g. lights which dim if someromantic couple is sitting
belowv them, tables and chairs which can move by themseles so that a new con guration
of tables can be made automatically when a large group of peopleenters the restaurant etc.
Would sud as futuristic restaurant not be nice to visit?

1.4.1 An example: aroom heater with a thermostat

Consider a thermostat for a room heater which regulates the temperature of a room. The
heater usesthe thermostat to measurethe temperature of the room. This is the input of
the system. The heater has actions: heat, or do-nothing. The temperature of the room
will decrease(until somelower limit value) if the heater does not heat the room, and the

14 CHAPTER 1. INTRODUCTION

temperature of the room will increaseif the heater is on. Figure 1.2 shaws the interaction
betweenthe heater and the temperature of the room.

Room
Heater
_Input__ temperature
I || S
Action

Figure 1.2: The interaction betweena heater and the temperature in a room.

Making a model for the heater

The state of the ervironment which should rst be modelled is the temperature of the room
at a speci c time. Sincethis is the ervironmental state, we denoteit asS(t). The input of the
heater is in this casealso the temperature of the room (although it might contain noise due
to imprecise measuremets), we denote this input as| (t). The internal state of the heater is
denotedas B (t) and it cantake on valueswhether the heater is on (heating) or whether it is
0 (doing nothing). The possibleactions of the heater are: heat or do nothing.

Policy of the heater. Now we have to designthe policy of the heater which is the most
important elemert, since this is our control objective. Of coursewe can designthe policy
in many possibleways, but if there is a reward function, the control policy should be the
one which optimizes the cumulative reward over time. The construction of the policy can be
done by manual design, although it could also be learned. We will not go into details at this
momert how learning this policy should be done, instead we manually designa policy since
it is easyenoughto comeup with a good solution (so learning is not required). An example
policy of the heater usesthe following if-then rules:

1. 1f I(t) 21then heat

2. 1f1(t)> 21andI(t) 23andB(t) == heat then heat
3.If1(t)>21andI(t) 23andB(t) == do_nothing then do-nothing
4. If 1(t) > 23 then do-nothing

If we examinethe rules, we can seethey are exclusive, at ead time-step only onerule can
be applied (sometimesthe application of a rule is called a ring rule). If rules would overlap,
the systemwould becomemore complex, since somemedianism should then be constructed
which choosesthe nal decision. Researt: in fuzzy logic usesmembership functions for rules,
e.g. if the temperature is warm then do-nothing. The membership function then determines
whetherit iswarm, e.qg. is 24 degreesvarm, and 27 degrees?This membership function should

1.4. TOTAL SYSTEM PERSPECTIVE 15

be designed(although it may alsobelearned)and the rulesall re usingtheir activation which
is given by the application of the membership functions to the input. After this all actions
are integrated using the activations as votes. We will not go into detail into fuzzy logic here,
but just mention that it can be usedwhen it is dicult to set absolute thresholds for rules
(such as 23 degreesin the above example).

Another issuewhich is important is that the used policy createsa negativ e feedback
loop. This meansthat if the temperature goes up, the heater will stop to increasethe
temperature, so that the temperature will go down again. In this way the system remains
stable between the temperature bounds. If we would create a policy which would heat the
room more when the temperature becomeshigher, we would create a positiv e feedback
loop, leading to a temperature which becomesvery hot until possibly the heater will break
down. It is thereforeimportant to note that negative feedba& loops are important for stable
systems,although positive feedba& loops can alsobe useful, e.g. if onewant to have a desired
speedvery fast, the system can increasethe speedswith larger and larger jumps until nally
a negative feedba& loop would take over.

Another way to construct the policy is to use decisiontrees. A decision tree makes a
choice by starting at the root node of the tree and following brancheswith choice labels until
we nally arrive at a leave node which makesa decision. A decisiontree which is equivalert
to the set of above rules is shown in Figure 1.3.

ROOT

I(t) > 21 and
I(t) <= 21 I(t) <5 23 I(t) > 23

Figure 1.3: The policy of the heater designedas a decisiontree.

The update and transition function. To make the model of the system complete,
we also have to specify how we update the belief and environmental transition function. In
our simple model, these are easily obtained (although the ervironmental transition function
might depend on a lot of di erent factors such asthe temperature outside, whether a door or
window is open etc.). The belief update function is modelled as follows:

U(; ;heat)! heat
U(; ;do.nothing) ! do_nothing

Where denotesthe don't care symbol which can take on any value for the function (or
rule) to be applied. So the update function for the internal state or belief just remenbers
the previous action. We make the following simple transition function of the environment
(in reality this transition function doesnot have to be known, but we construct it here to

16 CHAPTER 1. INTRODUCTION

make our model complete). If the heater is on then the temperature will increase(let's say
that it is a simple linear increasingfunction, which is of coursenot true in reality due to the
e ect that there is an upper limit of the temperature, and that more heat will be lost due to
interaction with the outside when the temperature di erence is larger. In reality the heat-loss
is a linear function of the temperature di erence, but in our model we do not include the
outside temperature, sincethen isolation will alsobeimportant and we get too many details
to model). We also make a simple transition function when the heateris o. So using our
simple assumptionswe make the following ervironmental transition function:

T(S(t);heat) ! S(t) + 0:1
T(S(t);donothing) ! S(t) 0:05

The reward function is only neededfor self-adapting systems. Howewer, we can alsouseit
asa measuremei function on the performanceof a policy. Let's say that we want the room's
temperature to remain closeto 22 degreesthen the reward function may look like:

R(I; ;)= (I 22y

Dynamics of the interaction

When we let the heater interact with the temperature of the room, we will note that there
will be constart change or dynamics of a number of variables. The following variables will
shav dynamics:

The state of the environment S(t)

The input of the heater (in this caseequal to the state of the ervironment): | (t)
The action of the heater: A(t)

The received reward: R(t)

The internal state of the heater (in this caseequalto the previous action of the heater):
B(t)

If we let the temperature of the room start at 15 degrees,we can examine the dynamics
of the room's temperature (the state of the ervironment). This is shovn in Figure 1.4,

1.5 Environmen ts

The interaction with the environment dependsa lot on the ervironment itself. We can make
a very simple systemwhich shows very complex behavior when the environment is complex.
One good exampleof this is Simon'sant. Herbert Simonis a well-known researter in arti cial
intelligence and he thought about a simple ant which follows the coastline along the bead.
Sincethe wavesmake di erent complex patterns on the bead, the ant which follows the coast
line will also shaw complex behavior, although the designof this ant may be very simple.

On the other hand, the environment can also make the design of a system much more
complicated. There are some characteristics of environments which are important to study,
beforewe can understand how complex the construction of a well performing systemwill be.
The following characteristics of ervironments are most important:

1.5. ENVIRONMENTS 17
25
20
Temperature

15

10

10 30 50 70 90 110 I307me

Figure 1.4: The dynamics of the room's temperature while interacting with the heater with
the given policy. Note that there is a repetition in the dynamics.

Completely / Partially observable. The question hereis about the perception of
the agert of the environment. Can it perceivwe the complete state of the environment
through its (virtual) sensors? Then the ervironment is completely obsenable, this is
for examplethe casein many board-games(but not in Stratego).

Deterministic / Non-deterministic. If the next state of an ernvironment given the
previous state and action of an agert is always unique, then it is a deterministic envi-
ronmert. If the successostate can be one of many possiblestates, usually a probability
distribution is usedand then the ervironment is non-deterministic (also called stochas-
tic).

Episo dic / Non-episo dic. If the task requires always a single interaction with the
ervironment, then the interaction with the environment is episadic. In casea complete
sequenceof actions should be planned and executed, the interaction with the erviron-
mert is non-episalic.

Static / Dynamic. If the ervironment does not change when we do not regard the
action of the agert, then the environment is static. In casethe environment changeson
its own independertly of the action of the ager, we say the environment is dynamic.
In casethe reward function changes,we say the environment is semi-dynamic .

Discrete / Contin uous. If the state of the ervironment only usesdiscrete variables
such asin chess,the environment is discrete. If corntinuous variables are necessaryto
accurately describe the state of the ernvironment, the environment is cortinuous (as is
the casewith robotics where the position and orientation are corntinuous).

If we considerthesedimensionsto characterisethe ervironment, it will not be surprising
that the ervironments that are most complex to perfectly control are partially obsenable,
non-deterministic, non-episalic, dynamic, and continuous. We may always be able to try to
simulate these environments, although a good model is also complicated (as for example for
weather prediction).

We can make a list of environments and shaw the characteristics of these environments.
Figure 1.5 shows sudh a mapping of tasks (and environments) to characteristics.

18 CHAPTER 1. INTRODUCTION

Completely Deterministic Episodic Static Discrete
observable
Environment
Chess with clock Yes Yes No Semi Yes
Chess without clock Yes Yes No Yes Yes
Poker No No No Yes Yes
Backgammon Yes No No Yes Yes
Taxi driving No No No No No
Medical diagnosis No No No No No
Object recognition Yes Yes Yes Semi No
Interactive english teacheNo No No No Yes

Figure 1.5: A mapping from ervironments and tasks to characteristics.

1.6 Multi-agen t Systems

In particular tasks, there are multiple ageris which may be working together to solve a
problem, or they may be competing to get the best out of the situation for themsehes. In
the caseof multiple agerts interacting with ead other and the ervironment, we speak of a
Multi-agen t System (MAS) . In principle the whole MAS could be modelled as one super-
agert which selectsactions for all individual agerts. Howewer, thinking about a MAS as a
deceriralised architecture has someadvantages:

Robustness. If the super-agert would stop working, nothing can be done anymore,
whereasif a single agert of a big group of agens stopsto work, the system can still
continue to solve most tasks.

Speed. In caseof multiple agers, eat agert could easily run on its own computer
(distributed computing), making the whole system much faster than using a single
computer.

Simplicity to extend or modify the system. It is much easierto add a new ager running
its own policy than to changeone big program of the super-agert.

Information hiding. If somecompanieshave secretinformation, they do not want other
agerts to accesshat information. Therefore this information should only be known to
a single agernt. If ewverything runs on a super-ager the privacy rules are much harder
to guarantee.

1.6.1 Mo del of a multi-agen t system

If we are dealing with a MAS, we can still model the individual agerns with the sameformal
methods aswith singleagerts, sowith inputs, actions, internal state, policy, reward function,
and beliefupdate function. In many caseshowever, there will alsobe communication between
the agerts. In that casethe agens possesommunication signals (usually somelanguage)
and they map inputs and internal states to communication signals which they can sendto

1.7. COMPLEX ADAPTIVE SYSTEMS 19

individual agerts or broadcastto all of them. Communication is important if the agerts have
to cooperate. Coordination of ageris is important to optimize a MAS, since otherwise they
might all start to do the samejob and goto the sameplacesetc. It is clearly moree cien t if the
agerts can discussamong themseheswhat role they will play in solving a task. Furthermore
there may also be managemenm agerts which give roles and tasks to individual agers etc.
A current challenging researt eld is to study self-adaptive structures or architectures of
multi-agent organisations.

1.7 Complex Adaptiv e Systems

Somesystemsconsisting of multiple interacting entities are called complex adaptive systems.
The dierence between complex adaptive systemsand MASSs is that in complex adaptive
systems, the individual ertities do not have a goal, they are just part of the overall system.
Basically, theseertities are smallerthan a completeagert (think about the di erence between
your body-cells and you as a complete organism). Therefore complex adaptive systemsalso
do not have to be ableto cortrol someprocessor solve sometask, they are more important for
simulating processes.We do not consider such complex adaptive systemsas being rational,
although they may still adapt themseles and can be very complex. In complex adaptive
systems, simple rules can create complex behavior if multiple simple entities interact. We
then often say that the overall system behavior emerges from the interaction between the
entities. Examples of processeavhich we can model with complex adaptive systemsare:

Trac consisting of many vehiclesor other usersof infrastructures
Forest res consisting of trees, grass,etc. which propagate the re
Infection diseasesonsisting of viruses and virus-carriers

Magnetism consisting of elemenary particles which can be positively or negatively
charged

Ecological systems which consist of many organisms which can eat eat other and
reproduce

Economical markets which consist of many stocks and investors

In some casesof the above processeswe might also usea MAS to model them and try to
optimize the process.This is especially clearin trac or economicalmarkets.

1.7.1 Predator-Prey systems

A simple example of a system consisting of multiple ertities is a predator-prey system. The
predator looks for food (prey) to eat and produceso spring. The prey also looks for food,
reproducesitself, and tries to circumvent being eaten by predators. The interesting phe-
nomenon s that the population of prey and predators depend on ead other. If there are
many predators, the population of prey will decreasesincemany of them will be eaten. But
if there are few prey, the population of predators will decreasesincethere will not be enough
food for all of them. If there are then few predators left, the population of prey will increase
again, leading to repetitiv e dynamics.

20 CHAPTER 1. INTRODUCTION

Lotk a-Volterra Equations. Lotka and Volterra captured the predator-prey system
with a couple of equations. We will call the size of the prey-population x and the size of
the predator-population y. Now the ervironmental state S(t) = (x(t);y(t)). The state will
changeaccordingto the following two rules:

x(t+ 1) = x(t) + Ax(t) Bx(t)y(t)
y(t+ 1) =y(t) Cy(t) + Dx(t)y(t)

When we choosestarting population sizes:S(0) = (x(0);y(0)) and we take someparameter
valuesfor A; B; C; D we get a dynamical systemwhich behavesfor example as seenin Figure

1.6.

N

20 40

[l 5 L L N = S ¥ 1 N+

Figure 1.6: The predator-prey dynamics using Lotka-Volterra equations. Note that the preda-
tor population y will grow if there is a lot of prey and the prey population will decreaseif
there are many predators.

1.7.2 State dynamics

We have seenthat the state of the ervironment shows a particular kind of dynamics. We can
distinguish betweenthree kinds of dynamics: dynamicsto a Stable point, dynamicsleading
to a perio dic cycle, and chaotic dynamics. When the state enters a stable point, it will
always stay there, this meansthat the dynamicsbasically endsand S(t+ 1) = S(t) forallt n
where n is sometime-step where the processerters the stable point. We can compute what
the stable point of the dynamics of the Lotka Volterra equations will be depending on the
parametersA; B; C; D. Whether the processwill enter the stable point may also depend on
the initial state. The following should hold for a stable point for the Lotka-Volterra process:

(x(t+ 1);y(t+ 1)) = (x(1); (1))

Then we can nd a stable point S() = (x();y()) asfollows:

x() = x()+Ax() Bx()y() (1.2)
0 = A By() (1.3)

A
y() = B (1.4)

y() = y() Cy()+Dx()y() (1.5)

1.7. COMPLEX ADAPTIVE SYSTEMS 21

0 = C+ DX() (16)
C

x() = § (1.7)

Periodic Cycle. For a periodic cycle, after someinitial transient process,the state-
sequenceshould always repeat itself after someperiod of xed length. We have already seen
two processeswhich lead to a periodic cycle, the heater and the Lotka-Volterra equations.
Formally for a periodic cycle the following should hold:

S(t) S(t+ n)
S(t+ 1) S(t+n+ 1)

S(t+n 1). = .S(t+2n 1)

Herewe say that the length of the periodic cycleis n. Note that a stable point is equivalert
to a periodic cycle of length 1. Sometimesa processslovly convergesto a cyclic behavior.
We then say that the nal attractor is a limit cycle.

Chaotic dynamics. In casethe processdoesnot lead to a stable point or to a periodic
cycle (also called a stable limit cycle), the processmight be called chaotic although there
are some additional conditions for a true de nition of chaos explained belon. In chaotic
dynamicsit is very hard to predict what will happen after a long time, although accordingto
the above de nition aloneit may be simple in somecasesg.g. the equation S(t+ 1) = S(t)+ 1
would accordingto the above de nition alsolead to chaotic dynamics. This is of coursevery
strange, sincewe always think about chaotic processess being unpredictable. Therefore we
have to include the condition that the processis hon-linear and sensitive to initial conditions.
This meansthat when we start with two initial states S;(0) and S,(0) which may be very
closeto eadth other, that the di erence betweenthe trajectories will increase(exponertially)
after iterating the processover time. In the caseof the equation S(t + 1) = S(t) + 1 the
di erence betweentwo starting states will not grow but remain the sameand the systemis
clearly linear. But there are processewhich are non-linear for which the di erence between
the state trajectories grows which are still predictable sudh asS(t + 1) = S(t) S(t) where
S(0) 1. Therefore even this requiremert may not be strict enough,and to eliminate suc
trivial caseswe have to add the condition that the state trajectory doesnot goto in nit y, but
remainsboundedin somesubspace.This bounded subspaceis called a chaotic attractor, and
although the state tra jectory will remain in the attractor, it is unpredictable whereit will be
if we do not know the preciseinitial state and model of the chaotic system. All we can do is
to compute a probability function over this subspaceto guessin which areathe processwill
be at sometime-step.

The requiremert that the di erence betweentwo initial states will grow makesthe pre-
diction problem much harder, sinceif our measuredinitial state has somesmall error then
after sometime, the error will have grown drastically sothat our prediction of the state will
not be valid or useful anymore. Since measuring a state and the change of the state for a
complex non-linear systemat the sametime is impossible(for changewe needto look at the
di erence betweentwo states), we can never have a precisemeasuremen of the current state
(where the state includes position and velocity or change). Therefore, when the processis
chaotic, it cannot be predicted over time.

Another interesting thought is that chaosis not really possibleon a computer, sincethere
area xed number of stateson the computer. Therefore, sincea chaotic systemalways usesa

22 CHAPTER 1. INTRODUCTION

deterministic transition function, we will always comebadk sometime to the samestate and
then go to the next state etc. leading to someperiodic cycle of very large period. It is also
true that it is often hard to distinguish betweenchaotic dynamics and a periodic cycle, since
the period may be so large that the processappearsto be chaotic, but in reality has a very
large period which did not appear in the generatedstate trajectory. Finally we should note
that there is a big di erence between non-determinism (randomness)or a chaotic process.
A chaotic system is deterministic, but may appear random to an obsener. On the other
hand in non-determinism the processwill newer follow exactly the same state trajectory,
so one might think sud processesare chaotic. Howewer, in a chaotic system we could in
principle predict future states if the current state is exactly known. The impossibility to
predict future states comesfrom the impossibility to know exactly the current state. On
the other hand, in a non-deterministic system, even if we would know the exact initial state,
prediction of a trajectory would be impossible since there would be many possible future
trajectories. If we examine random-number generators, they are in reality pseudo-random
number generatorswhich provide us with seeminglyrandom numbers, but basically it draws
the random numbers from a huge periodic cycle of xed length. Real randomnessprobably
existsin nature, although it is extremely dicult to nd out whether it is not deterministic
chaoswhich makesnature to appear random.

1.8 Outline of this Syllabus

This syllabus describesa wide variety of adaptive systems,ranging from arti cial life models
such as cellular automata to machine learning methods such as arti cial neural networks.
Sincethe topic of adaptive systemsis sobroad, there may not always be an evidert connection
between the di erent topics. For example in madine learning, knowledge may be learned
from examples. The interaction with the environment may not be very clear in such cases,
sincethe knowledgerepresertation is changing accordingto the learning dynamics generated
by the interaction betweenthe learning algorithm and the examples. Therefore the conceptof
ernvironment should be consideredalso very broad ranging from the systemitself or examples
to a real world environment. In this syllabus the following topics will be covered:

Cellular Automata which are usefulas modelsfor complex adaptive systemsand study-
ing arti cial life.

Biological adaptive systemsin which systemsinspired on swarm (e.g. ants) intelligence
are usedto solve complex problems

Evolutionary computation in which a model of ewlutionary processess usedto solve
complex optimisation problems

Robotics, where physical robots interact with an ervironment to solve some speci c
task

Machine learning, in which di erent algorithms such asdecisiontrees, Bayesianlearning,
neural networks, and self-organisingmapsare studied in their way of learning knowledge
from examples. This knowledge may then be usedto solve classi cation tasks sud as
mapping mushroom-featuresto the conceptwhether they are edible or poisonous.

1.8. OUTLINE OF THIS SYLLABUS 23

Reinforcemern learning, which is a part of madhine learning, but wherethe focusis more
on an agent which can learn to behave by interacting with somespeci ¢ environment.

24

CHAPTER 1.

INTR ODUCTION

Chapter 2

Arti clal Life

Arti cial life researters study computation models of life-like and emergen processesn
which complex dynamics or patterns arise from the interaction betweenmany simple ertities.
Arti cial Life is a broad interdisciplinary eld where researt runs from biology, chemistry,
physics to computer scienceand engineering. The rst arti cial life workshop was held in
Sarta Fe in 1987 and after this the interest in this eld grew tremendously One of the most
ambitious goalsof arti cial life is to study the principles of life itself. To study the properties
of life there are basically two roads; to study carbon life forms and their developmert (mainly
donein biochemistry) and to examinelife forms and their properties usinga computer. What
both elds have in commonis that life emergesfrom building blocks which cannot be called
alive on their own. Sothe interaction betweenthe elemerns makesthe whole system appear
to bealive. Sincethe interactions are usually not well understood, the study to arti cial life is
usually holistic in nature, which meansthat welook at the whole systemwithout beingableto
make clear separationsin smaller modules. Still today many scienists think that life ewlved
from chemicals in the primordial soup (containing a large number of carbon compounds),
although somesciertists believe that life may have comefrom spaceon a comet. Someassert
that all life in the universemust be basedon the chemistry of carbon compounds, which is
alsoreferred to as\carb on chauvinism".

Thus, arti cial life constructs models and simulates them to study living ertities or other
complex systemsin computer systems. Somereseart questionswhich it tries to answer are:

Biology: How do living organismsinteract in biological processesud as nding/eating
food, survival strategies, reproduction?

Biochemistry: How canliving entities emergefrom the interaction of non-living chemical
substrates?

Saciology: How do agerts interact in arti cial societies if they have common or com-
peting goals?

Econony: How do rational ertities behave and interact in economical environments
such asin stock-markets, e-commerce auctions, etc.?

Physics: How do physical particles interact in a particular space?

Arti cial Art: How can we usearti cial life to construct computer art?

25

26 CHAPTER 2. ARTIFICIAL LIFE

One important goal of arti cial life is to understand the sourceand functionality of life.
One particular way of doing that is to make computer programs which simulate organisms
using some encaling (might be similar to DNA encaing, but the encading can range to
computer programs resenbling Turing madines). The dewelopmen of arti cial creatures
which can be called alive also requires us to have a good de nition of alive. For this we cite:
http://www.w ordig.com/de nition/Life

In biology a corvertional de nition of an ertity that is consideredalive has to
exhibit all the following phenomenaat least onceduring its existence:

Growth

Metabolism; consuming, transforming and storing energy/mass growing by
absorbing and reorganizing mass;excreting waste

Motion, either moving itself, or having internal motion
Reproduction; the ability to create ertities which are similar to itself

Response to stimuli; the ability to measure properties of its surrounding
ervironment, and act upon certain conditions

A problem with this de nition is that one can easily nd counterexamplesand
examplesthat require further elaboration, e.g. according to the above de nition
re would be alive, male mules are not alive asthey are sterile and cannot repro-
duce, viruses are not alive asthey do not grow. One could restrict the de nition
to say that living organismsfound in biology should consist of at least one cell
and require both energy and matter to cortinue living, but theserestrictions do
not help us to understand arti cial life. Finally one could change the de nition
of reproduction to say that organismssud as mules and ants are still alive by
applying the de nition to the level of ertire speciesor of individual genes.

