
1

In tro duction to Adaptiv e Systems

Marco A. Wiering

2

Preface

This syllabus contains six chapters for the course\In troduction to Adaptiv e Systems". Other
topics which will be studied in this courseare quite well covered by Tom Mitc hell's book:
Machine Learning. For the topics which are not described as complete chapters, we will
include the slidesusedfor presentations as technical material. There are still many citations
missing and there may be occasionalerrors in the text. I would appreciate it if you could
write down correctionsof this text and deliver it to me. I hope you will enjoy this courseand
passit with a high grade!

Marco A. Wiering

Con ten ts

1 In tro duction 7
1.1 Adaptiv e Systems. 7
1.2 Intelligent Agents . 9
1.3 Model for Adaptiv e Systems. 10

1.3.1 Reward function . 11
1.3.2 The internal state . 12

1.4 Total System Perspective . 13
1.4.1 An example: a room heater with a thermostat 13

1.5 Environments . 16
1.6 Multi-agent Systems . 18

1.6.1 Model of a multi-agent system . 18
1.7 Complex Adaptiv e Systems . 19

1.7.1 Predator-Prey systems. 19
1.7.2 State dynamics . 20

1.8 Outline of this Syllabus . 22

2 Arti�cial Life 25
2.1 Genetic Algorithms and Arti�cial Life . 26

2.1.1 Interaction betweenevolution and learning 27
2.2 Cellular Automata . 28

2.2.1 Formal description of CA . 28
2.2.2 Example CA . 29
2.2.3 Dynamics of the CA . 29
2.2.4 Processesin CA . 29
2.2.5 Examples of cyclic processes. 30
2.2.6 Elimination of basispatterns . 31
2.2.7 Research in CA . 32

2.3 Ecological Models. 35
2.3.1 Strategic Bugs . 36

2.4 Arti�cial Market Models . 37
2.4.1 Are real markets predictable? . 37
2.4.2 Models of �nancial theories . 38

2.5 Arti�cial Art and Fractals . 38
2.6 Conclusion . 40

3

4 CONTENTS

3 Ev olutionary Computation 41
3.1 Solving Optimisation Problems . 42

3.1.1 Formal description of an optimisation problem 42
3.1.2 Finding a solution . 43

3.2 Genetic Algorithms . 44
3.2.1 Stepsfor making a genetic algorithm 45
3.2.2 Constructing a representation . 46
3.2.3 Initialisation . 47
3.2.4 Evaluating an individual . 48
3.2.5 Mutation operators . 49
3.2.6 Recombination operators . 50
3.2.7 Selectionstrategies . 53
3.2.8 Replacement strategy . 55
3.2.9 Recombination versusmutation . 55

3.3 Genetic Programming . 56
3.3.1 Mutation in GP . 57
3.3.2 Recombination in GP . 57
3.3.3 Probabilistic incremental program evolution 57

3.4 Memetic Algorithms . 59
3.5 Discussion . 60

4 Ph ysical and Biological Adaptiv e Systems 61
4.1 From Physics to Biology . 62
4.2 Non-linear Dynamical Systemsand ChaosTheory 64

4.2.1 The logistic map . 66
4.3 Self-organisingBiological Systems. 69

4.3.1 Models of infection diseases. 70
4.4 Swarm Intelligence . 71

4.4.1 Sorting behavior of ant colonies. 72
4.4.2 Ant colony optimisation . 72
4.4.3 Foraging ants . 74
4.4.4 Properties of ant algorithms . 75

4.5 Discussion . 77

5 Co-Ev olution 79
5.1 From Natural Selectionto Co-evolution . 80
5.2 Replicator Dynamics . 81
5.3 Daisyworld and Gaia . 82

5.3.1 Cellular automaton model for Daisyworld 83
5.3.2 Gaia hypothesis. 84

5.4 Recycling Networks . 86
5.5 Co-evolution for Optimisation . 88
5.6 Conclusion . 90

CONTENTS 5

6 Unsup ervised Learning and Self Organising Net works 91
6.1 UnsupervisedLearning . 92

6.1.1 K-means clustering . 92
6.2 Competitiv e Learning . 93

6.2.1 Normalised competitiv e learning . 94
6.2.2 Unnormalised competitiv e learning . 96
6.2.3 Vector quantisation . 98

6.3 Learning Vector Quantisation (LVQ) . 101
6.4 Kohonen Networks . 103

6.4.1 Kohonen network learning algorithm 103
6.4.2 Supervised learning in Kohonen networks 105

6.5 Discussion . 105

6 CONTENTS

Chapter 1

In tro duction

Everywherearound us we can observe change,in fact without changelife would be extremely
boring. Life implies change,since if there would not be any changeanymore in the universe,
everything would bedead. Physicists think it is likely that after very many years(think about
10500 years), the universewould stop changing and enter a state of thermal equilibrium in
which it is extremely cold (near the absoluteminimum temperature) and in which all particles
(electrons,neutrinos and protons) are isolated and stable (in this stable state even dark holes
will have evaporated). This meansthat the particles will not interact anymore and change
will stop. This view relieson the theory that the universeis expanding | and this expansion
is accelerating which is implied by a positive cosmologicalconstant (the energy density of
vacuum). The theory that the universewould contract again after somewhile (which may
imply a harmonic universe)is not taken very seriousanymore nowadays. So,after a long time,
the universewill reach a stable state without change. Fortunately sincethis takesso long, we
should not worry at the moment. Furthermore, there are somethoughts that intelligent life
may changeall of this.

A realistic model of any changing system (e.g. the weather or the stock market) consists
of a description of the state at the current time step and some function or model which
determines in a deterministic way (only 1 successorstate is possible)or in a stochastic way
(there are multiple possiblesuccessorstateswhich may occur with someprobabilit y) the next
state given the current state. We will call the state of the system at time-step t: S(t). It
is clear that if we examine the state of the system over time, that there is a sequenceof
states: S(t); S(t + 1); : : : ; S(t + n); : : :. Such a sequenceof states is often referred to as the
state-trajectory of the system. Note that we often considertime to be discrete, that is that all
time-stepsarepositivenatural numbers: t 2 f 0; 1; 2; : : : ; 1g . We only usediscretetime due to
computational reasonsand simplicit y, sincerepresenting continuous numbers on a computer
using bit-representations is not really feasible (although very preciseapproximations are of
coursepossible). Mathematically, we could also consider time as being continuous, although
the mathematics would involve somedi�eren t notation.

1.1 Adaptiv e Systems

Although the \ob jective" state of the universewould consist of a single representation of all
elements, and therefore a single state, in reality we can observe di�eren t objects which can
be modelled as separate elements. Therefore instead of a single state at time t: S(t), we

7

8 CHAPTER 1. INTR ODUCTION

may consider the world to consist of l objects and write Si (t) where 1 � i � l , to denote
the state of object i at time t. In this way there are tra jectories for all di�eren t objects. If
all these objects would evolve completely separately, the universewould basically consist of
many sub-universes,and we can look at the tra jectory of every singleobject alone. However,
in most real systems, the objects will in teract . Interaction means that the state of some
object inuences the tra jectory of another object, e.g. think about Newton's laws in which
gravit y causesattraction from one object to another one.

At this point we are ready to understand what an adaptive system is.

An adaptiv e system is a systemin which there is interaction betweenthe system
and its environment so that both make transitions to changing states.

Of courseit may happen that after a long period of time, the adaptive system enters a
stable state and doesnot changeanymore. In that casewe still speak of an adaptive system,
but if the adaptive system never made transitions to di�eren t states, it would not be an
adaptive system. So the �rst requirement is that an adaptive system is dynamic (changing),
at least for a while. Sometimesan adaptive system is part of another system. Think for
exampleabout somerobot which walks in a room, but doesnot displaceany objects in that
room. We have to think about this situation as a room which has a robot inside of it. Since
the robot is changing its position, the room is also changing. So in this casethe robot is the
adaptive systemand the room is the changing environment.

Another requirement for an adaptive systemis that the adaptive systemwill changeitself
or its environment using its tra jectory of states in order to attain a goal that may be to
simulate someprocess| to understand what will happen under someconditions, (e.g. we
can simulate what happensif we put ten sharks in a pool and do not feedthem), or the goal
to optimize something (e.g. a robot which keepsthe o ors clean).

Finally there can be learning adaptive systemsthat have the abilit y to measuretheir
own performanceand are able to change their own internal knowledge parameters in order
to improve their performance. In this casewe say that the adaptive system is optimizing its
behavior for solvinga particular task. If wecall the state of the internal knowledgeparameters:
SI (t) then learning meansto changethe state of the internal knowledgeparametersafter each
iteration (time-step) so learning will causea tra jectory: SI (t); SI (t + 1); : : : ; SI (T) where the
�nal state SI (T) may bea stable state and has(near)-optimal performanceon the task. When
you are not acquainted with machine learning, a learning computer systemmay seemstrange.
However, machine learning receives a lot of interest in the arti�cial intelligence communit y
nowadays, and learning computer programscertainly exist. A very simple exampleof learning
is a computer program which can decidebetweenoption 1 and option 2. Each time it selects
option 1 the environment (possiblya human teacher) tells the systemthat it wasa success,and
each time the program selectsoption 2 it is told that it is a failure. It will not be surprising
that with a simple learning program the system will quickly always select option 1 and
optimizes its performance. More advanced learning systemssuch as for speech recognition,
face recognition, or handwritten text recognition are also widely spread.

Other terms which are very related to adaptive systemsare: cybernetics, self-organising
systems,and complex adaptive systems. The term cybernetics as it is usednowadays stems
from Norbert Wiener and is motivated in his book: Cybernetics: or, Control and Commu-
nication in the Animal and the Machine (1948). Before Norbert Wiener worked on gun�re
control. Freudenthal wrote about this:

1.2. INTELLIGENT AGENTS 9

While studying anti-air craft �r e control, Wiener may have conceived the idea of
considering the operator as part of the steering mechanism and of applying to
him suchnotions as feedback and stability, which had been devised for mechanical
systemsand electrical circuits. ... As time passed, such ashes of insight were
more consciously put to use in a sort of biological research ... [Cybernetics] has
contributed to popularising a way of thinking in communication theory terms, such
as feedback, information, control, input, output, stability, homeostasis, prediction,
and �ltering. On the other hand, it also has contributed to spreading mistaken
ideas of what mathematics really means.

There are many adaptive systemsto be found, someexamplesare:

� Robots which navigate through an environment with someparticular goal (e.g. showing
visitors of a museuma sequenceof di�eren t objects or helping peoplein elderly homes
to walk around in the corridors)

� Learning systemswhich receive data and output knowledge,e.g. classifying the gender
of humansusingphotosof their faces,or recognisingspeech from recordedand annotated
speech fragments

� Automatic driving cars or unmanned aerial vehicles(UAVs)

� Evolutionary systems in which the distribution of the gene-pool adapts itself to the
environment

� Economical systemsin which well performing companiesexpand and bad performing
onesgo out of business

� Biological systemssuch as earthquakesor forest �res

1.2 In telligen t Agen ts

A fairly new concept in arti�cial intelligence is an Agen t . The de�nition of an agent is a
computer system that is situated in someenvironment, and that is capable of autonomous
action in this environment in order to meet its designobjectives. An agent possessesparticular
characteristics such as:

� Autonomy: The agent makes its own choicesbasedon its (virtual) inputs of the envi-
ronment; even if a user tells the agent to drive of a cli�, the agent can refuse

� Reactivity: Agents are able to perceive their environment, and respond in a timely
fashion to changesthat occur in it in order to satisfy their designobjectives

� Pro-activeness:Agents are able to exhibit goal-directedbehavior by taking the initiativ e
in order to satisfy their designobjectives

� Social Abilit y: Intelligent agents are capable of interacting with other agents (and
possibly humans)

10 CHAPTER 1. INTR ODUCTION

Examples of agents are robots, mail-clients, and thermostats. The advantages of using
the agent metaphor becomesclear when we have to control a system (e.g. a robot). First
of all it becomeseasier to speak about the sensoryinputs which an agent receives from its
environment though its (virtual) sensors.Using the inputs and possibly its current internal
state, the agent selectsan action. The action leadsto a changein the environment. The agent
usually has goalswhich it should accomplish. There can be goalsof achievement (reaching a
particular goal state) or maintenancegoals(keepinga desiredstate of the system). The goals
can often be easily modelled as a reward function which sendsthe agent utilit y values for
reaching particular states. The reward function could also give a reward (or penalty which is
a negative reward) for individual actions. E.g. if the task for a robot-agent is to go to o�ce
R12 as soon as possible,the reward function could emit -1 for every step (a penalty) and a
big reward of +100 if the agent reaches the desiredo�ce.

An intelligent agent can perceive its environment, reason, predict, and act (using its
actuators). A rational agent acts to maximize its performance measure so that it will
reach its goal with the least amount of e�ort. An autonomous agent acts according to its
own experiences. So it does not executea �xed algorithm which always performs the same
operations (such as a sorting algorithm), but usesits perceptionsto direct its behavior. The
agent is modelled in a program which is executedon an architecture (computer, hardware).
The program, architecture, and environment determine the behavior of the agent.

1.3 Mo del for Adaptiv e Systems

We now want to make a formal model of an adaptive system which interacts with an envi-
ronment. The objective state of the world is the state of the world at sometime-step. Often
the adaptive systemdoesnot perceive this complete state, but receives(partial) inputs from
the environment. Next to current inputs from the environment, the system can have beliefs
about the world from its past interaction with the environment. Furthermore, the agent can
perform a number of actions, and choosesoneof them at every time-step. The control method
which usesbeliefs and inputs to select an action is often referred to as the policy. There is
also a transition function which changes the state of the world according to the previous
state and the action that the agent executed. Then there is a reward function which provides
rewards to the agent after executing actions in the environment. Finally the systemrequires
a function to update the internal (belief) state. So when we put these together, we get a
model M = < t; S; I ; B ; A; � ; T; R; U > with:

� A time-element t = f 1; 2; 3; : : :g

� A state of the environment at time t: S(t)

� An input of the environment received at time t: I (t)

� An internal state (belief) of the agent at time t: B (t)

� A number of possibleactions A with A(t): the action executedby the agent at time t.

� A policy which mapsthe input and belief to an action of the agent: � (I (t); B (t)) ! A(t)

� A transition-rule which maps the state of the environment and the action of the agent
to a new state of the environment: T(S(t); A(t)) ! S(t + 1)

1.3. MODEL FOR ADAPTIVE SYSTEMS 11

� A reward-function which givesrewards to the system,for this there are two possibilities,
depending on whether the reward function is located in the environment so that we get:
R(S(t); A(t)) ! R(t) or when the reward function is located in the agent and the agent
cannot know S(t) we have to use: R(I (t); B (t); A(t)) ! R(t).

� An update function for the internal (belief) state of the agent U(I (t); B (t); A(t)) !
B (t + 1).

We can note a number of causal relations in the model which are depicted in Figure 1.1.

A
R

t t+1

I

B

A

S

R

t t
Causality in time Causal Graph

B

S I

I
B

A

I
B
A

B

S
A

S

I

Figure 1.1: The relations betweenthe di�eren t elements of an adaptive system.

If we study the �gure, we can seethat there is one big feedback loop, going from Belief
to Action to State to Input to Belief. So Belief inuences belief on a later time-step. Note
that not all adaptive systemsusean internal state (belief), we will go into this in more detail
later.

1.3.1 Reward function

An agent usually has one or more goals which it wants to achieve or maintain. To for-
malise the notion of goal, one could usequalitativ e goalswhich can be true or false, such as
Goal(go home). Such qualitativ e goalsare usually used in logical agents that try to make a
plan using operators which bring the current state to a goal state (the plan can be computed
forwards from the current state to the goal or alternatively backwards from the goal state to
the current state). Another possibility is to use a more quantitativ e notion of a goal using
a reward signal which is emitted after each time-step. The advantage of the latter is that it
becomeseasier to distinguish between multiple plans which bring about a tra jectory which
attains a speci�c goal. E.g. if an agent uses100 steps or 20 steps to �nd the kitchen, then
clearly using 20 steps should be preferred. However, when qualitativ e goals are used, they
both becometrue after sometime. Even if the planner tries to come up with the shortest
plan, e�orts to executethe plan are not easily incorporated. Using a reward function we can
emit after each step a reward of -1 (so a cost of 1) and for reaching the goal, the agent may

12 CHAPTER 1. INTR ODUCTION

be rewarded with a high bonus. In this way shorter paths are preferred. Furthermore, when
di�eren t actions require di�eren t e�ort, we can use di�eren t costs for di�eren t actions (e.g.
when climbing a mountain it costs usually a lot of e�ort to take steep paths). In decision
theory usually utilities or reward signals are used. The goal for the agent then becomesto
maximize its obtained rewards in its future. So its policy should maximize:

1X

t=0

 tR(t) (1.1)

Where 0 � � 1 is the discount factor which determineshow future rewards are traded o�
against immediate rewards. E.g. if we �nd it is important to get a lot of reward during the
current day and are not interested in the examination tomorrow, we will set the discount
factor to a very low number, maybe resulting in drinking a lot of beer in a bar and failing the
examination tomorrow. However, if we are interested in life-long happiness,we should usea
high discount factor (closeto 1).

1.3.2 The in ternal state

Often no internal state (IS) is used, but without internal state we can only construct a
reactiv e agent . A reactive agent usesa policy which maps the current input to an action.
It doesnot useany memory of previous inputs or actions. For a game like chess,a reactive
agent is perfect, becauseit does not really matter how a particular board-position came
about, the best move only dependson the current state of the board which is fully accessible
(completely observable) for the agent. However, in caseyou are looking for a restaurant and
someonetells you \go straight until the secondtra�c light and then turn left." Then you
have to usememory, becauseif you would seea tra�c light you cannot know whether to turn
left or not without knowing (remembering) that you have seenanother tra�c light before.

In more complex agents, internal state is very important. Note that we de�ne the internal
state as a recollection of past inputs and performed actions and not the knowledge learned
by the agent about how to perform (this knowledge is in the adaptive policy). If an agent
has to count to ten, it can map the next number using the previous one and does not need
to remember what was before. In such casesthere is therefore only a previous state which
is the input for the policy. If the agent has to remember the capital of the United States,
and usesit a long time afterwards, then it usessomekind of internal memory, but in some
casesit would use long-term memory that is stored in the policy by learning the response
to the question \what is the capital of the US?" Therefore we can speak of long-term and
short-term memory, and the long-term memory residesusually in the policy (or knowledge
representation) whereasshort-term information which needsto be remembered only for a
while is stored in short-term memory or the internal state. When we speak about belief (e.g.
facts which are believed by the agent with someprobabilit y), however, it can alsobe stored in
long-term memory, and therefore it would be better to make a distinction betweenshort-term
internal state and long-term belief. For acting one would still use knowledge stored in the
policy, although this would usually be procedural knowledge (for learned skills) in contrast
to declarative knowledge (knowledge and beliefs about the world). For now we just use the
distinction betweeninternal state (to remember facts) which is the short-term changing belief
or a policy for acting.

Humans possessa very complex internal state. If you closeyour eyes and ears,and stop
focusing on your senses,then you do not receive any inputs from the environment. But

1.4. TOT AL SYSTEM PERSPECTIVE 13

still, thoughts arise. These thoughts come from the internal state, most often the thoughts
are about things which happened not so long ago (lik e a minute ago, today or yesterday).
Of course you can also act and direct your thoughts, in this way your brain becomesthe
environment and there is an interaction between you and your brain. Therefore when you
think about how it would be to walk on the beach, you useyour imagination and somepolicy
for choosing what to do next. In that case,the internal state is only there to remind you of
the start of the walk on the beach and whether you saw the sun shining or not. In many
forms of meditation, one should closeher eyes and concentrate on breathing. In this way,
there is no information at all in the brain, basically one starts to think about nothing at
all. In that case,there is no input and a diminishing internal state until it becomesempty
too, and this may causea very relaxing experience. Note that meditation is not the sameas
sleeping, somepeople say that sleeping is inside the inactive consciousnessand meditation
is in the subconsciouswhere people are still experiencing things, but can concentrate on
somethoughts (such as nothingness)much better. Finally, the opposite of a yogi is someone
who has schizophrenia. In schizofrenia, one believes very much in the current internal state,
and the actions focus on the information present in the internal state. So new inputs which
disprove strange ideasresiding in the internal state are almost not taken into account, and it
is very di�cult to convince such peoplethat they are living in a reality set up by themselves
without any logic or correspondenceto the real world.

1.4 Total System Perspectiv e

An adaptive system(e.g. an agent) interacts with an environment. In principle there may be
multiple agents acting in the environment, and it is important to understand the interaction
between the agents and their environment. Therefore we usually have to look at the total
system which consistsof the smaller parts. Looking at the complete system gives di�eren t
possibleviews on what the agents are and what they should do. For example,examineforest
�re control, the entities which play a role are the trees, �re-men, bulldozers, air-planes, �re,
smoke columns, the weather etc. If we examine these entities, we can easily seethat only
the bulldozers, �re-men, and air-planes can be controlled, and therefore we can make them
an agent with their own behavior, goals, etc. Sometimesit is not so easy to abstract from
reality; we do not want to model all details, but we want a realistic interaction between the
agent and the environment.

Example 1. Examine a restaurant, which entities play a role and which could bemodelled
as an agent? If we examinepossiblescenarioswe can exploit our creativit y on this topic. For
examplethe entities may bethe kitchen, tables, chairs, cook, waiter, lights, etc. Now wemight
consider to make them all agents, e.g. lights which dim if someromantic couple is sitting
below them, tables and chairs which can move by themselves so that a new con�guration
of tables can be made automatically when a large group of peopleenters the restaurant etc.
Would such as futuristic restaurant not be nice to visit?

1.4.1 An example: a ro om heater with a thermostat

Consider a thermostat for a room heater which regulates the temperature of a room. The
heater usesthe thermostat to measurethe temperature of the room. This is the input of
the system. The heater has actions: heat, or do-nothing. The temperature of the room
will decrease(until some lower limit value) if the heater does not heat the room, and the

14 CHAPTER 1. INTR ODUCTION

temperature of the room will increaseif the heater is on. Figure 1.2 shows the interaction
betweenthe heater and the temperature of the room.

Input

Room

Heater

Action

Temperature

Figure 1.2: The interaction betweena heater and the temperature in a room.

Making a mo del for the heater

The state of the environment which should �rst be modelled is the temperature of the room
at a speci�c time. Sincethis is the environmental state, we denoteit asS(t). The input of the
heater is in this casealso the temperature of the room (although it might contain noisedue
to imprecisemeasurements), we denote this input as I (t). The internal state of the heater is
denoted as B (t) and it can take on valueswhether the heater is on (heating) or whether it is
o� (doing nothing). The possibleactions of the heater are: heat or do nothing.

Policy of the heater. Now we have to designthe policy of the heater which is the most
important element, since this is our control objective. Of coursewe can design the policy
in many possibleways, but if there is a reward function, the control policy should be the
one which optimizes the cumulativ e reward over time. The construction of the policy can be
done by manual design,although it could also be learned. We will not go into details at this
moment how learning this policy should be done, instead we manually designa policy since
it is easyenoughto comeup with a good solution (so learning is not required). An example
policy of the heater usesthe following if-then rules:

1. If I (t) � 21 then heat

2. If I (t) > 21 and I (t) � 23 and B (t) == heat then heat

3. If I (t) > 21 and I (t) � 23 and B (t) == do nothing then do-nothing

4. If I (t) > 23 then do-nothing

If we examinethe rules, we can seethey are exclusive, at each time-step only onerule can
be applied (sometimesthe application of a rule is called a �ring rule). If rules would overlap,
the system would becomemore complex, sincesomemechanism should then be constructed
which choosesthe �nal decision. Research in fuzzy logic usesmembership functions for rules,
e.g. if the temperature is warm then do-nothing. The membership function then determines
whether it is warm, e.g. is 24degreeswarm, and 27degrees?This membership function should

1.4. TOT AL SYSTEM PERSPECTIVE 15

bedesigned(although it may alsobe learned)and the rulesall �re using their activation which
is given by the application of the membership functions to the input. After this all actions
are integrated using the activations as votes. We will not go into detail into fuzzy logic here,
but just mention that it can be used when it is di�cult to set absolute thresholds for rules
(such as 23 degreesin the above example).