As we can see; there are still many possible de nitions and just as with the concept
intelligence, we may not easily get one unique de nition of \aliv e".

2.1 Genetic Algorithms and Articial Life

One well-known algorithm in arti cial intelligencethat is basedon ewlutionary theory is the
geneticalgorithm (GA). Darwin speculated(without knowing anything about the existenceof
genes)that ewlution works by reconmbination of material of parernts which passthe selective
pressureof the ervironment. If there are many individuals only somecan remain alive and
reproduce, this selectionis very important for nature sinceit allows the best apt individuals
to reproduce (survival of the ttest). Once parents are selectedthey are allowed to create
o spring and this o spring is slightly mutated sothat the o spring will not contain exactly
the samegenetic material asthe parents. Genetic algorithms can be usedfor combinatorial
optimization problems, function optimization, robot cortrol, and the study of arti cial life
sacieties. We will not go into detail into genetic algorithms here, sincethey will be described
thoroughly in a separatechapter. Shortly, genetic algorithms are able to mimic the concept
of reproduction. Sa some arti cial organism is stored in some represenation, sud as a
bitstring (a string of 0's and 1's). Then we can take two parents, cuto their string in two
parts and glue these parts together to create a new o spring, which could possibly be better

2.1. GENETIC ALGORITHMS AND ARTIFICIAL LIFE 27

in the task than its parents. Since parents which are allowed to reproduce are selectedon
their tness in the ervironment, they are likely to possesggood blocks of genetic material
which may then be propagated to the child (o spring). In combination with arti cial life,
genetic algorithms allow us to study a wide variety of topics, including:

Robots which interact with an ervironment to solve sometask

Competitiv e ewlutionary models sudh as arm-racesstudied by Karl Sims. In the arm-
racesexperiment di erent morphologiesand behaviors were ewlved in 3D structures
where two organismshad to compete against ead other by harming the opponert. The
winning individual passedthe test and was able to reproduce leading to a wide variety
of improving morphologiesand behaviors.

Models of social systemssud as the study of emerging societies of individuals which
work together

Economical models such asthe dewvelopmert of buying and selling strategies

Population genetics models where one examineswhich groups of genesremain in the
population

The study of the interaction betweenlearning and ewlution

2.1.1 Interaction between evolution and learning

In ewolutionary theory, sociology, and psydology one often considersthe di erence between
nature and nurture. Nature is what a newborn organismpossesseat its birth. E.g. Chomsky
claims that a lot of knowledge for learning a language is already born in the brain of a
child when it is born. Nurture is the knowledge, skills, and behaviors which an organism
dewelops through its adaption and learning processwhile interacting with an environment.
The nature/nurture dilemma is often to say whether something was born inside an organism
or whether it dewveloped due to the interaction with the ervironment. Examples of this are
whether criminals are born like a criminal or whether they becomeone due to their education
and life. Another exampleis whether homo-sexuality or intelligence is inborn and stored in
the genesor not. Often it is better to say that nature gives a bias towards some behavior
or the other, and nurture causessomebehaviors to be expressed.E.g. if someonehas genes
which may be similar to other people having sdiizophrenia, it is not necessarythat sud a
personwould dewelop the disease,this dependsa lot on circumstancesbut if such a person
would su er from a lot of stress,the genesmay be expressedwith a much bigger probability.

In arti cial life simulations a number of madine learning algorithms can be used which
can learn from the interaction with the world. Examples of this are reinforcemert learning
and neural networks. Although thesetopics will be discussedn separatechapters, they could
also be usedtogether with genetic algorithms in an environment consisting of many ertities
that interact and ewlve. Now if we want to study the interaction between ewlution and
learning we seethat ewlution is very slow and takes place over generationsof individuals,
whereaslearning is very fast and takes place within an individual (agert). The conbination
of these 2 leadsto two possiblee ects:

Baldwin e ect. Hereanindividual learnsduring its interaction with the environment.
This learning may increasethe tness of the individual so that individuals which are

28 CHAPTER 2. ARTIFICIAL LIFE

good in learning may receiwe higher tness values(are better ableto act in the erviron-
ment) than slow learning individuals. Therefore individuals which are good in learning
may reproduce with a higher probability leading to o spring which are potentially also
very good in learning. Thus, although the skill of learning is propagatedto o spring,
learned knowledgeis not immediately propagatedto the o spring.

Lamarc kian learning. Here an individual learns during its life and when it gets
o spring it also propagatesits learned knowledgeto its children which then do not have
to learn this knowledge anymore.

Lamarckian learning is biologically not very realistic, but in computer programs it would
be easily feasible. E.g. supposethat a group of robots all go to learn to use a language,
then if they meetthey can create o spring which immediately possessnultiple languages.In
this way the ewlutionary processcould becomemuch more e cien t. Although Lamarckian
learning has not beenrealistic from a biological point of view until today, researt in genetic
engineering has currently invented methods to change the DNA of an organism which can
then be transmitted to its o spring.

2.2 Cellular Automata

Cellular automata are often used by researtiers working in arti cial life. The invertor of
cellular automata (CA) is John von Neumann who also devised the modern computer and
played an important role in (economical) game theory. Cellular automata are deceriralised
spatial systemswith a large number of simple, identical componerts which are locally con-
nected. The interesting thing of cellular automata is that they are very suited for visualizing
processesand that although they consist of simple componerts and somesimple rules, they
can shaw very complex behaviors. CA are usedin a number of elds for biological, sccial,
and physical processesud as:

Fluid dynamics

Galaxy formation
Earthquakes

Biological pattern formation
Forest res

Trac models

Emergert cooperative and collective behavior

2.2.1 Formal description of CA

A cellular automaton consistsof two componerts:

The cellular space. The cellular spaceconsistsof a lattice ofll§; identical cells. Usually
all cells have the samelocal connelgtivity to other cells. Let be the set of possible
states for a singlecell. Then k = j j is the number of possiblestates per cell. A cell
with index i on time-step t is in state s!. The state s! together with the states of the
cellswith which i is connectedis called the neigborhood n! of cell i.

2.2. CELLULAR AUTOMATA 29

The transition rule. The transition rule r(n!) givesan update for cell i to its next
state s}*l as a function of its neigborhood. Usually all cells are synchronously (at the
sametime) updated. The rule is often implemented as a lookup-table.

2.2.2 Example CA

The following givesan exampleof a CA consisting of a 1-dimensionallattice of 11 stateswith

periodic boundary conditions. The periodic boundary conditions mean that the most left

state has the most right state as its left neighbour and vice versa. Since the neigborhood
of a cell consists of itself, the state of the cell to the left and to the right, the size of the
neigborhood is 3. Therefore, sincethe number of possiblestates of a single cell is only 2 (1
or 0), the transition rule consistsof 22 = 8 componerts; for ead neigborhood there is one
possiblesuccessostate for ead cell. Note that in this examplethere are 2! = 2048possible
complete state con gurations for the CA.

Rule Table R:
Neighborhood: 000 001 010 011 100 101 110 111
Output bit 0o 1 1 1 o0 1 1 o0
Lattice:

i/) Periodic boundary condition%

t=0y1/0/12/0|0/2/1/0]|0]|1]0

Figure 2.1: A cellular automaton using a 1-dimensionallattice, a neigborhood size of 3, and
2 possible states (0 or 1) per cell. The gure shows the CA con guration at time t = 1
computed using the transition rule on the CA con guration at time t = O.

2.2.3 Dynamics of the CA

The CA givenin the previous subsectiononly usesl dimension, a neigborhood size of only 3,
and 2 possiblestates per cell. Therefore, it is one of the simplest CA. But ewven this CA can
shav complex behavior if we iterate it over time and show the dynamics in the space-time
dimensions,seeFigure 2.2.

It will not be a surprise that cellular automata with more complex transition rules and a
larger number of possiblestates can even shavn much more complex behavior. In principle
there are other possibleiterativ e networks or automata networks, cellular automata are just
onekind of automata of this family.

2.2.4 Processesin CA

In Chapter one we have already seenthat when we have bounded spaces,we can divide a
processresulting in a pattern into three di erent classesstable, periodic, and chaotic. Since
the cellular con guration state spaceof a CA is bounded, we can divide patterns created by

30 CHAPTER 2. ARTIFICIAL LIFE

| o

0 Site 199

Figure 2.2: The sequenceof cellular patterns of the CA given in Figure 2.1 generated by
iterating it over 100time steps.

a CA into thesethree groups. Note however that the set of possiblecomplete states of a CA
is not only bounded, but also nite. The three possibleresulting patterns of a CA are:

A stable state (or point), after entering the stable state, the processremainsin the same
state and change stops.

A cyclic pattern. The CA traversesthrough arepeating pattern of someperiodic length.
If there are multiple sub-patterns ead with their own periodic length, the complete
pattern will be periodic but with a larger length (e.g. if two sub-patterns which do
not interact in the CA have periodic lengths of 2 and 3, the complete pattern will have
periodic length 6).

Chaotic behavior. The CA always goesto new, unseenpatterns. Since the CA is
deterministic, chaotic behavior would be possible. Howewer, sincethe number of possible
states on a computer is nite (although it is often huge), there will after nite time
always be a state which has beenseenbefore after which the processrepeatsthe same
cycle of con gurations. Therefore real chaotic behavior in a CA is not possible,only a
periodic cycle of very large length will be possiblein a nite CA.

It is important to understand that an initial con guration may lead to a sequenceof
patterns which are all di erent, after which it may enter a stable state or a periodic cycle.
The time until the CA erters a stable state or periodic cycle is called the transient period.
Someresearters also like to include structured behavior with the above mertioned three
types of behavior. In structured behavior, the behavior seemsvery structured, but there is
no repetitiv e sequenceat least not for a long time).

The dynamics of CA can be in uenced by the transition rules. Sometransition rules can
lead to very simple behavior, whereasothers lead to very complex behavior. Some people
nd it a sport to make a transition rule which has the longest possibleperiodic length.

2.2.5 Examples of cyclic processes

A stable state is easyto make, e.g. it can consistof only 1's. Then if we make transition
rules which always output a 1, we get the resulting stable state from any possible initial

2.2. CELLULAR AUTOMATA 31

con guration after onetime step. Periodic cyclescan be made in many possibleways. Here
we show a simple example. Supposewe have a 2-dimensionallattice. The transition rule is: if
2 neighbours (out of 4) are active, then the cell is activated (becomesl or black). Otherwise
the cell is not activated (becomes0 or white). Figure 2.3 shows a lattice without boundary
conditions (basically we shov a small part of the lattice which is everywhere elseempty so
that we still have identical connectivity for all states), resulting in a periodic cycle of length
2.

Figure 2.3: A cellular automaton con guration with a repeating pattern (the periodic length
is 2).

Problem. Given a 2-dimensionallattice with transition rule: if one neighbour is active
and the cell was inactive, then the cell becomesactive. Else if the cell was active at the
previous time-step keep the cell active in the next time-step. Otherwise the cell remains
inactive. Now ewlve the CA in Figure 2.4.

t=0 t=1
||
t=2 t=3

Figure 2.4: The lattice of the CA for the problem. Try to ewlve the CA over time with the
above given transition rule.

2.2.6 Elimination of basis patterns

When one ewlves a CA, there are often someregularities involved, and other parts which
are completely unpredictable. Therefore some researtiers have tried to use methods for
eliminating the basis of the ewlutionary transitions in a CA. This basiscan consist of walls,
singularities, etc. and can then be eliminated from the process.

The importance of eliminating the basispatterns is to get more inside in possiblechaotic
or turbulent processes. For example take the processfrom Figure 2.5. If we remove the
regularities from this process,we get the processshown in Figure 2.6. We can seethat most
of the seemingly complex processis removed, but someembedded particles move about

32 CHAPTER 2. ARTIFICIAL LIFE

in a seeminglyrandom way. It turns out that when theseembedded particles hit ead other,
that they will be destroyed.

Figure 2.5: A CA processiterated over time.

Figure 2.6: The processof Figure 2.5 with the regular basis patterns removed.

2.2.7 Research in CA

One important insight is that cellular automata are universal machines. That meansthat
they can compute any computable function and are therefore just as powerful as Turing
Machines. This also meansthat any algorithm which can be implemented on the usual
sequetial computer can in principle also be implemented in a CA.

Conway's game of life

The gameof life wasinvented by the mathematician John Conway in 1970. He chosethe rules
carefully after trying many other possibilities, someof which causedthe cellsto die too fast
and otherswhich causedtoo many cellsto beborn. The gameof life balancesthesetendencies,
making it hard to tell whether a pattern will die out completely, form a stable population, or
grow forever. Conways' game of life usesa 2-dimensionallattice with 8 neighbours for eath
cell. The transition rule(s) are:

2.2. CELLULAR AUTOMATA 33

If a cellis not active (dead, black, or 1) and it hasexactly 3 living neighbours, then the
cell will becomeactive (rule of birth)

If a cellis active and it has2 or 3 neighbours which are active, then the cell stays active
(rule of survival)

In all other casesthe cell becomesnot active (rule of death due to overcrowding or
loneliness).

One of the interesting things about the game of life is that it has universal computing
power, even with the three rules given above. This universal computing power relies on
particular patterns known as gliders . Sud gliders are living ertities which crossthe 2-D
lattice and which can passinformation sothat it becomespossibleto make logical AND, and
NOT gates. For an example of the behavior of a glider look at Figure 2.7.

t=0 t=1 t=2

Figure 2.7: A glider moving one step diagonal after ead 4 time-steps.

Another important object in the gameof life is the useof a Glider gun. Glider gunscan
re gliders and remain stable, which makesit possibleto propagate information at somerate.
By using multiple glider gunswhich shoot gliders, we can make interactions betweendi erent
patterns which are propagatedin the cellular space. An exampleof this is to have two gliders
which collapseafter which they will be destroyed. This would be usefulto make a NOT gate.
Making a CA using the gameof life rules to compute arbitrary functions is very complicated,
becauseit requiresa very careful developmert of the initial con guration consisting of glider
guns and other patterns, but in principle it would be possible.

Another interesting pattern in the game of life which shows very complex behavior is
known asthe R-pentomino which looks as shawn in Figure 2.8. It is remarkable that sud a
simple pattern can create complex behavior including gliders and many other patterns.

Dev elopmen t of cellular automata

One goal of articial life is to make arti cial systemswhich can be called alive. For this
reproduction seemsnecessaryand therefore researt investigated whether this was possible

34 CHAPTER 2. ARTIFICIAL LIFE

Figure 2.8: The pattern called R-pentomino which createsvery complex behavior.

in cellular automata. In 1966, John Von Neumann constructed a cellular automaton which

was able to reproduce itself, demonstrating one of the necessaryabilities of living systems.
Some other researtiers examined whether cellular automata could be used for recognizing
languages.In 1972,Smith constructeda CA which could recognizeconext-sensitive languages
such as palindromes (palindromes are strings which are the sameif you read them from left

to right or from right to left). After that, Mitchell et. al (1994) used genetic algorithms to

ewlve the transition rules of CA. They tried this using the majority problem as a testbed.
In the majority problem a bitstring is given of somesizeand ead bit of the string can be on
or o. Now the system should tell whether the majority of bits wason or 0. The system
could indicate this by making all bits on (o) if the majority wason (o) after a number of
iterations. Although this problem can of coursebe simply solved by courting all bits, such

a courter would require someform of register or additional memory which was not inside
the cellular automaton. Thus, the question was whether the genetic algorithm could ewlve
transition rules which can solve the problem. The result was that the genetic algorithms
found di erent solutions which are however not optimal for solving all initial problems (with

any order of 1's and 0's). Someof the solutions usedembeddedparticles. The reasonthat no
optimal solution was ewlved was due to the limited local connectivity which doesnot allow
all bits to communicate to ead other.

Other cellular automata

Cellular automata can also be simply and e cien tly usedfor simulating particular processes
sud as:

Modelling Trac. Here a cell is active if there is a car and it is inactive if there is
no car. The rules are simple to make too; if the predessorcell is empty, move to that
cell, otherwise stop. The CA can be made more complicated by adding in ead cell
occupied by a car someinternal state which models the destination addressof the car.
Also di erent speedscan be taken into accourt.

Modelling Epidemics. Here a cell can be a sick, healthy, or immune person.
Modelling Forest Fires. A cell canbe a tree on re, water, a tree without beingon re,

grass,sand, etc. It is alsopossibleto include external parameterssud aswind-strength
and wind-direction, humidity etc. to in uence the behavior of the model.

2.3. ECOLOGICAL MODELS 35

Power laws

There is a lot of researt using CA for examining chaotic processess for example studied in
sandpile models. In cellular automata sandpile models a granular material in a gravitational

eld is used (the model can be two or three dimensional). There are two kinds of cells;
immovable ground cells and movable sand grains. Grains fall from a sourceat the top of
the window and proceeddown to the ground. Grains pile up and redistribute themsehes
according to the cellular automata rules (e.g. if two cells on top of ead other possesgrain,
and a neighboring cell doesnot, then the top grain elemert will make a transition to the empty
neighboring cell). One interesting thing of CA implementations of sudh physical models is
that there will sometimesbe long shifts of grain during the redistribution. Sud a shift is
often called an avalandhe. Now the interesting thing is that large avalandies will be much
less probable than smaller ones, and that the probability distribution law respects a power
law (or Zipf's rule or Pareto distribution). E.g. if we take English words accordingto their
number of occurrencesand we rank all the words according to their usage(so rank 1 means
the word is usedmost often), then Zipf's law statesthat the sizey of occurrenceof an event

(in this example the occurrenceof a word) is inversely proportional to its rank r according
to:

y=ar °

Where a is someconstart and the exponertial factor bis closeto 1. Sud a power law hasbeen
demonstrated in many researt elds, sud asin scocial studies where the number of usersof
web-pagesare counted to examine Website popularity. There are few web-pageswith a large
number of users,and many web-pageswith few users,and the distribution follows Zipf's law.
Pareto looked at income and found that there are few millionaires whereasthere are many
people with a modest income. Also for earthquakes, there are few very heavy earthquakes
and many smaller ones,etc. To shav whether somedata provides evidencefor a power law, it
can be hard to work with very large valuesappearing in the data. In that casewe can make
a log-log plot by taking the logarithm on both sides(note that they should be positive) so
that we get:

b

logy = logar
logy = loga+ logr P
logy = loga blogr (2.1)

Thus in a log-lot plot of the data, the resulting function relating two variables should be a
line (with negative slope b).

2.3 Ecological Mo dels

In biology and ecology simulation models often make use of cellular automata due to their
insightfulness and easyimplementation while still providing interesting and complex behav-
iors. Ecological models can be usedto study social phenomena,immunology and epidemics,
population dynamics of di erent speciesetc. An arti cial ecosystemconsistsof a number of
individuals (agerts) which:

Occupy a position in the environment

Interact with the ervironment and with other agerts

36 CHAPTER 2. ARTIFICIAL LIFE

Possessomeinternal state such asamourt of energy or money

By examining the ewolutionary processin an ecosystemit is possibleto researt the creation
and continuity of processesud as:

Cooperation: E.g., trading behavior betweenindividuals
Competition: E.g., ghting behavior betweenindividuals

Imitation: E.g., an agert learns what he should do by looking at and imitating other
agerts

Parasitic behavior: An individual prots from another individual whereasthe other
individual is harmed by this. Parasitic behavior can be found in many placesin nature,
a good example of this are viruses.

Communities: If alarge group of individuals are put together they might form commu-
nities for the bene t of all. An exampleof this is sh-schools which can better protect
the sh from predators (especially the sh which swim in the middle). Another ad-
vantage of communities is that individuals can cooperate and specialise on their own
task.

2.3.1 Strategic Bugs

Bedau and Padard dewveloped the arti cial life model called Strategic bugs (1992). This
model of an ecosystemusesindividuals which try to nd food and reproduce. The model
consistsof:

An environment modelled as a 2-dimensionallattice.
A cellin the environment can be occupied by food or by a bug or is empty

Food will grow automatically in the environment; food is added in a cell with some
probability if there was no food or bug there

Bugs survive by nding food
Bugs useenergyto move and die if they do not have any energy anymore

Bugs can clone themselvesor reproduce with another bug if they have su cien t energy

The behavior of a bug ewlves from the interaction of the policy of the bug and the
environment. The bug's policy usesa lookup table to map environmental inputs to actions.
An examplerule is: if there are more than 5 food units in the east, then make a step to the
east.

Bedau and Padkard tried to comeup with a measurefor the ewlutionary dynamics. If
sudh an ecosystemis simulated and new individuals will be generated all the time, then
the questionis \What is really new and which individual traits are ewlved in the system?"
For this they examined the ewlutionary activity which looks at the genetic changesin the
chromosomestrings. The experiments showved that there were waves of ewolutionary activity,
new genetic material was often found after sometime and then stayed in the population for
someperiod. Thus it was seenthat new genetic material and therefore behavior was found
and exploited during the ewlutionary process.

2.4. ARTIFICIAL MARKET MODELS 37

2.4 Articial Mark et Mo dels

Financial markets such as stock markets are dicult to predict. Some might think it is
completely random behavior, but the investorsinvolved do not seemto make random, but on
the cortrary, rational decisions. Thus it seemsmore to be a chaotic processemerging from
the large number of investorsand unforeseencircumstances.

One important question is to examine under what conditions predictions about the dy-
namics of nancial markets will be possible. To study this question we rst have to look
at the ecien t mark et hypothesis (EMH) . In an information e cien t market all price
uctuations are unpredictable if all necessaryinvestmert information is taken into accourt
by the investors. The information is taken into accoun if the expectancies,intentions, and
(secret) information of the market participants is incorporated in the prices. From this fol-
lows that when a market is more e cien t, that the price uctuations which are generatedby
the market are more random (and therefore unpredictable). Basically this is causedby the
fact that if there would be only a small information advantage by someinvestors, that the
actions of theseinvestorswill immediately correct the prices, sothat further gain will become
impossible.

2.4.1 Are real mark ets predictable?

Somepeopletend to make a lot of gain from stock markets. One important caseis that of
an analyst which has such an importance that (s)he is considereda guru for predicting which
stocks will rise and fall. If the guru tells everyonethat stock X will increasea lot, then there
will be many people buying that stock. The e ect is that of a self-ful lling prophecy; the
stock price will increasesincethe prophet announcedit and many peoplebelieve it and will
buy that stock. Only the buyers which were the last in buying that stock will loose money,
the investors which are quickest will gain money and sell them immediately after the price
hasincreasedsu cien tly. There are other casesand reasonsto believe that stock markets can
be predictable. One reasonis that investorstrade-o expectedrisk and expected gain. This
meansthat a risk-aversive (in cortrary to a risk-seeking)investor will sell stocks with a high
risk but alsowith an expected gain. The distribution betweenrisk-aversive and risk-seeking
individuals will then causedierent price uctuations, which are therefore not completely
random. In fact a number of studies have indicated that price uctuations are not completely
random.

When we examinethe e cien t market hypothesesthen it requiresrational and completely
informed investors. However theseassumptionsare not realistic. Investorsare not completely
rational and sometimeshard to predict. Furthermore, information is often di cult to inter-
pret, technologies and companieschange, and there are costs assaiated with transactions
and information gathering.