Another issuewhich is important is that the used policy createsa negativ e feedbac k
lo op. This means that if the temperature goes up, the heater will stop to increase the
temperature, so that the temperature will go down again. In this way the system remains
stable between the temperature bounds. If we would create a policy which would heat the
room more when the temperature becomeshigher, we would create a positiv e feedbac k
lo op, leading to a temperature which becomesvery hot until possibly the heater will break
down. It is therefore important to note that negative feedback loops are important for stable
systems,although positive feedback loopscan alsobe useful, e.g. if onewant to have a desired
speedvery fast, the systemcan increasethe speedswith larger and larger jumps until �nally
a negative feedback loop would take over.

Another way to construct the policy is to use decision trees. A decision tree makes a
choice by starting at the root node of the tree and following brancheswith choice labelsuntil
we �nally arrive at a leave node which makesa decision. A decisiontree which is equivalent
to the set of above rules is shown in Figure 1.3.

I(t) > 21 and

B(T) = DO NOTHING

 HEAT

 HEAT

DO NOTHING

DO NOTHING

B(T) = HEAT

 ROOT

I(t) <= 21 I(t) > 23I(t) <= 23

Figure 1.3: The policy of the heater designedas a decisiontree.

The up date and transition function. To make the model of the system complete,
we also have to specify how we update the belief and environmental transition function. In
our simple model, theseare easily obtained (although the environmental transition function
might depend on a lot of di�eren t factors such as the temperature outside, whether a door or
window is open etc.). The belief update function is modelled as follows:

� U(� ; � ; heat) ! heat

� U(� ; � ; do nothing) ! do nothing

Where � denotesthe don't care symbol which can take on any value for the function (or
rule) to be applied. So the update function for the internal state or belief just remembers
the previous action. We make the following simple transition function of the environment
(in reality this transition function does not have to be known, but we construct it here to

16 CHAPTER 1. INTR ODUCTION

make our model complete). If the heater is on then the temperature will increase(let's say
that it is a simple linear increasingfunction, which is of coursenot true in reality due to the
e�ect that there is an upper limit of the temperature, and that more heat will be lost due to
interaction with the outside when the temperature di�erence is larger. In reality the heat-loss
is a linear function of the temperature di�erence, but in our model we do not include the
outside temperature, sincethen isolation will also be important and we get too many details
to model). We also make a simple transition function when the heater is o�. So using our
simple assumptionswe make the following environmental transition function:

� T(S(t); heat) ! S(t) + 0:1

� T(S(t); do nothing) ! S(t) � 0:05

The reward function is only neededfor self-adapting systems.However, we can alsouseit
asa measurement function on the performanceof a policy. Let's say that we want the room's
temperature to remain closeto 22 degrees,then the reward function may look like:

R(I ; � ; �) = � (I � 22)2

Dynamics of the in teraction

When we let the heater interact with the temperature of the room, we will note that there
will be constant change or dynamics of a number of variables. The following variables will
show dynamics:

� The state of the environment S(t)

� The input of the heater (in this caseequal to the state of the environment): I (t)

� The action of the heater: A(t)

� The received reward: R(t)

� The internal state of the heater (in this caseequal to the previous action of the heater):
B (t)

If we let the temperature of the room start at 15 degrees,we can examine the dynamics
of the room's temperature (the state of the environment). This is shown in Figure 1.4.

1.5 Environmen ts

The interaction with the environment dependsa lot on the environment itself. We can make
a very simple system which shows very complex behavior when the environment is complex.
Onegood exampleof this is Simon'sant. Herbert Simon is a well-known researcher in arti�cial
intelligence and he thought about a simple ant which follows the coast line along the beach.
Sincethe wavesmake di�eren t complexpatterns on the beach, the ant which follows the coast
line will also show complex behavior, although the designof this ant may be very simple.

On the other hand, the environment can also make the design of a system much more
complicated. There are somecharacteristics of environments which are important to study,
beforewe can understand how complex the construction of a well performing systemwill be.
The following characteristics of environments are most important:

1.5. ENVIR ONMENTS 17

Temperature

Time1301109070503010

25

20

15

10

5

0

Figure 1.4: The dynamics of the room's temperature while interacting with the heater with
the given policy. Note that there is a repetition in the dynamics.

� Completely / Partially observ able. The question here is about the perception of
the agent of the environment. Can it perceive the complete state of the environment
through its (virtual) sensors?Then the environment is completely observable, this is
for example the casein many board-games(but not in Stratego).

� Deterministic / Non-deterministic. If the next state of an environment given the
previous state and action of an agent is always unique, then it is a deterministic envi-
ronment. If the successorstate can be oneof many possiblestates,usually a probabilit y
distribution is usedand then the environment is non-deterministic (also called stochas-
tic).

� Episo dic / Non-episo dic. If the task requires always a single interaction with the
environment, then the interaction with the environment is episodic. In casea complete
sequenceof actions should be planned and executed,the interaction with the environ-
ment is non-episodic.

� Static / Dynamic. If the environment does not change when we do not regard the
action of the agent, then the environment is static. In casethe environment changeson
its own independently of the action of the agent, we say the environment is dynamic.
In casethe reward function changes,we say the environment is semi-dynamic .

� Discrete / Con tin uous. If the state of the environment only usesdiscrete variables
such as in chess,the environment is discrete. If continuous variables are necessaryto
accurately describe the state of the environment, the environment is continuous (as is
the casewith robotics where the position and orientation are continuous).

If we consider thesedimensionsto characterise the environment, it will not be surprising
that the environments that are most complex to perfectly control are partially observable,
non-deterministic, non-episodic, dynamic, and continuous. We may always be able to try to
simulate theseenvironments, although a good model is also complicated (as for example for
weather prediction).

We can make a list of environments and show the characteristics of these environments.
Figure 1.5 shows such a mapping of tasks (and environments) to characteristics.

18 CHAPTER 1. INTR ODUCTION

No

No

No

No
No

No
Semi

Semi

No
No
No
Yes

Yes
Yes

Interactive english teacher
Object recognition
Medical diagnosis
Taxi driving

Chess without clock
Chess with clock

Environment

DiscreteStaticEpisodicDeterministic
observable
Completely

Yes
No

No

Yes

Yes Yes
Yes
YesYes
YesYes

Backgammon
Poker

No

No No

No
No
No
No

Yes
Yes

Yes Yes
No
No
No
No

Figure 1.5: A mapping from environments and tasks to characteristics.

1.6 Multi-agen t Systems

In particular tasks, there are multiple agents which may be working together to solve a
problem, or they may be competing to get the best out of the situation for themselves. In
the caseof multiple agents interacting with each other and the environment, we speak of a
Multi-agen t System (MAS) . In principle the whole MAS could be modelled asonesuper-
agent which selectsactions for all individual agents. However, thinking about a MAS as a
decentralised architecture has someadvantages:

� Robustness. If the super-agent would stop working, nothing can be done anymore,
whereasif a single agent of a big group of agents stops to work, the system can still
continue to solve most tasks.

� Speed. In caseof multiple agents, each agent could easily run on its own computer
(distributed computing), making the whole system much faster than using a single
computer.

� Simplicity to extend or modify the system. It is much easierto add a new agent running
its own policy than to changeone big program of the super-agent.

� Information hiding. If somecompanieshave secretinformation, they do not want other
agents to accessthat information. Therefore this information should only be known to
a single agent. If everything runs on a super-agent the privacy rules are much harder
to guarantee.

1.6.1 Mo del of a multi-agen t system

If we are dealing with a MAS, we can still model the individual agents with the sameformal
methods aswith singleagents, sowith inputs, actions, internal state, policy, reward function,
and belief update function. In many cases,however, there will alsobecommunication between
the agents. In that casethe agents possesscommunication signals (usually somelanguage)
and they map inputs and internal states to communication signals which they can send to

1.7. COMPLEX ADAPTIVE SYSTEMS 19

individual agents or broadcast to all of them. Communication is important if the agents have
to cooperate. Coordination of agents is important to optimize a MAS, sinceotherwise they
might all start to do the samejob and goto the sameplacesetc. It is clearly moree�cien t if the
agents can discussamong themselveswhat role they will play in solving a task. Furthermore
there may also be management agents which give roles and tasks to individual agents etc.
A current challenging research �eld is to study self-adaptive structures or architectures of
multi-agent organisations.

1.7 Complex Adaptiv e Systems

Somesystemsconsisting of multiple interacting entities are called complex adaptive systems.
The di�erence between complex adaptive systems and MASs is that in complex adaptive
systems,the individual entities do not have a goal, they are just part of the overall system.
Basically, theseentities are smaller than a completeagent (think about the di�erence between
your body-cells and you as a complete organism). Therefore complex adaptive systemsalso
do not have to beable to control someprocessor solve sometask, they are more important for
simulating processes.We do not consider such complex adaptive systemsas being rational,
although they may still adapt themselves and can be very complex. In complex adaptive
systems,simple rules can create complex behavior if multiple simple entities interact. We
then often say that the overall system behavior emerges from the interaction between the
entities. Examples of processeswhich we can model with complex adaptive systemsare:

� Tra�c consisting of many vehiclesor other usersof infrastructures

� Forest �res consisting of trees, grass,etc. which propagate the �re

� Infection diseasesconsisting of virusesand virus-carriers

� Magnetism consisting of elementary particles which can be positively or negatively
charged

� Ecological systems which consist of many organisms which can eat each other and
reproduce

� Economical markets which consist of many stocks and investors

In somecasesof the above processes,we might also use a MAS to model them and try to
optimize the process.This is especially clear in tra�c or economicalmarkets.

1.7.1 Predator-Prey systems

A simple example of a system consisting of multiple entities is a predator-prey system. The
predator looks for food (prey) to eat and produceso�spring. The prey also looks for food,
reproduces itself, and tries to circumvent being eaten by predators. The interesting phe-
nomenon is that the population of prey and predators depend on each other. If there are
many predators, the population of prey will decreasesincemany of them will be eaten. But
if there are few prey, the population of predators will decreasesincethere will not be enough
food for all of them. If there are then few predators left, the population of prey will increase
again, leading to repetitiv e dynamics.

20 CHAPTER 1. INTR ODUCTION

Lotk a-V olterra Equations. Lotka and Volterra captured the predator-prey system
with a couple of equations. We will call the size of the prey-population x and the size of
the predator-population y. Now the environmental state S(t) = (x(t); y(t)). The state will
changeaccording to the following two rules:

� x(t + 1) = x(t) + Ax (t) � B x(t)y(t)

� y(t + 1) = y(t) � Cy(t) + Dx(t)y(t)

When wechoosestarting population sizes:S(0) = (x(0); y(0)) and wetakesomeparameter
valuesfor A; B ; C; D we get a dynamical systemwhich behavesfor exampleas seenin Figure
1.6.

Figure 1.6: The predator-prey dynamicsusingLotka-Volterra equations. Note that the preda-
tor population y will grow if there is a lot of prey and the prey population will decreaseif
there are many predators.

1.7.2 State dynamics

We have seenthat the state of the environment shows a particular kind of dynamics. We can
distinguish betweenthree kinds of dynamics: dynamics to a Stable poin t , dynamics leading
to a perio dic cycle , and chaotic dynamics. When the state enters a stable point, it will
always stay there, this meansthat the dynamicsbasically endsand S(t+ 1) = S(t) for all t � n
where n is sometime-step where the processenters the stable point. We can compute what
the stable point of the dynamics of the Lotka Volterra equations will be depending on the
parametersA; B ; C; D . Whether the processwill enter the stable point may also depend on
the initial state. The following should hold for a stable point for the Lotka-Volterra process:

(x(t + 1); y(t + 1)) = (x(t); y(t))

Then we can �nd a stable point S(�) = (x(�); y(�)) as follows:

x(�) = x(�) + Ax (�) � B x(�)y(�) (1.2)

0 = A � B y(�) (1.3)

y(�) =
A
B

(1.4)

y(�) = y(�) � Cy(�) + Dx(�)y(�) (1.5)

1.7. COMPLEX ADAPTIVE SYSTEMS 21

0 = � C + Dx(�) (1.6)

x(�) =
C
D

(1.7)

Perio dic Cycle. For a periodic cycle, after some initial transient process,the state-
sequenceshould always repeat itself after someperiod of �xed length. We have already seen
two processeswhich lead to a periodic cycle, the heater and the Lotka-Volterra equations.
Formally for a periodic cycle the following should hold:

S(t) = S(t + n)

S(t + 1) = S(t + n + 1)

: : :

S(t + n � 1) = S(t + 2n � 1)

Herewesay that the length of the periodic cycle is n. Note that a stablepoint is equivalent
to a periodic cycle of length 1. Sometimesa processslowly convergesto a cyclic behavior.
We then say that the �nal attractor is a limit cycle.

Chaotic dynamics. In casethe processdoesnot lead to a stable point or to a periodic
cycle (also called a stable limit cycle), the processmight be called chaotic although there
are some additional conditions for a true de�nition of chaos explained below. In chaotic
dynamics it is very hard to predict what will happen after a long time, although according to
the above de�nition aloneit may be simple in somecases,e.g. the equation S(t + 1) = S(t)+ 1
would according to the above de�nition also lead to chaotic dynamics. This is of coursevery
strange, sincewe always think about chaotic processesas being unpredictable. Therefore we
have to include the condition that the processis non-linear and sensitive to initial conditions.
This meansthat when we start with two initial states S1(0) and S2(0) which may be very
closeto each other, that the di�erence betweenthe tra jectories will increase(exponentially)
after iterating the processover time. In the caseof the equation S(t + 1) = S(t) + 1 the
di�erence between two starting states will not grow but remain the sameand the system is
clearly linear. But there are processeswhich are non-linear for which the di�erence between
the state tra jectories grows which are still predictable such as S(t + 1) = S(t) � S(t) where
S(0) � 1. Therefore even this requirement may not be strict enough, and to eliminate such
trivial caseswe have to add the condition that the state tra jectory doesnot go to in�nit y, but
remainsbounded in somesubspace.This boundedsubspaceis called a chaotic attractor, and
although the state tra jectory will remain in the attractor, it is unpredictable where it will be
if we do not know the preciseinitial state and model of the chaotic system. All we can do is
to compute a probabilit y function over this subspaceto guessin which area the processwill
be at sometime-step.

The requirement that the di�erence between two initial states will grow makes the pre-
diction problem much harder, since if our measuredinitial state has somesmall error � then
after sometime, the error will have grown drastically so that our prediction of the state will
not be valid or useful anymore. Since measuring a state and the change of the state for a
complex non-linear systemat the sametime is impossible(for changewe needto look at the
di�erence betweentwo states), we can never have a precisemeasurement of the current state
(where the state includes position and velocity or change). Therefore, when the processis
chaotic, it cannot be predicted over time.

Another interesting thought is that chaosis not really possibleon a computer, sincethere
are a �xed number of stateson the computer. Therefore, sincea chaotic systemalways usesa

22 CHAPTER 1. INTR ODUCTION

deterministic transition function, we will always comeback sometime to the samestate and
then go to the next state etc. leading to someperiodic cycle of very large period. It is also
true that it is often hard to distinguish betweenchaotic dynamics and a periodic cycle, since
the period may be so large that the processappears to be chaotic, but in reality has a very
large period which did not appear in the generatedstate tra jectory. Finally we should note
that there is a big di�erence between non-determinism (randomness) or a chaotic process.
A chaotic system is deterministic, but may appear random to an observer. On the other
hand in non-determinism the processwill never follow exactly the same state tra jectory,
so one might think such processesare chaotic. However, in a chaotic system we could in
principle predict future states if the current state is exactly known. The impossibility to
predict future states comesfrom the impossibility to know exactly the current state. On
the other hand, in a non-deterministic system,even if we would know the exact initial state,
prediction of a tra jectory would be impossible since there would be many possible future
tra jectories. If we examine random-number generators, they are in reality pseudo-random
number generatorswhich provide us with seeminglyrandom numbers, but basically it draws
the random numbers from a huge periodic cycle of �xed length. Real randomnessprobably
exists in nature, although it is extremely di�cult to �nd out whether it is not deterministic
chaoswhich makesnature to appear random.

1.8 Outline of this Syllabus

This syllabus describesa wide variety of adaptive systems,ranging from arti�cial life models
such as cellular automata to machine learning methods such as arti�cial neural networks.
Sincethe topic of adaptive systemsis sobroad, there may not always bean evident connection
between the di�eren t topics. For example in machine learning, knowledge may be learned
from examples. The interaction with the environment may not be very clear in such cases,
sincethe knowledgerepresentation is changing according to the learning dynamics generated
by the interaction betweenthe learning algorithm and the examples.Therefore the conceptof
environment should be consideredalsovery broad ranging from the systemitself or examples
to a real world environment. In this syllabus the following topics will be covered:

� Cellular Automata which are useful asmodels for complex adaptive systemsand study-
ing arti�cial life.

� Biological adaptive systemsin which systemsinspired on swarm (e.g. ants) intelligence
are usedto solve complex problems

� Evolutionary computation in which a model of evolutionary processesis used to solve
complex optimisation problems

� Robotics, where physical robots interact with an environment to solve some speci�c
task

� Machine learning, in which di�eren t algorithms such asdecisiontrees,Bayesianlearning,
neural networks, and self-organisingmapsarestudied in their way of learning knowledge
from examples. This knowledgemay then be used to solve classi�cation tasks such as
mapping mushroom-featuresto the concept whether they are edible or poisonous.

1.8. OUTLINE OF THIS SYLLABUS 23

� Reinforcement learning, which is a part of machine learning, but wherethe focusis more
on an agent which can learn to behave by interacting with somespeci�c environment.

24 CHAPTER 1. INTR ODUCTION

Chapter 2

Arti�cial Life

Arti�cial life researchers study computation models of life-like and emergent processesin
which complex dynamics or patterns arise from the interaction betweenmany simple entities.
Arti�cial Life is a broad interdisciplinary �eld where research runs from biology, chemistry,
physics to computer scienceand engineering. The �rst arti�cial life workshop was held in
Santa Fe in 1987and after this the interest in this �eld grew tremendously. One of the most
ambitious goalsof arti�cial life is to study the principles of life itself. To study the properties
of life there are basically two roads; to study carbon life forms and their development (mainly
donein biochemistry) and to examinelife forms and their properties using a computer. What
both �elds have in common is that life emergesfrom building blocks which cannot be called
alive on their own. So the interaction betweenthe elements makes the whole system appear
to be alive. Sincethe interactions are usually not well understood, the study to arti�cial life is
usually holistic in nature, which meansthat we look at the wholesystemwithout beingable to
make clear separationsin smaller modules. Still today many scientists think that life evolved
from chemicals in the primordial soup (containing a large number of carbon compounds),
although somescientists believe that life may have comefrom spaceon a comet. Someassert
that all life in the universemust be basedon the chemistry of carbon compounds, which is
also referred to as \carb on chauvinism".

Thus, arti�cial life constructs models and simulates them to study living entities or other
complex systemsin computer systems.Someresearch questionswhich it tries to answer are:

� Biology: How do living organismsinteract in biological processessuch as �nding/eating
food, survival strategies, reproduction?

� Biochemistry: How can living entities emergefrom the interaction of non-living chemical
substrates?

� Sociology: How do agents interact in arti�cial societies if they have common or com-
peting goals?

� Economy: How do rational entities behave and interact in economical environments
such as in stock-markets, e-commerce,auctions, etc.?

� Physics: How do physical particles interact in a particular space?

� Arti�cial Art: How can we usearti�cial life to construct computer art?

25

26 CHAPTER 2. ARTIFICIAL LIFE

One important goal of arti�cial life is to understand the sourceand functionalit y of life.
One particular way of doing that is to make computer programs which simulate organisms
using some encoding (might be similar to DNA encoding, but the encoding can range to
computer programs resembling Turing machines). The development of arti�cial creatures
which can be called alive also requires us to have a good de�nition of alive. For this we cite:
http://www.w ordiq.com/de�nition/Life

In biology a conventional de�nition of an entit y that is consideredalive has to
exhibit all the following phenomenaat least onceduring its existence:

� Growth

� Metabolism; consuming, transforming and storing energy/massgrowing by
absorbing and reorganizing mass;excreting waste

� Motion, either moving itself, or having internal motion

� Reproduction; the abilit y to create entities which are similar to itself

� Response to stimuli; the abilit y to measure properties of its surrounding
environment, and act upon certain conditions

A problem with this de�nition is that one can easily �nd counterexamples and
examplesthat require further elaboration, e.g. according to the above de�nition
�re would be alive, male mules are not alive as they are sterile and cannot repro-
duce, viruses are not alive as they do not grow. One could restrict the de�nition
to say that living organisms found in biology should consist of at least one cell
and require both energy and matter to continue living, but these restrictions do
not help us to understand arti�cial life. Finally one could change the de�nition
of reproduction to say that organisms such as mules and ants are still alive by
applying the de�nition to the level of entire speciesor of individual genes.

As we can see; there are still many possible de�nitions and just as with the concept
intelligence, we may not easily get one unique de�nition of \aliv e".

2.1 Genetic Algorithms and Arti�cial Life

One well-known algorithm in arti�cial intelligence that is basedon evolutionary theory is the
geneticalgorithm (GA). Darwin speculated(without knowing anything about the existenceof
genes)that evolution works by recombination of material of parents which passthe selective
pressureof the environment. If there are many individuals only somecan remain alive and
reproduce, this selection is very important for nature since it allows the best apt individuals
to reproduce (survival of the �ttest). Once parents are selectedthey are allowed to create
o�spring and this o�spring is slightly mutated so that the o�spring will not contain exactly
the samegenetic material as the parents. Genetic algorithms can be used for combinatorial
optimization problems, function optimization, robot control, and the study of arti�cial life
societies. We will not go into detail into geneticalgorithms here, sincethey will be described
thoroughly in a separatechapter. Shortly, genetic algorithms are able to mimic the concept
of reproduction. Say some arti�cial organism is stored in some representation, such as a
bitstring (a string of 0's and 1's). Then we can take two parents, cuto� their string in two
parts and glue theseparts together to create a new o�spring, which could possibly be better

2.1. GENETIC ALGORITHMS AND ARTIFICIAL LIFE 27

in the task than its parents. Since parents which are allowed to reproduce are selectedon
their �tness in the environment, they are likely to possessgood blocks of genetic material
which may then be propagated to the child (o�spring). In combination with arti�cial life,
genetic algorithms allow us to study a wide variety of topics, including:

� Robots which interact with an environment to solve sometask

� Competitiv e evolutionary models such as arm-racesstudied by Karl Sims. In the arm-
races experiment di�eren t morphologiesand behaviors were evolved in 3D structures
where two organismshad to compete against each other by harming the opponent. The
winning individual passedthe test and was able to reproduce leading to a wide variety
of improving morphologiesand behaviors.