One seeminglye cien t method for trading stocks is to examine the relative competitiv e
advantage between di erent markets. When one comparessome market to other markets,
one can seethat one market (such asa market in obligations) was more promising during the
previous period, sothat it will be likely that more investorswill step to that relatively more
advantageous market which leadsto more prot on that market. Comparing markets (e.g.
between countries, or kind of markets | e.g. obligations versusstocks) can therefore be a
good option.

38 CHAPTER 2. ARTIFICIAL LIFE

2.4.2 Mo dels of nancial theories

Already for a long time there have been peopletrying to come up with nancial theories,
sinceif it would work one could get a lot of money out of it. It should be said, however, that
if you would ever nd a theory which works, that you should not tell it to other people. The
reasonis that your advantage will be lost in using this theory if everyone knows it. People
could even trade in such a way that you will loose money with your once so well working
theory. Therefore we can only shov generalapproadiesthat have beeninvernted to comeup
with modelsto predict the price uctuations:

Psydhological models. Here the model tries to analysethe risk-taking behavior of in-
vestors and examineshow human-attitudes to the market in uences the stock prices.

Learning models. Here data about the stock prices of the past is usedto train a model
to predict its developmern in the future.

Agent models. Here investors are modelled as agerts which use particular strategies.
By letting the modelled agerts interact the complex dynamic of stock markets can be
simulated.

Evolutionary algorithms for dewveloping strategies. Here the ewlution of strategies of
investorsis mimicked. Competitiv e strategies could be usedto create other strategies.
Finally a strategy which was obsened to gain most money in the past could be usedto
trade in the future.

2.5 Articial Art and Fractals

Iterating a simple function can create very complex, artistic, patterns. This was shovn by
Bernoit Mandelbrot who discosered the Mandelbrot set, which is a fractal. A fractal is a
pattern which is self-similar to di erent scales,soif we look at a zoomed out picture of some
details of the fractal we can recognizefeatures which were also shown in the bigger pattern.
It should be said that a fractal can be very complex and not all small scalecomponerts look
similar to the whole pattern. Sohow can we get the Mandelbrot set? First of all considerthe
function:
Xks1 = X2

If we look at the starting valuesfor xy for which the iteration corvergesto a single point, we
can seethat thesearethe values 1< Xxo < 1, andthe nal point will bex; = 0. If xg< 1
or Xg > 1 then the value after many iterations goesto in nit y. If Xg is -1 or 1 then the point
will stay in 1, but this point is unstable, sincesmall perturbations (changesof xy) will let the
valuegoto Oor 1 . In principle the valuesfor which the iteration stays boundedis called the
Julia set, although more interesting Julia setsare assaiated to Mandelbrot setsas we will
seelater. Sofor the function f (x) = x?2, the Julia set would be the region between-1 and 1.
In the spaceof real numbers, not so many interesting things can happen. But now let's
considerthe use of complex numbers. Complex numbers consisﬁ of a real and an imaginary
part, sowe write them as: x = ai + b, wherei is de ned asi = 1. We can add, subtract,
multiply and divide complex numbers just as we can with real numbers. For exampleif we
take x = 3i, then x? = 9. Complex numbers are usedin many sciencessuch asin quantum
mechanics and electric engineering,but we will not go into details about them here.

2.5. ARTIFICIAL ART AND FRACTALS 39

Now considerthe functions of the type:
— 2
Xk+1 = X+ C

The question is: if we start with xo = 0, for which complex numbers C will the iteration of
this function not becomein nite? This set of complex numbers for which the iterations will
stay bounded s called the Mandelbrot set, and it is displayed in Figure 2.9. We can seeits
complexshapein the complexplane (the real part is depicted on the x-axis and the imaginary
part of the points belongingto the set are shown on the y-axis). The points in black belong
to the Mandelbrot set, and the others do not. This is an example of a fractal, a self-similar
structure. The word fractal was also invented by Mandelbrot.

Figure 2.9: The Mandelbrot fractal
Now look what happensif we zoom-in in the picture. The zoomedin gure of the lower
part of Figure 2.9is shavn in Figure 2.10. Note that this pattern is very similar to the original

Mandelbrot set, and we already seethat there are much more self-similar structures to be
found in the picture.

Figure 2.10: A zoomedin pattern of the Mandelbrot fractal
Now, consideragain the iterated function

Xk+1 = XE"’ C

40 CHAPTER 2. ARTIFICIAL LIFE

But, now we have chosena value for C which is an elemen of the Mandelbrot set. Then
another questionwe can askis; which initial valuesxg in the complexplane causethe iteration
to remain bounded? This set which belongsto a particular value of C is called the Julia set
for C. An examplepattern from the Julia setis shown in Figure 2.11.

Figure 2.11: An example pattern from the Julia set

Computer artists like to usefractals, since although the equations are simple, as long as
they are non-linear (linear maps cannot produce interesting patterns like fractals) they can
produce a large variety of complex patterns, and zooming in in the pictures creates many
other patterns. This is just another example of using simple rules to create very complex
patterns.

2.6 Conclusion

Arti cial life is useful for simulating many biological, physical, scciological, and economical
processes.One goal of arti cial life is to understand the principles underlying living ertities
and the emergenceof life forms. Articial life can be combined with genetic algorithms
for optimizing individual behaviors by adapting them to the (changing) ernvironment. If
multiple individuals adapt themsehesand alsoadapt the environment, the resulting dynamics
can be very complex and unpredictable. Even with simple ertities sud as usedin cellular
automata, complex behavior can result from the interaction between simple componerts.
Cellular automata are very useful for modelling and visualizing spatial processessud as
forest res and can be usedto study the behavior of many di erent complex processesOne
interesting thing is that cellular automata are just as powerful as Turing machines which
meansthat any computable function can be implemented using a cellular automaton.

Another aspect in arti cial life is the study of price-dynamicsin nancial markets. Al-
though an e cient market would be completely unpredictable, in reality there are many
reasonsto believe that price- uctuations are not completely random. Making models for pre-
dicting price changesis a challenging researt topic, although found theories may newver be
published, sincethey would eliminate their usefulnessf they are known by many investors.

Finally we have shown that using the complex plane, simple iterativ e functions can create
complex patterns, called fractals. Examples of these are the Mandelbrot and Julia sets.
Computer artists like to use fractals, becausethey look complex, but are easyto make.
Fractals also play a role in chaotic systemsaswe will seein a later chapter.

Chapter 3

Evolutionary Computation

Inspired by the successof nature in ewlving sucdh complex creatures as human beings, re-

searters in arti cial intelligence have deweloped algorithms which are based on ewlution

theory. The classof these algorithms are called ewolutionary algorithms and consistsamong
others of geneticalgorithms, ewlutionary strategies,and genetic programming. Genetic algo-
rithms (GAs) arethe most famousonesand they wereinvented by John Holland. Evolutionary

algorithms are optimisation algorithms that are inspired on Darwin's ewolution theory, known

as natural selectionor survival of the ttest and they were developed during the 1960'sand

1970's. One of their strengths is that they can nd very good solutions in very large seard

spaceswhere exhaustive seard (trying out all possiblesolutions) would cost much too much

time. The principle of ewlutionary algorithms is that solutions are evaluated after which the

best solutions are allowed to reproduce most o spring (children). If the parent individuals

form good solutions, they arelikely to possesgood building blocks of geneticmaterial (the ge-
netic material makesup the solution) that may be usefulfor creating newindividuals. Genetic
algorithms usually take two parert individuals and they reconbine their genetic material to

producea child that inherits geneticmaterial from both parents. If the child performswell on

the evaluation test (evaluating an individual and measuringhow well an individual performs
is commonly done by the use of a tness function), it will also be selectedfor reproduction

and in this way the genetic material can again be propagatedto new generations. Sincethe

individuals themselves will usually die (they are often replaced by individuals of the next

generation), Richard Dawkins came with the sel sh genehypothesis. This hypothesis says
that basically the genesare alive and use the mortal individuals (e.g. us) as hosts so that

they are able to propagatethemsehesfurther. Somegenesmay be found in many individuals,

whereasother genesare only found in a small subsetof individuals. In this way, the genes
seemto compete for hosts, and geneswhich occupy well performing individuals are likely to

be able to reproduce themselwes. The other way around we can say that geneswhich occupy

well performing individuals give advantagesfor the individual and thereforeit is good if they

are allowed to reproduce.

In this chapter we will look at ewlutionary algorithms in general and focus on genetic
algorithms, although most issuesinvolved also play a role for other ewolutionary algorithms.
We rst describe optimisation problemsand then examinewhich stepsshould be pursued for
constructing an ewlutionary algorithm, and what kind of represenations are useful for the
algorithm for solving a particular problem. Finally we will examine someother ewlutionary
algorithms.

41

42 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

3.1 Solving Optimisation Problems

A lot of resear® in computer scienceand arti cial intelligence has been dewted to solving
optimisation problems. There are many di erent optimisation problems;e.g. one of them is
shortest path-planning which requiresthe algorithm to compute the shortest path from a state
to a particular goal state. Well known applications for sud algorithms are planners used by
cars (e.g. the Carin system) or for train-passengers.In principle shortest path problems are
simple problems, and can be solved e cien tly by algorithms suc as Dijkstra's shortest path

algorithm or the A* algorithm. These algorithms can compute the shortest path in a very
short time for problems consisting of more than 100,000cities (or nodesif we formalise the
problem as a graph using nodesand weighted edgesrepreseting the distancesof connections
between nodes). On the other hand, there also exist combinatorial optimisation problems
which are very hard to solve. One exampleis the traveling salesmanproblem (TSP). This
problem requiresthat a salesmangoesto N customerswhich live in dierent cities, so that

the total tour he has to make from his starting city to single visits to all customersand
badk to his starting place should be minimal. This problem is known to be NP-complete
and therefore unlessP = NP not solvable in polynomial time. For example if we use an
exhaustive seart algorithm which computesand evaluates all possibletours, then it hasto

examine about N! tours, which increasesexponertially with N. Thus for a problem with 50
cities, the exhaustive seart algorithm would needto evaluate 50! solutions. Let's sa that

evaluating onesolution costs1 nanosecondwhich is 10 ° second),then evaluating all possible
solutions would costabout 9:6 107 years,which is therefore much longer than the ageof the
universe. Clearly exhaustive seard approactescannot be usedfor solving such conbinatorial

optimisation problems and heuristic seard algorithms have to be used which can nd good
solutions in a short time, although they do not always come up with the optimal solution.
There is a number of di erent heuristic seard algorithms sud as Tabu seard, simulated
annealing, multiple restart local hill-clim bing, ant colorny algorithms, and genetic algorithms.

Genetic algorithms di er from the othersin the way that they keepa population of solutions
and usereconbination operators to form new solutions.

3.1.1 Formal description of an optimisation problem

Optimisation problemsconsistof two componerts; the represenation spaceand the evaluation
(or tness) function. The represenation spacedenotesall possiblesolutions. For example if
we want to solve the TSP, the represenation spaceconsistsof all possibletours which are
encaded in somespecic way. If we want to throw a spear at sometarget and can select
the force and the angleto the ground, the represenation spacemight consistof 2 continuous
dimensions which take on all possible values for the force and angle. On the other hand,
one could restrict this spaceby allowing only anglesbetween0 and 360 degreesand positive
forceswhich are smaller than the maximum force one can useto throw the spear. Let's call
the represetation spaceS and a single solution s 2 S.

The evaluation function (which in the context of ewlutionary algorithms is usually called
a tness function) comparesdi erent solutions to ead other. Although solutions could be
comparedon multiple criteria, let's assumefor now that there is a single tness function f (:)
which maps a solution s to a speci ¢ tness valuef (s) 2 <. The goalisto nd the solution
Smax Which hasthe maximal tness:

f(smax) f(s)8s

3.1. SOLVING OPTIMISA TION PROBLEMS 43

It may happenthat there are multiple di erent solutionswith the samemaximal tness value.
We may then require to nd all of them, or only one (which is of coursesimpler).

So the goal is to seard through the represenation spacefor a solution which has the
maximal possible tness value given the tness function f (;). Sincethe represenation space
may consistof a huge number of possiblesolutions or may be corntin uous, the optimal solution
may bevery hard to nd. Therefore,in practice algorithms are comparedby their bestfound
solutions within the same amount of computational time. Among these algorithms there
could also be a human (expert) which tries to come up with a solution, but if the tness
function gets more complicated and the represeration spacebecomesbigger, the advantage
of computers in their ability to try out millions of solutions within a short period of time
outcompetesthe ability of any human in nding a good solution.

3.1.2 Finding a solution

Heuristic seard algorithms usually start with one or more random solutions which are then

evaluated. For example local hill-clim bing starts with a random solution and then changes
this solution slightly in someway. Then, this new solution is evaluated and if it is a better one
than the previousone, it is kept and otherwisethe previousoneis kept. This simple processis
repeateduntil the solution is good enoughor time is expired. The local hill-clim bing algorithm

looks as follows:

Generateinitial solution sg;t = 0
Repeat until stop criterium holds:
Snew = Change(st)

if f(snew) T (St) then s = Spew
elsesi+1 = st.

t=1+1

is generated, where ead later solution has a larger or equal tness value comparedto all
preceding solutions. The most important function in this algorithm is the function change.
By changing a solution, we do not meanto generatea new random solution, sinceif we would
generate and evaluate random solutions all the time, there would not be any progressiwe
seard towards a better solution. Instead random seard would probably work just as good
as exhaustive seard and is not a heuristic seard algorithm. Soit should be clear than the
function change should keep some part of the old solution in the new solution and change
someother part. As an example consider a represenation spaceconsisting of bitstrings of
somespeci ¢ length N. It is clear that the represetation spacein this caseis: S = f0; 1gN .
Now we could make a function changewhich changesa single bit (i.e. mutating it from O to
1 or from 1to 0). In this casea solution would have N neighbours with this changeoperator.
Now one possiblelocal hill-clim bing algorithms would try all solutions in the neighbourhood
of the current solution and then selectthe best one as spey. Or, alternatively, it could select
a single random solution from the neighbourhood. In both casesfor many tness functions,
the local hill-clim bing algorithm could get stuck in a local optimum. A local optimum is a
solution which is not the global optimum (the best solution in the represernation space),but

44 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

one which cannot be improved using the speci ¢ change operator. Thus, a local optimum
is the best onein a speci c subspace(or attractor in the tness landscape). Sincethe local
hill-clim bing algorithm would not generatea new solution if it hasfound a local optimum, the
algorithm gets stuck and will not nd the global optimum. This could be avoided of course
by changing the change operator, howewer this is not trivial. Sinceif we allow the change
operator to changetwo bits, the neighbourhood would becomebigger, but since still not all
solutions can be readhed, we can again easily get trapp edin alocal optimum. Only if we allow
the change operator to change all bits, we may ewertually always nd the global optimum,
but as mentioned before changing all bits amounts up to exhaustive or random seart. A
solution to the above problem is to changebits with a speci ¢ small probability. In this way,
usually small changeswill be made, but it is always possibleto escape from a local minimum
with someprobability. Another possibility is usedby algorithms sud as simulated annealing
that always acceptsimproving solutions, but also can selecta new solution with lower tness
value than the current one, albeit with a probability smaller than 1. In specic, simulated
annealing acceptsa new solution with probability:

min(L; el (Srew) 1(s0)=Ty

where T is the temperature which allows the algorithm to explore more (using a large T)
or to only accept improving solutions (using T = 0). Usually the temperature is cooled
down (annealed) starting with a high temperature and ending with a temperature of 0. If
annealing the temperature from in nit y to 0 is done with very slow steps, the algorithm will
nally convergeto the global optimum. Howewer, in practice annealing should be done faster
and the algorithm usually corvergesto alocal maxima just like local hill-clim bing. A practical
method to deal with this is to usemultiple restarts with di erent initial solutions and nally

selectingthe best found solution during all runs.

3.2 Genetic Algorithms

In cortrast to local hill-clim bing and simulated annealing, geneticalgorithms usea population
of individuals to seart for solutions. The advantage of a population is that the seard is done
in adistributed way and that individuals are enabledto exchangegeneticmaterial (in principle
the individuals are able to comnunicate). Making the seart using a population also allows
for parallel computation, which is especially useful if executing the tness function costs a
long time. Howewer, it would also be possibleto parallellize local hill-clim bing or simulated
annealing,sothat di erent initial solutions are brought to di erent nal solutions after which
the best can be selected. Therefore the real advantage lies in the possibility of individuals
to exchange genetic material by using reconbination operators and by the use of selective
pressureon the whole population sothat the bestindividuals are most likely to reproduceand
continue the seard for novel solutions. A genetic algorithm looks as follows in pseudo-cale:

1. Initialize a population of N individuals
2. Repeat:

(a) Evaluate all individuals in the population using the tness function
(b) Repeat N times:
Selecttwo individuals for reproduction accordingto their tness values

3.2. GENETIC ALGORITHMS 45

Reconbine thesetwo parent individuals to create one o spring
Mutate the o spring

Insert the o spring in a new population

(c) Replacethe population by the new population

There is a state of every individual and sincea population consistsof N individuals, the
population also has a state. Therefore after ead iteration of this algorithm (usually called a
generation), the population state makesa transition to a new state. Finally after alongtime,
it may happenthat the population cortains the optimal solution. Sincethe optimal solution
may get lost, we always store the best solution found sofar in someplace (or alternativ ely the
Elitist strategy may be usedthat always copiesthe bestfound solution to the new population).

3.2.1 Steps for making a genetic algorithm

For solving real world problemswith geneticalgorithms, suc asa time-tabling problem which

requires us to schedule for example bussesto drivers sothat all busseshave one driver and
no driver hasto drive when (s)he indicated that (s)he doesnot want to drive, the question
arises how to make a represertation of the problem. This is often more art than science,
and researd hasindicated that particular represerations allow better solutions to be found
much earlier. For other problems, making a represettation doesnot needto be hard but the
chosenrepresenation canin uence how fast good solutions are found. Take for examplethe
colouring problem which is also a NP hard problem. In a colouring problem multiple cities
may be connectedto ead other and we want to assigndi erent colorsto cities if they are
connected. The goalisto nd a feasiblesolution while minimizing the amount of usedcolors.
To solve this problem we may choosea represetiation which consistsof N numberswhere N

is the number of cities and the number indicates the assignedcolor to the city. On the other
hand, we could also design a represenation in which we have a maximum of M colors and
N M binary statesin which ead elemeri of the list of NM states indicates whether the city
has that color or not. One should note that the secondrepreseration is larger, although it

requires only binary states. Furthermore in the secondrepresenation it is much easierthat

false solutions (solutions which do not respect the conditions of the problem) are generated,
sinceit allows for cities to have multiple or O colors. Therefore, the rst represertation should
be preferred.

Except for constructing a represenation, we alsoneedto nd ways to initialize a popu-
lation, to construct a mapping from genotype to phenotype (the genotype is the encading in
the chromosomeon which the genetic operators work, whereasthe phenotype is tested using
the tness function), and alsoto make a tness function for evaluating an individual (some
tness functions would favour the sameoptimal solution, but one of these can be more useful
for the geneticalgorithm to nd it).

There are alsomore speci ¢ steps;we needto designa mutation operator, a recomrbination
operator, we have to determine how parents are selectedfor reproduction, we needto decide
how individuals are usedto construct a new population, and nally we have to decidewhen
the algorithm hasto stop. We will explain thesestepsin more detail below.

46 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

3.2.2 Constructing a representation

The rst decisionwe have to make whenwe want to implement a geneticalgorithm for solving
a speci ¢ problem is the represenation we want to use. As mentioned above, there are often
many possiblerepresenations, and therefore we have to examinethe problem to chooseone.
Although the represenation is often the rst decision, we also have to take into account a
possible thess function and which genetic operators (mutation and crossaer) we would like
to use. For example, if we want to ewlve a robot which drives as fast as possible without
hitting any obstacles,we could decideto usea function which mapssensoryinformation of the
robot to actions (e.g. left motor speedand right motor speed). The obvious represenation
usedin this casewould consist of cortinuous parameters making up the function. Therefore,
we may preferto useparticular represenations which allow for cortin uous numbers, although
this is not strictly necessarysincewe may also construct the genotype to phenotype mapping
in someway that converts discrete symbols to cortinuous numbers.

Binary represen tations and nite discrete sets

The most often usedrepresenation in geneticalgorithms usesbinary values,encaling a chro-
mosomeusing a bitstring of N bits. SeeFigure 3.1 for an example. Of courseit would also
be possibleto usea di erent set of discrete values, e.g. like the one usedby biological DNA:
fC;G;A; Tg. It dependson the problem whether a binary represenation would be more
suitable than using dierent sets of values. It should be said that by concattenating two
neighboring binary values, one could also encade eat value from a set containing 4 di erent
values. Howewer, in this casea binary encading would not be preferred, sincethe recombina-
tion operator would not respect the primitiv e elemen being a single symbol and could easily
destroy such symbols through crosswer. Furthermore, a solution in which primitiv e symbols
would be mapped to a single genewould be more readable.

Chromosome

1fol1ofofof1]1]

Gene

Figure 3.1: A chromosomewhich usesa binary represenation and which is therefore encaled
as a bitstring.

If we have a binary represeration for the genotype, we canstill useit to construct di erent
represenations for phenotypes. It shouldbe saidthat seart usingthe geneticoperatorstakes
place in the genotype space,but the phenotype is an intermediary represenation which is
easierto ewaluate by the tness function. Often, however, the mapping from genotype to
phenotype can be an identity mapping meaningthat they are exactly the same.

For example, using the 8-bit phenotype given before, we can construct an integer number
by computing the natural value of the binary represenation. E.g. in the examplegenotype of

3.2. GENETIC ALGORITHMS a7

Figure 3.1 we could convert the genotypeto the integer: 27+ 25+ 21+ 20 = 163. Alternativ ely,
if we want a phenotype which is a number between 2.5 and 20.5 we could compute x =
25+ 182055 2:5) = 13:9609.

Thus, using a mapping from phenotype to genotype gives us additional freedom. In the
rst example, small changesof the genotype (e.g. mutating the rst bit) would correspond
to big changesin the phenotype (changing from 163 to 35). We note, howewer, that in the
secondexample, not all solutions between?2.5. and 20.5 can be represerted using the limited
precision of the 8-bit genotype.

Represen ting real numbers

If we want to construct a phenotype of real numbers, it is a more natural way to encale
thesereal numbers immediately in the genotype and to seart in the spaceof real numbers.
We have already seenthat this canlead to more precisesolutions, sincethe binary encading
would have a limited precisionunlesswe usea very long bitstring. Another advantage is that
the encading is much smaller, although this comesat the cost of creating a contin uous seart
space.

Thus, if our problem requiresthe combined optimisation of n real numbers we could use

S = <", For real numbered represenations, we have to usea tness function which maps
a solution to a real number, therefore the tness function is a mapping f : <" ! <. This
encding is often usedfor parameter optimisation, e.g. when we want to construct a washing
machine which has to determine how much water to consume,how much power to use for
turning the cabinet, etc. The tness function could then trade-o costsversusthe quality of
the washing madine.

Represen ting ordering problems

For particular problems there are natural constraints which the represenation should obey.
An exampleis the traveling salesmanproblem which requires a solution that is a tour from
a starting city to a last city while visiting all cities in between exactly once. A natural
represertation for such an ordering problem is to usea list of numbers where eatch number
represens a city. An exampleis the chromosomein Figure 3.2.

3/4/8/6/1|2|7|5

Figure 3.2: A chromosomewhich usesa list encading of natural numbersto represen ordering
problems.