� Models of social systemssuch as the study of emerging societies of individuals which
work together

� Economical models such as the development of buying and selling strategies

� Population geneticsmodels where one examineswhich groups of genesremain in the
population

� The study of the interaction betweenlearning and evolution

2.1.1 In teraction between evolution and learning

In evolutionary theory, sociology, and psychology one often considersthe di�erence between
nature and nurture. Nature is what a newborn organismpossessesat its birth. E.g. Chomsky
claims that a lot of knowledge for learning a language is already born in the brain of a
child when it is born. Nurture is the knowledge, skills, and behaviors which an organism
develops through its adaption and learning processwhile interacting with an environment.
The nature/n urture dilemma is often to say whether something was born inside an organism
or whether it developed due to the interaction with the environment. Examples of this are
whether criminals are born like a criminal or whether they becomeonedue to their education
and life. Another example is whether homo-sexuality or intelligence is inborn and stored in
the genesor not. Often it is better to say that nature gives a bias towards somebehavior
or the other, and nurture causessomebehaviors to be expressed.E.g. if someonehas genes
which may be similar to other people having schizophrenia, it is not necessarythat such a
person would develop the disease,this dependsa lot on circumstancesbut if such a person
would su�er from a lot of stress,the genesmay be expressedwith a much bigger probabilit y.

In arti�cial life simulations a number of machine learning algorithms can be used which
can learn from the interaction with the world. Examples of this are reinforcement learning
and neural networks. Although thesetopics will be discussedin separatechapters, they could
also be used together with genetic algorithms in an environment consisting of many entities
that interact and evolve. Now if we want to study the interaction between evolution and
learning we seethat evolution is very slow and takes place over generationsof individuals,
whereaslearning is very fast and takes place within an individual (agent). The combination
of these2 leadsto two possiblee�ects:

� Baldwin e�ect. Herean individual learnsduring its interaction with the environment.
This learning may increasethe �tness of the individual so that individuals which are

28 CHAPTER 2. ARTIFICIAL LIFE

good in learning may receive higher �tness values(are better able to act in the environ-
ment) than slow learning individuals. Therefore individuals which are good in learning
may reproducewith a higher probabilit y leading to o�spring which are potentially also
very good in learning. Thus, although the skill of learning is propagated to o�spring,
learned knowledgeis not immediately propagated to the o�spring.

� Lamarc kian learning. Here an individual learns during its life and when it gets
o�spring it alsopropagatesits learnedknowledgeto its children which then do not have
to learn this knowledgeanymore.

Lamarckian learning is biologically not very realistic, but in computer programs it would
be easily feasible. E.g. suppose that a group of robots all go to learn to use a language,
then if they meet they can create o�spring which immediately possessmultiple languages.In
this way the evolutionary processcould becomemuch more e�cien t. Although Lamarckian
learning has not beenrealistic from a biological point of view until today, research in genetic
engineeringhas currently invented methods to change the DNA of an organism which can
then be transmitted to its o�spring.

2.2 Cellular Automata

Cellular automata are often used by researchers working in arti�cial life. The inventor of
cellular automata (CA) is John von Neumann who also devised the modern computer and
played an important role in (economical) game theory. Cellular automata are decentralised
spatial systemswith a large number of simple, identical components which are locally con-
nected. The interesting thing of cellular automata is that they are very suited for visualizing
processes,and that although they consist of simple components and somesimple rules, they
can show very complex behaviors. CA are used in a number of �elds for biological, social,
and physical processessuch as:

� Fluid dynamics

� Galaxy formation

� Earthquakes

� Biological pattern formation

� Forest �res

� Tra�c models

� Emergent cooperative and collective behavior

2.2.1 Formal description of CA

A cellular automaton consistsof two components:

� The cellular space. The cellular spaceconsistsof a lattice of N identical cells. Usually
all cells have the samelocal connectivity to other cells. Let

P
be the set of possible

states for a single cell. Then k = j
P

j is the number of possiblestates per cell. A cell
with index i on time-step t is in state st

i . The state st
i together with the states of the

cells with which i is connectedis called the neigborhood n t
i of cell i .

2.2. CELLULAR AUTOMA TA 29

� The transition rule. The transition rule r (n t
i) gives an update for cell i to its next

state st+1
i as a function of its neigborhood. Usually all cells are synchronously (at the

sametime) updated. The rule is often implemented as a lookup-table.

2.2.2 Example CA

The following givesan exampleof a CA consistingof a 1-dimensionallattice of 11 stateswith
periodic boundary conditions. The periodic boundary conditions mean that the most left
state has the most right state as its left neighbour and vice versa. Since the neigborhood
of a cell consists of itself, the state of the cell to the left and to the right, the size of the
neigborhood is 3. Therefore, since the number of possiblestates of a single cell is only 2 (1
or 0), the transition rule consistsof 23 = 8 components; for each neigborhood there is one
possiblesuccessorstate for each cell. Note that in this examplethere are 211 = 2048possible
complete state con�gurations for the CA.

0 1 0 0 1 1 0 0 1 0

1 1 1 0 1 1 1 0 1 1 1

t = 0

t = 1

Output bit 0 1 1 1 0 1 1 0

Rule Table R:

Periodic boundary conditions

1

Neighborhood: 000 001 010 011 100 101 110 111

Lattice:

Figure 2.1: A cellular automaton using a 1-dimensional lattice, a neigborhood sizeof 3, and
2 possible states (0 or 1) per cell. The �gure shows the CA con�guration at time t = 1
computed using the transition rule on the CA con�guration at time t = 0.

2.2.3 Dynamics of the CA

The CA given in the previous subsectiononly uses1 dimension,a neigborhood sizeof only 3,
and 2 possiblestates per cell. Therefore, it is one of the simplest CA. But even this CA can
show complex behavior if we iterate it over time and show the dynamics in the space-time
dimensions,seeFigure 2.2.

It will not be a surprise that cellular automata with more complex transition rules and a
larger number of possiblestates can even shown much more complex behavior. In principle
there are other possibleiterativ e networks or automata networks, cellular automata are just
one kind of automata of this family.

2.2.4 Pro cesses in CA

In Chapter one we have already seenthat when we have bounded spaces,we can divide a
processresulting in a pattern into three di�eren t classes;stable, periodic, and chaotic. Since
the cellular con�guration state spaceof a CA is bounded, we can divide patterns created by

30 CHAPTER 2. ARTIFICIAL LIFE

Figure 2.2: The sequenceof cellular patterns of the CA given in Figure 2.1 generated by
iterating it over 100 time steps.

a CA into thesethree groups. Note however that the set of possiblecomplete states of a CA
is not only bounded, but also �nite. The three possibleresulting patterns of a CA are:

� A stable state (or point), after entering the stable state, the processremainsin the same
state and changestops.

� A cyclic pattern. The CA traversesthrough a repeating pattern of someperiodic length.
If there are multiple sub-patterns each with their own periodic length, the complete
pattern will be periodic but with a larger length (e.g. if two sub-patterns which do
not interact in the CA have periodic lengths of 2 and 3, the completepattern will have
periodic length 6).

� Chaotic behavior. The CA always goes to new, unseen patterns. Since the CA is
deterministic, chaotic behavior would bepossible.However, sincethe number of possible
states on a computer is �nite (although it is often huge), there will after �nite time
always be a state which has beenseenbeforeafter which the processrepeats the same
cycle of con�gurations. Therefore real chaotic behavior in a CA is not possible,only a
periodic cycle of very large length will be possiblein a �nite CA.

It is important to understand that an initial con�guration may lead to a sequenceof
patterns which are all di�eren t, after which it may enter a stable state or a periodic cycle.
The time until the CA enters a stable state or periodic cycle is called the transient period.
Some researchers also like to include structured behavior with the above mentioned three
types of behavior. In structured behavior, the behavior seemsvery structured, but there is
no repetitiv e sequence(at least not for a long time).

The dynamics of CA can be inuenced by the transition rules. Sometransition rules can
lead to very simple behavior, whereasothers lead to very complex behavior. Somepeople
�nd it a sport to make a transition rule which has the longest possibleperiodic length.

2.2.5 Examples of cyclic pro cesses

A stable state is easy to make, e.g. it can consist of only 1's. Then if we make transition
rules which always output a 1, we get the resulting stable state from any possible initial

2.2. CELLULAR AUTOMA TA 31

con�guration after one time step. Periodic cyclescan be made in many possibleways. Here
we show a simple example. Supposewe have a 2-dimensionallattice. The transition rule is: if
2 neighbours (out of 4) are active, then the cell is activated (becomes1 or black). Otherwise
the cell is not activated (becomes0 or white). Figure 2.3 shows a lattice without boundary
conditions (basically we show a small part of the lattice which is everywhere elseempty so
that we still have identical connectivity for all states), resulting in a periodic cycle of length
2.

Figure 2.3: A cellular automaton con�guration with a repeating pattern (the periodic length
is 2).

Problem. Given a 2-dimensional lattice with transition rule: if one neighbour is active
and the cell was inactive, then the cell becomesactive. Else if the cell was active at the
previous time-step keep the cell active in the next time-step. Otherwise the cell remains
inactive. Now evolve the CA in Figure 2.4.

t = 0 t = 1

t = 2 t = 3

Figure 2.4: The lattice of the CA for the problem. Try to evolve the CA over time with the
above given transition rule.

2.2.6 Elimination of basis patterns

When one evolves a CA, there are often someregularities involved, and other parts which
are completely unpredictable. Therefore some researchers have tried to use methods for
eliminating the basisof the evolutionary transitions in a CA. This basiscan consist of walls,
singularities, etc. and can then be eliminated from the process.

The importance of eliminating the basispatterns is to get more inside in possiblechaotic
or turbulent processes. For example take the processfrom Figure 2.5. If we remove the
regularities from this process,we get the processshown in Figure 2.6. We can seethat most
of the seemingly complex processis removed, but someembedded particles move about

32 CHAPTER 2. ARTIFICIAL LIFE

in a seeminglyrandom way. It turns out that when theseembeddedparticles hit each other,
that they will be destroyed.

Figure 2.5: A CA processiterated over time.

Figure 2.6: The processof Figure 2.5 with the regular basispatterns removed.

2.2.7 Research in CA

One important insight is that cellular automata are universal machines. That means that
they can compute any computable function and are therefore just as powerful as Turing
Machines. This also means that any algorithm which can be implemented on the usual
sequential computer can in principle also be implemented in a CA.

Con way's game of life

The gameof life wasinvented by the mathematician John Conway in 1970. He chosethe rules
carefully after trying many other possibilities, someof which causedthe cells to die too fast
and otherswhich causedtoo many cellsto beborn. The gameof life balancesthesetendencies,
making it hard to tell whether a pattern will die out completely, form a stable population, or
grow forever. Conways' gameof life usesa 2-dimensional lattice with 8 neighbours for each
cell. The transition rule(s) are:

2.2. CELLULAR AUTOMA TA 33

� If a cell is not active (dead, black, or 1) and it hasexactly 3 living neighbours, then the
cell will becomeactive (rule of birth)

� If a cell is active and it has2 or 3 neighbours which are active, then the cell stays active
(rule of survival)

� In all other casesthe cell becomesnot active (rule of death due to overcrowding or
loneliness).

One of the interesting things about the game of life is that it has universal computing
power, even with the three rules given above. This universal computing power relies on
particular patterns known as gliders . Such gliders are living entities which cross the 2-D
lattice and which can passinformation so that it becomespossibleto make logical AND, and
NOT gates. For an exampleof the behavior of a glider look at Figure 2.7.

t = 0 t = 1 t = 2

t = 3 t = 4

Figure 2.7: A glider moving one step diagonal after each 4 time-steps.

Another important object in the gameof life is the useof a Glider gun. Glider gunscan
�re gliders and remain stable, which makesit possibleto propagate information at somerate.
By using multiple glider gunswhich shoot gliders, we can make interactions betweendi�eren t
patterns which are propagated in the cellular space.An exampleof this is to have two gliders
which collapseafter which they will be destroyed. This would be useful to make a NOT gate.
Making a CA using the gameof life rules to compute arbitrary functions is very complicated,
becauseit requiresa very careful development of the initial con�guration consisting of glider
guns and other patterns, but in principle it would be possible.

Another interesting pattern in the game of life which shows very complex behavior is
known as the R-pentomino which looks as shown in Figure 2.8. It is remarkable that such a
simple pattern can create complex behavior including gliders and many other patterns.

Dev elopmen t of cellular automata

One goal of arti�cial life is to make arti�cial systems which can be called alive. For this
reproduction seemsnecessary, and therefore research investigated whether this was possible

34 CHAPTER 2. ARTIFICIAL LIFE

Figure 2.8: The pattern called R-pentomino which createsvery complex behavior.

in cellular automata. In 1966, John Von Neumann constructed a cellular automaton which
was able to reproduce itself, demonstrating one of the necessaryabilities of living systems.
Some other researchers examined whether cellular automata could be used for recognizing
languages.In 1972,Smith constructeda CA which could recognizecontext-sensitive languages
such as palindromes (palindromes are strings which are the sameif you read them from left
to right or from right to left). After that, Mitc hell et. al (1994) used genetic algorithms to
evolve the transition rules of CA. They tried this using the majorit y problem as a testbed.
In the majorit y problem a bitstring is given of somesizeand each bit of the string can be on
or o�. Now the system should tell whether the majorit y of bits was on or o�. The system
could indicate this by making all bits on (o�) if the majorit y was on (o�) after a number of
iterations. Although this problem can of coursebe simply solved by counting all bits, such
a counter would require some form of register or additional memory which was not inside
the cellular automaton. Thus, the question was whether the genetic algorithm could evolve
transition rules which can solve the problem. The result was that the genetic algorithms
found di�eren t solutions which are however not optimal for solving all initial problems (with
any order of 1's and 0's). Someof the solutions usedembeddedparticles. The reasonthat no
optimal solution was evolved was due to the limited local connectivity which doesnot allow
all bits to communicate to each other.

Other cellular automata

Cellular automata can also be simply and e�cien tly usedfor simulating particular processes
such as:

� Modelling Tra�c. Here a cell is active if there is a car and it is inactive if there is
no car. The rules are simple to make too; if the predessorcell is empty, move to that
cell, otherwise stop. The CA can be made more complicated by adding in each cell
occupied by a car someinternal state which models the destination addressof the car.
Also di�eren t speedscan be taken into account.

� Modelling Epidemics. Here a cell can be a sick, healthy, or immune person.

� Modelling Forest Fires. A cell can be a tree on �re, water, a tree without being on �re,
grass,sand,etc. It is alsopossibleto include external parameterssuch aswind-strength
and wind-direction, humidit y etc. to inuence the behavior of the model.

2.3. ECOLOGICAL MODELS 35

Power laws

There is a lot of research using CA for examining chaotic processesas for examplestudied in
sandpile models. In cellular automata sandpile models a granular material in a gravitational
�eld is used (the model can be two or three dimensional). There are two kinds of cells;
immovable ground cells and movable sand grains. Grains fall from a source at the top of
the window and proceeddown to the ground. Grains pile up and redistribute themselves
according to the cellular automata rules (e.g. if two cells on top of each other possessgrain,
and a neighboring cell doesnot, then the top grain element will makea transition to the empty
neighboring cell). One interesting thing of CA implementations of such physical models is
that there will sometimesbe long shifts of grain during the redistribution. Such a shift is
often called an avalanche. Now the interesting thing is that large avalanches will be much
lessprobable than smaller ones,and that the probabilit y distribution law respects a power
law (or Zipf 's rule or Pareto distribution). E.g. if we take English words according to their
number of occurrencesand we rank all the words according to their usage(so rank 1 means
the word is usedmost often), then Zipf 's law states that the sizey of occurrenceof an event
(in this example the occurrenceof a word) is inversely proportional to its rank r according
to:

y = ar � b

Where a is someconstant and the exponential factor b is closeto 1. Such a power law hasbeen
demonstrated in many research �elds, such as in social studies where the number of usersof
web-pagesare counted to examineWebsite popularit y. There are few web-pageswith a large
number of users,and many web-pageswith few users,and the distribution follows Zipf 's law.
Pareto looked at income and found that there are few millionaires whereasthere are many
people with a modest income. Also for earthquakes, there are few very heavy earthquakes
and many smaller ones,etc. To show whether somedata providesevidencefor a power law, it
can be hard to work with very large valuesappearing in the data. In that casewe can make
a log-log plot by taking the logarithm on both sides(note that they should be positive) so
that we get:

logy = logar � b

logy = loga + logr � b

logy = loga � blog r (2.1)

Thus in a log-lot plot of the data, the resulting function relating two variables should be a
line (with negative slope b).

2.3 Ecological Mo dels

In biology and ecology, simulation models often make use of cellular automata due to their
insightfulness and easy implementation while still providing interesting and complex behav-
iors. Ecological models can be usedto study social phenomena,immunology and epidemics,
population dynamics of di�eren t speciesetc. An arti�cial ecosystemconsistsof a number of
individuals (agents) which:

� Occupy a position in the environment

� Interact with the environment and with other agents

36 CHAPTER 2. ARTIFICIAL LIFE

� Possesssomeinternal state such as amount of energyor money

By examining the evolutionary processin an ecosystemit is possibleto research the creation
and continuit y of processessuch as:

� Cooperation: E.g., trading behavior betweenindividuals

� Competition: E.g., �gh ting behavior betweenindividuals

� Imitation: E.g., an agent learns what he should do by looking at and imitating other
agents

� Parasitic behavior: An individual pro�ts from another individual whereas the other
individual is harmed by this. Parasitic behavior can be found in many placesin nature,
a good exampleof this are viruses.

� Communities: If a large group of individuals are put together they might form commu-
nities for the bene�t of all. An exampleof this is �sh-schools which can better protect
the �sh from predators (especially the �sh which swim in the middle). Another ad-
vantage of communities is that individuals can cooperate and specialiseon their own
task.

2.3.1 Strategic Bugs

Bedau and Packard developed the arti�cial life model called Strategic bugs (1992). This
model of an ecosystemusesindividuals which try to �nd food and reproduce. The model
consistsof:

� An environment modelled as a 2-dimensional lattice.

� A cell in the environment can be occupied by food or by a bug or is empty

� Food will grow automatically in the environment; food is added in a cell with some
probabilit y if there was no food or bug there

� Bugs survive by �nding food

� Bugs useenergy to move and die if they do not have any energyanymore

� Bugs can clone themselvesor reproducewith another bug if they have su�cien t energy.

The behavior of a bug evolves from the interaction of the policy of the bug and the
environment. The bug's policy usesa lookup table to map environmental inputs to actions.
An example rule is: if there are more than 5 food units in the east, then make a step to the
east.

Bedau and Packard tried to come up with a measurefor the evolutionary dynamics. If
such an ecosystemis simulated and new individuals will be generated all the time, then
the question is \What is really new and which individual traits are evolved in the system?"
For this they examined the evolutionary activit y which looks at the genetic changesin the
chromosomestrings. The experiments showed that there werewavesof evolutionary activit y,
new genetic material was often found after sometime and then stayed in the population for
someperiod. Thus it was seenthat new genetic material and therefore behavior was found
and exploited during the evolutionary process.

2.4. ARTIFICIAL MARKET MODELS 37

2.4 Arti�cial Mark et Mo dels

Financial markets such as stock markets are di�cult to predict. Some might think it is
completely random behavior, but the investorsinvolved do not seemto make random, but on
the contrary, rational decisions. Thus it seemsmore to be a chaotic processemerging from
the large number of investorsand unforeseencircumstances.

One important question is to examine under what conditions predictions about the dy-
namics of �nancial markets will be possible. To study this question we �rst have to look
at the e�cien t mark et hyp othesis (EMH) . In an information e�cien t market all price
uctuations are unpredictable if all necessaryinvestment information is taken into account
by the investors. The information is taken into account if the expectancies,intentions, and
(secret) information of the market participants is incorporated in the prices. From this fol-
lows that when a market is more e�cien t, that the price uctuations which are generatedby
the market are more random (and therefore unpredictable). Basically this is causedby the
fact that if there would be only a small information advantage by someinvestors, that the
actions of theseinvestorswill immediately correct the prices,so that further gain will become
impossible.

2.4.1 Are real mark ets predictable?

Somepeople tend to make a lot of gain from stock markets. One important caseis that of
an analyst which hassuch an importance that (s)he is considereda guru for predicting which
stocks will rise and fall. If the guru tells everyone that stock X will increasea lot, then there
will be many people buying that stock. The e�ect is that of a self-ful�lling prophecy; the
stock price will increasesince the prophet announcedit and many peoplebelieve it and will
buy that stock. Only the buyers which were the last in buying that stock will loosemoney,
the investors which are quickest will gain money and sell them immediately after the price
has increasedsu�cien tly. There are other casesand reasonsto believe that stock markets can
be predictable. One reasonis that investors trade-o� expected risk and expected gain. This
meansthat a risk-aversive (in contrary to a risk-seeking) investor will sell stocks with a high
risk but also with an expected gain. The distribution betweenrisk-aversive and risk-seeking
individuals will then causedi�eren t price uctuations, which are therefore not completely
random. In fact a number of studieshave indicated that price uctuations are not completely
random.

When weexaminethe e�cien t market hypotheses,then it requiresrational and completely
informed investors. However theseassumptionsare not realistic. Investorsare not completely
rational and sometimeshard to predict. Furthermore, information is often di�cult to inter-
pret, technologies and companieschange, and there are costs associated with transactions
and information gathering.

One seeminglye�cien t method for trading stocks is to examine the relative competitiv e
advantage between di�eren t markets. When one comparessome market to other markets,
onecan seethat onemarket (such as a market in obligations) was more promising during the
previous period, so that it will be likely that more investorswill step to that relatively more
advantageousmarket which leads to more pro�t on that market. Comparing markets (e.g.
between countries, or kind of markets | e.g. obligations versusstocks) can therefore be a
good option.

38 CHAPTER 2. ARTIFICIAL LIFE

2.4.2 Mo dels of �nancial theories

Already for a long time there have been people trying to come up with �nancial theories,
sinceif it would work one could get a lot of money out of it. It should be said, however, that
if you would ever �nd a theory which works, that you should not tell it to other people. The
reasonis that your advantage will be lost in using this theory if everyone knows it. People
could even trade in such a way that you will loose money with your once so well working
theory. Therefore we can only show generalapproaches that have beeninvented to comeup
with models to predict the price uctuations:

� Psychological models. Here the model tries to analyse the risk-taking behavior of in-
vestorsand examineshow human-attitudes to the market inuences the stock prices.

� Learning models. Here data about the stock prices of the past is usedto train a model
to predict its development in the future.

� Agent models. Here investors are modelled as agents which use particular strategies.
By letting the modelled agents interact the complex dynamic of stock markets can be
simulated.

� Evolutionary algorithms for developing strategies. Here the evolution of strategies of
investors is mimicked. Competitiv e strategiescould be used to create other strategies.
Finally a strategy which was observed to gain most money in the past could be usedto
trade in the future.

2.5 Arti�cial Art and Fractals

Iterating a simple function can create very complex, artistic, patterns. This was shown by
Bernoit Mandelbrot who discovered the Mandelbrot set, which is a fractal. A fractal is a
pattern which is self-similar to di�eren t scales,so if we look at a zoomed out picture of some
details of the fractal we can recognizefeatures which were also shown in the bigger pattern.
It should be said that a fractal can be very complex and not all small scalecomponents look
similar to the whole pattern. Sohow can we get the Mandelbrot set? First of all considerthe
function:

xk+1 = x2
k

If we look at the starting valuesfor xk for which the iteration convergesto a single point, we
can seethat theseare the values� 1 < x0 < 1, and the �nal point will be x1 = 0. If x0 < � 1
or x0 > 1 then the value after many iterations goesto in�nit y. If x 0 is -1 or 1 then the point
will stay in 1, but this point is unstable, sincesmall perturbations (changesof x k) will let the
value go to 0 or 1 . In principle the valuesfor which the iteration stays bounded is called the
Julia set, although more interesting Julia sets are associated to Mandelbrot sets as we will
seelater. So for the function f (x) = x2, the Julia set would be the region between-1 and 1.