3.2.3 Initialisation

Before running the genetic algorithm, one should have an initial population. Often one does
not have any a-priori knowledgeof the problem sothat the initialisation is usually done using
a pseudo-randomgenerator. As with all decisionsin a GA, the initialisation also dependson
the represeration, sothat we have di erent possibleinitialisations:

48 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Binary strings. Each single bit on ead location in the string of ead individual receives
50% probability to becomea 0 and 50% probability to becomea 1. Note that the whole
string will likely possessas many O's and 1's, if we would have a-priori knowledge, we
might want to changethe a-priori generation constart of 50%. For discrete sets with
more than 2 elemerns, one can chooseuniform randomly betweenall possiblesymbols
to initialize ead location in a genetic string.

Real numbers. If the spaceof the real numbersis bounded by lower and higher limits,

it would be natural to generatea uniform number in betweenthese boundaries. If we
have an unbounded space(e.g. the spaceof real numbers) then we cannot generate
uniform randomly chosennumbers, but have to usefor example a Gaussian function

with a mean value and a standard deviation for initialisation. If one would not have
any a-priori information about the location of t individuals, initialisation in this case
would be di cult, and one should try someshort runs with di erent initialisations to

locate good regionsin the tness landscape.

Ordered lists. In this case,we should take care that we have a legal initial population
(ead city hasto berepreseried in ead individual exactly onetime). This can be easily
done by generating numbers randomly and eliminating those numbers that have been
usedbefore during the initialisation of an individual coding a tour.

Sometimes, one possesses-priori knowledge of possible good solutions. This may be
through heuristic knowledge or from previous runs of the genetic algorithm or another opti-
misation algorithm. Although this hasthe advantage that the starting population may have
higher average tness, there are also somedisadvantagesto this approad:

It is more likely that geneticdiversity in the initial population is decreasedwhich can
make the population corverge much faster to a population of equal individuals.

Due to the initial bias which is introduced in this way, it is more dicult for the
algorithm to seard through the whole state space,possibly making it almostimpossible
to nd a global optimum which is distant from the individuals in the initial population.

3.2.4 Evaluating an individual

Since most operations in a genetic algorithm can be executed in a very short time, the
time neededfor evaluating an individual is often a bottlenedk. The ewaluation can be done
by a subroutine, a (black-box) simulator, or an external process(e.g. robots). In some
casesevaluating an individual can be quite fast, e.g. in the traveling salesmanproblem the
evaluation would cost at most a number of computations which is linear in the number of
cities (i.e. one can simply sum all the distancesbetween cities which are directly connected
in the tour). In other cases,especially for real world problems, evaluating an individual can
consumea lot of time. For exampleif onewants to usegeneticalgorithms to learn to cortrol
a robot for solving sometask, even the optimal cortroller might already take seeral minutes
to solve the task. Clearly in such a case,populations can not be very large and the number of
generationsshould also be limited. One method to reduceevaluation time for sudh problems
is to store the evaluations of all individuals in memory, sothat a possiblesolution which has
already beenevaluated before, doesnot needto be re-ewaluated.

3.2. GENETIC ALGORITHMS 49

If ewvaluating time is so large, that too few solutions can be evaluated in order for the
algorithm to come up with good solutions starting with a random initial population, one
could try to approximate the evaluation function by a model which is much faster albeit not
asaccurateasthe real evaluation function. After ewlving populations using this approximate
tness function, the bestindividuals may be further ewlved usingthe real tness function. A
possibility for computing an approximate tness function is to evaluate a number of solutions
and to usea function approximator (such as a neural network) to learn to approximate the
tness landscape. Sincethe approximate tness function often doesnot approximate the real
one accurately, one should not run too many generationsto nd optimal solutions for this
approximate tness function, but only useit to comeup with a population which can perform
reasonablyin the real problem. In caseof robotics, someresearders try to come up with
very good simulators which makesthe ewlution much faster than executingthe robots in the
real world. If the simulator accurately modelsthe problem in the real world, good solutions
which have beenewlved using the simulator often also perform very well in the real world.

Another function provided by the tness function isto dealwith constraints on the solution
space. For particular problemsthere may be hard or soft constraints which a solution hasto
obey. Possibilities to deal with such constraints are:

Use a penalty term which punishesillegal solutions. A problem of this solution is that
in somecaseswherethere are many constraints a large proportion of a population may
consistof illegal solutions, and even if theseare immediately eliminated, they make the
seard much lesse cien t.

Use speci ¢ ewlutionary operators which make sure that all individuals form legal
solutions. This is often preferred, but can be harder to implement, especially if not all
constraints in the problem are known.

3.2.5 Mutation operators

In geneticalgorithms there are two operators which determine the seart for solutions in the
genotype space. The rst oneis mutation. Mutation is usedto perturbate (slightly change)
an individual sothat a new individual is created, but which still resenblesthe previous one
(in genetic algorithms mutation is often performed after recomnbination sothat the previous
one is already a new individual). Mutation is an important operator, since it allows us
to explore the represenation space. Without it, it would becomepossiblethat the whole
population cortains the sameallele (value on somelocus or location in the genetic string),
sothat dierent valuesfor this locus would never be examined. Mutation is also useful to
create more diversity and to escape from a corverged population which otherwise would not
explore di erent solutions anymore. It is possibleto usedi erent mutation operators for the
samerepreseration, but it is important that:

At least one mutation operator should make it possibleto seard through the whole
spaceof solutions

The size of the mutation operator should be cortrollable

Mutation should create valid (legal) individuals

50 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Mutation for binary represen tations

Mutation on a bitstring usually is performed by changing a bit to its opposite (0! 1 or
11! 0). This is usually done on ead locus of a genetic string with some probability Pp,.
Thus the mean number of mutations is NP,; where N is the length of the bitstring. By
increasing P, the algorithm becomesmore explorative, but may also lose more important
genetic material that was ewlved before. A good heuristic to set P, is to setit as Ni which
createsa mean number of mutations of 1. Figure 3.3 shows sthematically how mutation is
doneon a bitstring.

1/1/1/1/1/1/11 Before mutation

1/1/1/0/1/1/11 After mutation

Mutated Gene

Figure 3.3: A chromosomerepresenied as a bitstring is changed by mutation.

In caseof multi-v alued discrete represenations with a nite number of elemeris, muta-
tion is usually done by rst examining ead locus and using the probability P, to choose
whether mutation should occur, and if a mutation should occur, ead possible symbol has
equal probability to replacethe previous symbol on that location in the chromosome.

Mutation for real numbers

If a represertation of real numbersis used, we also needa di erent mutation operator. We
can use the sameway as before to selecta locus which will be mutated with probability
Pm. But now the value of the locusis a real number. We can perturb this number using a
particular form of added randomness. Usually Gaussiandistributed zero-meannoiseis used
with a particular standard deviation, so that we get for the chosenvalue of the genex; in a
chromosome:

Xi = Xj+ N(0;)

Mutation for ordered represen tations

For mutating orderedrepresenations we shouldtry to make surethat the resulting individual
respects the constraints of the problem. That meansthat for a traveling salesmanproblem
all cities are used exactly one time in the chromosome. We can do this by using a swap of
two valueson two di erent loci. Thus we generatetwo locations and swap their values as
demonstratedin Figure 3.4.

3.2.6 Recombination operators

The advantage of using recomnbination operatorsis that it becomespossibleto combine useful
genetic material from multiple parents. Therefore, if one parent has particular good building

3.2. GENETIC ALGORITHMS 51

Figure 3.4: A chromosomerepreserted as an orderedlist is mutated by swapping the values
of two locations.

blocks, and another parent has di erent good building blocks, the o spring by reconmbining
theseparents may immediately possessll good building blocks from both parents. Of course
this is only the caseif reconbination succeedsrery well, an o spring may also contain those
parts of the parents which are not useful. Howewer, good individuals will be kept in the
population and the worse oneswill die, sothat it is often still usefulto usereconbination.

A recombination operator usually mapstwo parent individuals to oneor two children. We
can useone or more recombination operators, but it is important that:

The child must inherit particular genetic material from both parents. If it only inherits
genetic material from one of the parents, it is basically a mutation operator

The reconbination operator must be designedtogether with the represenation of an
individual and the tness function so that reconbination is not often a catastrophe
(generating bad individuals)

The recomnbination operator should generatelegal individuals, if possible

Recom bination for binary strings

For binary strings there exist a number of di erent crossaer operators. One of them is 1-point
crosswer in which there is a single cutting point that is randomly generatedafter which both
individuals are cut at that point in two parts. Then these parts are combined, resulting in
two possiblechildren of which nally oneor both will be kept in the new population (usually
after mutating them aswell). Figure 3.5 shavs how 1-point crosseer is done on bitstrings.

Instead of using a single cutting point, one could alsousetwo cutting points and take both
sidesof one parent together with the middle part of the other parent to form new solutions.
This crosswer operator is known as 2-point crossaer. Another possibility is to use uniform
crosswer, hereit is decidedby a random choice for ead location separatelywhether the value
of the rst individual or of the secondindividual is usedin the o spring. We can seethe
dierent e ects of a generatedcrosswer operator using crosswer masks. Figure 3.6 shavs a
crosswer mask which is usedto create two children from two parerts.

Note that these recombination operators are useful for all nite discrete sets and thus
wider applicable than only for binary strings.

52 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Cut Cut
111 1/1/1]1 o/o/0/0/0/0 O Parents
1/1/12/0/0/0 0 0O/o0|0/1/1|1 1 Children

Figure 3.5: The reconbination operator known as 1-point crosswer. Here the part left to the
cutting point of the rst parent is combined with the part right to the cutting point of the
secondparent (and vice versa).

1/1/0]0]1]0o]0] Mmask (uniform)

‘1‘1‘1‘1‘0‘1‘1‘ ‘0‘0‘1‘0‘0‘0‘0‘ Parents

1/1/1,0,0|0/|0 0/0j1/1/0 1|1 Children

Figure 3.6: The e ect of a reconmbination operator can be shovn by a crosswer mask. Here
the crosswer mask is uniformly generated, after which this mask is used to decide which
valueson which location to usefrom both parents in the o spring.

Recom bination for real numbered represen tations

If we have represemniations which consist of real numbers, one might also want to use the
recombination operators that are given above for binary strings. However, another option is
to averagethe numberson the samelocation, sothat we get:

a b a b
(x§=7X1+X1...x = Xn* Xn,
2 n 2

The two dierent recombination operators for real numbers can also be used together by
randomly selectingone of them ead time.

Recom bination for ordered represen tations

Designing recomnbination operators for ordered represerations is usually more di cult, since
we have to ensurethat we get children that respect the constraints of the problem. E.g. if
we would use 1-point crosswer for the TSP, we will almost for sure get children which have

3.2. GENETIC ALGORITHMS 53

somecities twice and someother cities no time in their represeration, which would amourt
to many illegal solutions. Penalising such solutions would also not be e ectiv e, since almost
all individuals would becomeillegal. There hasbeena lot of researt for making reconbina-
tion operators for ordered represenations, but we only mertion one possiblerecombination
operator here.

Sincethe constraint on a reconbination operator is that it hasto inherit information from
both parents, we start by selectinga part of the rst parent and copy that to the child. After
this, we want to useinformation from the secondparent about the order of valueswhich is
not yet copiedto the child. This we do by looking at the secondparent, examining the order
in the secondparent of the cities which are not yet inside the child, and attaching thesecities
in this order to the child. Figure 3.7 shows an illustration of this reconbination operator for
ordered lists.

Patt?rjt 1 777777 Parent 2
713]1l8l2]4/6[s] [4]3][2[8]6]7]1]5]
73465 - - S 1

fffff L |
‘ ‘ ‘1‘8‘2‘ ‘ ‘ ‘ Oréier:

7]s/1]8 2]4][3 6

Figure 3.7: A possiblereconbination operator for ordered represenations sud as for the
TSP. The operator copiesa part of the rst parent to the child and attachesthe remaining
cities to the child while respecting their order in the secondparert.

3.2.7 Selection strategies

Another important topic in the designof GAs is to selectwhich parents are allowed to create
children. If onewould always randomly chooseparerts for creating children, there would not
be any selective pressurefor obtaining better individuals. Thus, good individuals must have
a larger probability for generating o spring than worse individuals. The selection strategy
determines how individuals of a population are chosenfor generating o spring. Often the
selection strategy allows bad individuals to generate o spring as well, albeit with a much
smaller probability, although some selection strategies only create o spring with the best
individuals. The reasonfor using lessthan average t individuals for creating o spring is
that they can still contain good genetic material and that the good individuals may resenble
ead other very much. Therefore, using bad individuals may create more diversepopulations.
In the following we will describe a number of di erent selectionstrategies.

54 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Fitness prop ortional selection

In tness proportional selection, parents which are allowed to reproduce themseles are as-
signeda probability for reproduction that is basedon their tness. Supposeall tness values
are positive, then tness proportional selectioncomputesthe probability p; that individual i
is usedfor creating o spring as:

LI

i fi

where f; indicates the tness of the i individual. If some tness values are negative, one
should rst subtract the tness of the worst individual to createonly new tness valueswhich
are positive. There are somedisadvantagesto this selectionstrategy:

There is a danger of premature corvergence,sincegood individuals with a much larger
tness value than other individuals can quickly take over the whole population

There is little selectionpressureif the tness valuesall lie closeto ead other

If we add someconstart to all tness values, the resulting probabilities will become
di erent, sothat similar tness functions lead to completely di erent results

A possibleway to deal with some of these disadvantagesis to scaleall tness values, for
example betweenvaluesof 0 and 1. For this scaling one might usedierent functions suc
as the squareroot etc. Although this might seema solution, the scaling method should be
designedad-hoc for a particular problem and therefore requiresa lot of experimental testing.

Tournamen t selection

Tournamernt selection does not have the problems merntioned above, and is therefore used
much more often, also becauseit is very easyto implement. In tournament selection k
individuals are selectedrandomly from the population without replacing (so ead individual

can only be selectedonetime), and then the bestindividual of this group of k individuals is
usedfor creating o spring. Here, k is known asthe tournament size, and is usually setto 2
or 3 (although the bestvalue also dependson the sizeof the population). Very high valuesof
k causea too high selectionpressureand therefore can easily lead to premature convergence.
Figure 3.8 shows how this selectionstrategy works.

Figure 3.8: In tournament selectionk individuals are selectedand the best one is used for
creating o spring.

3.2. GENETIC ALGORITHMS 55

Rank-based selection

In rank-based selection all individuals receive a rank where higher ranks are assignedto
better individuals. Then this rank is usedto selecta parent. Soif we have a population of
N individuals, the bestindividual getsa rank of N, and the worst one a rank of 1. Then we
compute probabilities of ead individual to becomea paren as:
ri
pi = P—

ifi

wherer; is the rank of the i!" individual.

Truncated selection

In truncated selectionthe best M < N individuals are selectedand used for generating
o spring with equal probability. The problem of truncated selectionis that it doesnot make
distinctions between the best and the M best individual. Some researters have used
truncated selection where the best 25% of the individuals in the population are used for
creating o spring, but this is a very high selection pressureand can therefore easily lead to
premature corvergence.

3.2.8 Replacement strategy

The selective pressureis also in uenced by the way individuals of the current population
are eliminated to make place for new individuals. In a generational genetic algorithm, one
usually kills the old population and replacesit by a completely new population, whereasin
a steady-state genetic algorithm at ead time one new individual is created which replaces
one individual of the old population (usually the worst one). Generational GAs are most
often used, but sometimespart of the old population is kept in the new population. E.g. one
well-known approad is to always keepthe bestindividual and copy it to the next population,
this approad is called Elitism (or elitist strategy). We recall that even if the elitist strategy
is not used, we always keepthe bestfound solution so far in memory.

3.2.9 Recombination versus mutation

The two seard operators usedin geneticalgorithms have di erent usage. The recombination
operator causesnew individuals to depend on the whole population (genetic material of
individuals is mixed). Its utilit y relies on the schemata-theorem which tells us that if the
crossaer operator does not destroy good building blocks too often, they can be quickly
mixed and stay in the population, sincean individual consisting of two good building blocks
(schemata) is likely to have a higher tness value and therefore more likely to propagate
its genetic material. In principle, the crosswer operator exploits previously found genetic
material and leadsto faster corvergence.In casethe whole population has convergedto the
sameindividual, the crosswer operator will not have any e ect anymore. Thus, with less
diversepopulations, the e ect of crossaer diminishes.

On the other hand the mutation operator possessedi erent properties. It allows a popu-
lation to escape from a singlelocal minimum. Furthermore it allows valuesof locations which
have beenlost to be reinserted again. Thus we should regard it as an exploration operator.

56 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Genetic algorithms and evolutionary strategies

Independertly on the dewvelopmert of genetic algorithms, Redenberg invented ewlutionary

strategies (ES). There is a number of di erent ewlutionary strategies, but in principle ES

resenble GA alot. Like GAs they rely onreproducing parerts for creating new solutions. The

di erences between GA and ES are that ES usually work on real numbered represenations

and that they alsoewlve their own mutation parameter . Furthermore, most ES do not use

crosswer, and someES only usea single individual whereasGAs always use a population.
The choice whether to use crosswer or not dependson:

Is the tness function separablein additive componerts (e.g. if we want to maximize
the number of 1's in bitstring, then the tness function is the addition of the tness of
ead separatelocation). In caseof separable tness functions, the use of recomnbination
can lead to much faster seart times for optimal solutions.

Are there building blocks? If there are no real building blocks, then crosswer doesnot
make sense.

Is there a semairiically meaningful reconmbination operator? If recomnbination is mean-
ingful it should be used.

3.3 Genetic Programming

Although geneticalgorithms can be usedfor learning (robot) cortrollers or functions mapping
inputs to outputs, the useof binary represertations or real numberswithout a structure does
not provide immediate meansfor doing so. Thereforein the late 1980'sGenetic Programming
(GP) wasinvented and made famousby the work and books of John Koza. The main elemen
of genetic programming is the use of functional (or program) trees which are usedto map
inputs to outputs. E.g., for robot corntrol the inputs may consist of sensoryinputs and the
outputs may be motor commands. By ewlving functional program trees, those programs
which work best for the task at hand will remain in the population and reproduce.

A program tree may consist of a large number of functions such as cos, sin, ;+;=, exp,
and random constarts. Thesefunctions usually require a xed number of inputs. Therefore
a program tree must obey some constraints which make it legal. To make a program tree
legal, functions which require n argumernts (called n-ary functions), should have n branches
to child-nodes where ead child-node is lled in by another function or variable. The leaf
nodesof the tree are input-variables or random constarts. Figure 3.9 shavs an example of a
program tree.

Genetic programming has been used for a number of dierent problems among which;
supervisedlearning (machine learning) to map inputs to outputs, learning to cortrol robots,
and pattern recognition to distinguish betweendi erent objects from pixel-data.

Genetic programming is quite exible in its useof functions and primitiv e building blocks.
Loops, memory registers, special random numbers, and more have beenusedto solve partic-
ular tasks. Like in geneticalgorithms, onehasto devisemutation and crosswer operators for
program trees. The other elemerts of a genetic programming algorithm can be equal to the
onesusedby genetic algorithms.

3.3. GENETIC PROGRAMMING 57

Program Tree)
g Function

c Cos((X1 + X2) * 2)

OIRe
oRc

Figure 3.9: A program tree and its corresponding function.

3.3.1 Mutation in GP

The mutation operator canadjust a nodein the tree. If the newfunction in the node will have
the samenumber of argumerts, it is easy but otherwise somesolutions have to be found. In
the caseof point-mutations one only allows mutating a terminal to a di erent terminal and
a function to a di erent function of the samearity. Other researtiers have used mutation of
subtrees,in which a complete subtreeis replacedby a randomly created new subtree. Figure
3.10 shows an example of a point mutation in GP.

Before Mutation After Mutation

s

Figure 3.10: Point mutation in genetic programming. A function in a node is replacedby a
di erent function with the samenumber of argumerts.

3.3.2 Recombination in GP

The reconbination operator also works on program trees. First particular subtreesare cut
from the main program trees for both parent individuals and then these subtrees are ex-
changed. Figure 3.11 shows an example of the recombination operator in GP.

3.3.3 Probabilistic incremen tal program evolution

Instead of using a population of individuals, one could also use generative prototypeswhich
generateindividuals according to someprobability distribution. Baluja invented population
basedincremertal learning (PBIL) which encadesa chromosomefor generatingbitstrings. For

58 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

Parents @

() @
Chlldren

Figure 3.11: Recombination in genetic programming. A subtree of one parent is exchanged
with a subtree of another parert.

this the chromosomeconsists of probabilities for generating 1 on a speci ¢ location (and 1
minus that probability for generatinga 0). Using this prototype chromosome,individuals can
be generatedand evaluated. After that the prototype chromosomecan be adjusted towards
the bestindividual sothat it will generatesolutions around the bestindividuals with higher
probability.

This ideawas pursued by Rafal Salustavicz for transforming populations of program trees
in a represenation using a probabilistic program tree (PPT). The idea is known as proba-
bilistic incremertal program ewlution (PIPE) and it usesprobabilities to generatefunctions
in a particular node. The probabilistic program tree which is used for generating program
trees consists of a single large tree consisting of probabilities of functions in ead node, as
shown in Figure 3.12.

The PPT is usedto generatean individual asfollows:

Start at the root node and selecta function accordingto the probabilities

Go to the subtreesof the PPT to generatethe necessaryargumerts for the previously
generatedfunctions

Repeat this until the program is nished (all leaf nodes consist of terminals sud as
variables or constarts)

For learning in PIPE, it is requestedthat the PPT is changed so that the individuals
which are generatedfrom it obtain higher tness values. For this PIPE repeatsthe following
steps:

GenerateN individuals with the prototype tree
Evaluate theseN individuals

Selectthe bestindividual and increasethe probabilities of the functions and terminals
usedby this bestindividual

3.4. MEMETIC ALGORITHMS 59

Probabilistic Prototype Tree

Figure 3.12: The probabilistic prototype tree usedin PIPE for generatingindividuals.

Mutate the probabilities of the PPT a little bit

PIPE hasbeencomparedto GP and it was experimentally found that PIPE can nd good
solutions faster than GP for particular problems.

3.4 Memetic Algorithms

There is an increasingamourt of resear& which combines GA with local hill-clim bing tech-
niques. Sud algorithms are known as memetic algorithms. Memetic algorithms are inspired
by memes[Dawkins, 197§, piecesof mental ideas, like stories, ideas,and gossip,which repro-
duce (propagate) themsehes through a population of meme carriers. Corresponding to the
sel sh geneidea [Dawkins, 1979 in this medanism ead memeusesthe host (the individual)
to propagate itself further through the population, and in this way competeswith dierent
memesfor the limited resources(there is always limited memory and time for knowing and
telling all ideasand stories).

The di erence betweengenesand memesis that the rst are inspired by biological evolu-
tion and the secondby cultural ewlution. Cultural ewlution is di erent becauseLamarckian
learning is possiblein this model. That meansthat ead transmitted meme can be changed
according to receiving more information from the ervironment. This makesit possibleto
locally optimize ead di erent memebeforeit is transmitted to other individuals. Although
optimisation of transmitted memesbeforethey are propagatedfurther seemsan e cien t way
for knowledge propagation or population-based optimisation, the question is how we can
optimize a meme or individual. For this we can combine genetic algorithms with di erent
optimisation methods. The optimisation technique which is most often usedis a simple lo-
cal hill-climber, but someresearters have also proposeddi erent techniques such as Tabu
Seard. Becausea local hill-clim ber is used, ead individual is not truly optimized, but only
brought to its local maximum. If it would be possibleto fully optimize the individual, we
would not needa genetic algorithm at all.

60 CHAPTER 3. EVOLUTIONAR Y COMPUTATION

The good thing of memetic algorithms compared to genetic algorithms is that genetic
algorithms usually have problemsin ne-tuning a good solution to make it an optimal one.
E.g. supposethat a bitstring corntains perfect genetic material except for a single bit. In
this casethere are much more possiblemutations which harm the individual than mutations
which bring it to the true global optimum. Memetic algorithms do not have this problem
and they also have the advantage that all individuals in the population are in local maxima.
Howewer, this also involves a cost, since the local hill-clim ber can require many evaluations
to bring an individual to a local maximum in its region.

Memetic algorithms have already beencomparedto GAs on a number of conbinatorial op-
timisation problemssud asthe traveling salesmanproblem (TSP) [Radclie and Surry, 1994
and experimental results indicated that the memetic algorithms found much better solu-
tions than standard genetic algorithms. Memetic algorithms have also beencomparedto the
Ant Colony System[Dorigo et al., 1994, [Dorigo and Gambardella, 1997 and to Tabu Seart
[Glover and Laguna, 1997 and results indicated that memetic algorithms outperformed both
of them on the Quadratic Assignmen Problem [Merz and Freisleben, 1999.

3.5 Discussion

Evolutionary algorithms have the advantage that they can be usedfor solving a large number
of di erent problems. For exampleif onewants to make a function which generatesparticular
patterns and no other learning method exists, onecould always usean ewlutionary algorithm.
Furthermore, ewlutionary algorithms are good in searting through very large spacesand
can be easily parallellized.

A problem with ewlutionary algorithms is that sometimesthe population corvergespre-
maturely to a suboptimal local minimum. Therefore a lot of resear® e ort hascomeup with
methods for keepingdiversity during the ewlution. Another problem is that many individ-
uals are evaluated and then never used anymore, which seemsa waste of computer power.
Furthermore, the learning progresscan be quite slow for someproblems and if many individ-
uals have the same tness value there is not much selective pressure. E.g. if there is only a
good/bad nal evaluation, it is very hard to comeup with solutions which are evaluated good
if in the beginning all individuals are bad. Therefore, the tness function should be designed
in a way to provide maximal informativ e information.

A lot of current resear® focuseson \link agelearning”. We have seenthat reconbination
is a useful operator which can allow for quickly combining good genetic material (building
blocks). Howewver, uniform crosswaer is very disruptiv e, sinceit is a random crosswer operator
it doesnot keep building blocks as a whole together. On the other hand 1-point crosswer
may keepbuilding blocks together if the building blocks are encaded on bits which lie nearby
on a geneticstring (i.e. next to ead other). It may happen, howewer, that a building block is
not encaled in a geneticstring as material next to ead other, but distributed over the whole
string. In order to use e ective crossoer for suc problems one must identify the building
blocks which is known as linkagelearning. Since building blocks can be quite large, nding
the completeblock canbevery di cult, but e ectiv e progressin this direction hasbeenmade.

Chapter 4

Physical and Biological Adaptiv e
Systems

Before the 16'th certury, the Western think ers believed in a deductive approad to adknowl-
edgetruth. For example, Aristotle always thought that heavy objects would fall faster to the
ground than lighter objects. It wasnot until Galileo Galilei (1564-1642)tested this (accord-
ing to somehe did his experiments by dropping objects from the tower of Pisa), that this
hypothesisturned out to be false (if we disregard air-resistance). After this Galilei played
an important role to use mathematics for making predictive models and he also showved that
planets were going around the sun instead of around the earth (this hypothesis he had to
retract from the church). This was the start of a natural sciencewhere experiments were
usedto make (predictive) models. Christiaan Huygensalso played an important role by his
discovery of much better clocks to make measuringtime much more precise, his discovery of
better lensesand telescopes, and the discovery that light could be described by wavesinstead
of particles. The new sciencecorntinued with Kepler (1571- 1630) who approximated the or-
bits of planets and cameup with ellipsoidsto predict them instead of the commonly thought
hypothesisthat the orbits should be approximated using circles.

Isaac Newton (1642-1727)discovered the gravitation laws and laws of medanics which
werethe nal breakthrough for a new natural science.Newton's gravitation lawstells that two
objects (e.g. planets) attract ead other basedon the multiplication of their massesdivided
by the squareof the distance betweenthem, and it is very accurate for big objects which do
not move at very high speed(for very small moving particles quantum medanics intro duced
dierent laws, and for very high speedrelativity theory was later inverted). Newton's laws
of medanics were also usedto predict that planet orbits were ellipsoids and that planets will
circle around the sun whosemovemert is hardly in uenced by the planets.

After this fruitful period of sciertic revolutions, researters started to think that the
universeworked like a clock and that everything could be predicted. This even led to the
idea of a Geniusby Laplace which would be an almighty entit y which could predict the future
and the past basedon the current state and the medanical laws. Although this idea of a
universal clock brought many fruitful machines sud as computers and television, already in
the start of the 19'th certury Poincare had discoveredthat not everything could be predicted.
Poincare was studying three body problems, like three planets moving around ead other, and
discovered that there were not enoughknown equationsto come up with a single analytical
solution for predicting their movemerns. This evertually led to chaostheory, where a model

61

62 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

can be deterministic, but still showvs unpredictable behavior if we cannot exactly measurethe
initial state.

Although the word chaos often refers to a state without order, researters have found
remarkable structures in chaotic systems. Even in chaotic systemsthere seemsto be a kind
of self-organisation. In this chapter we will look at the path from physicsto biology, take a
look at chaotic systems,and then we will examine self-organisingbiological systemssud as
ants and the use of these systemsfor solving optimisation problems.

4.1 From Physics to Biology

In Newtonian medianics, the systemsare reversible, which meansthat we canturn around the
arrow of time and compute the past instead of the future. There are speci ¢ laws of physical
systemssud asthe consenation of energywhich statesthat the sum of potential and kinetic
energy of an objects must remain constart. An exampleis a ball which we throw in the air.
In the beginning the kinetic energy (due to its speed)is maximal, and it will becomeO at
the highest point where the potential energy (due to gravitation) is maximal. Then it will
fall again while conservingits energyuntil nally it bouncesagainstthe ground and will lose
energy due to this (in reality the height of the ball will be damped due to friction which
causesa lossof energy Without lossof energythe ball would cortinue bouncing forever).

If we have energy preserving systems, the system will continue with its movemert. A
good exampleis a pendulum. Supposea pendulum is mounted at somepoint, and there is
no friction at this point or friction due to air resistance. Then we give the clock a push to
the right and it will remain moving to the left and to the right. If we give the pendulum a
harder push, it will go around and continue going around. Let's look at the phasediagram
in Figure 4.1 that shows possibletrajectories in the plane with the angle on the x-axis, and
the (normalised) angular speedon the y-axis.

Figure 4.1: The phasediagram of the pendulum

4.1. FROM PHYSICS TO BIOLOGY 63

In the middle of the gure a stable equilibrium is shawvn, the pendulum is not moving
at all. Trajectories a and b shaw periodic cycles (orbits) where the pendulum is moving to
the left, right, left, etc. Orbit c leadsto an unstable equilibrium in which the pendulum
goesto the highest point and there it stopsto move. This point is unstable, becausea slight
perturbation will causeit to move again. Finally, in orbit d the pendulum is going over its
head.

The pendulum is an example of a reversible systemin which energyis consened. Ideally,
sudh mechanical systemsalways consene their energy However, there are also many systems
which are irreversible, which are thermodynamic objects. After the industrial revolution,
many sciertists were interested in making the optimal (perpetuum mobile) madine; one
which would continue to work forever. But soon they discovered that every machine would
lose useful energy due to production of heat. An example of a thermodynamic object is a
systemwhich consistsof a box with 2 halves. In onehalf there are N gas-moleculesand in the
other half there are none. The initial state is very ordered since all the gas-moleculesare at
the left half. Now we take away the border betweenthe halvesand we will obsene that after
sometime both halveswill contain roughly the sameamount of molecules. This is an example
of an irreversible system since if the system would be in a state with the sameamount of
moleculesin both halvesit would probably never go to the state with all moleculesin one
half again. To describe such processesBoltzmann invented the word entrop y. Entropy
corresponds to the amount of disorder which is causedby the production of uselessenergy
sud as heat which cannot be turned bad to make energywithout a heat potential. Entropy
hasalsobeenwidely usedin thermodynamicsto explain why heat will always ow from a hot
spaceto a colder space.

Considerthe caseof the N gasmoleculesagain. Boltzmann useda statistical explanation
why the moleculeswould mix and a state of disorder would arise. Considernow N molecules
and the number of permutations that can describe a possible state. For example all N
moleculesin one half of the box would only have one possiblestate, one moleculein one half
and the rest in the other half would have N possiblestates. Now if we divide the N molecules
in N1 and N, moleculesin both halves,the number of permutations would be:

N!
N1INo!

Now its logical that the systemwill goto an equilibrium with most possiblestates, that is
where N1 = N». For this Boltzmann de ned entropy of a systemas:

S = klogP

Where k is called the Boltzmann constart.

So although all microscopic states are equally possible, due to the e ect that there are
much more microscopicstatesaround the macroscopicsituation of having the samenumber of
moleculesin both halves, this situation will arise after sometime. Of coursesmall deviations
from the macroscopicequilibrium can happen, but the system'sstate will oscillate around this
equilibrium. We can seethat entropy is maximised and that disorder will be the result. Since
entropy production is always positive in a closedsystem and there is a state with maximal
ertropy, the systemwill always corvergeto such an equilibrium. Sincethe initial state gets
lost in this case,the processis not reversible (many statesleadto the same nal state). Note
the di erence with the energy-preservingpendulum which is reversible. It is important to

64 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

note that there are many irreversible processesn machines causedby loss of heat, friction
etc. sothat is is not possibleto make a machine which cortinues forever without receiving
additional energy Theseprocessesausean increaseof the erntropy of the system.

But how is this with open systemssud as living systems? Here the change of entropy
of the systemis governed by an internal change of entropy dS;=d which is irreversible and
always positive, and an exdange of entropy betweenthe systemand its environment dS,=d
which can be positive or negative. We note that the exchange of ertropy of a closedsystem
is not possible(since there is no environment to interact with) sothat the entropy can only
increaseor remain constart (at the maximal value). In this case,the enropy determinesthe
direction of time; for all closedsystemstheir future liesin the direction of increasedentropy.
This lead to the two laws of the thermodynamics by Clausiusin 1865:

The energy of the world is constart
The entropy of the world goesto a maximal value

Thus in the thermodynamic equilibrium the entropy and disorder will be at its maximum.
Howewer, living systemscan exdhange entropy with their ervironment. This allows them to
keeptheir enropy low. E.g. by consumingfood and energy a living systemis able to keep
its order without having to increaseits entropy. This is the essetfial di erence betweenopen
and closed systems. An open system can receive useful energy from the ernvironment and
thereby it can reduceits disorder and create more order.

4.2 Non-linear Dynamical Systems and Chaos Theory

As mertioned before, Poincare had already discovered that there are no analytical solutions
to be found for the n-body problem with n larger than 2. For 2 planets, there is an analytical
solution which determines the position and velocity of both interacting planets given the
initial conditions. These planets will move around their point of joint mass as showvn in
Figure 4.2.

Point of common mass

Pla Planet 2

Figure 4.2: The orbits of two interacting planets

For the n-body problem with n 3, Poincare had demonstrated that there were not
enoughdi erential equationsto be able to compute a solution to the problem. The problem
was therefore not integratable to a closed-formanalytical solution. Poincare has alsodemon-
strated that small perturbations could causelarge di erences of tra jectories in this case. This
wasthe rst time chaotic dynamics had beenmertioned.

After this, for a long time few researters were studying chaotic systems. One major
breakthrough in their understanding came when computers were used which could visualise

4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 65

sud processes. The rst famous demonstration of chaos using computer simulations was
described by the meteorologistEdward Lorenz who was studying weather prediction. In 1961
he sawv an evert in his computer simulations. By accidert he discovered sensitivity to initial

conditions, since he wanted to repeat his simulations, but found completely di erent results.
After sometime he discovered that the valueshe usedin his secondsimulation were rounded
to three decimals, whereasthe computer used valueswith 6 decimalsduring the ertire run.
Theseminimal di erences quickly causedlarge deviations asis seenin Figure 4.3.

Figure 4.3: The simulations done by Lorenz shaved sensitivity to initial conditions. Although
the initial values were almost similar, the di erence betweenthe trajectories becamevery
large.

In chaostheory it is often said that little causescreate big consequencesAfter simplifying
his model to three variables, he rst noted somethinglike random behavior, but after plotting
the valuesin a coordinate space,he obtained his famous Lorenz attractor depictedin Figure
4.4. We can seean ordered structure, so again we should not confusechaotic dynamics with
non-determinism.

Figure 4.4: The Lorenz attractor

The dynamical system of Lorenz is quite complicated to analyse, and therefore we will
usean example from biology to demonstrate chaotic dynamicsin an easierway.

66 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

4.2.1 The logistic map

Around 1800, T.R. Malthus assumedthat the growth of a population would be linear with
the number of individuals x(t). The mathematical expressionis the di erential equation:

ax _
dt

which has as closed-formsolution an exponertial growing population:

kx

x(t) = x(0)exp(kt)

In 1844P.F. Verhulst noted that for a growing population there must arisecompetition sothat
the population would stop growing at sometime. He noted that the population would grow
linearly with the number of individuals and the di erence betweenthe number of available
sourcesand the sourcesneededto sustainthe population. This model is known asthe following

Verhulst equation:

3—): = AX(N Xx)

with AN the maximal number of available sourcesand Ax the amount neededfor x persons.

The logistic map equation can be derived from this in which we usediscretetime and change
variables. The logistic map equation looks as follows:

x(t+ 1) = rx()(@ x(1))

Where x has a value betweenO and 1. For valuesof r below 1, the population will die out
(x(1) = 0). If r is betweenl and 3, there is one single nal state x(1). Now if we keep
increasingr, there will arise period-2 cyclesand higher periodic cycles. Each value for r that
causeghe period to increase(in the beginningit doubles)is called a bifurcation point. Figure
4.5 shaws a period-2 cycle of this map with a value of r a little bit larger than 3.

Figure 4.5: A period-2 cycle of the logistic map.

Figure 4.6 shows a larger periodic cycle. Although the periodic attractor is dicult to
see,it is important to note that trajectories from di erent starting points xo approad this
limit cycle.

Now, look what happensif we plot the value of r to the valueswhich x can take after a
long transient period (so we eliminate the initial valuesx(t) by waiting for 1000steps). This

4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 67

Figure 4.6: A larger periodic cycle of the logistic map.

plot is shown in Figure 4.7. The gure shows a very complicated bifurcation diagram. In the
beginning there is a single steady state (for r 1 all trajectories goto x(1) = 0). When
r > 1andr < 3there is a single stable state for x, although the nal value x(1) dependson
r. Now if we increaser to a value higher than 3, there is a periodic cycle of length 2, which
is shavn in the bifurcation diagram by the two brancheswhich determine the multitude of
valuesof x which are part of periodic cycles. Increasingr further leadsto periodic cyclesof

length 4, 8, 16, etc. Until nally the period becomesin nite and the system shows chaotic
behavior.

Figure 4.7: A plot of the value of the cortrol parameterr to the valueswhich x will take after
sometransient period.

In Figure 4.8, we seea more detailed gure of this bifurcation diagram for values of r
between3.4 and 4. It shows that although there are valuesof r displaying chaotic behavior,
for somevaluesof r there are again periodic cycles, which is shovn by the bands with only
few branches. If we further zoom in in the area of Figure 4.8, we get the gure displayed in
Figure 4.9. This gure shows clearly that there are periodic cyclesalternating with chaotic
dynamics.

A remarkable property of the chaotic dynamics generatedby the logistic map is when
we further zoom in in the area of Figure 4.9 and get the Figure 4.10. This gure clearly
shows that there is a self-similar pattern on a smaller scale. Again we seebifurcation points

68 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.8: A plot of the value of the cortrol parameterr to the valueswhich x will take after
sometransient period.

Figure 4.9: A plot of the value of the cortrol parameter r between 3.73 and 3.753to the
valueswhich x will take after sometransient period.

and periodic lengths which double, until again it arrivesat chaotic dynamics which visit an
in nite number of points.

So what can we learn from this? First of all even simple equations can display chaotic
behavior. For a map (or di erence equation) chaotic dynamics can be obtained with a single
variable (the population x). When using di erential equationsit turns out that there need
to be three dierential equations which form a non-linear system in order for the system
to display chaotic behavior. Furthermore, when chaotic dynamics arise, even a very small
di erence betweentwo initial states can causea very dierent trajectory. This meansthat
if we cannot exactly measurethe initial state our hope to predict the future dynamics of
the systemis lost. Of course,here we have showvn simple mathematical equationsleading to
chaotic behavior, the question therefore is whether chaos also arisesin real natural systems.
The answer to this is yes; researt has turned out that the heartbeat follows an irregular
non-periodic patterns, and using a EEG it was shavn that the brain also possesseshaotic
dynamics. Furthermore, in biological systemsthe population of particular kinds of ies also
shows chaotic behavior. And of courseto comebadk to Lorenz, the weather is unpredictable
sinceit is very sensitive to initial conditions. This sensitivity in chaostheory is often related
to the possibility that a buttery in Japan can causea tornado in Europe.

4.3. SELF-ORGANISING BIOLOGICAL SYSTEMS 69

Figure 4.10: A plot of the value of the cortrol parameter r between3.741and 3.745t0 the
valueswhich x will take after sometransient period.

Instead of only disorder, we can alsoseeorderedpatterns in chaotic systems. One example
is the self-similar structure if welook at the pattern of a bifurcation diagram at di erent scales.
Furthermore, if we look at the Lorenz attractor, we can seethat not all states are possible;
the state trajectories are all on a particular manifold (subspaceof the whole space). On the
contrary, when we would use a stochastic (non-deterministic) system, the trajectories would

Il up the whole phasediagram. In reality chaostherefore also displays order, which is also
the statemert of llya Prigogine; \order out of chaos".

4.3 Self-organising Biological Systems

Adaptiv e systemscan be used fruitfully to model biological systems. We have already seen
that the model can consist of mathematical equations, but they can also have a spatial
con guration using individualistic models sud as cellular automata. The advantage of using
individualistic models moving in a particular spaceis that there is an additional degreeof
freedom for the physical spaceand therefore additional emergen patterns. By simulating

an individualistic model, it also becomesmuch easierto visualise processesudc asthe re

propagation in forest res. The disadvantage of spatial models comparedto mathematical
equationsis that it is much slower to simulate. Some examplesof biological models which
can be modelled are:

Infection diseases
Forest res

Floods

Volcano eruptions
Co-ewlving species

The rst four processesnertioned above shav a common aspect; they propagate themsehes
over paths which depend on the ervironment. To stop the propagation, suc paths should be
\closed". This is essetial for controlling thesenatural disasters,but will not be the issuein
this chapter.

70 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

4.3.1 Models of infection diseases

We will look at two di erent models for simulating infection diseases.In infection diseases,
we can distinguish betweenthree kinds of individuals in the population:

Healthy individuals (H)
Infected, sick individuals (S)
Immune individuals which have had the disease(l)

If a healthy personcomesin the neighbourhood of an infected individual, the healthy
personwill also becomeinfected in our model (although usually this will only happen with
someprobability). If an infected personhas beensick long enough, it becomesan immune
individual which is not sidk anymore.

Mathematical model of infection diseases

We can make a model using di erence equations. We start with a state of the population:
S(0) = (H(0);1(0); S(0)), and usethe following equationsto determine the ewlution of the
system:

S(t+1) = S(t)+ S(MH() bS(t)
I(t+1) = 1(t)+ bSt)
H{t+1) = H() aS(t)H(t)

Here we have two control parametersa and b. Note that the valuesH;I ; S should not become
negative! If we examine the model, we can seethat the number of immune individuals is
always increasing or stays equal. Therefore a stable attractor point is a situation with all

peopleimmune to the disease.Howe\er, if the control parameterbis setto a very large value,
the population of sick people might decreasetoo fast and might becomeO before all healthy

peoplebecamesidk. Therefore other possiblestable states include a number of healthy and

immune people. Also whenthere are no sick or immune peopleat all at start, the stable point

would consistonly of healthy people.

Cellular automaton model of infection diseases

We can also use a cellular automaton (CA) in which we have to make rules to update the
state of the CA. Supposewe take the 2-dimensional CA with individuals as shawvn in Figure
4.11. Cells can be empty or be occupied by a sik, immune, or healthy person.

The CA also needstransition rules to changethe state of the system, we can make the
following rules:

If H hasa S in a cell next to it, the H becomesa S.
S has ead time step a chanceto becomea |

For navigation, all individuals make a random step at ead time-step

4.4. SWARM INTELLIGENCE 71

H
S
S|s
H
H | S|H
H [
S H
S [
| S
S
Figure 4.11. The CA for infection diseases.H = healthy person,| = immune person, S =

sik person

Step 2 above usesa probability to changea state of a cell and navigation alsousedrandomness,
therefore this is an example of a stochastic cellular automaton. Finally, we can also make
another navigation strategy so that healthy personsstay away from sidk individuals. This
could lead to dierent ewlving patterns where healthy personsare in one corner, far awvay
from the sid individuals.

4.4 Swarm Intelligence

It iswell known that alarge group of simple organismssudc asants or beescan shaw intelligent
behavior. The question is how this collective intelligent behavior emergesfrom simple indi-
viduals. In this sectionwe will seeexamplesof this phenomenonand how this self-organising
collective behavior can be usedfor making optimisation algorithms.

First we will look at somesmart collective behaviors:

Foraging behavior: individuals seart for food and bring it to their nest

Protection of the nest: individuals have received an altruistic and non-producing task
which helpsthe group to survive

Building of a nest: E.g. how do termites construct their nest or how are honeyconbs
made by bees.

Stading food and spreadingit

It is clear that there is no super controller which sendsthe individuals messageiow to do

their task. In someways the behaviors emergefrom simple individual behaviors. E.g. if we
look at the processof creating honeyconbs, then we can seethat the structure emergesfrom

local interactions betweenthe bees. Every beecreatesa single cell in the wax by hollowing

out part of the spaceof the wax. Whenewer a bee makes a cell it takes away parts of the

bordersof the cell. When it feelsthat there is another beeworking in the cell closenext to it,

it stopstaking wax out of the direction of that bee. In this way a hexagonalpattern emerges
with very similar cells (becausebeeshave similar sizes),seeFigure 4.12.

72 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.12: A honeyconb

It is alsoknown that ants can solve particular problems, such as nding the shortest path
to a food pile, clustering or sorting food, and clustering dead ant bodies. Although a single
ant is not intelligent, the whole colory shows intelligent group behavior (super-intelligence).