In the spaceof real numbers, not so many interesting things can happen. But now let's
consider the use of complex numbers. Complex numbers consist of a real and an imaginary
part, so we write them as: x = ai + b, where i is de�ned as i =

p
� 1. We can add, subtract,

multiply and divide complex numbers just as we can with real numbers. For example if we
take x = 3i , then x2 = � 9. Complex numbers are usedin many sciencessuch as in quantum
mechanics and electric engineering,but we will not go into details about them here.

2.5. ARTIFICIAL ART AND FRACTALS 39

Now consider the functions of the type:

xk+1 = x2
k + C

The question is: if we start with x0 = 0, for which complex numbers C will the iteration of
this function not becomein�nite? This set of complex numbers for which the iterations will
stay bounded is called the Mandelbrot set, and it is displayed in Figure 2.9. We can seeits
complexshape in the complexplane (the real part is depicted on the x-axis and the imaginary
part of the points belonging to the set are shown on the y-axis). The points in black belong
to the Mandelbrot set, and the others do not. This is an example of a fractal, a self-similar
structure. The word fractal was also invented by Mandelbrot.

Figure 2.9: The Mandelbrot fractal

Now look what happensif we zoom-in in the picture. The zoomed in �gure of the lower
part of Figure 2.9 is shown in Figure 2.10. Note that this pattern is very similar to the original
Mandelbrot set, and we already seethat there are much more self-similar structures to be
found in the picture.

Figure 2.10: A zoomed in pattern of the Mandelbrot fractal

Now, consideragain the iterated function

xk+1 = x2
k + C

40 CHAPTER 2. ARTIFICIAL LIFE

But, now we have chosen a value for C which is an element of the Mandelbrot set. Then
another questionwe canask is; which initial valuesx0 in the complexplanecausethe iteration
to remain bounded? This set which belongsto a particular value of C is called the Julia set
for C. An examplepattern from the Julia set is shown in Figure 2.11.

Figure 2.11: An examplepattern from the Julia set

Computer artists like to use fractals, sincealthough the equations are simple, as long as
they are non-linear (linear maps cannot produce interesting patterns like fractals) they can
produce a large variety of complex patterns, and zooming in in the pictures creates many
other patterns. This is just another example of using simple rules to create very complex
patterns.

2.6 Conclusion

Arti�cial life is useful for simulating many biological, physical, sociological, and economical
processes.One goal of arti�cial life is to understand the principles underlying living entities
and the emergenceof life forms. Arti�cial life can be combined with genetic algorithms
for optimizing individual behaviors by adapting them to the (changing) environment. If
multiple individuals adapt themselvesand alsoadapt the environment, the resulting dynamics
can be very complex and unpredictable. Even with simple entities such as used in cellular
automata, complex behavior can result from the interaction between simple components.
Cellular automata are very useful for modelling and visualizing spatial processessuch as
forest �res and can be usedto study the behavior of many di�eren t complex processes.One
interesting thing is that cellular automata are just as powerful as Turing machines which
meansthat any computable function can be implemented using a cellular automaton.

Another aspect in arti�cial life is the study of price-dynamics in �nancial markets. Al-
though an e�cien t market would be completely unpredictable, in reality there are many
reasonsto believe that price-uctuations are not completely random. Making models for pre-
dicting price changesis a challenging research topic, although found theories may never be
published, sincethey would eliminate their usefulnessif they are known by many investors.

Finally we have shown that using the complex plane, simple iterativ e functions can create
complex patterns, called fractals. Examples of these are the Mandelbrot and Julia sets.
Computer artists like to use fractals, becausethey look complex, but are easy to make.
Fractals also play a role in chaotic systemsas we will seein a later chapter.

Chapter 3

Evolutionary Computation

Inspired by the successof nature in evolving such complex creatures as human beings, re-
searchers in arti�cial intelligence have developed algorithms which are based on evolution
theory. The classof thesealgorithms are called evolutionary algorithms and consistsamong
others of geneticalgorithms, evolutionary strategies,and geneticprogramming. Genetic algo-
rithms (GAs) arethe most famousonesand they wereinvented by John Holland. Evolutionary
algorithms are optimisation algorithms that are inspired on Darwin's evolution theory, known
as natural selectionor survival of the �ttest and they were developed during the 1960'sand
1970's. One of their strengths is that they can �nd very good solutions in very large search
spaces,whereexhaustive search (trying out all possiblesolutions) would cost much too much
time. The principle of evolutionary algorithms is that solutions are evaluated after which the
best solutions are allowed to reproduce most o�spring (children). If the parent individuals
form good solutions, they are likely to possessgood building blocks of geneticmaterial (the ge-
netic material makesup the solution) that may beuseful for creating new individuals. Genetic
algorithms usually take two parent individuals and they recombine their genetic material to
producea child that inherits geneticmaterial from both parents. If the child performswell on
the evaluation test (evaluating an individual and measuringhow well an individual performs
is commonly done by the use of a �tness function), it will also be selectedfor reproduction
and in this way the genetic material can again be propagated to new generations. Since the
individuals themselves will usually die (they are often replaced by individuals of the next
generation), Richard Dawkins came with the sel�sh genehypothesis. This hypothesis says
that basically the genesare alive and use the mortal individuals (e.g. us) as hosts so that
they are able to propagatethemselvesfurther. Somegenesmay be found in many individuals,
whereasother genesare only found in a small subset of individuals. In this way, the genes
seemto compete for hosts, and geneswhich occupy well performing individuals are likely to
be able to reproduce themselves. The other way around we can say that geneswhich occupy
well performing individuals give advantagesfor the individual and therefore it is good if they
are allowed to reproduce.

In this chapter we will look at evolutionary algorithms in general and focus on genetic
algorithms, although most issuesinvolved also play a role for other evolutionary algorithms.
We �rst describe optimisation problemsand then examinewhich stepsshould be pursued for
constructing an evolutionary algorithm, and what kind of representations are useful for the
algorithm for solving a particular problem. Finally we will examine someother evolutionary
algorithms.

41

42 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

3.1 Solving Optimisation Problems

A lot of research in computer scienceand arti�cial intelligence has been devoted to solving
optimisation problems. There are many di�eren t optimisation problems; e.g. one of them is
shortest path-planning which requiresthe algorithm to compute the shortest path from a state
to a particular goal state. Well known applications for such algorithms are planners usedby
cars (e.g. the Carin system) or for train-passengers.In principle shortest path problems are
simple problems, and can be solved e�cien tly by algorithms such as Dijkstra's shortest path
algorithm or the A* algorithm. These algorithms can compute the shortest path in a very
short time for problems consisting of more than 100,000cities (or nodes if we formalise the
problem asa graph using nodesand weighted edgesrepresenting the distancesof connections
between nodes). On the other hand, there also exist combinatorial optimisation problems
which are very hard to solve. One example is the traveling salesmanproblem (TSP). This
problem requires that a salesmangoes to N customerswhich live in di�eren t cities, so that
the total tour he has to make from his starting city to single visits to all customers and
back to his starting place should be minimal. This problem is known to be NP-complete
and therefore unless P = N P not solvable in polynomial time. For example if we use an
exhaustive search algorithm which computesand evaluates all possibletours, then it has to
examine about N ! tours, which increasesexponentially with N . Thus for a problem with 50
cities, the exhaustive search algorithm would need to evaluate 50! solutions. Let's say that
evaluating onesolution costs1 nanosecond(which is 10� 9 second),then evaluating all possible
solutions would cost about 9:6� 1047 years,which is thereforemuch longer than the ageof the
universe. Clearly exhaustive search approachescannot be usedfor solving such combinatorial
optimisation problems and heuristic search algorithms have to be used which can �nd good
solutions in a short time, although they do not always come up with the optimal solution.
There is a number of di�eren t heuristic search algorithms such as Tabu search, simulated
annealing,multiple restart local hill-clim bing, ant colony algorithms, and geneticalgorithms.
Genetic algorithms di�er from the others in the way that they keepa population of solutions
and userecombination operators to form new solutions.

3.1.1 Formal description of an optimisation problem

Optimisation problemsconsistof two components; the representation spaceand the evaluation
(or �tness) function. The representation spacedenotesall possiblesolutions. For example if
we want to solve the TSP, the representation spaceconsistsof all possible tours which are
encoded in some speci�c way. If we want to throw a spear at some target and can select
the force and the angle to the ground, the representation spacemight consist of 2 continuous
dimensions which take on all possible values for the force and angle. On the other hand,
one could restrict this spaceby allowing only anglesbetween0 and 360 degreesand positive
forceswhich are smaller than the maximum force one can use to throw the spear. Let's call
the representation spaceS and a single solution s 2 S.

The evaluation function (which in the context of evolutionary algorithms is usually called
a �tness function) comparesdi�eren t solutions to each other. Although solutions could be
comparedon multiple criteria, let's assumefor now that there is a single �tness function f (:)
which maps a solution s to a speci�c �tness value f (s) 2 < . The goal is to �nd the solution
smax which has the maximal �tness:

f (smax) � f (s) 8 s

3.1. SOLVING OPTIMISA TION PROBLEMS 43

It may happen that there are multiple di�eren t solutions with the samemaximal �tness value.
We may then require to �nd all of them, or only one (which is of coursesimpler).

So the goal is to search through the representation spacefor a solution which has the
maximal possible�tness value given the �tness function f (:). Sincethe representation space
may consistof a hugenumber of possiblesolutions or may be continuous, the optimal solution
may be very hard to �nd. Therefore, in practice algorithms are comparedby their best found
solutions within the same amount of computational time. Among these algorithms there
could also be a human (expert) which tries to come up with a solution, but if the �tness
function gets more complicated and the representation spacebecomesbigger, the advantage
of computers in their abilit y to try out millions of solutions within a short period of time
outcompetesthe abilit y of any human in �nding a good solution.

3.1.2 Finding a solution

Heuristic search algorithms usually start with one or more random solutions which are then
evaluated. For example local hill-clim bing starts with a random solution and then changes
this solution slightly in someway. Then, this new solution is evaluated and if it is a better one
than the previousone, it is kept and otherwisethe previousoneis kept. This simple processis
repeateduntil the solution is good enoughor time is expired. The local hill-clim bing algorithm
looks as follows:

� Generate initial solution s0; t = 0

� Repeat until stop criterium holds:

� snew = change(st)

� if f (snew) � f (st) then st+1 = snew

� elsest+1 = st .

� t = t +1

Using this algorithm and a random initial solution s0, a sequenceof solutions s0; s1; : : : ; sT

is generated, where each later solution has a larger or equal �tness value compared to all
preceding solutions. The most important function in this algorithm is the function change.
By changing a solution, we do not meanto generatea new random solution, sinceif we would
generate and evaluate random solutions all the time, there would not be any progressive
search towards a better solution. Instead random search would probably work just as good
as exhaustive search and is not a heuristic search algorithm. So it should be clear than the
function change should keep somepart of the old solution in the new solution and change
someother part. As an example consider a representation spaceconsisting of bitstrings of
somespeci�c length N . It is clear that the representation spacein this caseis: S = f 0; 1gN .
Now we could make a function changewhich changesa single bit (i.e. mutating it from 0 to
1 or from 1 to 0). In this casea solution would have N neighbours with this changeoperator.
Now one possiblelocal hill-clim bing algorithms would try all solutions in the neighbourhood
of the current solution and then select the best one as snew . Or, alternatively, it could select
a single random solution from the neighbourhood. In both cases,for many �tness functions,
the local hill-clim bing algorithm could get stuck in a local optimum. A local optimum is a
solution which is not the global optimum (the best solution in the representation space),but

44 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

one which cannot be improved using the speci�c change operator. Thus, a local optimum
is the best one in a speci�c subspace(or attractor in the �tness landscape). Since the local
hill-clim bing algorithm would not generatea new solution if it hasfound a local optimum, the
algorithm gets stuck and will not �nd the global optimum. This could be avoided of course
by changing the change operator, however this is not trivial. Since if we allow the change
operator to change two bits, the neighbourhood would becomebigger, but sincestill not all
solutions can be reached, we can again easilyget trapp ed in a local optimum. Only if we allow
the change operator to change all bits, we may eventually always �nd the global optimum,
but as mentioned before changing all bits amounts up to exhaustive or random search. A
solution to the above problem is to changebits with a speci�c small probabilit y. In this way,
usually small changeswill be made, but it is always possibleto escape from a local minimum
with someprobabilit y. Another possibility is usedby algorithms such as simulated annealing
that always acceptsimproving solutions, but also can selecta new solution with lower �tness
value than the current one, albeit with a probabilit y smaller than 1. In speci�c, simulated
annealing acceptsa new solution with probabilit y:

min(1; e(f (snew)� f (st)) =T)

where T is the temperature which allows the algorithm to explore more (using a large T)
or to only accept improving solutions (using T = 0). Usually the temperature is cooled
down (annealed) starting with a high temperature and ending with a temperature of 0. If
annealing the temperature from in�nit y to 0 is done with very slow steps, the algorithm will
�nally convergeto the global optimum. However, in practice annealingshould be done faster
and the algorithm usually convergesto a local maxima just like local hill-clim bing. A practical
method to deal with this is to usemultiple restarts with di�eren t initial solutions and �nally
selectingthe best found solution during all runs.

3.2 Genetic Algorithms

In contrast to local hill-clim bing and simulated annealing,geneticalgorithms usea population
of individuals to search for solutions. The advantage of a population is that the search is done
in a distributed way and that individuals areenabledto exchangegeneticmaterial (in principle
the individuals are able to communicate). Making the search using a population also allows
for parallel computation, which is especially useful if executing the �tness function costs a
long time. However, it would also be possibleto parallellize local hill-clim bing or simulated
annealing,so that di�eren t initial solutions are brought to di�eren t �nal solutions after which
the best can be selected. Therefore the real advantage lies in the possibility of individuals
to exchange genetic material by using recombination operators and by the use of selective
pressureon the whole population sothat the best individuals are most likely to reproduceand
continue the search for novel solutions. A genetic algorithm looks as follows in pseudo-code:

1. Initialize a population of N individuals

2. Repeat:

(a) Evaluate all individuals in the population using the �tness function

(b) Repeat N times:

� Select two individuals for reproduction according to their �tness values

3.2. GENETIC ALGORITHMS 45

� Recombine thesetwo parent individuals to create one o�spring

� Mutate the o�spring

� Insert the o�spring in a new population

(c) Replacethe population by the new population

There is a state of every individual and sincea population consistsof N individuals, the
population also has a state. Therefore after each iteration of this algorithm (usually called a
generation), the population state makesa transition to a new state. Finally after a long time,
it may happen that the population contains the optimal solution. Sincethe optimal solution
may get lost, we always store the best solution found sofar in someplace(or alternatively the
Elitist strategy may beusedthat always copiesthe best found solution to the newpopulation).

3.2.1 Steps for making a genetic algorithm

For solving real world problemswith geneticalgorithms, such asa time-tabling problem which
requires us to schedule for example bussesto drivers so that all busseshave one driver and
no driver has to drive when (s)he indicated that (s)he does not want to drive, the question
arises how to make a representation of the problem. This is often more art than science,
and research has indicated that particular representations allow better solutions to be found
much earlier. For other problems, making a representation doesnot needto be hard but the
chosenrepresentation can inuence how fast good solutions are found. Take for example the
colouring problem which is also a NP hard problem. In a colouring problem multiple cities
may be connectedto each other and we want to assigndi�eren t colors to cities if they are
connected.The goal is to �nd a feasiblesolution while minimizing the amount of usedcolors.
To solve this problem we may choosea representation which consistsof N numberswhere N
is the number of cities and the number indicates the assignedcolor to the city. On the other
hand, we could also design a representation in which we have a maximum of M colors and
N M binary states in which each element of the list of N M states indicates whether the city
has that color or not. One should note that the secondrepresentation is larger, although it
requires only binary states. Furthermore in the secondrepresentation it is much easierthat
false solutions (solutions which do not respect the conditions of the problem) are generated,
sinceit allows for cities to have multiple or 0 colors. Therefore, the �rst representation should
be preferred.

Except for constructing a representation, we also need to �nd ways to initialize a popu-
lation, to construct a mapping from genotype to phenotype (the genotype is the encoding in
the chromosomeon which the genetic operators work, whereasthe phenotype is tested using
the �tness function), and also to make a �tness function for evaluating an individual (some
�tness functions would favour the sameoptimal solution, but oneof thesecan be more useful
for the genetic algorithm to �nd it).

There are alsomore speci�c steps;we needto designa mutation operator, a recombination
operator, we have to determine how parents are selectedfor reproduction, we needto decide
how individuals are used to construct a new population, and �nally we have to decidewhen
the algorithm has to stop. We will explain thesesteps in more detail below.

46 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

3.2.2 Constructing a represen tation

The �rst decisionwe have to make when we want to implement a geneticalgorithm for solving
a speci�c problem is the representation we want to use. As mentioned above, there are often
many possiblerepresentations, and therefore we have to examinethe problem to chooseone.
Although the representation is often the �rst decision, we also have to take into account a
possible�tness function and which genetic operators (mutation and crossover) we would like
to use. For example, if we want to evolve a robot which drives as fast as possiblewithout
hitting any obstacles,we could decideto usea function which mapssensoryinformation of the
robot to actions (e.g. left motor speedand right motor speed). The obvious representation
usedin this casewould consist of continuous parametersmaking up the function. Therefore,
we may prefer to useparticular representations which allow for continuousnumbers,although
this is not strictly necessarysincewe may alsoconstruct the genotype to phenotype mapping
in someway that converts discrete symbols to continuous numbers.

Binary represen tations and �nite discrete sets

The most often usedrepresentation in geneticalgorithms usesbinary values,encoding a chro-
mosomeusing a bitstring of N bits. SeeFigure 3.1 for an example. Of courseit would also
be possibleto usea di�eren t set of discrete values,e.g. like the one usedby biological DNA:
f C; G; A; Tg. It depends on the problem whether a binary representation would be more
suitable than using di�eren t sets of values. It should be said that by concattenating two
neighboring binary values,one could also encode each value from a set containing 4 di�eren t
values. However, in this casea binary encoding would not be preferred, sincethe recombina-
tion operator would not respect the primitiv e element being a single symbol and could easily
destroy such symbols through crossover. Furthermore, a solution in which primitiv e symbols
would be mapped to a single genewould be more readable.

Gene

Chromosome

11000101

Figure 3.1: A chromosomewhich usesa binary representation and which is therefore encoded
as a bitstring.

If wehavea binary representation for the genotype, wecanstill useit to construct di�eren t
representations for phenotypes. It shouldbesaid that search using the geneticoperators takes
place in the genotype space,but the phenotype is an intermediary representation which is
easier to evaluate by the �tness function. Often, however, the mapping from genotype to
phenotype can be an identit y mapping meaning that they are exactly the same.

For example,using the 8-bit phenotype given before,we can construct an integer number
by computing the natural value of the binary representation. E.g. in the examplegenotype of

3.2. GENETIC ALGORITHMS 47

Figure 3.1 we could convert the genotype to the integer: 27+ 25+ 21+ 20 = 163. Alternativ ely,
if we want a phenotype which is a number between 2.5 and 20.5 we could compute x =
2:5 + 163

256(20:5 � 2:5) = 13:9609.
Thus, using a mapping from phenotype to genotype gives us additional freedom. In the

�rst example, small changesof the genotype (e.g. mutating the �rst bit) would correspond
to big changesin the phenotype (changing from 163 to 35). We note, however, that in the
secondexample,not all solutions between2.5. and 20.5 can be represented using the limited
precision of the 8-bit genotype.

Represen ting real num bers

If we want to construct a phenotype of real numbers, it is a more natural way to encode
thesereal numbers immediately in the genotype and to search in the spaceof real numbers.
We have already seenthat this can lead to more precisesolutions, sincethe binary encoding
would have a limited precisionunlesswe usea very long bitstring. Another advantage is that
the encoding is much smaller, although this comesat the cost of creating a continuous search
space.

Thus, if our problem requires the combined optimisation of n real numbers we could use
a genotype X = (x1; x2; : : : ; xn) where x i 2 < . The representation spacewould therefore be
S = < n . For real numbered representations, we have to use a �tness function which maps
a solution to a real number, therefore the �tness function is a mapping f : < n ! < . This
encoding is often usedfor parameter optimisation, e.g. when we want to construct a washing
machine which has to determine how much water to consume,how much power to use for
turning the cabinet, etc. The �tness function could then trade-o� costsversusthe quality of
the washing machine.

Represen ting ordering problems

For particular problems there are natural constraints which the representation should obey.
An example is the traveling salesmanproblem which requires a solution that is a tour from
a starting city to a last city while visiting all cities in between exactly once. A natural
representation for such an ordering problem is to use a list of numbers where each number
represents a city. An example is the chromosomein Figure 3.2.

3 84 6 1 2 7 5

Figure 3.2: A chromosomewhich usesa list encoding of natural numbersto represent ordering
problems.

3.2.3 Initialisation

Before running the genetic algorithm, one should have an initial population. Often one does
not have any a-priori knowledgeof the problem so that the initialisation is usually doneusing
a pseudo-randomgenerator. As with all decisionsin a GA, the initialisation also dependson
the representation, so that we have di�eren t possibleinitialisations:

48 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

� Binary strings. Each singlebit on each location in the string of each individual receives
50%probabilit y to becomea 0 and 50%probabilit y to becomea 1. Note that the whole
string will likely possessas many 0's and 1's, if we would have a-priori knowledge, we
might want to change the a-priori generation constant of 50%. For discrete sets with
more than 2 elements, one can chooseuniform randomly betweenall possiblesymbols
to initialize each location in a genetic string.

� Real numbers. If the spaceof the real numbers is bounded by lower and higher limits,
it would be natural to generatea uniform number in between theseboundaries. If we
have an unbounded space(e.g. the spaceof real numbers) then we cannot generate
uniform randomly chosen numbers, but have to use for example a Gaussian function
with a mean value and a standard deviation for initialisation. If one would not have
any a-priori information about the location of �t individuals, initialisation in this case
would be di�cult, and one should try someshort runs with di�eren t initialisations to
locate good regionsin the �tness landscape.

� Ordered lists. In this case,we should take care that we have a legal initial population
(each city has to be represented in each individual exactly onetime). This can be easily
done by generating numbers randomly and eliminating those numbers that have been
usedbeforeduring the initialisation of an individual coding a tour.

Sometimes, one possessesa-priori knowledge of possible good solutions. This may be
through heuristic knowledgeor from previous runs of the genetic algorithm or another opti-
misation algorithm. Although this has the advantage that the starting population may have
higher average�tness, there are also somedisadvantagesto this approach:

� It is more likely that genetic diversity in the initial population is decreased,which can
make the population convergemuch faster to a population of equal individuals.

� Due to the initial bias which is introduced in this way, it is more di�cult for the
algorithm to search through the whole state space,possiblymaking it almost impossible
to �nd a global optimum which is distant from the individuals in the initial population.

3.2.4 Evaluating an individual

Since most operations in a genetic algorithm can be executed in a very short time, the
time neededfor evaluating an individual is often a bottleneck. The evaluation can be done
by a subroutine, a (black-box) simulator, or an external process(e.g. robots). In some
casesevaluating an individual can be quite fast, e.g. in the traveling salesmanproblem the
evaluation would cost at most a number of computations which is linear in the number of
cities (i.e. one can simply sum all the distancesbetweencities which are directly connected
in the tour). In other cases,especially for real world problems, evaluating an individual can
consumea lot of time. For example if onewants to usegeneticalgorithms to learn to control
a robot for solving sometask, even the optimal controller might already take several minutes
to solve the task. Clearly in such a case,populations can not be very large and the number of
generationsshould also be limited. One method to reduceevaluation time for such problems
is to store the evaluations of all individuals in memory, so that a possiblesolution which has
already beenevaluated before,doesnot needto be re-evaluated.