4.4.1 Sorting behavior of ant colonies

When many ants die at the sametime, the living group makescemeteriesof the dead ants by
stadking them all on the sameplace. How can this be doneif single ants are not intelligent
enoughto know where to put the dead ant they may be carrying? To explain this, we can
make a simple model with three rules:

An ant walks in arbitrary directions

Whenewer an ant doesnot carry anything and nds a deadant, it takesit and will carry
it to somedierent place

Whenewer an ant carries a dead ant and seesa pile of dead ants, it will drop the ant
near that pile

Thesethree simple rules can explain the group-behavior of sorting ants. A similar model can
be madeto let ants make piles of sugarand chocolate. Sinceead ant is very simple, it would
take a long time until some organisation would emergeusing a single ant. Howewer, when
many ants are used,the self-organisationof matter in the spacecan occur at very short time
periods. This is also a reasonwhy someresearters investigate collective swarm robotics to
make many simple small robots collaborate together to perform di erent tasks, instead of a
single large robot which hasto do ewverything alone.

4.4.2 Ant colony optimisation

A new kind of multi-agent adaptive systemfor combinatorial optimisation has beeninvented
by Marco Dorigo in the 90's. In this algorithm, a colorny of ants works together to nd
solutions to dicult path-planning problems sud as the traveling salesmanproblem. The
algorithm is inspired by how ant colonieswork in reality. The foraging ants leave a chemical

4.4. SWARM INTELLIGENCE 73

substanceknown aspheromone on the ground whenthey go from their nestto a food source
and vice versa. Other foraging ants follow the paths with most pheromone according to a
probability distribution. While following these paths they strengthen them by leaving addi-
tional pheromone. This collective foraging behavior enablesan ant colorny to nd the shortest
path betweenthe nestand a food source. Optimisation algorithms which are inspired by the
collective foraging behavior of ants are called ant colorny systemsor simply ant algorithms.
We will rst examine combinatorial optimisation problemswhich determinesthe classof
problems which are hard to solve and for which ant colony systemscan be applied.

Com binatorial optimisation

Particular problemscostexponertial amourt of time to solve. To getanideaof an exponertial
problem, considera solution that consistsof n states and the time to solwe it is 2" or n!. An
exampleis to nd a bitstring of only 1's when the tness is O for all solutions except for
the state with all 1's which gets higher tness (known as a needlein a haystack problem).
Exponertial time problems grow much faster than polynomial time problems:

. nP
nI!|lm o 10
Where pis the degreeof somepolynomial function and e is the natural exponert. A number of
well known mathematical problems are called conmbinatorial optimisation problems, a subset
of these are NP-complete problems which cannot be solved in polynomial time unlessP =
NP. The question P = NP is known as one of the open and most important questionsin
computer scienceand optimisation. The interesting thing is that if one of these NP-complete
problems can be solved by some algorithm in polynomial time, all these problems can be
solved in polynomial time. Sofar no polynomial time algorithm has beenfound to solve one
of these problems, howewer.

Since computer power cannot increasefaster than exponertial time (Moore's law states
that computer power doublesevery two years), somebig combinatorial optimisation problems
can never be solved optimally. Someexamplesof conbinatorial optimisation problems are:

The traveling salesmanproblem: nd the shortest tour through n cities

Quadratic assignmen problem: minimize the ow (total distancewhich hasto be trav-
elled) if a number of employeeshas to visit ead other daily in a building according
to some frequency So the total cost is the product of the distance matrix and the
frequency matrix. The problem requiresto assignlocations to all peopleto minimize
the total cost. This often involves putting people who meet ead other frequertly in
nearby locations.

3-satis abilit y: Find truth-v aluesfor n propositions to make the following kind of for-
mula true:

fX1 i Xo_ XaQ” i MfXy D X5 X70

Job-shop scheduling: Minimize the total time to do a number of jobs on a number of
machineswhere ead job hasto visit a sequenceof macdhinesin a speci ¢ order and eah
madhine can only handle one job at a time.

74 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

We will elaborate a bit on the traveling salesmanproblem here, sinceant algorithms were
rst usedto solwe this kind of problem. In the traveling salesmanproblem (TSP) there is a
seller which wants to visit n cities and comebadk to his starting city. All citiesi and | are
connectedwith aroad of distancel(i; j). Theselengths are represerted in a distance matrix.
The agent must compute a tour to minimize the length of the total tour. An example of a
tour with 8 cities with distance 31 is shown in Figure 4.13.

Figure 4.13: A tour in a traveling salesmanproblem

How can we generatea tour for the traveling salesmanproblem? The constraints are that
all cities have to be visited exactly once and that the tour ends at the starting city. Now
we keep a set of all cities which have not beenvisited: J = fi j i is not visitedg. In the
beginning J consistsof all cities. After visiting a city, we remove that city from the set J.
The algorithm for making a tour now consistsof the following steps:

1. Choosean initial city sg and remove it from J
2. Fort=1to n:
(@) Choosecity s; out of J and remove s; from J

3. Comgpute the total length of the tour:
L=" NotI(sisw1) + (sn; o)

Of coursethe most important thing is to make the rule for choosing the next city given the
current one and the setJ. Dierent algorithms for computing tours can be comparedto the
nal value L returned by the algorithm (note that for very large problems, it is extremely
hard to nd an optimal solution, sothat an algorithm should just nd a good one).

4.4.3 Foraging ants

One algorithm for making an adaptive rule for selectingthe next city given the current one
and the set J is inspired on the collective foraging behavior of ants. We will rst examine
why ants can nd shortest paths from the nestto a food source. Let's have a look at Figure
4.14. 1t shows two paths from the left to the right and ants approading the point wherethey

4.4, SWARM INTELLIGENCE 75

L2 L1 R1 R2
o —— ¥ 2 o o

Figure 4.14: In the beginningthe ant colony doesnot have any information about which path
to take

needto chooseone of them. In the beginning their choice will be completely random, so50%
will take the upper path and the other 50% the lower path.

Now in Figure 4.15it becomesclear that ants which took the lower path will arrive at
the destination earlier than those which took the upper path. Therefore, as we can seein
Figure 4.16, the lower path will accurrulate more pheromoneand will be preferred by most
ants, leading to more and more strengthening of this path (seeFigure 4.17).

Figure 4.16: This causesmore ants to follow the lower part

4.4.4 Prop erties of ant algorithms

There are multiple dierent ant algorithms, but they all sharethe following properties:

They consistof a colory of arti cial ants

76 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.17: The amount of pheromonekeepson strengthening more along the lower path
than along the upper path, therefore nally almost all ants will follow the lower path.

Ants make discrete steps
Ants put pheromoneon chosenpaths
Ants usethe pheromoneto decidewhich stepsto make

Ant algorithms have beenusedfor a wide variety of combinatorial optimisation problems
sudh as the traveling salesmanproblem, the quadratic assignmem problem, and network
routing. The ideato let individuals interact, becauseone of them changesthe environment is
called stigmercy . The rst ant algorithm, the ant system, was initially tested on the TSP.
It works asfollows:

All N ants make a tour for which they use pheromonebetweencities to selectthe next
city

All not followed edgeslosea bit of pheromonedue to evaporation

All followed edgesreceiwe additional pheromonewhere edgesbelongingto shorter tours
receive more pheromone.

The ant-system wasthereafter changedin someways and this led to the ant colorny system.
We will now give a formal description of the ant-colony systemusedfor the traveling salesman
problem (although the ant-colony systemis often called a meta-heuristic that includes many
possiblealgorithms and can be usedfor di erent problems).

The ant colory system consistsof K ants. The amount of pheronomebetween 2 cities i
andj is denotedasm(i; j). For choosingthe next city an additional heuristic is usedwhich
is the inverseof the length betweentwo cities: v(i; j) = ﬁ

Now ewery ant: k= 1:::k makesa tour:

Choosea random starting city for ant k : i = random(0; N) and take the city out of
the set Ji of unvisited cities for ant k

Choosenext cities given the previous one according to:

arg hmzajlff[m(i; hl [v@i;h)] g ifg o

4.1
S else “-

Here isacortrol parameter,0 g 1lisarandom number, andthe cortrol parameter
0 @ 1 determinesthe relative importance of exploration versus exploitation. If

4.5. DISCUSSION 77

exploration is used, we generateS which is a city chosenaccording to the probability
distribution given by the following equation:

8
< p_ G vGi)l ifi2J

pi = . s mEnInany Uk 4.2)
-0 else

Now all ants have made a tour and we can update the pheromonetrails as follows. First
we compute which generatedtour was the best one during the last generation, let's call this
tour Sy, for global-best solution. This tour has length: Ly, Now the update rule looks as
follows:

m@;j) =@) m@j)+ m(i;)

where m(i;|) = (Lgp) 1 if edge(ij) 2 Sgp
0 else

Here, isacortrol parametersimilar to the learning-rate. Note that the addedpheromone
dependson the length of the best tour, and that pheronomeon other edgesevaporate.

This is one possibleant colorny system, it is alsopossibleto let the pheromonebe adapted
to the best tour ever found, instead of the best tour of the last cycle. Other possibilities of
choosing paths are also possible,but the method given above usually works a bit better. Note
alsothat there are many parametersto set: ; ;o and the initial valuesfor the pheromone.

45 Discussion

Biological systemsdi er from medanical systemsor thermodynamic systemssince they are
able to take energyfrom the environment in order to decreasetheir internal entropy (state of
disorder). We have seenthat there are dynamic systemswhich look very simple, but which
can lead to chaotic dynamics. An exampleis the logistic map and its operation dependson
the cortrol parameterr. If weincreaser we can seethat instead of a single stable state, there
will arise bifurcations to periodic cyclesof higher order, nally leading to chaotic dynamics.
Chaotic dynamics leadsto unpredictable systems, sinceif we do not know the exact initial
condition of the system, the ewlution of the systemwill create large discrepanciesbetween
the predicted and the real obsened behavior. Although chaotic systemsare unpredictable,
they also shov somekind of order which is seenfrom the emergenceof manifolds on which
all points lie (such asin the Lorenz attractor) or the self-similar structure when one looks at
chaotic dynamics from di erent scales.

In biology, there are often simple organismswhich canful | complextasks. We have seen
that this intelligent collective behavior can emergefrom simple individual rules. An example
of this is when ants build ant-cemeteries. Furthermore, this ability of swarm intelligence has
also inspired researtiers to dewelop algorithms for solving complex problems. A well-known
exampleof this is the ant colony systemwhich hasbeenfruitfully usedto solve combinatorial
optimisation problems sud asthe traveling salesmanproblem.

78

CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Chapter 5

Co-Ev olution

Let us rst considerthe history of the earth. Usingthe internet-site: \h ttp:///www.solstation.com/life.h tm"
the following summary can be extracted:

Our solar systemwas born about 4.6 billion yearsago. In this time protoplanets
agglomeratedfrom a circum-Solar disk of dust and gas. Not long after that the
protoplanetary Earth was struck by a Mars-sized body to form the Earth and
Moon. Geologistshave determined that the Earth is about 4.56 billion yearsold.
Initially , the Earth's surfacewas mostly molten rock that cooled down due to the
radiation of heat into space,whereasthe atmosphere consisted mostly of water
(H20), carbon dioxide (CO3), nitrogen (N2), and hydrogen (N2) with only a lit-
tle bit of oxygen (O,). Eventually arocky crust wasformed and someareaswere
covered with water rich with organic compounds. From theseorganic compounds,
self-replicating, carbon-basedmicrobial life developed during the rst billion years
of Earth's existence. The microbesspreadwidely in wet habitats and life diversi-
ed and adapted to new biotic niches,someon land, but life stayed single-celled.
After sometime microbeswere formed which produced oxygen and thesebecame
widespread. Chemical reactions causedthe production of ozone(QO3) which pro-
tected carbon-basedlife forms from the Sun's ultraviolet radiation. Although
the large concertration of CO, causedthe Earth to warm-up, the produced O,
causeda chilling e ect and as a result the Earth's surface was frozen for large
parts, although someprokaryotic microbial life survived in warm oceansea oors,
near volcanosand other warm regions. Due to a large volcanic activity, the Earth
warmed up again, but leadingto a di erent niche which led to heavy ewlutionary
pressure. About 2.5 billion years ago some microbes developed a nucleus using
cellular membranesto cortain their DNA (eukaryotes), perhapsthrough endosym-
biosisin which di erent microbesmergedto newlife-forms. The rst multi-cellular
life-forms (e.g. plants) ewlved after 2.6 billion years of Earth's existence. This
multi-cellularit y allowed the plants to grow larger than their microbial ancestors.
Between 3.85and 4.02billion yearsafter the birth of the solar system, there may
have beena cycle betweenice climates and acid hothouses,leading to strong se-
lective pressure. After a massiwe extinction, intense ewlutionary pressure may
have resulted in a burst of multi-cellular ewlution and diversity leading to the
rst multi-cellular animals. After this Dinosaurs were created and may have be-
comeextinct 65 millions yearsago by the assistanceof a large cometary impact.

79

80 CHAPTER 5. CO-EVOLUTION

The extinction of the Dinosaurscreated ecologicalconditions which evertually led
to the creation of modern Human (Homo sapienssapiens)which originated only
100,000years ago.

What we can obsene from the history of the Earth is that life adapts itself to the bio-
logical niche. If environmental circumstancesare good for someorganismsthey can multiply ,
but there have beenmany specieswhich becameextinct due to ervironmental conditions or
cometary impacts. The way that ewolution works is therefore really governed by ernvironmen-
tal selection;there is no optimisation but only adaptation to the ervironment.

5.1 From Natural Selection to Co-evolution

No biologist doubts that natural ewlution hasoccurred and createdthe diversity of organisms
alivetoday. For the ewlutionary theory there are enoughindicativ e facts such asthe existence
of DNA, organisms which have been shavn to mutate themselwes to cope with changing
ernvironments, and obsened links betweendi erent organismsin the phylogenetic tree.

The current debate is more on the question how ewlution has come about and which
medanismsplay a role in ewlutionary processe®n a planetary scale. In Darwin's ewlution-
ary theory survival of the ttest plays an eminert role to explain the ewlution of organisms.
We can explain the birth of this competitive medanism by looking at a planet which is ini-
tially populated by someorganismsof a speci c type with plenty (though nite) amourt of
nutricients for them to survive. As long as the initial circumstancesare good, the popula-
tion will grow. Howewer, this growth will always lead to a situation in which there are so
many organismsthat the resources(space, food) will becomelimited. If the resourcesare
scarce,not all individuals will be able to get enoughfood and multiply themseles. In suc
a situation there will arise a competition for the resourcesand those organismswhich are
best able to get food will survive and create o spring. The question is which organismswill
survive and reproduce. For this we have to examinetheir genetic material. The existenceof
particular genesin an individual will give it an advantage and this allows such genesto be
reproduced. Therefore there will be more and more o spring which will consistof thesegenes
in their geneticmaterial. Sincethe resourceswill usually not grow very much, the population
will not grow anymore and only the genetic material inside individual organismswill change.
Finally, it may happen that all organismsof the samepopulation will resenble eat other
very much, especially if the ervironmental conditions are the same over the whole planet.
Howewer, if there are di erent biological niches,individuals may have adapted themselesto
their local niche, sothat individuals of the samepopulation will remain somewhatdi erent.
Sincemutation keepson occurring during reproduction, it may happenthat many mutations
after many generationscreate a new organism which doesnot look alike the original one. In
this way, multiple organismscan ewlve and keepon adapting to their local niche.

Since ewolution through natural selectionis just a medanism we can implement it in a
computer program. A known example of arti cial ewlution is the use of genetic algorithms.
In geneticalgorithms, a tness function is usedto evaluate individuals. Sud a tness function
is designeda-priori by the programmer and determineshow many children an individual can
obtain in a given population. Although these genetic algorithms are very good for solving
optimisation problems, they do not exactly look alike natural ewolution. The problem is that
the tness function is de ned a-priori, whereasin natural ewlution there is nobody who
determinesthe tness function.

5.2. REPLICATOR DYNAMICS 81

In reality the (implicit) tness of an individual depends on its environment in which
other speciesinteract with it. Suc a tness function is therefore non-stationary and changes
according to the adaptions of di erent populations in the ervironment. Here we speak of
co-evolution . Co-ewlutionary processescan be quite complex, since everything depends
on ead other. Therefore we have to look at the whole system or ervironment to study the
population dynamics.

5.2 Replicator Dynamics

We have already seentwo di erent models for studying the dynamics of interacting species:

With di erential equations(mathematical rules which specify how the variableschange).
An exampleof this are the Lotka-Volterra equations.

With cellular automata

We can also generalisethe Lotka-Volterra equationsto multiple organisms,this is done
using the model of Replicator dynamics . We will rst study a model in which the tness
of an organism (phenotype) is xed and independert of its ervironment. The replicator
equation describesthe behavior of a population of organismswhich is divided in n phenotypes
Eq;:::;En. The relative frequenciesof these phenotypesare derboted as xi;:::;Xn, and so
we obtain a relative frequency vector x = (X1;X2;:::;Xn), where ;x; = 1. The tness of a
phenotype E; is xed and is denotedasf;(x).

Now we can rst compute the average tness of a population using:

X
%)= xifi(x)
i=1
The change of the frequency of phenotype E; is related to the di erence in tness of E;
and the averageof the population:

%‘ = fi®0) 1)

Now we get the replicator equation with adaption speed (can be seenas a time-
operator dt after which we recompute the relative frequencies):

xi= xi(fi(%) (%)

If the tness values of the existing phenotypesare di erent, the replicator equation will
also changetheir relative frequencies. If the environment doesnot change from outside and
the tness valuesof phenotypesremain constart, then the phenotype with the largest tness
will overtake the whole population. This assumptionis of courseunrealistic: the environment
and tness valueswill changedue to the changing frequencies.

Now we will look at a model for co-ewlutionary replicator dynamics. Here we make the
tness of a phenotype dependernt on other existing phenotypesand the relative frequencies.
We do this by computing the tness value at sometime-step as follows:

X
fix) = ajx
=1

82 CHAPTER 5. CO-EVOLUTION

Here the valuesa; make up the tness value of phenotype E; in the presenceof E;. We can
immediately seethat phenotypescan let the tness of other phenotypesincreaseor decrease.
It can therefore happen that both a; and g;; are positive and quite large. The result will
be that these speciesco-operate and obtain a higher tness due to this co-operation. Since
we always compute relative frequencieswith replicator dynamics, we do not always seethis
co-operation in the valuesx;. Howewer, in reality we may assumethat both populations will
grow, although one may grow faster than the other.

On the other hand when a; and a;; are negative and quite large, these speciesare com-
petitive, and the one with the largest frequency will dominate and can make the other one
extinct (dependert on the rest of the environment of course).

Instead of two cooperating or competitive organisms, there can also be whole groups of
cooperating organismswhich may compete with other groups. In this sensewe can clearly
seethe dependenceof an organism of its ernvironment.

5.3 Daisyw orld and Gaia

In 1983, JamesLovelock preseried his Daisyworld model which he presened to explore the
relationship betweenorganismsand their ervironment. Daisyworld is a computer model of an
imaginary planet consisting of white and black daisies. Daisiescan changetheir ervironment,
reproduce, grow, and die. There is a global variable: the temperature of the planet which
may slowly increasedue to the radiation of an imaginary sun.

Now the temperature of the planet has an in uence on the growth, reproduction, and
death of daisies. White daisieshave a favourite temperature in which they grow and reproduce
fastestand this temperature is higher than the favourite temperature of black daisies. This has
as a consequencehat if the temperature of the planet would increase,that the population
of white daisieswould becomebigger than the population of black daisies. If the planet's
temperature would not stop increasing, however, the temperature would becometoo hot for
any living organismto survive leading to a planet without life-forms.

Due to the albedo e ect of white daisies, howewer, the solar radiation is re ected which
causeghe temperature of the planet to decreasewvhen there are enoughwhite daisies. There-
fore when the planet is warmed up and there are many white daisiesthe planet will cool
down. If the white daisieswould corntinue to decreasethe planet's temperature, the planet
would becometoo cold and all life forms would also becomeextinct.

Howewer, black daisiesabsorb the heat of the sun and therefore they increasethe tem-
perature of the planet. Therefore, if the planet becomescolder, the number of black daisies
would becomelarger than the number of white daisies(since the black daisies'favourite tem-
perature for growth is lower), and the planet would becomewarmer again. This again leads
to a temperature which is closerto the favourite temperature of the white daisiessothat the
population of white daisieswould grow again and thereby cool down the planet.

Thus, we can seethat in Daisyworld the daisiesin uence the ervironment, and the en-
vironment has an in uence of the population growth of the daisies. The daisies are also
related, since if there would only be black daisies, the temperature could only increaseso
that life becomesampossible. By increasingand decreasingthe temperature of the planet, the
di erent daisy populations are linked to ead other, leading to cooperative co-ewlutionary
dynamics. Furthermore, sincethe daisiesmake the temperature suitable for both to survive,
they regulate the temperature, like a thermostat of a heater would regulate the temperature

5.3. DAISYW ORLD AND GAIA 83

of a room. Therefore we can seethat there is a self-regulating feedback loop.

5.3.1 Cellular automaton model for Daisyw orld

We can usea cellular automaton as a spatial model for Daisyworld. Each cell can be a black
or white daisy or a black or white daisy-seed.Furthermore, ead cell hasits local temperature.
Eadh cycle we can increasethe temperature of all cellswith for example one degree(of course
we can also decreasethe temperature). If the temperature of ead cell continuesto increase,
the temperature would become100 degreesand all life-forms would die.

The rules of the CA look as follows:

Black daisies have most probability to survive at a temperature of 40 degrees,and
white daisiesat 60 degrees.Each 20 degreesaway from their favourite temperature, the
survival probability decreasesith 50%.

Black daisiesincreasethe temperature of 49 cellsaround their cell with 3 degrees.White
daisiescool down the 49 cells around them with 3 degrees.

White daisiesreproduce 6 seedsn random location of their 25-cell neighbourhood with
most probability (40%) at 60 degrees,and black daisiesdo the sameat 40 degrees.

Daisy seedshave a probability of 10% to die eat cycle. White (black) seedsbecome
white (black) daisieswith most probability at 60 (40) degrees.

We can seethe Cellular Automaton model of Daisyworld in Figure 5.1.

Figure 5.1: A cellular automaton model of Daisyworld. At the right the averagetemperature
of the planet is shovn and the temperature in all cells.

Now there are two ewlutionary processesin this model. natural selection and self-
regulation. Natural selectionin Daisyworld takesplace becomesghere is competition between
the di erent daisy types,sincethere are limited sources(cells or spaceto grow). Now let's ex-
amine what happensif we usemutation in the model. Mutation is an arbitrary small change

84 CHAPTER 5. CO-EVOLUTION

of a genotpe of an organism. Such a small change results in a small change of the color
which meansa di erence in the absorbingor re ection of solar energyand therefore di erent
cooling or heating behaviors. In generala mutation can be good for an individual organism,
although most mutations are damaging or neutral. Howewer, evenif a mutation only givesan
advantage onein a million times, onceit occurred the new organism may quickly propagate
through the environment.

The most interesting aspect of Daisyworld is the self-regulation which appearsto be at
a higher level than natural selection. This self-regulation is good for all individuals, because
it keepsthe temperature of a planet at a level which makes life possible. Becausethis self
regulation is good for all individuals, we might think that is is on its own causedby natural
selection. Howewer, in Daisyworld self-regulation is not participating in a competitive or
reproductive medanism and thereforeis not createdby someform of higher level ewolutionary
process.We can better say that natural selectionprefersdaisy properties and patterns which
lead to self-regulating dynamics.

5.3.2 Gaia hyp othesis

In the beginning of the sixties, JamesLovelock wasworking at NASA that wanted to researt
whether there was life on Mars. Lovelock wonderedwhat kind of tests would be possibleto
demonstrate the existenceof life. Of courseit would be possibleto ched the surfaceof Mars
and to look whether someorganismslive there, but it might always be possiblethat at the
place where the spaceshipwould have landed no life forms existed, whereaslife forms might
exist at other parts of the planet.

Lovelock thought about examining processeshat reducethe entropy of the planet. This
can best be explained by looking at a beadr. When we seaa sand-castleon the bead, we
can seea very ordered object which must be constructed by life forms. On the other hand, if
there would not be any life forms on the bead, the surface of the sand on the bead would
be completely smooth and not contain any order. But how can this be measured,since not
all organismsmake sand castles. Lovelock thought about the atmospheric conditions of the
planet. If we considerour planet, the Earth, then we can seethat the constituents of the
atmosphereare very much out of equilibrium. For example, there is much too much oxygen
(O2) and much too little carbon dioxide (COy). If we look at Verus, there is 98% carbon
dioxide and only a tiny bit oxygen in the atmosphere. On Mars, there is 95% carbon dioxide
and 0.13% oxygen. If we compare this to the Earth where there is 0.03% carbon dioxide
and 21% oxygen we can seea huge di erence. Lovelock explained this di erence due to the
existenceof self-regulatory medanisms of the biosphereon Earth which he called Gaia. If
there would not be any life on Earth, the gaseswould react with ead other and this would
lead to an equilibrium similar to that of Mars or Verus. Howeer, sincelife forms regulate the
complete atmosphereit can corntinuously stay far out of equilibrium and make life possible.

Lovelock predicted that becausehe planet Mars hasan atmospherewhich is in a chemical
equilibrium, there cannot be any life on Mars, On the other hand, becausethe atmosphereon
Earth is far out of equilibrium there is a complex organising self-regulating force called Gaia
which makes life possible. Without this self regulation the amount of carbon dioxide may
becomemuch too large and heat up the planet, making life impossible. If one looks at the
medanismsof Gaia, one can seea complex web consisting of bacteria, algesand greenplants
which play a major role in transforming chemical substancessothat life can ourish. In this
way Gaia hassomekind of metabolism, keepingits temperature constart like a human does.

5.3. DAISYW ORLD AND GAIA 85

For exampleif a human beingis very cold, he beginsto shake, this causesmovemerts of the
body and muscleswhich makesthe body temperature higher. On the other hand if a human
being is warm, he will transpirate and thereby lose body heat. These medanismstherefore
keepthe temperature of a human more or lessconstart, and without it (e.g. without feeling
cold whenit is very cold) peoplewould have died a long time ago.

The name Gaia refersto the Greek goddessGaea, seeFigure 5.2. Sincethe whole web
of organismscreatesa self-regulating medanism, one may speculate that this ertire super-
organismis alive aswell. This led to three forms of the Gaia-hypothesis:

Co-evolutionary Gaia is a weak form of the Gaia hypothesis. It says that life deter-
minesthe environment through a feedbad loop betweenorganismsand the ernvironment
which shape the ewlution of both.

Geoph ysiological Gaia is a strong form of the Gaia hypothesis. It says that the
Earth itself is a living organismand that life itself optimizes the physical and chemical
ervironment.

Homeostatic Gaia is betweenthese extremes. It says that the interaction between
organismsand the ervironment are dominated by mostly negative feedba loops and
somepositive feedba& loopsthat stabilize the global environment.

Figure 5.2: The Greek GoddessGaea, or mother Earth.

There are many examplesto demonstrate the homeostatic processof Gaia. Some of these

are:

The amount of oxygen. Lovelock demonstrated that Gaia worked to keepthe amount
of oxygen high in the atmosphere,but not too high sothat a re would spreadtoo fast
and destroy too much.

Temperature. The averageground temperature per year around the equator has been
between 10 and 20 degreesfor more than a billion years. The temperature on Mars
uctuates much more and is not suitable for life-forms (-53 degreesis much too cold).

Carbon-dioxide. The stability of the temperature on the Earth is partially regulated
by the amount of carbon dioxide in the atmosphere. The decreaseof heat absorption
of the Earth in someperiods is causedby a smaller amount of carbon dioxide which is
regulated by life-forms.

86 CHAPTER 5. CO-EVOLUTION

In Figure 5.3 we can seethat the temperature of the world hasincreasedduring the last
certury. This may be causedby the large amount of burned fossil fuels during this period,
although di erences in temperatures are also often causedby the changeof the Earth's orbit
around the sun. The Gaia hypothesis states that mankind can not destroy life on Earth by
e.g. burning all fossil fuels, or using gaseswhich depletethe ozonelayer, sincethe metabolism
of the Earth will be much too strong and always some organismswill survive. Even if we
would throw all nuclear weapons, we would not destroy all life forms and life will continue
albeit without human beings.

Northern Hemisphere Average Surface Temperature

1.0

0.5

Temperature Anomaly (°C)

-1.0
1000 1200 1400 1600 1800 2000
Y

ear
reconstruction (AD 1000-1980) calibration period (AD 1902-1980) mean
raw data (AD 1902-1998) reconstruction (40 year smoothed)

- linear trend (AD 1000-1850)

Figure 5.3. The northern hemisphereshows an increasing temperature during the last 100
years.

5.4 Recycling Networks

If there are multiple co-ewlving organismsin an ervironment, they can also interact with
the available sourcessuch as chemical compounds. It is possiblethat theseorganismsrecycle
eat other's waste so that all compounds remain available for the ervironment. Of course
some of these processeswill cost energy which is usually obtained by the sun through e.g.
photo-synthesis. Someother processeswill create free energy for an organism which it can
useto move or to reproduce.

An example of sudh a processis when we put plants and mammals together in an ervi-
ronment and make a simpli ed model:

Plants transform CO, into C and O, molecules
Mammals transform C and O, into CO, molecules
External chemical reactionstransform C and O, into CO»

Mammals can eat plants and thereby increasetheir masswith C moleculeswhich they
store.

5.4. RECYCLING NETW ORKS 87

We can implement this model in a cellular automaton consisting of plants, mammals,
and molecules. In Figure 5.4 we show the simple model in which we use a layered cellular
automaton, one layer of the CA consisting of the positions of moleculesand the other layer
consisting of plants and mammals. Thesetwo layers will interact on a cell by cell basis (for
simplicity mammals have the samesize as moleculeswhich is of coursevery unrealistic).

[=]
M
o Cq P P
o M M
cq M
o) P| M
CQO p
cd cd M P| |P
M
0| |© P PP

Figure 5.4: A layered cellular automaton for modelling a recycling network.

To make the CA model complete, we also needto model the amount of carbon (C) inside
plants and mammals. Therefore, Figure 5.4 doesnot show us the complete picture, there are
internal states of plants and mammals which model the amount of C molecules.

Furthermore, we needto make transition rulesto let plants and mammals reproduce and
die. Mammals should also have the possibility to navigate on the grid and look for food.
We do not model these issueshere, although an implementation of these rules would be
straightforwward. Here we are more interested to examine the feedba& loops in the model
which will create a recycling network.

If we examinethis simple ecologyconsisting of plants, mammals, and chemical molecules,
we can seethat the moleculeswill be recycled under good conditions. If they would not be
recycled then the mammals would die since there would not be any O, moleculesanymore
for them. We can seethe following dynamics in this model:

Without plants, all C and O, moleculeswill be transformed to CO, molecules. This
will lead to a stable chemical equilibrium where no reactions can take place anymore,
resulting in the death of all mammals.

If there are many plants, the number of O, moleculeswould grow, leading to lessCO»
moleculesfor the plants, possibly also leading to the death of some plants. This will

causethe transformation of CO, to C and O, moleculesdone by the plants to become
much slower, and will give the external reactions and mammals the ability to create
more CO, molecules,leading to a homeostatic equilibrium. If there would not be any
mammalsit can be easily seenthat there cannot be too many plants, becausethe speed
of the external reactions can be very slow. Therefore, the existenceof mammals may
be pro table for plants (although the mammals also eat the plants).

If there are many plants and mammals, they will quickly recycle the molecules. This
leadsto asituation that evenwith few molecules,many plants and mammalscansurvive.

88 CHAPTER 5. CO-EVOLUTION

It should be noted that theseamounts of plants and mammals depend heavily on eath
other, but natural processesre likely to create a good situation.

If there are too many mammals, many plants will be eaten. If this causesfew plants
to survive, there will not be enoughfood for all mammals causing many mammals to
die. Thereforethe growth and decline of the mammal population will not make it easily
possiblethat all plants will be eaten, sothat mammals causetheir own extinction (this
is similar to predator-prey dynamics).

Recycling networks are very important for Gaia and co-ewlutionary systems. For example
in Gaia many moleculesare recycled causingalmost optimal conditions for life. One example
is the amount of salt in the seas. When this becomestoo large, almost all sealife-forms
will dry out and die. Howeer, every year a lot of salt is moved from the land to the seas
which might easily lead to very large concerrations of salt in the sea. It hasbeenshown by
Lovelock that the seafunctions as a kind of salt pump keepingthe conceriration of salt at
levels which are advantageousfor life forms.

Also in rain-foreststhe plants and trees causea very e cien t recycling of water molecules.
In this way, even with a small amount of H,0O moleculesmany plants and trees can survive.
Furthermore this recycling and co-ewlutionary dynamicsalsocausesa pro table temperature
for the plants and treeswhich makesit possibleto have rain-forestsin hot courtries that create
their own local redistribution of water.

5.5 Co-evolution for Optimisation

Co-ewlutionary processesre not only important for studying population dynamicsin ecolo-
gies, but can also be used for making optimisation algorithms. We already studied genetic
algorithms which can be usedfor searding for optimal (or near-optimal) solutions for many
di erent problemsfor which exhaustive seart would never work.

There is currently more and more researt to use co-ewlution to improve the ability of
geneticalgorithms in nding solutions. The idearelieson ewlving a population of individuals
to solve someproblem which can be described by a large set of tests for which an individual
should succeed.If the tests are not clearly speci ed, they can alsobe ewlved by ewlutionary
algorithms. An example is to learn to play badkgammon. If you want to be sure your
individual, which encalesfor a backgammon playing program, is very good in backgammon,
you want to test it against other programs. When the other programs are not available,
you can ewlve these programs. The individual which plays best against thesetest-programs
(somecall them parasitessincethey are usedto kill individuals by determining their tness),
may reproduce in the learner population. The tests which are good for evaluating learners
can also reproduce to create other tests. This is then a co-ewlutionary processand makes
sensesincethere is no clear tness function to specify what a good badkgammon player is.

We will now examine a speci ¢ problem which requires a solution to be able to solve a
speci ¢ task sudch as sorting a seriesof numbers. In principle there are many instantiations
of the sorting problem, since we can vary the numbers, or the amount of humbers, or their
initial order, etc. So supposewe take N instantiations of the sorting problem and keepthese
xed (like we would do with normal ewlutionary computation). Now we canuseasa tness
function the amount of instantiations of the sorting task which are solved by an individual.
The problem of this is that it can cost a lot of time to evaluate all individuals on all N

5.5. CO-EVOLUTION FOR OPTIMISA TION 89

tasks if N is large. And if we take the number of instantiations too low, maybe we ewlve
an individual which can sort theseinstantiations of the sorting problem, but performs poorly
on other sorting problems. Furthermore, it is possiblethat the best individuals always are
able to sort the same0.7N problems and newver the others. In this casethere is not a good
gradiert (seard direction) for further ewolution.

Co-evolution for optimisation. A solution to these problems is to use co-ewlution
with learners (the individuals which needto solve the task) and problem-instantiations (the
parasites or the tests). There are K tests which can be much smaller than the N tests we
neededfor a complete evaluation in normal ewlution, sincetheseK tests also ewlve. There
are alsoL learnerswhich are tested on the tests (can be all tests, but might also be a part of
all tests). The tness of a learner is higher if it scoresbetter on the tests it is evaluated on.
This createsimproving learners, but how can we ewlve the test-individuals?

An initial ideawould be to make the tness of a test higher when lesslearnerscan solwve it
(we will later examinethe problems of this method for assigningsuch tness valuesto tests).
In this way, the learnersand tests will co-ewlve. The parasites make the tests harder and
harder and the individuals have to solve theseincreasingly di cult tests.

A problem of the above tness de nition of tests is that it becomespossiblethat only
tests remain which cannot be solved by any learner. This leadsto all learners having the
same tness and would stop further ewlution. Thereforeit is much better to let the tness
of a test depend on the way it can di erentiate betweendierent learners. In this way when
a test is solved by all learnersor is not solved by any learner, the test is basically uselessat
the current stage of ewlution and will get a low tness sothat it is not allowed to stay in
the population or to reproduce. If two tests make exactly the samedistinctions betweenall
learners, it is possibleto reducethe tness of one of them sincethey would essetially encale
the samedistinction.

Pareto-fron t in co-evolutionary GA. If we have a number of learnerswith their result
on all tests, we want to examinewhich learnersare allowed to reproduce themsehes. For this
we will examinethe Pareto-front of individuals which meansthe set of individuals which are
not dominated by any other individual. When a learner passesa number of tests and another
learner passeshe samenumber of tests, but alsoan additional one, it is not hard to seethat
the secondlearner performs strictly better than the rst one. In this casewe say that the
rst learneris dominated by the secondone. We can make this more formal by the following
de nition, wheref;(j) is the tness of learneri ontestj.

We de ne:

dominates(k;i) = 8jfi(j) fx(j) " 9lfi(l) < fi(l)

Sodominates(k,i) saysthat learneri is dominated by learnerk. Now we de ne the Pareto-
front asall learnerswhich are not dominated by any other learner. Now we only let the learners
in the Pareto-front reproduce and eliminate all other learnerswhich are dominated by some
other learner.

This Pareto-front optimisation is also a used and good method for multi-ob jective opti-
misation in which there are more criteria to evaluate an individual.

90 CHAPTER 5. CO-EVOLUTION

5.6 Conclusion

In this chapter we studied co-ewlutionary processesvhich areimportant in natural evolution.

We have seenthat instead of Darwin's survival of the ttest, there canbegroupsofcooperating
organismswhich struggle for the samespatial resources,but which may help eat other to

survive at the sametime. We also looked at the methods that life-forms useto alter their

environment. There are many medanismswhich keepthe environment pro table for life to

sustain itself. Lovelock studied this complexweb of many coupled processegor the rst time

and called this ertire mecdanism of a homeostatic Earth; Gaia. There are many examples
of Gaian processesand in this chapter we only examined a few, but important ones. Gaian
homeostasisalso relies on recycling networks in which chemical compounds are transformed
through a sequenceof di erent organismsso that resourcesnever becomedepleted. This is
very important, sinceif somecompound would get lost, the whole recycling network might

starve since their required resourcesare not available. Finally we have examined how co-
ewlution can be usedin ewlutionary computation to make the seard for optimal solutions
di erent and for someproblemsmore successfuthan the seard processof normal evolutionary

algorithms. Here learners and tests ewlve together to allow learnersto becomebetter in
solving the tests, and the tests to create harder and harder problemswhile still being able to
di erentiate betweenlearners.

It is important that we look at the co-ewlutionary medanismswhen we usethe Earth's
resourcesand Kill organisms. Particular organismsmay play very important roles to keep
the homeostatic equilibrium of the Earth or of a local environmental niche. Sincewe cannot
study a single organism alone, apart from its ervironment, we again needa holistic approat
in which all elemens are studied in a total perspective.

Chapter 6

Unsup ervised Learning and Self
Organising Net works

Unsupervisedlearning is oneof the three forms of madine learning; supervised,unsupervised,
and reinforcemert learning. The special aspect of unsupervisedlearning is that there are only
input (sensory)signalsand no desiredoutputs or evaluations of actions to specify an optimal

behavior. In unsupervised learning it is more important to deal with input signals and to

form a meaningful represenation of these. E.g. if we look at di erent objects, we can cluster
objects which look similar together. This clustering does not take into accourt what the
label of an object is, and therefore trees and plants may be grouped together in unsupervised
learning, whereasin supervisedlearning we may want to map inputs to the label plant or tree.
It is also possiblethat particular plants form their own cluster (or group) sud as cactuses,
this grouping is only basedon their input represernation (e.g. their visual input), and not

based on any a-priori specied target concept which we want to learn. We may therefore
start to think that unsupervisedlearning is lessimportant than supervisedlearning, but this

is not true sincethey have di erent objectives. Unsupervisedlearning has an important task
in preprocessingthe sometimeshigh-dimensionalinput and can therefore be usedto make the

supervised learning task simpler. Furthermore, supervised learning always requires labelled
data, but labelled data is much harder obtained than unlabelled data. Therefore unsupervised
learning can be applied cortinuously without the needfor a teadher. This is a big advantage,
sinceit makescortinual life-long learning possible.

The secondtopic in this chapter is self-organisingnetworks or often called self-organising
maps (SOMs). TheseSOMsare neural networks and can be applied for unsupervisedlearning
purposesand can be easily extended for supervisedand reinforcemen learning problems. In
principle a SOM consistsof a number of neuronsthat have a position in the input space.Every
time a new input arrives, the SOM computes distancesbetween the input and all neurons,
and thereby activates those neuronswhich are closestto the input. This idea of looking at
similarities is a very generalidea for generalization, since we usually consider objects that
look alike (have a small distance accordingto somedistance measure)to be of the samegroup
of objects. To train the SOM, activated neuronsare brought closerto the generatedinputs,
in order to minimize the distance between generatedinputs and activated neurons. In this
way a represenation of the complete set of inputs is formed in which the distance between
generatedinputs and activated neuronsis slovly minimized. By using SOMs in this way, we
can construct a lower dimensional represenation of a cortinuous, possibly high-dimensional

91

92CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

input space. E.g. if we considerfaceswith di erent orientations asinput, the input-spaceis
high-dimensional, but activated neuronsin the SOM essetially represen the orientation of
the facewhich is of much smaller dimensionality.

6.1 Unsup ervised Learning

In unsupervisedlearning the program receivesat ead time-step an input pattern xP which is
not assaiated to a target concept. Therefore all learned information must be obtained from
the input patterns alone. Possibleusesof unsupervisedlearning are:

Clustering: The input patterns are grouped into clusters where input patterns inside a
cluster are similar and input patterns betweenclusters are dissimilar accordingto some
distance measure.

Vector quantisation: A cortinuous input-space is discretized.

Dimensionality reduction: The input-space is projected to a feature space of lower
dimensionality while still cortaining most information about the input patterns.

Feature extraction: particular characteristic featuresare obtained from input patterns.

6.1.1 K-means clustering

One well-known clustering method is called K-means clustering. K-means clustering useskK
prototypeswhich will form K clusters of all input patterns. In principle K-means clustering
is a batch learning method, which meansthat all the data should be collected beforeand the
algorithm is executedonetime on all this data. Running the algorithm on this data createsa
speci ¢ set of clusters. If another input pattern is collected, the algorithm hasto be executed
againon all data exampleswhich therefore can costmore time than online clustering methods.

K-means clustering is usually executed on input patterns consisting of cortinuous at-
tributes, although it can be extended on patterns partly consisting of hominal or ordinal
attributes.

vector is an elemen of <_N whereN is the number of attributes describing an input pattern.
Each prototype vector w' represens a cluster C' which is a set of input patterns which are
elemen of that cluster. Sothe algorithm partitions the data in the K clusters. We assume

An examplex' is an elemen of cluster C! if the prototype vector w! is closerto
the input pattern x' than all other prototype vectors:

dw :x') dw';x') Foralll6 |

6.2. COMPETITIVE LEARNING 93

The distanced(x; y) betweentwo vectorsis computed using the Euclidean distance

measure: S

X—
d(x;y) = (Xi ¥i)?
[
In casethe distancesto multiple prototype vectors are exactly equal, the example
can be assignedto a random one of these.

2. Set the prototype vector to the certer of all input patterns in the corresponding
cluster. Sofor eath cluster C! we compute:
P
k
i — kaci X
W, = ——————
' jClj

Where jCj denotesthe number of elemerts in the set C.

An example of K-means clustering. Supposewe have four examplesconsisting of
two continuous attributes. The examplesare: (1,2); (1,4); (2,3); (3,5).

Now we want to cluster these examplesusing K = 2 clusters. We rst initialize these
clusters, supposethat w! = (1;1) and w? = (3;3). Now we can seethat if we assignthe
examplesto the closestprototypes, we get the following assignmeit

L:2)! 1
L4 2
(2;3)1 2
(3;5)! 2

Now we compute the new prototype vectors and obtain: w! = (1;2) and w? = (2;4). We
have to repeat the processto seewhether the cluster stay equal after the prototype vectors
have changed. If we repeat the assignmemh processto clusters, we can seethat the examples
stay in the sameclusters, and therefore we can stop (contin uing would not change anything).

6.2 Comp etitiv e Learning

K-means clustering works on a given collection of data and when the data changes,the algo-
rithm hasto be executedagainon all examples. There alsoexist a number of online clustering
approadeswhich are basedon arti cial neural network models. Competitiv e learning is one
of these methods and partitions the data into speci ¢ clusters by iterating an update rule a
singletime ead time a newinput pattern arrives. Therefore theseonline competitiv e learning
algorithms are more suitable for changing environments, sincethey can changethe clusters
online according to the changing distributions of input patterns. Again only input patterns
xP are given to the system. The system consistsof a particular neural network as a repre-
sertation of the clustering. The network propagatesthe input to the top where an output is
given which tells us in which cluster an input pattern falls. Like in the K-means algorithm,
the number of clusters should be given to the systemand usually stays xed during learning.

In a simple competitiv e learning network all inputs are connectedto all outputs repre-
serting the clusters, seeFigure 6.1. The inputs describe a speci c input pattern and when
given theseinputs, the competitiv e learning network can easily compute in which cluster the
input falls.

94CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

output o

O O
WP

o O

input |

Figure 6.1: In a competitiv e network all input units are connectedto output units through a
set of weights.

6.2.1 Normalised comp etitiv e learning

There are two versions of the competitive learning algorithm, the normalised and unnor-
malisedversions. We rst examinethe normalisedversionwhich normalisesall weight vectors

one. The norm of a vector is computed as:

jivii= (VZ+VE+ i+ Vg = v?

Basically the norm of a vector is its Euclidean distanceto the origin of the coordinate system.
This origin is a vector with only 0's. Normalising a vector is then done by dividing a vector

by its norm:
X

kxk

norm —
X =

Soif all vectorsare normalised, all weight vectors (ead output unit hasoneweight vector
which determines how it will be activated by an input pattern) will have length 1, which
meansthat they all fall on a circle when there are 2 dimensions(N = 2). Therefore, the
weights can only move on the circle.

So, how do we adapt the weight vectors? Just asin the K-means algorithm, we initial-
ize the weight vectors for the chosen number of clusters (represernied by as many output
units). Then, the normalised competitiv e learning algorithm performs the following steps
after receiving an input pattern:

Each output unit o computesits activation y° by the dot- or inner-product:
X

yo= wPxi = wx

Then the output neuron k with the highest activation will be selectedas the winning
neuron:
806 k: y° yK

6.2. COMPETITIVE LEARNING 95

Finally, the weights of the winning neuron k will be updated by the following learning
rule:

wh(t) + (x(1) wH(t)

kwk(t) + (x(t) wk(t)k

wK(t + 1) =
The divisor in the fraction makessure that the weight vector remains normalised.
The mecanism of normalised competitiv e learning causesthe winning weight-vector to

turn towards the input pattern. This causesweigh-vectors to point to regionswhere there
are many inputs, seeFigure 6.2.