3.2. GENETIC ALGORITHMS 49

If evaluating time is so large, that too few solutions can be evaluated in order for the
algorithm to come up with good solutions starting with a random initial population, one
could try to approximate the evaluation function by a model which is much faster albeit not
asaccurateasthe real evaluation function. After evolving populations using this approximate
�tness function, the best individuals may be further evolved using the real �tness function. A
possibility for computing an approximate �tness function is to evaluate a number of solutions
and to use a function approximator (such as a neural network) to learn to approximate the
�tness landscape. Sincethe approximate �tness function often doesnot approximate the real
one accurately, one should not run too many generations to �nd optimal solutions for this
approximate �tness function, but only useit to comeup with a population which can perform
reasonably in the real problem. In caseof robotics, someresearchers try to come up with
very good simulators which makesthe evolution much faster than executing the robots in the
real world. If the simulator accurately models the problem in the real world, good solutions
which have beenevolved using the simulator often also perform very well in the real world.

Another function provided by the �tness function is to dealwith constraints on the solution
space.For particular problems there may be hard or soft constraints which a solution has to
obey. Possibilities to deal with such constraints are:

� Use a penalty term which punishesillegal solutions. A problem of this solution is that
in somecaseswhere there are many constraints a large proportion of a population may
consist of illegal solutions, and even if theseare immediately eliminated, they make the
search much lesse�cien t.

� Use speci�c evolutionary operators which make sure that all individuals form legal
solutions. This is often preferred, but can be harder to implement, especially if not all
constraints in the problem are known.

3.2.5 Mutation operators

In geneticalgorithms there are two operators which determine the search for solutions in the
genotype space. The �rst one is mutation. Mutation is used to perturbate (slightly change)
an individual so that a new individual is created, but which still resembles the previous one
(in genetic algorithms mutation is often performed after recombination so that the previous
one is already a new individual). Mutation is an important operator, since it allows us
to explore the representation space. Without it, it would becomepossible that the whole
population contains the sameallele (value on somelocus or location in the genetic string),
so that di�eren t values for this locus would never be examined. Mutation is also useful to
create more diversity and to escape from a convergedpopulation which otherwise would not
explore di�eren t solutions anymore. It is possibleto usedi�eren t mutation operators for the
samerepresentation, but it is important that:

� At least one mutation operator should make it possible to search through the whole
spaceof solutions

� The sizeof the mutation operator should be controllable

� Mutation should create valid (legal) individuals

50 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

Mutation for binary represen tations

Mutation on a bitstring usually is performed by changing a bit to its opposite (0 ! 1 or
1 ! 0). This is usually done on each locus of a genetic string with someprobabilit y Pm .
Thus the mean number of mutations is N Pm where N is the length of the bitstring. By
increasing Pm the algorithm becomesmore explorative, but may also lose more important
genetic material that was evolved before. A good heuristic to set Pm is to set it as 1

N which
createsa mean number of mutations of 1. Figure 3.3 shows schematically how mutation is
done on a bitstring.

1 1 1 1 1 1 1

1 1 1 0 1 1 1 1

Before mutation

After mutation

Mutated Gene

1

Figure 3.3: A chromosomerepresented as a bitstring is changedby mutation.

In caseof multi-v alued discrete representations with a �nite number of elements, muta-
tion is usually done by �rst examining each locus and using the probabilit y Pm to choose
whether mutation should occur, and if a mutation should occur, each possiblesymbol has
equal probabilit y to replacethe previous symbol on that location in the chromosome.

Mutation for real num bers

If a representation of real numbers is used, we also need a di�eren t mutation operator. We
can use the same way as before to select a locus which will be mutated with probabilit y
Pm . But now the value of the locus is a real number. We can perturb this number using a
particular form of added randomness.Usually Gaussiandistributed zero-meannoise is used
with a particular standard deviation, so that we get for the chosenvalue of the genex i in a
chromosome:

x i = x i + N (0; �)

Mutation for ordered represen tations

For mutating orderedrepresentations we should try to make surethat the resulting individual
respects the constraints of the problem. That meansthat for a traveling salesmanproblem
all cities are used exactly one time in the chromosome. We can do this by using a swap of
two values on two di�eren t loci. Thus we generate two locations and swap their values as
demonstrated in Figure 3.4.

3.2.6 Recom bination operators

The advantage of using recombination operators is that it becomespossibleto combine useful
geneticmaterial from multiple parents. Therefore, if one parent has particular good building

3.2. GENETIC ALGORITHMS 51

7 3 1 8 2 4 6 5

7 3 8 2 4 56 1

Figure 3.4: A chromosomerepresented as an ordered list is mutated by swapping the values
of two locations.

blocks, and another parent has di�eren t good building blocks, the o�spring by recombining
theseparents may immediately possessall good building blocks from both parents. Of course
this is only the caseif recombination succeedsvery well, an o�spring may also contain those
parts of the parents which are not useful. However, good individuals will be kept in the
population and the worseoneswill die, so that it is often still useful to userecombination.

A recombination operator usually mapstwo parent individuals to oneor two children. We
can useone or more recombination operators, but it is important that:

� The child must inherit particular geneticmaterial from both parents. If it only inherits
genetic material from one of the parents, it is basically a mutation operator

� The recombination operator must be designedtogether with the representation of an
individual and the �tness function so that recombination is not often a catastrophe
(generating bad individuals)

� The recombination operator should generatelegal individuals, if possible

Recom bination for binary strings

For binary strings there exist a number of di�eren t crossover operators. Oneof them is 1-point
crossover in which there is a singlecutting point that is randomly generatedafter which both
individuals are cut at that point in two parts. Then these parts are combined, resulting in
two possiblechildren of which �nally oneor both will be kept in the new population (usually
after mutating them as well). Figure 3.5 shows how 1-point crossover is done on bitstrings.

Instead of using a singlecutting point, onecould alsousetwo cutting points and take both
sidesof one parent together with the middle part of the other parent to form new solutions.
This crossover operator is known as 2-point crossover. Another possibility is to useuniform
crossover, hereit is decidedby a random choicefor each location separatelywhether the value
of the �rst individual or of the secondindividual is used in the o�spring. We can seethe
di�eren t e�ects of a generatedcrossover operator using crossover masks. Figure 3.6 shows a
crossover mask which is usedto create two children from two parents.

Note that these recombination operators are useful for all �nite discrete sets and thus
wider applicable than only for binary strings.

52 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

1

1 0000000111111

1 Children

Parents

CutCut

111100000001

Figure 3.5: The recombination operator known as1-point crossover. Here the part left to the
cutting point of the �rst parent is combined with the part right to the cutting point of the
secondparent (and vice versa).

0000011

1 0000001111

1 Children

Parents

Mask

1

(Uniform)

01 0

10

0010011

11

1

Figure 3.6: The e�ect of a recombination operator can be shown by a crossover mask. Here
the crossover mask is uniformly generated, after which this mask is used to decide which
valueson which location to usefrom both parents in the o�spring.

Recom bination for real num bered represen tations

If we have representations which consist of real numbers, one might also want to use the
recombination operators that are given above for binary strings. However, another option is
to averagethe numbers on the samelocation, so that we get:

(xc
1 =

xa
1 + xb

1

2
; : : : ; xc

n =
xa

n + xb
n

2
)

The two di�eren t recombination operators for real numbers can also be used together by
randomly selectingone of them each time.

Recom bination for ordered represen tations

Designing recombination operators for ordered representations is usually more di�cult, since
we have to ensurethat we get children that respect the constraints of the problem. E.g. if
we would use1-point crossover for the TSP, we will almost for sure get children which have

3.2. GENETIC ALGORITHMS 53

somecities twice and someother cities no time in their representation, which would amount
to many illegal solutions. Penalising such solutions would also not be e�ectiv e, sincealmost
all individuals would becomeillegal. There has beena lot of research for making recombina-
tion operators for ordered representations, but we only mention one possiblerecombination
operator here.

Sincethe constraint on a recombination operator is that it hasto inherit information from
both parents, we start by selectinga part of the �rst parent and copy that to the child. After
this, we want to use information from the secondparent about the order of values which is
not yet copied to the child. This we do by looking at the secondparent, examining the order
in the secondparent of the cities which are not yet inside the child, and attaching thesecities
in this order to the child. Figure 3.7 shows an illustration of this recombination operator for
ordered lists.

768234 1

Child 1

Parent 2Parent 1

4,3,6,7,5
Order:

63457 281

281

7,3,4,6,5

56428137 5

Figure 3.7: A possible recombination operator for ordered representations such as for the
TSP. The operator copiesa part of the �rst parent to the child and attaches the remaining
cities to the child while respecting their order in the secondparent.

3.2.7 Selection strategies

Another important topic in the designof GAs is to selectwhich parents are allowed to create
children. If onewould always randomly chooseparents for creating children, there would not
be any selective pressurefor obtaining better individuals. Thus, good individuals must have
a larger probabilit y for generating o�spring than worse individuals. The selection strategy
determines how individuals of a population are chosen for generating o�spring. Often the
selection strategy allows bad individuals to generate o�spring as well, albeit with a much
smaller probabilit y, although some selection strategies only create o�spring with the best
individuals. The reason for using less than average �t individuals for creating o�spring is
that they can still contain good geneticmaterial and that the good individuals may resemble
each other very much. Therefore, using bad individuals may createmore diversepopulations.
In the following we will describe a number of di�eren t selectionstrategies.

54 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

Fitness prop ortional selection

In �tness proportional selection, parents which are allowed to reproduce themselves are as-
signeda probabilit y for reproduction that is basedon their �tness. Supposeall �tness values
are positive, then �tness proportional selectioncomputesthe probabilit y pi that individual i
is usedfor creating o�spring as:

pi =
f iP
j f j

where f i indicates the �tness of the i th individual. If some�tness values are negative, one
should �rst subtract the �tness of the worst individual to createonly new �tness valueswhich
are positive. There are somedisadvantagesto this selectionstrategy:

� There is a danger of premature convergence,sincegood individuals with a much larger
�tness value than other individuals can quickly take over the whole population

� There is little selectionpressureif the �tness valuesall lie closeto each other

� If we add some constant to all �tness values, the resulting probabilities will become
di�eren t, so that similar �tness functions lead to completely di�eren t results

A possible way to deal with some of these disadvantages is to scale all �tness values, for
example between values of 0 and 1. For this scaling one might use di�eren t functions such
as the square root etc. Although this might seema solution, the scaling method should be
designedad-hoc for a particular problem and therefore requiresa lot of experimental testing.

Tournamen t selection

Tournament selection does not have the problems mentioned above, and is therefore used
much more often, also becauseit is very easy to implement. In tournament selection k
individuals are selectedrandomly from the population without replacing (so each individual
can only be selectedone time), and then the best individual of this group of k individuals is
used for creating o�spring. Here, k is known as the tournament size,and is usually set to 2
or 3 (although the best value alsodependson the sizeof the population). Very high valuesof
k causea too high selectionpressureand therefore can easily lead to premature convergence.
Figure 3.8 shows how this selectionstrategy works.

f=8
f=1 f=5

f=4

f=9

f=3
f=9

f=5 f=3
1

2 3

f=9

f=5 f=3

Population

Participants (k = 3)
Winner

f=2

f=6

Figure 3.8: In tournament selection k individuals are selectedand the best one is used for
creating o�spring.

3.2. GENETIC ALGORITHMS 55

Rank-based selection

In rank-based selection all individuals receive a rank where higher ranks are assignedto
better individuals. Then this rank is used to select a parent. So if we have a population of
N individuals, the best individual gets a rank of N , and the worst one a rank of 1. Then we
compute probabilities of each individual to becomea parent as:

pi =
r iP
j r j

where r i is the rank of the i th individual.

Truncated selection

In truncated selection the best M < N individuals are selected and used for generating
o�spring with equal probabilit y. The problem of truncated selectionis that it doesnot make
distinctions between the best and the M th best individual. Some researchers have used
truncated selection where the best 25% of the individuals in the population are used for
creating o�spring, but this is a very high selectionpressureand can therefore easily lead to
premature convergence.

3.2.8 Replacemen t strategy

The selective pressure is also inuenced by the way individuals of the current population
are eliminated to make place for new individuals. In a generational genetic algorithm, one
usually kills the old population and replacesit by a completely new population, whereasin
a steady-state genetic algorithm at each time one new individual is created which replaces
one individual of the old population (usually the worst one). Generational GAs are most
often used,but sometimespart of the old population is kept in the new population. E.g. one
well-known approach is to always keepthe best individual and copy it to the next population,
this approach is called Elitism (or elitist strategy). We recall that even if the elitist strategy
is not used,we always keepthe best found solution so far in memory.

3.2.9 Recom bination versus mutation

The two search operators usedin geneticalgorithms have di�eren t usage.The recombination
operator causesnew individuals to depend on the whole population (genetic material of
individuals is mixed). Its utilit y relies on the schemata-theorem which tells us that if the
crossover operator does not destroy good building blocks too often, they can be quickly
mixed and stay in the population, sincean individual consisting of two good building blocks
(schemata) is likely to have a higher �tness value and therefore more likely to propagate
its genetic material. In principle, the crossover operator exploits previously found genetic
material and leads to faster convergence.In casethe whole population has converged to the
same individual, the crossover operator will not have any e�ect anymore. Thus, with less
diversepopulations, the e�ect of crossover diminishes.

On the other hand the mutation operator possessesdi�eren t properties. It allows a popu-
lation to escape from a single local minimum. Furthermore it allows valuesof locations which
have beenlost to be reinserted again. Thus we should regard it as an exploration operator.

56 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

Genetic algorithms and evolutionary strategies

Independently on the development of genetic algorithms, Rechenberg invented evolutionary
strategies (ES). There is a number of di�eren t evolutionary strategies, but in principle ES
resemble GA a lot. Like GAs they rely on reproducing parents for creating new solutions. The
di�erences between GA and ES are that ES usually work on real numbered representations
and that they alsoevolve their own mutation parameter � . Furthermore, most ES do not use
crossover, and someES only usea single individual whereasGAs always usea population.

The choice whether to usecrossover or not dependson:

� Is the �tness function separablein additiv e components (e.g. if we want to maximize
the number of 1's in bitstring, then the �tness function is the addition of the �tness of
each separatelocation). In caseof separable�tness functions, the useof recombination
can lead to much faster search times for optimal solutions.

� Are there building blocks? If there are no real building blocks, then crossover doesnot
make sense.

� Is there a semantically meaningful recombination operator? If recombination is mean-
ingful it should be used.

3.3 Genetic Programming

Although geneticalgorithms can beusedfor learning (robot) controllers or functions mapping
inputs to outputs, the useof binary representations or real numberswithout a structure does
not provide immediate meansfor doing so. Therefore in the late 1980'sGenetic Programming
(GP) wasinvented and madefamousby the work and booksof John Koza. The main element
of genetic programming is the use of functional (or program) trees which are used to map
inputs to outputs. E.g., for robot control the inputs may consist of sensoryinputs and the
outputs may be motor commands. By evolving functional program trees, those programs
which work best for the task at hand will remain in the population and reproduce.

A program tree may consist of a large number of functions such as cos,sin, � ; + ; =, exp,
and random constants. These functions usually require a �xed number of inputs. Therefore
a program tree must obey someconstraints which make it legal. To make a program tree
legal, functions which require n arguments (called n-ary functions), should have n branches
to child-nodes where each child-node is �lled in by another function or variable. The leaf
nodesof the tree are input-variables or random constants. Figure 3.9 shows an exampleof a
program tree.

Genetic programming has been used for a number of di�eren t problems among which;
supervised learning (machine learning) to map inputs to outputs, learning to control robots,
and pattern recognition to distinguish betweendi�eren t objects from pixel-data.

Genetic programming is quite exible in its useof functions and primitiv e building blocks.
Loops, memory registers,special random numbers, and more have beenusedto solve partic-
ular tasks. Like in geneticalgorithms, onehas to devisemutation and crossover operators for
program trees. The other elements of a genetic programming algorithm can be equal to the
onesusedby genetic algorithms.

3.3. GENETIC PROGRAMMING 57

Function
Program Tree

Cos((X1 + X2) * 2)

X1 X2

2+

*

COS

Figure 3.9: A program tree and its corresponding function.

3.3.1 Mutation in GP

The mutation operator can adjust a node in the tree. If the new function in the node will have
the samenumber of arguments, it is easy, but otherwise somesolutions have to be found. In
the caseof point-mutations one only allows mutating a terminal to a di�eren t terminal and
a function to a di�eren t function of the samearit y. Other researchers have usedmutation of
subtrees,in which a completesubtree is replacedby a randomly created new subtree. Figure
3.10 shows an exampleof a point mutation in GP.

COS

+ 2

 X2X1

+

Before Mutation After Mutation

COS

*

+ 2

 X2X1

Figure 3.10: Point mutation in genetic programming. A function in a node is replacedby a
di�eren t function with the samenumber of arguments.

3.3.2 Recom bination in GP

The recombination operator also works on program trees. First particular subtreesare cut
from the main program trees for both parent individuals and then these subtrees are ex-
changed. Figure 3.11 shows an exampleof the recombination operator in GP.

3.3.3 Probabilistic incremen tal program evolution

Instead of using a population of individuals, one could also usegenerative prototypeswhich
generateindividuals according to someprobabilit y distribution. Baluja invented population
basedincremental learning (PBIL) which encodesa chromosomefor generatingbitstrings. For

58 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

X1 X2

+

X2

COS

SIN

+

+

Children

Parents

 X1

CUTCUT

 X1

X1 X2

* 2

*

COS

2

*

COS

 2

X2

COS

SIN

+

 2

*

Figure 3.11: Recombination in genetic programming. A subtree of one parent is exchanged
with a subtree of another parent.

this the chromosomeconsistsof probabilities for generating 1 on a speci�c location (and 1
minus that probabilit y for generatinga 0). Using this prototype chromosome,individuals can
be generatedand evaluated. After that the prototype chromosomecan be adjusted towards
the best individual so that it will generatesolutions around the best individuals with higher
probabilit y.

This idea waspursuedby Rafal Salustowicz for transforming populations of program trees
in a representation using a probabilistic program tree (PPT). The idea is known as proba-
bilistic incremental program evolution (PIPE) and it usesprobabilities to generatefunctions
in a particular node. The probabilistic program tree which is used for generating program
trees consists of a single large tree consisting of probabilities of functions in each node, as
shown in Figure 3.12.

The PPT is usedto generatean individual as follows:

� Start at the root node and selecta function according to the probabilities

� Go to the subtreesof the PPT to generatethe necessaryarguments for the previously
generatedfunctions

� Repeat this until the program is �nished (all leaf nodes consist of terminals such as
variables or constants)

For learning in PIPE, it is requested that the PPT is changed so that the individuals
which are generatedfrom it obtain higher �tness values. For this PIPE repeats the following
steps:

� GenerateN individuals with the prototype tree

� Evaluate theseN individuals

� Select the best individual and increasethe probabilities of the functions and terminals
usedby this best individual

3.4. MEMETIC ALGORITHMS 59

SIN
COS
*
+
/
X1
X2

0.51
0.20
0.09
0.04
0.06
0.09
0.01

SIN
COS
*
+
/
X1
X2

0.06

SIN
COS
*
+
/
X1
X2

0.23
0.11
0.19
0.06

0.19
0.06

0.01
0.22
0.19
0.24
0.09
0.07
0.18

Probabilistic Prototype Tree

Figure 3.12: The probabilistic prototype tree used in PIPE for generating individuals.

� Mutate the probabilities of the PPT a little bit

PIPE hasbeencomparedto GP and it wasexperimentally found that PIPE can �nd good
solutions faster than GP for particular problems.

3.4 Memetic Algorithms

There is an increasingamount of research which combines GA with local hill-clim bing tech-
niques. Such algorithms are known as memetic algorithms. Memetic algorithms are inspired
by memes[Dawkins, 1976], piecesof mental ideas,like stories, ideas,and gossip,which repro-
duce (propagate) themselves through a population of meme carriers. Corresponding to the
sel�sh geneidea [Dawkins, 1976] in this mechanism each memeusesthe host (the individual)
to propagate itself further through the population, and in this way competes with di�eren t
memesfor the limited resources(there is always limited memory and time for knowing and
telling all ideasand stories).

The di�erence betweengenesand memesis that the �rst are inspired by biological evolu-
tion and the secondby cultural evolution. Cultural evolution is di�eren t becauseLamarckian
learning is possiblein this model. That meansthat each transmitted memecan be changed
according to receiving more information from the environment. This makes it possible to
locally optimize each di�eren t memebefore it is transmitted to other individuals. Although
optimisation of transmitted memesbeforethey are propagated further seemsan e�cien t way
for knowledge propagation or population-based optimisation, the question is how we can
optimize a meme or individual. For this we can combine genetic algorithms with di�eren t
optimisation methods. The optimisation technique which is most often used is a simple lo-
cal hill-clim ber, but someresearchers have also proposeddi�eren t techniques such as Tabu
Search. Becausea local hill-clim ber is used,each individual is not truly optimized, but only
brought to its local maximum. If it would be possible to fully optimize the individual, we
would not needa genetic algorithm at all.

60 CHAPTER 3. EVOLUTIONAR Y COMPUT ATION

The good thing of memetic algorithms compared to genetic algorithms is that genetic
algorithms usually have problems in �ne-tuning a good solution to make it an optimal one.
E.g. suppose that a bitstring contains perfect genetic material except for a single bit. In
this casethere are much more possiblemutations which harm the individual than mutations
which bring it to the true global optimum. Memetic algorithms do not have this problem
and they also have the advantage that all individuals in the population are in local maxima.
However, this also involves a cost, since the local hill-clim ber can require many evaluations
to bring an individual to a local maximum in its region.

Memetic algorithms have already beencomparedto GAs on a number of combinatorial op-
timisation problemssuch asthe traveling salesmanproblem (TSP) [Radcli�e and Surry, 1994]
and experimental results indicated that the memetic algorithms found much better solu-
tions than standard genetic algorithms. Memetic algorithms have also beencomparedto the
Ant Colony System[Dorigo et al., 1996], [Dorigo and Gambardella, 1997] and to Tabu Search
[Glover and Laguna, 1997] and results indicated that memetic algorithms outperformed both
of them on the Quadratic Assignment Problem [Merz and Freisleben, 1999].

3.5 Discussion

Evolutionary algorithms have the advantage that they can be usedfor solving a large number
of di�eren t problems. For exampleif onewants to make a function which generatesparticular
patterns and no other learning method exists, onecould always usean evolutionary algorithm.
Furthermore, evolutionary algorithms are good in searching through very large spacesand
can be easily parallellized.

A problem with evolutionary algorithms is that sometimesthe population convergespre-
maturely to a suboptimal local minimum. Therefore a lot of research e�ort hascomeup with
methods for keeping diversity during the evolution. Another problem is that many individ-
uals are evaluated and then never used anymore, which seemsa waste of computer power.
Furthermore, the learning progresscan be quite slow for someproblems and if many individ-
uals have the same�tness value there is not much selective pressure. E.g. if there is only a
good/bad �nal evaluation, it is very hard to comeup with solutions which are evaluated good
if in the beginning all individuals are bad. Therefore, the �tness function should be designed
in a way to provide maximal informativ e information.