Figure 6.2: In a normalised competitive network, the weight-vectors will start to point to
clusters with many inputs.

When we would not use normalised weight vectors, there would be a problem with this
algorithm which is illustrated in Figure 6.3. Here it is seenthat if weight-vectorsare di erent
in size,larger vectors would win against smaller weight vectors, sincetheir dot-product with
input vectorsis larger, although their (Euclidean) distanceto an exampleis larger.

Wl
wi
X
W2
X
W2
Winner = 1 Winner = 1

Figure 6.3: (A) With normalised weight vectorsthe algorithm works appropriate. (B) When
weight vectorswould not be normalised, we would get undesirablee ects, sincelarger weight
vectors would start to win against small weight vectors.

96CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

6.2.2 Unnormalised comp etitiv e learning

Instead of using the dot-product betweentwo vectorsto determine the winner for which we
need normalised vectors, we can also use the Euclidean distance to determine the winning
neuron. Then we do not need normalised weight vectors anymore, but we will deal with
unnormalised ones. Soin this caseall weight-vectors are again randomly initialised and we
determine the winner with the Euclidean distance:

Winner k:kwK xk kw° xk 8o:

Soherewe take the norm of the di erence betweentwo vectors, which is the sameastaking the
Euclidean distance d(wX: x). The neuronwith the smallestdistancewill win the competition.
If all weight-vectors are normalised, this will give usthe sameresults ascomputing the winner
with the dot-product, but if the vectorsare not normalised di erent results will be obtained.

After determining the winning neuron for an input vector, we move that neuron closerto
the input vector using the following learning rule:

wi(t+ 1) = Wi+ (x() wh(D) (6.1)
where 0 1 is a learning rate which determines how much the neuron will move to
the pattern (if = 1 the point will jump to the input vector, and therefore when cortin uing

learning there will be a lot of jumping around. When the learning rate decreasesvhile more
updates have beendone, a real \average" of the represened input patterns can be learned).

Example unnormalised comp etitiv e learning. Supposewe start with K = 2 neurons
with initialized weight-vectors: w! = (1;1) and w? = (3;2). Now we receiwe the following
four examples:

xt=(1;2)
x? = (2;5)
x3=(3;4)
x4 = (2;3)

When we set the learning rate to 0.5, the following updateswill be made:
onx!=(1;2)! dwt;xb) = 1; dw?;x1) = 2. Therefore: Winner w! = (1;1). Application
of the update rule gives:

wl=(1;1)+ 0:5((1;2) (1; 1B = (1;1.5).

x2 = (2;5) ! d(w};x?) = 1325 d(w?;x?) =
Application of the update rule gives:

w2 = (3;2) + 0:5((2;5) (3:g) = (2:5;35). 0

x3 = (3;4) ! dw!;x3 = 1025 dw?x%) = = 0.5 Therefore: Winner w? = (2:5;3:5)
Application of the update rule gives:

w? = (2:5;3:5) + 0:5((3;4) (2:5;3:5)) = (2:75,3:75).

Now try it yourself on the fourth example.

pﬁ). Therefore: Winner w? = (3;2).

Initialisation

A problem of the recursive (online) clustering methods which also holds for the K-means
clustering algorithm is a possiblewrong initialisation of the weight vectors of the neurons.
Thereforeit can happenthat someneuron never becomesa winner and therefore never learns.
In that casewe are basically dealing with a dead (or silent) neuron and have one cluster less
in our algorithm. To deal with this problem, there are two methods:

6.2. COMPETITIVE LEARNING 97

Initialise a neuron on someinput pattern

Use\leaky learning”. For this we let all neurons adapt on all examples, although we
usea very small learning rate for this adaption sothat this will only make a di erence
in the long run. The leaky learning rule adapts all neurons (except for the winning
neuron) to the current examplewith a very small learning rate °<<

wit+)= w)+ qx(t) w'(t);8l6k

Minimising the cost function

The goal of a clustering method is to obtain a clustering in which the similarities between
inputs of the samecluster are much larger than similarities betweeninputs of di erent clusters.
The similarity between two inputs can be computed using the inverse of the (Euclidean)
distance betweenthe two inputs. Therefore if we minimize the distancesbetweena neuron
and all the examplesin the cluster, we will maximize the similarities betweenthe inputs in a
cluster.

A commonmeasureto compute the quality of a nal obtained set of clusterson a number
of input patterns is to usethe following quadratic cost function E:
_ X kwk xPk? = XX (wk xP)?

2P 2Pi

E

In which k is the winning neuron on input pattern xP.

Now we can prove that competitiv e learning seardesfor the minimum of this costfunction
by following the negative gradiert of this cost function.

Pro of that the cost function is minimized. The cost-function for pattern xP:

X
EP=2 (wk xP)?

in which k is the winning neuron is minimized by Equation 6.1.
We rst examinehow the weight-vectors should be adjusted to minimize the cost-function
EP on pattern xP:

pW = G*
@vp
Now we have asthe partial derivative of EP to the weight-vectors:
P
—%p = w® xP; If unit owins
|
= 0; else (6.2)

From this follows (for winner 0):
0 — p O
pWi = (X7 W)

Thus we demonstrated that the cost-function is minimized by repetitive weight-vector up-
dates. Somenotes on this are:

98CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

If we cortinue the updating processwith a xed learning rate, the weight-vectors will
always make some update step, and therefore we do not obtain a stable clustering.
To obtain a stable clustering we should decreasethe Iearning-ra]ge after ead update
Bccording to the conditions of stochastic approximation: (1) tlzl ¢t = 1 and (2)

L, &< 1. The rst condition makessurethat the weight-vectors are able to move
an arbitrarily long distanceto their nal cluster-point, and the secondcondition makes
surethat the varianceof updatesgoesto zerowhich meansthat nally a stable state will
be obtained. A possibleway of setting the learning rate which respect these conditions

1

is: t = T

It isimportant to note that the cost-function is likely to cortain local minima. Therefore
the algorithm doesnot always obtain the global minimum of the cost-function. Although
the algorithm will corverge (given the conditions on the learning-rate), corvergenceto
a global minimum is not guararteed. Better results can therefore be obtained if we
executethe algorithm multiple times starting with di erent initial weight-vectors.

Choosing the number of cluster-points (or neurons) is an art and not a science. Of
coursethe minimum of the cost-function can be obtained if we use as many cluster-
point asinput-patterns and set all the cluster-points on a di erent input-pattern. This
would result in a cost of 0. Howewer, using as many cluster-points as input-patterns
doesnot make any sensesincewe want to obtain an abstraction of the input data. It is
also logical that increasingK leadsto a smaller minimal cost, so how should we then
chooseK ? Often we needto trade o the complexity of the clustering (the number of
used cluster-points) and the obtained error-function. Thus, we like to minimize a new
cost-function:
Efs = E+ K

wherethe user-de ned parameter tradeso complexity versusclustering cost. Es can
then be minimized by running the algorithm with dierent K.

6.2.3 Vector quantisation

Another important useof competitiv e learning is vector quantisation. In vector quartisation

we divide the whole input spaceinto a number of non-overlapping subspaces.The di erence
with clustering is that we are not so much interestedin the clusters of similar input-patterns,

but more in the quartisation of the whole input space. Vector quartisation usesthe same
(unnormalised) competitiv e learning algorithm asdescribedbefore,but wewill nally examine
the subspacesand not the clusters. It should be noted that the distribution of input-patterns

is respected by competitiv e learning; more inputs in a region lead to more cluster-points. An

example of an obtained vector quartisation is shovn in Figure 6.4.

Vector quantisation combined with supervised learning

Vector quartisation canalsobe usedin a preprocessingpohasefor supervisedlearning purp oses.
In this case,ead neuron correspondsto someoutput value which is the averageof the output
valuesfor all input-patterns for which this neuron wins the competition. The output-values
for multiple outputs belongingto someneuronthat represeits a subspaceof the input spaceis
usually stored in the weights from this neuronto the output neurons. Thus we can denotethe
value for output o which is computed when neuron h is activated asw?. If there is only one

6.2. COMPETITIVE LEARNING 99

Figure 6.4: A nal setof clusters (the big black dots) corresppndswith a quartisation of the
input spaceinto subspaces.

output, we sometimeswrite y" to indicate that this value is the output of neuron h. Figure
6.5 shows a supervised vector quantisation network in which vector quartisation in the rst
layer is combined with supervisedlearning in the secondlayer.

Vector Feed
Quantisatio Forward

Figure 6.5: A supervisedvector quantisation network. First the input is mappedby a compet-
itiv e network to a single activated internal neuron. Then this neuron is usedfor determining
the output of the architecture.

For learning this network we can rst perform the (unsupervised) vector quantisation
stepswith the unnormalised vector quartisation algorithm and then perform the supervised
learning steps, but is is also possibleto perform these two updates at the sametime. The
supervised learning step can simply be done with a simple version of the delta-rule. The
complete algorithm for supervisedvector quantisation looks as follows:

Presert the network with input x and target value D = f (x)

Apply the unsupervised quartisation step: determine the distance of x to the (input)
weight-vector of ead neuron and determine the winner k, then update the (input)
weight-vector of neuron k with the unsupervised competitiv e learning rule (Eq. 6.1).

Apply the supervisedapproximation step, for all outputs o do:
we(t+ 1) = wg(t) + (Do wg(t))

100CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

This is a simple version of the delta-rule where is the learning-rate and k the winning
neuron.

This algorithm canwork well for smooth functions, but may have problemswith uctuat-
ing functions. The reasonis that inside a subspacein which a single neuron is activated, the
generatednetwork output is always the same. This meansthat large uctuations will cause
problems and can only be approximated well when enough neurons are used. For smaooth
functions, however, the target valuesinside a subspaceare quite similar sothat the approxi-
mation can be quite good. Given a vector quantisation and input-patterns with their target
outputs, we can computeto which valuesw¥ the network converges. First we de ne a function
a(x; k) as:

1; If k is the winner
0; Else

a(x; k)

Now it can be shawvn that the supervisedvector quartisation learning rule corvergesto:

o PoX)ax Mp(X)dx
-1 906)P dx

whereD ((x) is the desiredoutput value of output o oninput-pattern x and p(x) is a probability
density function which models the probabilities of receiving di erent inputs. Thus, eath
weight from neuron h to output o corvergesto the averagetarget output value for output o
for all the casesthat neuron h wins.

Example of supervised vector quantisation. The winning neuron movesaccordingto
the sameupdate rule as normalised competitiv e learning. Sincethere is only a single output
in the example below, we will write y¥ to denote the output value of neuron k. The value yX
for the winning neuron wX is adapted after eath example by the following update rule:

y<=y<+ (DP9

Supposewe start again with 2 cluster-points and set their output-valuesto O :
wl= (1;1);yt = 0and w? = (3;2);y? = 0.

Now we receiwe the following learning examples:

(xt1 DYH= (12! 3)

(x2! D?)=(2;5! 7)

(x3! D% = (34! 7)

(x*! DY =(2;3! 5)

Supposewe setthe learning-rate to 0.5 and the learning rate for the supervisedlearning
step = 0:5. Now if we update on the four learning examples, the following updates are
made:
x1=(1;2) ! dwhx) = 1; d(w?;xt) = 2. Thus: Winner w! = (1;1). Application of the
update rule gives:
wl=(1;1)+ 05((1;2) (1;1)) = (1;1:5).

This is just the sameasin the example of unnormalised competitiv e learning before.

The only di erence in computations is that we also adjust the output values of the winning
neuron:

y!=0+ 053 0)= 15

h —
Wy =

6.3. LEARNING VECTOR QUANTISATION (LVQ) 101

Sincethe weight-vectorsw' are adjusted in the sameway asin the example of competitiv e
learning, we only shav the updates of the neurons' output values:
x? = (2;5). Winner is neuron 2.
y>= 0+ 05(7 0)= 35.
x3 = (3;4). Winner is neuron 2.
y2= 35+ 0:5(7 35)= 5:25.
Now try it yourself on the fourth example.

6.3 Learning Vector Quantisation (LVQ)

Learning vector quartisation is basically a supervised learning algorithm, sincethe neurons
have labels assaiated to them and therefore can classify inputs into a xed number of cat-
egories. Using the training examples,which in this caseconsist of an input pattern and an
assaiated discrete label (or output), LVQ learns decisionboundarieswhich partition the in-
put spaceinto subspaceswvith an assciated label. The goalis that ead input patterns falls
into a subspacewith the sameassaiated label.

The algorithm looks as follows:

Initialize the weight-vectors of a number of neurons and label eath neuron o with a
discrete classlabel y°

Presen a training example (xP; dP)

Usethe distancemeasurebetweenthe weight-vectors of the neuronsand the input vector
xP to compute the winning neuron k; and the secondclosestneuron k:

kxP wKik < kxP w*?k < kxP W'k 8i 6 kyi: ko

The labelsyk: and yk2 are comparedto the desiredlabel of the exampledP from which
an update is computed

The update rule causesthe winning neuron to move closerto the input example when its
label correspondsto the desiredlabel for that example. In casethe labels are not the same,
the algorithm looks at the second-tkest neuron and when its label is correct it is moved closer
and in this casethe winning neuron is moved away from the input example. Formally, the
update rules look as follows:

If yk2 = dP: Apply the weight update rule for ki:
we(t+ 1) = wh(t) + (xP wi(D)

Else, if y<1 6 d” and yk2 = dP: Apply the weight update rule for ko:
we(t+ 1) = whe(t) + (xP wie(t)

and move the winning neuron away from the example:

wiet+ 1) = whet) (xP wiD)

102CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

The algorithm does not perform any update if the labels of the winning and second-lest
neurons do not agreewith the label of the example. One could make an algorithm which
would move the closestneuron with the correct label to the example (and possibly move all
others away from it), but this is not donein LVQ. A possibleproblem of this would be strong
oscillation of the weight-vectors of the neuronsdue to noise.

LVQ example. In LVQ, we useK cluster-points (neurons) with a labelled output. We
compute the closest(winning) neuronwX* and the secondclosestneuron wk? for ead training
exampleand apply the weight update rules.

Supposewe start with 2 cluster-points: w! = (1;1) with label y! = A, and w? = (3;2)
with label y?> = B. We set the learning rate to 0.5.

Now we receiwe the following training examples:

(x*! DYHY= (12! A)

(x2! D?=(2;5! B)

(x3! D% = (34! A)

(x*! DY =(2;3! B)

Then we get the following update rules: For (1;2! A), the winner is neuron 1 and the second
bestis neuron 2. The label of neuron 1 y! = D, Therefore neuron 1 is moved closerto the
example:

wl= (1;1) + 0:5((1;2) (1;1)) = (1;1:5).

x2 = (2;5). Winner is neuron 2. Secondclosestis neuron 1. The label of neuron 2 is the
sameasthe label D?, therefore neuron 2 is moved closerto the example:

w2 = (3;2) + 0:5((2;5) (3;2) = (2:5;3:5).

x2 = (3;4). Winner is neuron 2. Secondclosestis neuron 1. The label of neuron 2 is not the
sameasthe label D3. The label of neuron 1 is the sameas D 3. Therefore we move neuron 1
closerto the example,and neuron 2 away from the example:

wl = (1;1:5) + 0:5((3;4) (1;15) = (2;2:75).

w? = (2:5;35) 05((3;4) (2:5;35)) = (2:25,3:25).

Now try it yourself on the fourth example. An example partitioning of a 2-dimensional
input spaceis showvn in Figure 6.6. The structure of the decision boundaries of sud a
partitioning is often called a Voronoi diagram.

Figure 6.6: An example of a partitioning created by LVQ.

6.4. KOHONEN NETW ORKS 103

6.4 Kohonen Networks

Kohonen networks or Kohonen maps are self-organisingmaps (SOMs) in which the neurons
are ordered in a speci ¢ structure sud as a 2-dimensional grid. This ordering or structure
determineswhich neuronsare neighbours. Input patterns which are lying closetogether are
mapped to neuronsin the structure S which are closetogether (the sameneuron or neigh-
bouring neurons). The learning algorithm causeshe structure of the neuronsto get a speci c
shape which re ects the underlying (low dimensional) manifold of the input patterns received
by the algorithm. The structure of a Kohonen network is determined before the learning
process,and often a structure is usedwhich haslower dimensionality than the dimensionality
of the input space.This is very useful to visualisethe structure of inputs which fall on a sub-
spaceof the input space,seeFigure 6.7. The structure usedhereis a 2-dimensionalstructure
consistingof 4 4 neurons.

Figure 6.7: In this example,the 2-dimensional4 4 structure of the Kohonen network covers
a manifold of lower dimensionality than the input space.

6.4.1 Kohonen network learning algorithm

Again we compute the winning neuron for an incoming input pattern using some distance
measuresucd as the Euclidean distance. Instead of only updating the winning neuron, we
also update the neighbours of the winning neuron for which we usea neighbourhood function
g(o;k) betweentwo neurons. Here we de ne g(k; k) = 1 and with alonger separationdistance
in the structure we decreasethe value of the neighbourhood function g(o;k). Sothe update
is done using:

wo(t + 1) = wo(t) + g(o;k)(x(t) w°(t)) 802 S:

Where k is the winning neuron and we have to de ne a function g(o;k). For examplewe can
usea Gaussianfunction de ned as:

g(o;k) = exp(distances(o;Kk))

Where distances(0;k) computesthe distance in the structure S betweentwo neurons. This
distanceis the minimal number of edgeswhich have to be traversedin the structure to arrive
at neuron o from winning neuron k.

By this collective learning method input patterns which lie closetogether are mapped to
neurons which are closetogether in the structure. In this way the topology which can be

104CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

found in the input signalsis represerted in the learned Kohonen network. Figure 6.8 shaws
an example of the learning processin which input patterns are drawn randomly from the
2-dimensionalsubspace.

N4
NN e '7‘2;%':",
,,

"‘»\W X3
B y ‘\ /,// VY

l‘»‘ 0

Iteration O Iteration 600 Iteration 1900

Figure 6.8: The Kohonen network learns a represenation which presenes the structure of
the input patterns.

If the intrinsic dimensionality of the structure S is smaller than the dimensionality of the
input space,the neuronsof the network are \folded" in the input space.This can be seenin
Figure 6.9.

Figure 6.9: If the dimensionality of the structure is smaller than the manifold from which
input patterns are generated,the resulting Kohonen map is folded in the input space.Here
this folding is shown for a 1-dimensionalstructure in a 2-dimensionalinput-space.

Example Kohonen network. Supposewe use a Kohonen network with 3 neurons
connectedin a line (thus 1-dimensional) structure. We use a neighbourhood relation as
follows: g(k;k) = 1 and g(h;k) = 0:5 if h and k are direct neighbours on the line, else
g(h; k) = 0.

Again we always compute the winning neuron on ead input pattern, and then we update
all neuronsas follows:

wh=w+ g K)(xP wh
We initialise: w! = (1;1), w? = (3;2), w3 = (2;4). Weset = 0:5. Now we obtain the

examples:
xt=(1;2)
x? = (2;5)
x3 = (3;4)

x4 = (2;3)

6.5. DISCUSSION 105

On x! = (1;2) neuron 1 wins the competition. This results in the update:
wl= (1;1)+ 05 1((1;2) (1;1)) = (1;1L5).
We also have to update the neighbours. g(2;1) = 0:5 en g(3; 1) = 0. Sowe update neuron 2:
w?= (3;2)+ 05 05((1;2) (3:2) = (2:5,2).
On x? = (2;5) neuron 3 wins. This results in the update:
wi=(2;4)+ 05 1((2,5) (2;4)) = (2;45).
We also have to update the neighbours. g(2;3) = 0:5 en g(1; 3) = 0. Sowe update neuron 2:
w2 = (2:5;2)+ 05 0:5((2;5) (2:5;2) = (2:3752:75).
On x3 = (3;4) neuron 3 wins. This results in the update:
wi = (2;45)+ 05 1((3;4) (2;4:5)) = (2:5;4:25).
We also have to update the neighbours. Again g(2;3) = 0:5 en g(1;3) = 0. Sowe update
neuron 2:
w? = (2:3752:75)+ 05 0:5((3;4) (2:3752:75)) = (2:53,3:06).
Try it yourself on the last example.

6.4.2 Supervised learning in Kohonen networks

A Kohonen network can also be usedfor supervisedlearning. For this we useoutputs w! for
ead neuron h and ead output o. In casethere is only a single output we can denote the
output of a neuron h asy". To determine the overall output on a training example, we use
the outputs of all activated neurons (neurons are activated if g(h; k) > 0. So we obtain the
output y, by the following formula which weighsthe neuron outputs by their activations:

P
H2s g(h; k)WQ
hzs 9(h; k)

This is basically a weighted sum and causessmoother functions when larger neighbourhood
function valuesare used.
Now ead neuron can learn output valuesin two di erent ways. The rst possibility is to
let neuronslearn the averageoutput weighted by its activation using:
W)= wh+ 0o wp I
i2s 9(i; k)

Yo =

Where D, is the target value for output o.
We can also let eadh neuron learn to reducethe overall error of the network. In this case
neurons collaborate more. The following learning rule doesthis:

g(h; k)
i2s 9(i; k)
Furthermore for supervisedlearning in Kohonen networks, the unsupervisedstepscan be

changedsothat neuronswith small errors are moved faster to the input pattern than neurons
with larger errors.

WQ = WQ + (Do VYo)

6.5 Discussion

In this chapter we examinedunsupervisedlearning methods which can be usedfor clustering
data, vector quantisation, dimensionality reduction, and feature extraction. The K-means

106CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

algorithm is a well-known method for clustering, but is a batch learning method meaning
that it hasto be executedon all input patterns. In competitiv e learning, updates are made
online. The neurons compete for becoming activated basedon their distance to the input
pattern. Unsupervisedlearning methods can alsobe extendedwith additional output weights
to make supervisedlearning possible. In this casewe can simply usethe delta rule for learning
outputs of ead neuron. The shawn algorithms are well able in dealingwith contin uousinputs,
for discrete inputs someadaptions may be necessaryto improve the algorithms. All learning
algorithms respect the locality principle; inputs which lie closetogether in the input space
are grouped together. For supervised learning, the shavn algorithms can be very suitable if
the function is smooth. By using additional neuronsa good approximation of a uctuating
target function canbelearned,but nding the winning neuron becomesslow if many neurons
are used.

Bibliograph vy

[Dawkins, 1976] Dawkins, R. (1976). The Sel sh Gene Oxford University Press.

[Dorigo and Gambardella, 1997] Dorigo, M. and Gambardella, L. M. (1997). Ant colory

system: A cooperative learning approad to the traveling salesmanproblem. Evolutionary
Computation, 1(1):53{66.

[Dorigo et al., 1996] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system:

Optimization by a colony of cooperating agerts. IEEE Transactionson Systems,Man, and
Cybernetics-Part B, 26(1):29{41.

[Glover and Laguna, 1997] Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic
Publishers.

[Merz and Freisleben, 1999] Merz, P. and Freisleben, B. (1999). A comparison of memetic
algorithms, tabu seard, and ant coloniesfor the quadratic assignmen problem. In et al.,

P. J. A., editor, Proceedings of the Congresson Evolutionary Computation, volume 3, pages
2063{2070.

[Radclie and Surry, 1994] Radclie, N. J. and Surry, P. D. (1994). Formal memetic algo-
rithms. In Evolutionary Computing, AISB Workshop pages1{16.

107