A lot of current research focuseson \link agelearning". We have seenthat recombination
is a useful operator which can allow for quickly combining good genetic material (building
blocks). However, uniform crossover is very disruptiv e, sinceit is a random crossover operator
it does not keep building blocks as a whole together. On the other hand 1-point crossover
may keepbuilding blocks together if the building blocks are encoded on bits which lie nearby
on a geneticstring (i.e. next to each other). It may happen, however, that a building block is
not encoded in a geneticstring asmaterial next to each other, but distributed over the whole
string. In order to use e�ectiv e crossover for such problems one must identify the building
blocks which is known as linkage learning. Sincebuilding blocks can be quite large, �nding
the completeblock can bevery di�cult, but e�ectiv e progressin this direction hasbeenmade.

Chapter 4

Ph ysical and Biological Adaptiv e
Systems

Before the 16'th century , the Western think ers believed in a deductive approach to acknowl-
edgetruth. For example,Aristotle always thought that heavy objects would fall faster to the
ground than lighter objects. It was not until Galileo Galilei (1564-1642)tested this (accord-
ing to somehe did his experiments by dropping objects from the tower of Pisa), that this
hypothesis turned out to be false (if we disregard air-resistance). After this Galilei played
an important role to usemathematics for making predictive models and he also showed that
planets were going around the sun instead of around the earth (this hypothesis he had to
retract from the church). This was the start of a natural sciencewhere experiments were
used to make (predictiv e) models. Christiaan Huygensalso played an important role by his
discovery of much better clocks to make measuringtime much more precise,his discovery of
better lensesand telescopes,and the discovery that light could be described by wavesinstead
of particles. The new sciencecontinued with Kepler (1571 - 1630) who approximated the or-
bits of planets and cameup with ellipsoids to predict them instead of the commonly thought
hypothesisthat the orbits should be approximated using circles.

Isaac Newton (1642-1727)discovered the gravitation laws and laws of mechanics which
werethe �nal breakthrough for a newnatural science.Newton's gravitation laws tells that two
objects (e.g. planets) attract each other basedon the multiplication of their massesdivided
by the squareof the distance betweenthem, and it is very accurate for big objects which do
not move at very high speed(for very small moving particles quantum mechanics intro duced
di�eren t laws, and for very high speed relativit y theory was later invented). Newton's laws
of mechanics werealso usedto predict that planet orbits wereellipsoids and that planets will
circle around the sun whosemovement is hardly inuenced by the planets.

After this fruitful period of scienti�c revolutions, researchers started to think that the
universeworked like a clock and that everything could be predicted. This even led to the
idea of a Geniusby Laplacewhich would be an almighty entit y which could predict the future
and the past basedon the current state and the mechanical laws. Although this idea of a
universal clock brought many fruitful machines such as computers and television, already in
the start of the 19'th century Poincar�e had discoveredthat not everything could be predicted.
Poincar�e wasstudying three body problems, like three planets moving around each other, and
discovered that there were not enoughknown equations to comeup with a single analytical
solution for predicting their movements. This eventually led to chaos theory, where a model

61

62 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

can be deterministic, but still shows unpredictable behavior if we cannot exactly measurethe
initial state.

Although the word chaos often refers to a state without order, researchers have found
remarkable structures in chaotic systems. Even in chaotic systemsthere seemsto be a kind
of self-organisation. In this chapter we will look at the path from physics to biology, take a
look at chaotic systems,and then we will examine self-organisingbiological systemssuch as
ants and the useof thesesystemsfor solving optimisation problems.

4.1 From Ph ysics to Biology

In Newtonian mechanics, the systemsare reversible,which meansthat wecan turn around the
arrow of time and compute the past instead of the future. There are speci�c laws of physical
systemssuch as the conservation of energywhich states that the sum of potential and kinetic
energyof an objects must remain constant. An example is a ball which we throw in the air.
In the beginning the kinetic energy (due to its speed) is maximal, and it will become0 at
the highest point where the potential energy (due to gravitation) is maximal. Then it will
fall again while conservingits energyuntil �nally it bouncesagainst the ground and will lose
energy due to this (in reality the height of the ball will be damped due to friction which
causesa lossof energy. Without lossof energy the ball would continue bouncing forever).

If we have energy preserving systems, the system will continue with its movement. A
good example is a pendulum. Supposea pendulum is mounted at somepoint, and there is
no friction at this point or friction due to air resistance. Then we give the clock a push to
the right and it will remain moving to the left and to the right. If we give the pendulum a
harder push, it will go around and continue going around. Let's look at the phasediagram
in Figure 4.1 that shows possibletra jectories in the plane with the angle on the x-axis, and
the (normalised) angular speedon the y-axis.

Figure 4.1: The phasediagram of the pendulum

4.1. FROM PHYSICS TO BIOLOGY 63

In the middle of the �gure a stable equilibrium is shown, the pendulum is not moving
at all. Trajectories a and b show periodic cycles (orbits) where the pendulum is moving to
the left, right, left, etc. Orbit c leads to an unstable equilibrium in which the pendulum
goesto the highest point and there it stops to move. This point is unstable, becausea slight
perturbation will causeit to move again. Finally, in orbit d the pendulum is going over its
head.

The pendulum is an exampleof a reversible systemin which energy is conserved. Ideally,
such mechanical systemsalways conserve their energy. However, there are alsomany systems
which are irreversible, which are thermodynamic objects. After the industrial revolution,
many scientists were interested in making the optimal (perpetuum mobile) machine; one
which would continue to work forever. But soon they discovered that every machine would
lose useful energy due to production of heat. An example of a thermodynamic object is a
systemwhich consistsof a box with 2 halves. In onehalf there are N gas-moleculesand in the
other half there are none. The initial state is very ordered sinceall the gas-moleculesare at
the left half. Now we take away the border betweenthe halvesand we will observe that after
sometime both halveswill contain roughly the sameamount of molecules.This is an example
of an irreversible system since if the system would be in a state with the sameamount of
moleculesin both halves it would probably never go to the state with all moleculesin one
half again. To describe such processes,Boltzmann invented the word entrop y. Entropy
corresponds to the amount of disorder which is causedby the production of uselessenergy
such as heat which cannot be turned back to make energywithout a heat potential. Entropy
hasalsobeenwidely usedin thermodynamics to explain why heat will always o w from a hot
spaceto a colder space.

Consider the caseof the N gasmoleculesagain. Boltzmann useda statistical explanation
why the moleculeswould mix and a state of disorder would arise. Considernow N molecules
and the number of permutations that can describe a possible state. For example all N
moleculesin one half of the box would only have one possiblestate, one moleculein one half
and the rest in the other half would have N possiblestates. Now if we divide the N molecules
in N1 and N2 moleculesin both halves, the number of permutations would be:

P =
N !

N1!N2!

Now its logical that the system will go to an equilibrium with most possiblestates, that is
where N1 = N2. For this Boltzmann de�ned entropy of a systemas:

S = k logP

Where k is called the Boltzmann constant.
So although all microscopic states are equally possible,due to the e�ect that there are

much more microscopicstatesaround the macroscopicsituation of having the samenumber of
moleculesin both halves, this situation will arise after sometime. Of coursesmall deviations
from the macroscopicequilibrium can happen,but the system'sstate will oscillate around this
equilibrium. We can seethat entropy is maximised and that disorder will be the result. Since
entropy production is always positive in a closedsystem and there is a state with maximal
entropy, the system will always converge to such an equilibrium. Since the initial state gets
lost in this case,the processis not reversible (many states lead to the same�nal state). Note
the di�erence with the energy-preservingpendulum which is reversible. It is important to

64 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

note that there are many irreversible processesin machines causedby loss of heat, friction
etc. so that is is not possibleto make a machine which continues forever without receiving
additional energy. Theseprocessescausean increaseof the entropy of the system.

But how is this with open systemssuch as living systems? Here the change of entropy
of the system is governed by an internal change of entropy dSi =dt which is irreversible and
always positive, and an exchangeof entropy betweenthe systemand its environment dSu=dt

which can be positive or negative. We note that the exchange of entropy of a closedsystem
is not possible(since there is no environment to interact with) so that the entropy can only
increaseor remain constant (at the maximal value). In this case,the entropy determinesthe
direction of time; for all closedsystemstheir future lies in the direction of increasedentropy.
This lead to the two laws of the thermodynamics by Clausius in 1865:

� The energyof the world is constant

� The entropy of the world goesto a maximal value

Thus in the thermodynamic equilibrium the entropy and disorder will be at its maximum.
However, living systemscan exchange entropy with their environment. This allows them to
keep their entropy low. E.g. by consuming food and energy, a living system is able to keep
its order without having to increaseits entropy. This is the essential di�erence betweenopen
and closed systems. An open system can receive useful energy from the environment and
thereby it can reduceits disorder and create more order.

4.2 Non-linear Dynamical Systems and Chaos Theory

As mentioned before, Poincar�e had already discovered that there are no analytical solutions
to be found for the n-body problem with n larger than 2. For 2 planets, there is an analytical
solution which determines the position and velocity of both interacting planets given the
initial conditions. These planets will move around their point of joint mass as shown in
Figure 4.2.

Planet 1 Planet 2

Point of common mass

Figure 4.2: The orbits of two interacting planets

For the n-body problem with n � 3, Poincar�e had demonstrated that there were not
enoughdi�eren tial equations to be able to compute a solution to the problem. The problem
was therefore not integratable to a closed-formanalytical solution. Poincar�e has also demon-
strated that small perturbations could causelarge di�erences of tra jectories in this case.This
was the �rst time chaotic dynamics had beenmentioned.

After this, for a long time few researchers were studying chaotic systems. One major
breakthrough in their understanding camewhen computers were usedwhich could visualise

4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 65

such processes. The �rst famous demonstration of chaos using computer simulations was
described by the meteorologistEdward Lorenz who wasstudying weather prediction. In 1961
he saw an event in his computer simulations. By accident he discovered sensitivity to initial
conditions, sincehe wanted to repeat his simulations, but found completely di�eren t results.
After sometime he discovered that the valueshe usedin his secondsimulation were rounded
to three decimals, whereasthe computer usedvalueswith 6 decimalsduring the entire run.
Theseminimal di�erences quickly causedlarge deviations as is seenin Figure 4.3.

Figure 4.3: The simulations doneby Lorenz showed sensitivity to initial conditions. Although
the initial values were almost similar, the di�erence between the tra jectories becamevery
large.

In chaostheory it is often said that little causescreatebig consequences.After simplifying
his model to three variables,he �rst noted somethinglike random behavior, but after plotting
the valuesin a coordinate space,he obtained his famousLorenz attractor depicted in Figure
4.4. We can seean ordered structure, so again we should not confusechaotic dynamics with
non-determinism.

Figure 4.4: The Lorenz attractor

The dynamical system of Lorenz is quite complicated to analyse, and therefore we will
usean example from biology to demonstrate chaotic dynamics in an easierway.

66 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

4.2.1 The logistic map

Around 1800, T.R. Malth us assumedthat the growth of a population would be linear with
the number of individuals x(t). The mathematical expressionis the di�eren tial equation:

dx
dt

= kx

which has as closed-formsolution an exponential growing population:

x(t) = x(0)exp(kt)

In 1844P.F. Verhulst noted that for a growing population there must arisecompetition sothat
the population would stop growing at sometime. He noted that the population would grow
linearly with the number of individuals and the di�erence between the number of available
sourcesand the sourcesneededto sustain the population. This model is known asthe following
Verhulst equation:

dx
dt

= Ax (N � x)

with AN the maximal number of available sourcesand Ax the amount neededfor x persons.
The logistic map equation can be derived from this in which we usediscrete time and change
variables. The logistic map equation looks as follows:

x(t + 1) = r x(t)(1 � x(t))

Where x has a value between 0 and 1. For values of r below 1, the population will die out
(x(1) = 0). If r is between 1 and 3, there is one single �nal state x(1). Now if we keep
increasingr , there will arise period-2 cyclesand higher periodic cycles. Each value for r that
causesthe period to increase(in the beginning it doubles) is called a bifurcation point. Figure
4.5 shows a period-2 cycle of this map with a value of r a little bit larger than 3.

Figure 4.5: A period-2 cycle of the logistic map.

Figure 4.6 shows a larger periodic cycle. Although the periodic attractor is di�cult to
see,it is important to note that tra jectories from di�eren t starting points x 0 approach this
limit cycle.

Now, look what happens if we plot the value of r to the valueswhich x can take after a
long transient period (so we eliminate the initial valuesx(t) by waiting for 1000steps). This

4.2. NON-LINEAR DYNAMICAL SYSTEMS AND CHAOS THEORY 67

Figure 4.6: A larger periodic cycle of the logistic map.

plot is shown in Figure 4.7. The �gure shows a very complicated bifurcation diagram. In the
beginning there is a single steady state (for r � 1 all tra jectories go to x(1) = 0). When
r > 1 and r < 3 there is a single stable state for x, although the �nal value x(1) dependson
r . Now if we increaser to a value higher than 3, there is a periodic cycle of length 2, which
is shown in the bifurcation diagram by the two branches which determine the multitude of
valuesof x which are part of periodic cycles. Increasing r further leads to periodic cyclesof
length 4, 8, 16, etc. Until �nally the period becomesin�nite and the system shows chaotic
behavior.

Figure 4.7: A plot of the value of the control parameter r to the valueswhich x will take after
sometransient period.

In Figure 4.8, we seea more detailed �gure of this bifurcation diagram for values of r
between3.4 and 4. It shows that although there are valuesof r displaying chaotic behavior,
for somevaluesof r there are again periodic cycles,which is shown by the bands with only
few branches. If we further zoom in in the area of Figure 4.8, we get the �gure displayed in
Figure 4.9. This �gure shows clearly that there are periodic cyclesalternating with chaotic
dynamics.

A remarkable property of the chaotic dynamics generated by the logistic map is when
we further zoom in in the area of Figure 4.9 and get the Figure 4.10. This �gure clearly
shows that there is a self-similar pattern on a smaller scale. Again we seebifurcation points

68 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.8: A plot of the value of the control parameter r to the valueswhich x will take after
sometransient period.

Figure 4.9: A plot of the value of the control parameter r between 3.73 and 3.753 to the
valueswhich x will take after sometransient period.

and periodic lengths which double, until again it arrives at chaotic dynamics which visit an
in�nite number of points.

So what can we learn from this? First of all even simple equations can display chaotic
behavior. For a map (or di�erence equation) chaotic dynamics can be obtained with a single
variable (the population x). When using di�eren tial equations it turns out that there need
to be three di�eren tial equations which form a non-linear system in order for the system
to display chaotic behavior. Furthermore, when chaotic dynamics arise, even a very small
di�erence between two initial states can causea very di�eren t tra jectory. This meansthat
if we cannot exactly measurethe initial state our hope to predict the future dynamics of
the system is lost. Of course,here we have shown simple mathematical equations leading to
chaotic behavior, the question therefore is whether chaosalso arisesin real natural systems.
The answer to this is yes; research has turned out that the heartbeat follows an irregular
non-periodic patterns, and using a EEG it was shown that the brain also possesseschaotic
dynamics. Furthermore, in biological systemsthe population of particular kinds of ies also
shows chaotic behavior. And of courseto comeback to Lorenz, the weather is unpredictable
sinceit is very sensitive to initial conditions. This sensitivity in chaostheory is often related
to the possibility that a buttery in Japan can causea tornado in Europe.

4.3. SELF-ORGANISING BIOLOGICAL SYSTEMS 69

Figure 4.10: A plot of the value of the control parameter r between 3.741 and 3.745 to the
valueswhich x will take after sometransient period.

Instead of only disorder, we can alsoseeorderedpatterns in chaotic systems.One example
is the self-similar structure if we look at the pattern of a bifurcation diagram at di�eren t scales.
Furthermore, if we look at the Lorenz attractor, we can seethat not all states are possible;
the state tra jectories are all on a particular manifold (subspaceof the whole space). On the
contrary, when we would usea stochastic (non-deterministic) system, the tra jectories would
�ll up the whole phasediagram. In reality chaos therefore also displays order, which is also
the statement of Ilya Prigogine; \order out of chaos".

4.3 Self-organising Biological Systems

Adaptiv e systemscan be used fruitfully to model biological systems. We have already seen
that the model can consist of mathematical equations, but they can also have a spatial
con�guration using individualistic models such as cellular automata. The advantage of using
individualistic models moving in a particular spaceis that there is an additional degreeof
freedom for the physical spaceand therefore additional emergent patterns. By simulating
an individualistic model, it also becomesmuch easier to visualise processessuch as the �re
propagation in forest �res. The disadvantage of spatial models compared to mathematical
equations is that it is much slower to simulate. Someexamplesof biological models which
can be modelled are:

� Infection diseases

� Forest �res

� Floods

� Volcano eruptions

� Co-evolving species

The �rst four processesmentioned above show a common aspect; they propagate themselves
over paths which depend on the environment. To stop the propagation, such paths should be
\closed". This is essential for controlling thesenatural disasters,but will not be the issuein
this chapter.

70 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

4.3.1 Mo dels of infection diseases

We will look at two di�eren t models for simulating infection diseases.In infection diseases,
we can distinguish betweenthree kinds of individuals in the population:

� Healthy individuals (H)

� Infected, sick individuals (S)

� Immune individuals which have had the disease(I)

If a healthy person comesin the neighbourhood of an infected individual, the healthy
person will also becomeinfected in our model (although usually this will only happen with
someprobabilit y). If an infected person has been sick long enough, it becomesan immune
individual which is not sick anymore.

Mathematical mo del of infection diseases

We can make a model using di�erence equations. We start with a state of the population:
S(0) = (H (0); I (0); S(0)), and use the following equations to determine the evolution of the
system:

S(t + 1) = S(t) + S(t)H (t) � bS(t)

I (t + 1) = I (t) + bS(t)

H (t + 1) = H (t) � aS(t)H (t)

Herewe have two control parametersa and b. Note that the valuesH ; I ; S should not become
negative! If we examine the model, we can seethat the number of immune individuals is
always increasing or stays equal. Therefore a stable attractor point is a situation with all
peopleimmune to the disease.However, if the control parameter b is set to a very large value,
the population of sick peoplemight decreasetoo fast and might become0 beforeall healthy
peoplebecamesick. Therefore other possiblestable states include a number of healthy and
immune people. Also when there are no sick or immune peopleat all at start, the stable point
would consist only of healthy people.

Cellular automaton mo del of infection diseases

We can also use a cellular automaton (CA) in which we have to make rules to update the
state of the CA. Supposewe take the 2-dimensionalCA with individuals as shown in Figure
4.11. Cells can be empty or be occupied by a sick, immune, or healthy person.

The CA also needstransition rules to change the state of the system, we can make the
following rules:

� If H has a S in a cell next to it, the H becomesa S.

� S has each time step a chanceto becomea I

� For navigation, all individuals make a random step at each time-step

4.4. SWARM INTELLIGENCE 71

I

H

H
H
H

H

H

S

S
S

S

S S

S

S

I
I

I

Figure 4.11: The CA for infection diseases.H = healthy person, I = immune person, S =
sick person

Step2 aboveusesa probabilit y to changea state of a cell and navigation alsousedrandomness,
therefore this is an example of a stochastic cellular automaton. Finally, we can also make
another navigation strategy so that healthy personsstay away from sick individuals. This
could lead to di�eren t evolving patterns where healthy personsare in one corner, far away
from the sick individuals.

4.4 Swarm In telligence

It is well known that a largegroup of simpleorganismssuch asants or beescanshow intelligent
behavior. The question is how this collective intelligent behavior emergesfrom simple indi-
viduals. In this section we will seeexamplesof this phenomenonand how this self-organising
collective behavior can be usedfor making optimisation algorithms.

First we will look at somesmart collective behaviors:

� Foraging behavior: individuals search for food and bring it to their nest

� Protection of the nest: individuals have received an altruistic and non-producing task
which helps the group to survive

� Building of a nest: E.g. how do termites construct their nest or how are honeycombs
made by bees.

� Stacking food and spreadingit

It is clear that there is no super controller which sendsthe individuals messageshow to do
their task. In someways the behaviors emergefrom simple individual behaviors. E.g. if we
look at the processof creating honeycombs, then we can seethat the structure emergesfrom
local interactions between the bees. Every beecreatesa single cell in the wax by hollowing
out part of the spaceof the wax. Whenever a bee makes a cell it takes away parts of the
bordersof the cell. When it feelsthat there is another beeworking in the cell closenext to it,
it stops taking wax out of the direction of that bee. In this way a hexagonalpattern emerges
with very similar cells (becausebeeshave similar sizes),seeFigure 4.12.

72 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.12: A honeycomb

It is alsoknown that ants can solve particular problems,such as �nding the shortest path
to a food pile, clustering or sorting food, and clustering dead ant bodies. Although a single
ant is not intelligent, the whole colony shows intelligent group behavior (super-intelligence).

4.4.1 Sorting behavior of ant colonies

When many ants die at the sametime, the living group makescemeteriesof the deadants by
stacking them all on the sameplace. How can this be done if single ants are not intelligent
enough to know where to put the dead ant they may be carrying? To explain this, we can
make a simple model with three rules:

� An ant walks in arbitrary directions

� Whenever an ant doesnot carry anything and �nds a deadant, it takesit and will carry
it to somedi�eren t place

� Whenever an ant carries a dead ant and seesa pile of dead ants, it will drop the ant
near that pile

Thesethree simple rules can explain the group-behavior of sorting ants. A similar model can
be madeto let ants make piles of sugarand chocolate. Sinceeach ant is very simple, it would
take a long time until someorganisation would emergeusing a single ant. However, when
many ants are used,the self-organisationof matter in the spacecan occur at very short time
periods. This is also a reasonwhy someresearchers investigate collective swarm robotics to
make many simple small robots collaborate together to perform di�eren t tasks, instead of a
single large robot which has to do everything alone.

4.4.2 An t colony optimisation

A new kind of multi-agent adaptive systemfor combinatorial optimisation has beeninvented
by Marco Dorigo in the 90's. In this algorithm, a colony of ants works together to �nd
solutions to di�cult path-planning problems such as the traveling salesmanproblem. The
algorithm is inspired by how ant colonieswork in reality. The foraging ants leave a chemical

4.4. SWARM INTELLIGENCE 73

substanceknown aspheromone on the ground when they go from their nest to a food source
and vice versa. Other foraging ants follow the paths with most pheromoneaccording to a
probabilit y distribution. While following thesepaths they strengthen them by leaving addi-
tional pheromone. This collective foraging behavior enablesan ant colony to �nd the shortest
path betweenthe nest and a food source. Optimisation algorithms which are inspired by the
collective foraging behavior of ants are called ant colony systemsor simply ant algorithms.

We will �rst examine combinatorial optimisation problems which determinesthe classof
problems which are hard to solve and for which ant colony systemscan be applied.

Com binatorial optimisation

Particular problemscostexponential amount of time to solve. To get an ideaof an exponential
problem, considera solution that consistsof n states and the time to solve it is 2n or n!. An
example is to �nd a bitstring of only 1's when the �tness is 0 for all solutions except for
the state with all 1's which gets higher �tness (known as a needle in a haystack problem).
Exponential time problems grow much faster than polynomial time problems:

lim
n!1

np

en ! 0

Where p is the degreeof somepolynomial function and e is the natural exponent. A number of
well known mathematical problems are called combinatorial optimisation problems, a subset
of these are NP-complete problems which cannot be solved in polynomial time unlessP =
NP. The question P = NP is known as one of the open and most important questions in
computer scienceand optimisation. The interesting thing is that if oneof theseNP-complete
problems can be solved by some algorithm in polynomial time, all these problems can be
solved in polynomial time. So far no polynomial time algorithm has beenfound to solve one
of theseproblems, however.

Since computer power cannot increasefaster than exponential time (Moore's law states
that computer power doublesevery two years),somebig combinatorial optimisation problems
can never be solved optimally. Someexamplesof combinatorial optimisation problems are:

� The traveling salesmanproblem: �nd the shortest tour through n cities

� Quadratic assignment problem: minimize the o w (total distancewhich has to be trav-
elled) if a number of employeeshas to visit each other daily in a building according
to some frequency. So the total cost is the product of the distance matrix and the
frequency matrix. The problem requires to assignlocations to all people to minimize
the total cost. This often involves putting people who meet each other frequently in
nearby locations.

� 3-satis�abilit y: Find truth-v alues for n propositions to make the following kind of for-
mula true:

f x1 _ : x2 _ x4g ^ : : : ^ f x1 _ : x5 _ x7g

� Job-shop scheduling: Minimize the total time to do a number of jobs on a number of
machineswhereeach job has to visit a sequenceof machines in a speci�c order and each
machine can only handle one job at a time.

74 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

We will elaborate a bit on the traveling salesmanproblem here, sinceant algorithms were
�rst used to solve this kind of problem. In the traveling salesmanproblem (TSP) there is a
seller which wants to visit n cities and comeback to his starting city. All cities i and j are
connectedwith a road of distance l(i; j). Theselengths are represented in a distance matrix.
The agent must compute a tour to minimize the length of the total tour. An example of a
tour with 8 cities with distance 31 is shown in Figure 4.13.

4

5

4 2

4

354

Figure 4.13: A tour in a traveling salesmanproblem

How can we generatea tour for the traveling salesmanproblem? The constraints are that
all cities have to be visited exactly once and that the tour ends at the starting city. Now
we keep a set of all cities which have not been visited: J = f i j i is not visited g. In the
beginning J consistsof all cities. After visiting a city, we remove that city from the set J .
The algorithm for making a tour now consistsof the following steps:

1. Choosean initial city s0 and remove it from J

2. For t = 1 to n:

(a) Choosecity st out of J and remove st from J

3. Compute the total length of the tour:
L =

P N � 1
t=0 l (st ; st+1) + l(sN ; s0)

Of coursethe most important thing is to make the rule for choosing the next city given the
current one and the set J . Di�eren t algorithms for computing tours can be comparedto the
�nal value L returned by the algorithm (note that for very large problems, it is extremely
hard to �nd an optimal solution, so that an algorithm should just �nd a good one).

4.4.3 Foraging ants

One algorithm for making an adaptive rule for selecting the next city given the current one
and the set J is inspired on the collective foraging behavior of ants. We will �rst examine
why ants can �nd shortest paths from the nest to a food source. Let's have a look at Figure
4.14. It shows two paths from the left to the right and ants approaching the point where they

4.4. SWARM INTELLIGENCE 75

Figure 4.14: In the beginning the ant colony doesnot have any information about which path
to take

needto chooseoneof them. In the beginning their choice will be completely random, so 50%
will take the upper path and the other 50% the lower path.

Now in Figure 4.15 it becomesclear that ants which took the lower path will arrive at
the destination earlier than those which took the upper path. Therefore, as we can seein
Figure 4.16, the lower path will accumulate more pheromoneand will be preferred by most
ants, leading to more and more strengthening of this path (seeFigure 4.17).

Figure 4.15: Ants which take the lower path will arrive sooner at the destination

Figure 4.16: This causesmore ants to follow the lower part

4.4.4 Prop erties of ant algorithms

There are multiple di�eren t ant algorithms, but they all sharethe following properties:

� They consist of a colony of arti�cial ants

76 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Figure 4.17: The amount of pheromonekeepson strengthening more along the lower path
than along the upper path, therefore �nally almost all ants will follow the lower path.

� Ants make discrete steps

� Ants put pheromoneon chosenpaths

� Ants usethe pheromoneto decidewhich steps to make

Ant algorithms have beenusedfor a wide variety of combinatorial optimisation problems
such as the traveling salesmanproblem, the quadratic assignment problem, and network
routing. The idea to let individuals interact, becauseoneof them changesthe environment is
called stigmercy . The �rst ant algorithm, the ant system, was initially tested on the TSP.
It works as follows:

� All N ants make a tour for which they usepheromonebetweencities to selectthe next
city

� All not followed edgeslosea bit of pheromonedue to evaporation

� All followed edgesreceive additional pheromonewhere edgesbelongingto shorter tours
receive more pheromone.

The ant-system wasthereafter changedin someways and this led to the ant colony system.
We will now give a formal description of the ant-colony systemusedfor the traveling salesman
problem (although the ant-colony system is often called a meta-heuristic that includes many
possiblealgorithms and can be usedfor di�eren t problems).

The ant colony system consistsof K ants. The amount of pheronomebetween 2 cities i
and j is denoted as m(i; j). For choosing the next city an additional heuristic is usedwhich
is the inverseof the length betweentwo cities: v(i; j) = 1

l (i;j) .
Now every ant: k = 1: : : k makesa tour:

� Choosea random starting city for ant k : i = r andom(0; N) and take the city out of
the set Jk of unvisited cities for ant k

� Choosenext cities given the previous one according to:

j =

(
arg max

h2 Jk

f [m(i; h)] � [v(i; h)] � g if q � q0

S else
(4.1)

Here � is a control parameter, 0 � q � 1 is a random number, and the control parameter
0 � q0 � 1 determines the relative importance of exploration versus exploitation. If

4.5. DISCUSSION 77

exploration is used, we generateS which is a city chosenaccording to the probabilit y
distribution given by the following equation:

pij =

8
<

:

[m(i;j)] �[v(i;j)] �
P

h 2 J k
[m(i;h)] �[v(i;h)] � if j 2 Jk

0 else
(4.2)

Now all ants have made a tour and we can update the pheromonetrails as follows. First
we compute which generatedtour was the best one during the last generation, let's call this
tour Sgb for global-best solution. This tour has length: L gb. Now the update rule looks as
follows:

m(i; j) = (1 � �) � m(i; j) + � � � m(i; j)

where � m(i; j) =

(
(L gb)� 1 if edge(i,j) 2 Sgb

0 else

Here, � is a control parametersimilar to the learning-rate. Note that the addedpheromone
dependson the length of the best tour, and that pheronomeon other edgesevaporate.

This is onepossibleant colony system, it is alsopossibleto let the pheromonebe adapted
to the best tour ever found, instead of the best tour of the last cycle. Other possibilities of
choosingpaths are alsopossible,but the method given above usually works a bit better. Note
also that there are many parametersto set: �; � ; q0 and the initial valuesfor the pheromone.

4.5 Discussion

Biological systemsdi�er from mechanical systemsor thermodynamic systemssince they are
able to take energyfrom the environment in order to decreasetheir internal entropy (state of
disorder). We have seenthat there are dynamic systemswhich look very simple, but which
can lead to chaotic dynamics. An example is the logistic map and its operation dependson
the control parameter r . If we increaser we can seethat instead of a singlestable state, there
will arise bifurcations to periodic cyclesof higher order, �nally leading to chaotic dynamics.
Chaotic dynamics leads to unpredictable systems,since if we do not know the exact initial
condition of the system, the evolution of the system will create large discrepanciesbetween
the predicted and the real observed behavior. Although chaotic systemsare unpredictable,
they also show somekind of order which is seenfrom the emergenceof manifolds on which
all points lie (such as in the Lorenz attractor) or the self-similar structure when one looks at
chaotic dynamics from di�eren t scales.

In biology, there are often simple organismswhich can ful�l complex tasks. We have seen
that this intelligent collective behavior can emergefrom simple individual rules. An example
of this is when ants build ant-cemeteries. Furthermore, this abilit y of swarm intelligence has
also inspired researchers to develop algorithms for solving complex problems. A well-known
exampleof this is the ant colony systemwhich hasbeenfruitfully usedto solve combinatorial
optimisation problems such as the traveling salesmanproblem.

78 CHAPTER 4. PHYSICAL AND BIOLOGICAL ADAPTIVE SYSTEMS

Chapter 5

Co-Ev olution

Let us�rst considerthe history of the earth. Using the internet-site: \h ttp:///www.solstation.com/life.h tm"
the following summary can be extracted:

Our solar system was born about 4.6 billion yearsago. In this time protoplanets
agglomeratedfrom a circum-Solar disk of dust and gas. Not long after that the
protoplanetary Earth was struck by a Mars-sized body to form the Earth and
Moon. Geologistshave determined that the Earth is about 4.56 billion yearsold.
Initially , the Earth's surfacewas mostly molten rock that cooled down due to the
radiation of heat into space,whereasthe atmosphereconsistedmostly of water
(H2O), carbon dioxide (CO2), nitrogen (N2), and hydrogen (N2) with only a lit-
tle bit of oxygen (O2). Eventually a rocky crust was formed and someareaswere
covered with water rich with organic compounds. From theseorganic compounds,
self-replicating, carbon-basedmicrobial life developed during the �rst billion years
of Earth's existence.The microbesspreadwidely in wet habitats and life diversi-
�ed and adapted to new biotic niches,someon land, but life stayed single-celled.
After sometime microbeswere formed which producedoxygen and thesebecame
widespread. Chemical reactions causedthe production of ozone(O3) which pro-
tected carbon-based life forms from the Sun's ultraviolet radiation. Although
the large concentration of CO2 causedthe Earth to warm-up, the produced O2

causeda chilling e�ect and as a result the Earth's surface was frozen for large
parts, although someprokaryotic microbial life survived in warm oceanseaoors,
near volcanosand other warm regions. Due to a large volcanic activit y, the Earth
warmed up again, but leading to a di�eren t niche which led to heavy evolutionary
pressure. About 2.5 billion years ago somemicrobes developed a nucleus using
cellular membranesto contain their DNA (eukaryotes), perhapsthrough endosym-
biosisin which di�eren t microbesmergedto newlife-forms. The �rst multi-cellular
life-forms (e.g. plants) evolved after 2.6 billion years of Earth's existence. This
multi-cellularit y allowed the plants to grow larger than their microbial ancestors.
Between3.85 and 4.02 billion yearsafter the birth of the solar system, there may
have beena cycle between ice climates and acid hothouses,leading to strong se-
lective pressure. After a massive extinction, intense evolutionary pressuremay
have resulted in a burst of multi-cellular evolution and diversity leading to the
�rst multi-cellular animals. After this Dinosaurs were created and may have be-
comeextinct 65 millions years ago by the assistanceof a large cometary impact.

79

80 CHAPTER 5. CO-EVOLUTION

The extinction of the Dinosaurscreatedecologicalconditions which eventually led
to the creation of modern Human (Homo sapienssapiens)which originated only
100,000yearsago.

What we can observe from the history of the Earth is that life adapts itself to the bio-
logical niche. If environmental circumstancesare good for someorganismsthey can multiply ,
but there have beenmany specieswhich becameextinct due to environmental conditions or
cometary impacts. The way that evolution works is therefore really governed by environmen-
tal selection; there is no optimisation but only adaptation to the environment.

5.1 From Natural Selection to Co-ev olution

No biologist doubts that natural evolution hasoccurredand createdthe diversity of organisms
alive today. For the evolutionary theory there areenoughindicativ e facts such asthe existence
of DNA, organisms which have been shown to mutate themselves to cope with changing
environments, and observed links betweendi�eren t organismsin the phylogenetic tree.

The current debate is more on the question how evolution has come about and which
mechanismsplay a role in evolutionary processeson a planetary scale. In Darwin's evolution-
ary theory survival of the �ttest plays an eminent role to explain the evolution of organisms.
We can explain the birth of this competitiv e mechanism by looking at a planet which is ini-
tially populated by someorganismsof a speci�c type with plenty (though �nite) amount of
nutricients for them to survive. As long as the initial circumstancesare good, the popula-
tion will grow. However, this growth will always lead to a situation in which there are so
many organisms that the resources(space, food) will becomelimited. If the resourcesare
scarce,not all individuals will be able to get enough food and multiply themselves. In such
a situation there will arise a competition for the resourcesand those organisms which are
best able to get food will survive and create o�spring. The question is which organismswill
survive and reproduce. For this we have to examine their genetic material. The existenceof
particular genesin an individual will give it an advantage and this allows such genesto be
reproduced. Therefore there will be more and more o�spring which will consistof thesegenes
in their geneticmaterial. Sincethe resourceswill usually not grow very much, the population
will not grow anymore and only the geneticmaterial inside individual organismswill change.
Finally, it may happen that all organismsof the samepopulation will resemble each other
very much, especially if the environmental conditions are the same over the whole planet.
However, if there are di�eren t biological niches, individuals may have adapted themselves to
their local niche, so that individuals of the samepopulation will remain somewhatdi�eren t.
Sincemutation keepson occurring during reproduction, it may happen that many mutations
after many generationscreate a new organism which doesnot look alike the original one. In
this way, multiple organismscan evolve and keepon adapting to their local niche.

Since evolution through natural selection is just a mechanism we can implement it in a
computer program. A known example of arti�cial evolution is the useof genetic algorithms.
In geneticalgorithms, a �tness function is usedto evaluate individuals. Such a �tness function
is designeda-priori by the programmer and determineshow many children an individual can
obtain in a given population. Although these genetic algorithms are very good for solving
optimisation problems, they do not exactly look alike natural evolution. The problem is that
the �tness function is de�ned a-priori, whereas in natural evolution there is nobody who
determinesthe �tness function.

5.2. REPLICA TOR DYNAMICS 81

In reality the (implicit) �tness of an individual depends on its environment in which
other speciesinteract with it. Such a �tness function is therefore non-stationary and changes
according to the adaptions of di�eren t populations in the environment. Here we speak of
co-evolution . Co-evolutionary processescan be quite complex, since everything depends
on each other. Therefore we have to look at the whole system or environment to study the
population dynamics.

5.2 Replicator Dynamics

We have already seentwo di�eren t models for studying the dynamics of interacting species:

� With di�eren tial equations(mathematical ruleswhich specify how the variableschange).
An exampleof this are the Lotka-Volterra equations.

� With cellular automata

We can also generalisethe Lotka-Volterra equations to multiple organisms, this is done
using the model of Replicator dynamics . We will �rst study a model in which the �tness
of an organism (phenotype) is �xed and independent of its environment. The replicator
equation describesthe behavior of a population of organismswhich is divided in n phenotypes
E1; : : : ; En . The relative frequenciesof these phenotypes are denoted as x 1; : : : ; xn , and so
we obtain a relative frequency vector ~x = (x1; x2; : : : ; xn), where

P
i x i = 1. The �tness of a

phenotype E i is �xed and is denoted as f i (~x).
Now we can �rst compute the average�tness of a population using:

f̂ (~x) =
nX

i =1

x i f i (~x)

The change of the frequency of phenotype E i is related to the di�erence in �tness of E i

and the averageof the population:

@x i

x i
= f i (~x) � f̂ (~x)

Now we get the replicator equation with adaption speed � (� can be seenas a time-
operator dt after which we recompute the relative frequencies):

� x i = �x i (f i (~x) � f̂ (~x))

If the �tness values of the existing phenotypes are di�eren t, the replicator equation will
also change their relative frequencies. If the environment does not change from outside and
the �tness valuesof phenotypesremain constant, then the phenotype with the largest �tness
will overtake the whole population. This assumption is of courseunrealistic: the environment
and �tness valueswill changedue to the changing frequencies.

Now we will look at a model for co-evolutionary replicator dynamics. Here we make the
�tness of a phenotype dependent on other existing phenotypes and the relative frequencies.
We do this by computing the �tness value at sometime-step as follows:

f i (~x) =
nX

j =1

aij x j

82 CHAPTER 5. CO-EVOLUTION

Here the valuesaij make up the �tness value of phenotype E i in the presenceof E j . We can
immediately seethat phenotypescan let the �tness of other phenotypesincreaseor decrease.
It can therefore happen that both aij and aj i are positive and quite large. The result will
be that these speciesco-operate and obtain a higher �tness due to this co-operation. Since
we always compute relative frequencieswith replicator dynamics, we do not always seethis
co-operation in the valuesx i . However, in reality we may assumethat both populations will
grow, although one may grow faster than the other.

On the other hand when aij and aj i are negative and quite large, thesespeciesare com-
petitiv e, and the one with the largest frequency will dominate and can make the other one
extinct (dependent on the rest of the environment of course).

Instead of two cooperating or competitiv e organisms, there can also be whole groups of
cooperating organismswhich may compete with other groups. In this sensewe can clearly
seethe dependenceof an organism of its environment.

5.3 Daisyw orld and Gaia

In 1983, JamesLovelock presented his Daisyworld model which he presented to explore the
relationship betweenorganismsand their environment. Daisyworld is a computer model of an
imaginary planet consistingof white and black daisies. Daisiescan changetheir environment,
reproduce, grow, and die. There is a global variable: the temperature of the planet which
may slowly increasedue to the radiation of an imaginary sun.

Now the temperature of the planet has an inuence on the growth, reproduction, and
death of daisies. White daisieshavea favourite temperature in which they grow and reproduce
fastestand this temperature is higher than the favourite temperature of black daisies.This has
as a consequencethat if the temperature of the planet would increase,that the population
of white daisieswould becomebigger than the population of black daisies. If the planet's
temperature would not stop increasing,however, the temperature would becometoo hot for
any living organism to survive leading to a planet without life-forms.

Due to the albedo e�ect of white daisies,however, the solar radiation is reected which
causesthe temperature of the planet to decreasewhen there are enoughwhite daisies. There-
fore when the planet is warmed up and there are many white daisies the planet will cool
down. If the white daisieswould continue to decreasethe planet's temperature, the planet
would becometoo cold and all life forms would also becomeextinct.

However, black daisiesabsorb the heat of the sun and therefore they increasethe tem-
perature of the planet. Therefore, if the planet becomescolder, the number of black daisies
would becomelarger than the number of white daisies(since the black daisies' favourite tem-
perature for growth is lower), and the planet would becomewarmer again. This again leads
to a temperature which is closerto the favourite temperature of the white daisiesso that the
population of white daisieswould grow again and thereby cool down the planet.

Thus, we can seethat in Daisyworld the daisies inuence the environment, and the en-
vironment has an inuence of the population growth of the daisies. The daisies are also
related, since if there would only be black daisies, the temperature could only increaseso
that life becomesimpossible.By increasingand decreasingthe temperature of the planet, the
di�eren t daisy populations are linked to each other, leading to cooperative co-evolutionary
dynamics. Furthermore, sincethe daisiesmake the temperature suitable for both to survive,
they regulate the temperature, like a thermostat of a heater would regulate the temperature

5.3. DAISYW ORLD AND GAIA 83

of a room. Therefore we can seethat there is a self-regulating feedbac k lo op.

5.3.1 Cellular automaton model for Daisyw orld

We can usea cellular automaton as a spatial model for Daisyworld. Each cell can be a black
or white daisy or a black or white daisy-seed.Furthermore, each cell hasits local temperature.
Each cycle we can increasethe temperature of all cellswith for exampleonedegree(of course
we can also decreasethe temperature). If the temperature of each cell continues to increase,
the temperature would become100 degreesand all life-forms would die.

The rules of the CA look as follows:

� Black daisies have most probabilit y to survive at a temperature of 40 degrees,and
white daisiesat 60 degrees.Each 20 degreesaway from their favourite temperature, the
survival probabilit y decreaseswith 50%.

� Black daisiesincreasethe temperature of 49cellsaround their cell with 3 degrees.White
daisiescool down the 49 cells around them with 3 degrees.

� White daisiesreproduce6 seedsin random location of their 25-cell neighbourhood with
most probabilit y (40%) at 60 degrees,and black daisiesdo the sameat 40 degrees.

� Daisy seedshave a probabilit y of 10% to die each cycle. White (black) seedsbecome
white (black) daisieswith most probabilit y at 60 (40) degrees.

We can seethe Cellular Automaton model of Daisyworld in Figure 5.1.

Figure 5.1: A cellular automaton model of Daisyworld. At the right the averagetemperature
of the planet is shown and the temperature in all cells.

Now there are two evolutionary processesin this model: natural selection and self-
regulation. Natural selectionin Daisyworld takesplacebecomesthere is competition between
the di�eren t daisy types,sincethere are limited sources(cells or spaceto grow). Now let's ex-
amine what happensif we usemutation in the model. Mutation is an arbitrary small change

84 CHAPTER 5. CO-EVOLUTION

of a genotype of an organism. Such a small change results in a small change of the color
which meansa di�erence in the absorbing or reection of solar energyand therefore di�eren t
cooling or heating behaviors. In generala mutation can be good for an individual organism,
although most mutations are damagingor neutral. However, even if a mutation only givesan
advantage one in a million times, once it occurred the new organism may quickly propagate
through the environment.

The most interesting aspect of Daisyworld is the self-regulation which appears to be at
a higher level than natural selection. This self-regulation is good for all individuals, because
it keepsthe temperature of a planet at a level which makes life possible. Becausethis self
regulation is good for all individuals, we might think that is is on its own causedby natural
selection. However, in Daisyworld self-regulation is not participating in a competitiv e or
reproductivemechanism and thereforeis not createdby someform of higher level evolutionary
process.We can better say that natural selectionprefersdaisy properties and patterns which
lead to self-regulating dynamics.

5.3.2 Gaia hyp othesis

In the beginningof the sixties, JamesLovelock wasworking at NASA that wanted to research
whether there was life on Mars. Lovelock wonderedwhat kind of tests would be possibleto
demonstrate the existenceof life. Of courseit would be possibleto check the surfaceof Mars
and to look whether someorganismslive there, but it might always be possiblethat at the
place where the spaceshipwould have landed no life forms existed, whereaslife forms might
exist at other parts of the planet.

Lovelock thought about examining processesthat reducethe entropy of the planet. This
can best be explained by looking at a beach. When we seaa sand-castleon the beach, we
can seea very orderedobject which must be constructed by life forms. On the other hand, if
there would not be any life forms on the beach, the surfaceof the sand on the beach would
be completely smooth and not contain any order. But how can this be measured,since not
all organismsmake sand castles. Lovelock thought about the atmospheric conditions of the
planet. If we consider our planet, the Earth, then we can seethat the constituents of the
atmosphereare very much out of equilibrium. For example, there is much too much oxygen
(O2) and much too little carbon dioxide (CO2). If we look at Venus, there is 98% carbon
dioxide and only a tiny bit oxygen in the atmosphere. On Mars, there is 95% carbon dioxide
and 0.13% oxygen. If we compare this to the Earth where there is 0.03% carbon dioxide
and 21% oxygen we can seea huge di�erence. Lovelock explained this di�erence due to the
existenceof self-regulatory mechanisms of the biosphereon Earth which he called Gaia. If
there would not be any life on Earth, the gaseswould react with each other and this would
lead to an equilibrium similar to that of Mars or Venus. However, sincelife forms regulate the
complete atmosphereit can continuously stay far out of equilibrium and make life possible.

Lovelock predicted that becausethe planet Mars hasan atmospherewhich is in a chemical
equilibrium, there cannot be any life on Mars, On the other hand, becausethe atmosphereon
Earth is far out of equilibrium there is a complex organising self-regulating force called Gaia
which makes life possible. Without this self regulation the amount of carbon dioxide may
becomemuch too large and heat up the planet, making life impossible. If one looks at the
mechanismsof Gaia, onecan seea complex web consistingof bacteria, algesand greenplants
which play a major role in transforming chemical substancesso that life can ourish. In this
way Gaia has somekind of metabolism, keepingits temperature constant like a human does.

5.3. DAISYW ORLD AND GAIA 85

For example if a human being is very cold, he beginsto shake, this causesmovements of the
body and muscleswhich makesthe body temperature higher. On the other hand if a human
being is warm, he will transpirate and thereby losebody heat. These mechanisms therefore
keepthe temperature of a human more or lessconstant, and without it (e.g. without feeling
cold when it is very cold) peoplewould have died a long time ago.

The name Gaia refers to the Greek goddessGaea, seeFigure 5.2. Since the whole web
of organismscreatesa self-regulating mechanism, one may speculate that this entire super-
organism is alive as well. This led to three forms of the Gaia-hypothesis:

� Co-ev olutionary Gaia is a weak form of the Gaia hypothesis. It says that life deter-
minesthe environment through a feedback loop betweenorganismsand the environment
which shape the evolution of both.

� Geoph ysiological Gaia is a strong form of the Gaia hypothesis. It says that the
Earth itself is a living organism and that life itself optimizes the physical and chemical
environment.

� Homeostatic Gaia is between these extremes. It says that the interaction between
organismsand the environment are dominated by mostly negative feedback loops and
somepositive feedback loops that stabilize the global environment.

Figure 5.2: The Greek GoddessGaea,or mother Earth.

There are many examplesto demonstrate the homeostatic processof Gaia. Someof these
are:

� The amount of oxygen. Lovelock demonstrated that Gaia worked to keep the amount
of oxygen high in the atmosphere,but not too high so that a �re would spreadtoo fast
and destroy too much.

� Temperature. The averageground temperature per year around the equator has been
between 10 and 20 degreesfor more than a billion years. The temperature on Mars
uctuates much more and is not suitable for life-forms (-53 degreesis much too cold).

� Carbon-dioxide. The stabilit y of the temperature on the Earth is partially regulated
by the amount of carbon dioxide in the atmosphere. The decreaseof heat absorption
of the Earth in someperiods is causedby a smaller amount of carbon dioxide which is
regulated by life-forms.

86 CHAPTER 5. CO-EVOLUTION

In Figure 5.3 we can seethat the temperature of the world has increasedduring the last
century . This may be causedby the large amount of burned fossil fuels during this period,
although di�erences in temperatures are also often causedby the changeof the Earth's orbit
around the sun. The Gaia hypothesisstates that mankind can not destroy life on Earth by
e.g. burning all fossil fuels, or using gaseswhich depletethe ozonelayer, sincethe metabolism
of the Earth will be much too strong and always someorganismswill survive. Even if we
would throw all nuclear weapons, we would not destroy all life forms and life will continue
albeit without human beings.

Figure 5.3: The northern hemisphereshows an increasing temperature during the last 100
years.

5.4 Recycling Net works

If there are multiple co-evolving organisms in an environment, they can also interact with
the available sourcessuch as chemical compounds. It is possiblethat theseorganismsrecycle
each other's waste so that all compounds remain available for the environment. Of course
someof these processeswill cost energy which is usually obtained by the sun through e.g.
photo-synthesis. Someother processeswill create free energy for an organism which it can
useto move or to reproduce.

An example of such a processis when we put plants and mammals together in an envi-
ronment and make a simpli�ed model:

� Plants transform CO2 into C and O2 molecules

� Mammals transform C and O2 into CO2 molecules

� External chemical reactions transform C and O2 into CO2

� Mammals can eat plants and thereby increasetheir masswith C moleculeswhich they
store.

5.4. RECYCLING NETW ORKS 87

We can implement this model in a cellular automaton consisting of plants, mammals,
and molecules. In Figure 5.4 we show the simple model in which we use a layered cellular
automaton, one layer of the CA consisting of the positions of moleculesand the other layer
consisting of plants and mammals. These two layers will interact on a cell by cell basis (for
simplicit y mammals have the samesizeas moleculeswhich is of coursevery unrealistic).

CO

CO

O O

CO

O

O
CO

CO

P P

P

P

P

P

P

M
M M

M

M

P

P

P
M

M

O

Figure 5.4: A layered cellular automaton for modelling a recycling network.

To make the CA model complete,we also needto model the amount of carbon (C) inside
plants and mammals. Therefore, Figure 5.4 doesnot show us the completepicture, there are
internal states of plants and mammals which model the amount of C molecules.

Furthermore, we needto make transition rules to let plants and mammals reproduce and
die. Mammals should also have the possibility to navigate on the grid and look for food.
We do not model these issueshere, although an implementation of these rules would be
straightforward. Here we are more interested to examine the feedback loops in the model
which will create a recycling network.

If we examinethis simple ecologyconsistingof plants, mammals, and chemical molecules,
we can seethat the moleculeswill be recycled under good conditions. If they would not be
recycled then the mammals would die since there would not be any O2 moleculesanymore
for them. We can seethe following dynamics in this model:

� Without plants, all C and O2 moleculeswill be transformed to CO2 molecules. This
will lead to a stable chemical equilibrium where no reactions can take place anymore,
resulting in the death of all mammals.

� If there are many plants, the number of O2 moleculeswould grow, leading to lessCO2

moleculesfor the plants, possibly also leading to the death of someplants. This will
causethe transformation of CO2 to C and O2 moleculesdone by the plants to become
much slower, and will give the external reactions and mammals the abilit y to create
more CO2 molecules,leading to a homeostatic equilibrium. If there would not be any
mammals it can be easily seenthat there cannot be too many plants, becausethe speed
of the external reactions can be very slow. Therefore, the existenceof mammals may
be pro�table for plants (although the mammals also eat the plants).

� If there are many plants and mammals, they will quickly recycle the molecules. This
leadsto a situation that evenwith few molecules,many plants and mammalscansurvive.

88 CHAPTER 5. CO-EVOLUTION

It should be noted that theseamounts of plants and mammals depend heavily on each
other, but natural processesare likely to create a good situation.

� If there are too many mammals, many plants will be eaten. If this causesfew plants
to survive, there will not be enough food for all mammals causing many mammals to
die. Therefore the growth and declineof the mammal population will not make it easily
possiblethat all plants will be eaten, so that mammalscausetheir own extinction (this
is similar to predator-prey dynamics).

Recyclingnetworks are very important for Gaia and co-evolutionary systems.For example
in Gaia many moleculesare recycledcausingalmost optimal conditions for life. One example
is the amount of salt in the seas. When this becomestoo large, almost all sea life-forms
will dry out and die. However, every year a lot of salt is moved from the land to the seas
which might easily lead to very large concentrations of salt in the sea. It has beenshown by
Lovelock that the seafunctions as a kind of salt pump keeping the concentration of salt at
levels which are advantageousfor life forms.

Also in rain-forests the plants and treescausea very e�cien t recycling of water molecules.
In this way, even with a small amount of H 2O moleculesmany plants and trees can survive.
Furthermore this recycling and co-evolutionary dynamicsalsocausesa pro�table temperature
for the plants and treeswhich makesit possibleto have rain-forests in hot countries that create
their own local redistribution of water.

5.5 Co-ev olution for Optimisation

Co-evolutionary processesare not only important for studying population dynamics in ecolo-
gies, but can also be used for making optimisation algorithms. We already studied genetic
algorithms which can be usedfor searching for optimal (or near-optimal) solutions for many
di�eren t problems for which exhaustive search would never work.

There is currently more and more research to use co-evolution to improve the abilit y of
geneticalgorithms in �nding solutions. The idea relieson evolving a population of individuals
to solve someproblem which can be described by a large set of tests for which an individual
should succeed.If the tests are not clearly speci�ed, they can alsobe evolved by evolutionary
algorithms. An example is to learn to play backgammon. If you want to be sure your
individual, which encodesfor a backgammon playing program, is very good in backgammon,
you want to test it against other programs. When the other programs are not available,
you can evolve theseprograms. The individual which plays best against thesetest-programs
(somecall them parasitessincethey are usedto kill individuals by determining their �tness),
may reproduce in the learner population. The tests which are good for evaluating learners
can also reproduce to create other tests. This is then a co-evolutionary processand makes
sensesincethere is no clear �tness function to specify what a good backgammon player is.

We will now examine a speci�c problem which requires a solution to be able to solve a
speci�c task such as sorting a seriesof numbers. In principle there are many instantiations
of the sorting problem, since we can vary the numbers, or the amount of numbers, or their
initial order, etc. So supposewe take N instantiations of the sorting problem and keepthese
�xed (lik e we would do with normal evolutionary computation). Now we can useas a �tness
function the amount of instantiations of the sorting task which are solved by an individual.
The problem of this is that it can cost a lot of time to evaluate all individuals on all N

5.5. CO-EVOLUTION FOR OPTIMISA TION 89

tasks if N is large. And if we take the number of instantiations too low, maybe we evolve
an individual which can sort theseinstantiations of the sorting problem, but performs poorly
on other sorting problems. Furthermore, it is possible that the best individuals always are
able to sort the same0.7N problems and never the others. In this casethere is not a good
gradient (search direction) for further evolution.

Co-ev olution for optimisation. A solution to these problems is to use co-evolution
with learners (the individuals which need to solve the task) and problem-instantiations (the
parasites or the tests). There are K tests which can be much smaller than the N tests we
neededfor a complete evaluation in normal evolution, sincetheseK tests also evolve. There
are also L learnerswhich are tested on the tests (can be all tests, but might also be a part of
all tests). The �tness of a learner is higher if it scoresbetter on the tests it is evaluated on.
This createsimproving learners,but how can we evolve the test-individuals?

An initial idea would be to make the �tness of a test higher when lesslearnerscan solve it
(we will later examinethe problemsof this method for assigningsuch �tness valuesto tests).
In this way, the learners and tests will co-evolve. The parasites make the tests harder and
harder and the individuals have to solve theseincreasingly di�cult tests.

A problem of the above �tness de�nition of tests is that it becomespossible that only
tests remain which cannot be solved by any learner. This leads to all learners having the
same�tness and would stop further evolution. Therefore it is much better to let the �tness
of a test depend on the way it can di�eren tiate betweendi�eren t learners. In this way when
a test is solved by all learnersor is not solved by any learner, the test is basically uselessat
the current stage of evolution and will get a low �tness so that it is not allowed to stay in
the population or to reproduce. If two tests make exactly the samedistinctions betweenall
learners,it is possibleto reducethe �tness of oneof them sincethey would essentially encode
the samedistinction.

Pareto-fron t in co-evolutionary GA. If we have a number of learnerswith their result
on all tests, we want to examinewhich learnersare allowed to reproducethemselves. For this
we will examine the Pareto-front of individuals which meansthe set of individuals which are
not dominated by any other individual. When a learner passesa number of tests and another
learner passesthe samenumber of tests, but also an additional one, it is not hard to seethat
the secondlearner performs strictly better than the �rst one. In this casewe say that the
�rst learner is dominated by the secondone. We can make this more formal by the following
de�nition, where f i (j) is the �tness of learner i on test j .

We de�ne:

dominates(k; i) = 8j f i (j) � f k (j) ^ 9l f i (l) < f k(l)

Sodominates(k,i) says that learner i is dominated by learner k. Now we de�ne the Pareto-
front asall learnerswhich arenot dominated by any other learner. Now weonly let the learners
in the Pareto-front reproduce and eliminate all other learnerswhich are dominated by some
other learner.

This Pareto-front optimisation is also a used and good method for multi-ob jective opti-
misation in which there are more criteria to evaluate an individual.

90 CHAPTER 5. CO-EVOLUTION

5.6 Conclusion

In this chapter we studied co-evolutionary processeswhich are important in natural evolution.
Wehaveseenthat insteadof Darwin's survival of the �ttest, there canbegroupsof cooperating
organismswhich struggle for the samespatial resources,but which may help each other to
survive at the sametime. We also looked at the methods that life-forms use to alter their
environment. There are many mechanisms which keep the environment pro�table for life to
sustain itself. Lovelock studied this complex web of many coupledprocessesfor the �rst time
and called this entire mechanism of a homeostatic Earth; Gaia. There are many examples
of Gaian processes,and in this chapter we only examined a few, but important ones. Gaian
homeostasisalso relies on recycling networks in which chemical compounds are transformed
through a sequenceof di�eren t organismsso that resourcesnever becomedepleted. This is
very important, since if somecompound would get lost, the whole recycling network might
starve since their required resourcesare not available. Finally we have examined how co-
evolution can be used in evolutionary computation to make the search for optimal solutions
di�eren t and for someproblemsmoresuccessfulthan the search processof normal evolutionary
algorithms. Here learners and tests evolve together to allow learners to becomebetter in
solving the tests, and the tests to create harder and harder problems while still being able to
di�eren tiate betweenlearners.

It is important that we look at the co-evolutionary mechanismswhen we usethe Earth's
resourcesand kill organisms. Particular organisms may play very important roles to keep
the homeostatic equilibrium of the Earth or of a local environmental niche. Sincewe cannot
study a single organism alone, apart from its environment, we again needa holistic approach
in which all elements are studied in a total perspective.

Chapter 6

Unsup ervised Learning and Self
Organising Net works

Unsupervisedlearning is oneof the three forms of machine learning; supervised,unsupervised,
and reinforcement learning. The special aspect of unsupervisedlearning is that there are only
input (sensory)signalsand no desiredoutputs or evaluations of actions to specify an optimal
behavior. In unsupervised learning it is more important to deal with input signals and to
form a meaningful representation of these. E.g. if we look at di�eren t objects, we can cluster
objects which look similar together. This clustering does not take into account what the
label of an object is, and therefore treesand plants may be grouped together in unsupervised
learning, whereasin supervisedlearning we may want to map inputs to the label plant or tree.
It is also possiblethat particular plants form their own cluster (or group) such as cactuses,
this grouping is only basedon their input representation (e.g. their visual input), and not
based on any a-priori speci�ed target concept which we want to learn. We may therefore
start to think that unsupervisedlearning is lessimportant than supervisedlearning, but this
is not true sincethey have di�eren t objectives. Unsupervisedlearning has an important task
in preprocessingthe sometimeshigh-dimensional input and can thereforebe usedto make the
supervised learning task simpler. Furthermore, supervised learning always requires labelled
data, but labelleddata is much harder obtained than unlabelleddata. Thereforeunsupervised
learning can be applied continuously without the needfor a teacher. This is a big advantage,
since it makescontinual life-long learning possible.

The secondtopic in this chapter is self-organisingnetworks or often called self-organising
maps(SOMs). TheseSOMsare neural networks and can be applied for unsupervisedlearning
purposesand can be easily extended for supervisedand reinforcement learning problems. In
principle a SOM consistsof a number of neuronsthat havea position in the input space.Every
time a new input arrives, the SOM computes distancesbetween the input and all neurons,
and thereby activates those neurons which are closest to the input. This idea of looking at
similarities is a very general idea for generalization, since we usually consider objects that
look alike (have a small distanceaccordingto somedistancemeasure)to be of the samegroup
of objects. To train the SOM, activated neuronsare brought closer to the generatedinputs,
in order to minimize the distance between generatedinputs and activated neurons. In this
way a representation of the complete set of inputs is formed in which the distance between
generatedinputs and activated neuronsis slowly minimized. By using SOMs in this way, we
can construct a lower dimensional representation of a continuous, possibly high-dimensional

91

92CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

input space. E.g. if we consider faceswith di�eren t orientations as input, the input-space is
high-dimensional, but activated neurons in the SOM essentially represent the orientation of
the facewhich is of much smaller dimensionality.

6.1 Unsup ervised Learning

In unsupervisedlearning the program receivesat each time-step an input pattern x p which is
not associated to a target concept. Therefore all learned information must be obtained from
the input patterns alone. Possibleusesof unsupervisedlearning are:

� Clustering: The input patterns are grouped into clusters where input patterns inside a
cluster are similar and input patterns betweenclusters are dissimilar according to some
distance measure.

� Vector quantisation: A continuous input-space is discretized.

� Dimensionality reduction: The input-space is projected to a feature space of lower
dimensionality while still containing most information about the input patterns.

� Feature extraction: particular characteristic featuresare obtained from input patterns.

6.1.1 K-means clustering

One well-known clustering method is called K-means clustering. K-means clustering usesK
prototypeswhich will form K clusters of all input patterns. In principle K-means clustering
is a batch learning method, which meansthat all the data should be collectedbeforeand the
algorithm is executedonetime on all this data. Running the algorithm on this data createsa
speci�c set of clusters. If another input pattern is collected, the algorithm has to be executed
againon all data exampleswhich thereforecancost more time than online clustering methods.

K-means clustering is usually executed on input patterns consisting of continuous at-
tributes, although it can be extended on patterns partly consisting of nominal or ordinal
attributes.

The K-means algorithm uses K prototype vectors: w1; : : : ; wK where each prototype
vector is an element of < N where N is the number of attributes describing an input pattern.
Each prototype vector wi represents a cluster C i which is a set of input patterns which are
element of that cluster. So the algorithm partitions the data in the K clusters. We assume
that there are n input patterns (examples)denoted as: x1; : : : ; xn .

The algorithm works as follows:

� Initialize the weight-vectors w1; : : : ; wK .

� Repeat the following stepsuntil the clusters do not changeanymore

1. Assign all examplesx1; : : : ; xn to one of the clusters. This is done as follows:

An example x i is an element of cluster C j if the prototype vector wj is closer to
the input pattern x i than all other prototype vectors:

d(wj ; x i) � d(wl ; x i) For all l 6= j

6.2. COMPETITIVE LEARNING 93

The distanced(x; y) betweentwo vectors is computed using the Euclidean distance
measure:

d(x; y) =
s X

i

(x i � yi)2

In casethe distancesto multiple prototype vectors are exactly equal, the example
can be assignedto a random one of these.

2. Set the prototype vector to the center of all input patterns in the corresponding
cluster. So for each cluster C j we compute:

wj
i =

P
k2 C j xk

i

jC j j

Where jCj denotesthe number of elements in the set C.

An example of K-means clustering. Supposewe have four examplesconsisting of
two continuous attributes. The examplesare: (1,2); (1,4); (2,3); (3,5).

Now we want to cluster these examplesusing K = 2 clusters. We �rst initialize these
clusters, suppose that w1 = (1; 1) and w2 = (3; 3). Now we can seethat if we assign the
examplesto the closestprototypes,we get the following assignment:
(1; 2) ! 1
(1; 4) ! 2
(2; 3) ! 2
(3; 5) ! 2
Now we compute the new prototype vectors and obtain: w1 = (1; 2) and w2 = (2; 4). We
have to repeat the processto seewhether the cluster stay equal after the prototype vectors
have changed. If we repeat the assignment processto clusters, we can seethat the examples
stay in the sameclusters, and therefore we can stop (continuing would not changeanything).

6.2 Comp etitiv e Learning

K-means clustering works on a given collection of data and when the data changes,the algo-
rithm hasto be executedagain on all examples.There alsoexist a number of online clustering
approacheswhich are basedon arti�cial neural network models. Competitiv e learning is one
of thesemethods and partitions the data into speci�c clusters by iterating an update rule a
singletime each time a new input pattern arrives. Therefore theseonline competitiv e learning
algorithms are more suitable for changing environments, since they can change the clusters
online according to the changing distributions of input patterns. Again only input patterns
xp are given to the system. The system consistsof a particular neural network as a repre-
sentation of the clustering. The network propagatesthe input to the top where an output is
given which tells us in which cluster an input pattern falls. Like in the K-means algorithm,
the number of clusters should be given to the systemand usually stays �xed during learning.

In a simple competitiv e learning network all inputs are connectedto all outputs repre-
senting the clusters, seeFigure 6.1. The inputs describe a speci�c input pattern and when
given theseinputs, the competitiv e learning network can easily compute in which cluster the
input falls.

94CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

o
iw

input i

output o

Figure 6.1: In a competitiv e network all input units are connectedto output units through a
set of weights.

6.2.1 Normalised comp etitiv e learning

There are two versions of the competitiv e learning algorithm, the normalised and unnor-
malisedversions. We �rst examinethe normalisedversionwhich normalisesall weight vectors
and input vectors to a length of 1. Normalising a vector v meansthat its norm jjvjjj will be
one. The norm of a vector is computed as:

jjvjj =
q

(v2
1 + v2

2 + : : : + v2
N =

vu
u
t

NX

i =1

v2
i

Basically the norm of a vector is its Euclidean distanceto the origin of the coordinate system.
This origin is a vector with only 0's. Normalising a vector is then done by dividing a vector
by its norm:

xnor m =
x

kxk

Soif all vectorsare normalised,all weight vectors (each output unit hasoneweight vector
which determines how it will be activated by an input pattern) will have length 1, which
means that they all fall on a circle when there are 2 dimensions (N = 2). Therefore, the
weights can only move on the circle.

So, how do we adapt the weight vectors? Just as in the K-means algorithm, we initial-
ize the weight vectors for the chosen number of clusters (represented by as many output
units). Then, the normalised competitiv e learning algorithm performs the following steps
after receiving an input pattern:

� Each output unit o computesits activation yo by the dot- or inner-product:

yo =
X

i

wo
i x i = wox

� Then the output neuron k with the highest activation will be selectedas the winning
neuron:

8o 6= k : yo � yk

6.2. COMPETITIVE LEARNING 95

� Finally, the weights of the winning neuron k will be updated by the following learning
rule:

wk (t + 1) =
wk (t) + (x(t) � wk (t))

kwk (t) + (x(t) � wk (t))k

The divisor in the fraction makessure that the weight vector remains normalised.

The mechanism of normalised competitiv e learning causesthe winning weight-vector to
turn towards the input pattern. This causesweight-vectors to point to regions where there
are many inputs, seeFigure 6.2.

w

w

w

1

3

2

Figure 6.2: In a normalised competitiv e network, the weight-vectors will start to point to
clusters with many inputs.

When we would not use normalised weight vectors, there would be a problem with this
algorithm which is illustrated in Figure 6.3. Here it is seenthat if weight-vectors are di�eren t
in size, larger vectors would win against smaller weight vectors, sincetheir dot-product with
input vectors is larger, although their (Euclidean) distance to an example is larger.

1

2

1

2

Winner = 1Winner = 1

w
x

w

w

x
w

Figure 6.3: (A) With normalised weight vectors the algorithm works appropriate. (B) When
weight vectors would not be normalised, we would get undesirablee�ects, sincelarger weight
vectors would start to win against small weight vectors.

96CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

6.2.2 Unnormalised comp etitiv e learning

Instead of using the dot-product between two vectors to determine the winner for which we
need normalised vectors, we can also use the Euclidean distance to determine the winning
neuron. Then we do not need normalised weight vectors anymore, but we will deal with
unnormalised ones. So in this caseall weight-vectors are again randomly initialised and we
determine the winner with the Euclidean distance:

Winner k : kwk � xk � kwo � xk 8o:

Soherewe take the norm of the di�erence betweentwo vectors,which is the sameastaking the
Euclidean distanced(wk ; x). The neuron with the smallestdistancewill win the competition.
If all weight-vectorsare normalised, this will give us the sameresults ascomputing the winner
with the dot-product, but if the vectors are not normalised di�eren t results will be obtained.

After determining the winning neuron for an input vector, we move that neuron closerto
the input vector using the following learning rule:

wk (t + 1) = wk (t) + (x(t) � wk (t)) (6.1)

where 0 � � 1 is a learning rate which determines how much the neuron will move to
the pattern (if = 1 the point will jump to the input vector, and therefore when continuing
learning there will be a lot of jumping around. When the learning rate decreaseswhile more
updates have beendone, a real \average" of the represented input patterns can be learned).

Example unnormalised comp etitiv e learning. Supposewe start with K = 2 neurons
with initialized weight-vectors: w1 = (1; 1) and w2 = (3; 2). Now we receive the following
four examples:
x1 = (1; 2)
x2 = (2; 5)
x3 = (3; 4)
x4 = (2; 3)
When we set the learning rate to 0.5, the following updates will be made:
On x1 = (1; 2) ! d(w1; x1) = 1; d(w2; x1) = 2. Therefore: Winner w1 = (1; 1). Application
of the update rule gives:
w1 = (1; 1) + 0:5((1; 2) � (1; 1)) = (1; 1:5).
x2 = (2; 5) ! d(w1; x2) =

p
13:25; d(w2; x2) =

p
10. Therefore: Winner w2 = (3; 2).

Application of the update rule gives:
w2 = (3; 2) + 0:5((2; 5) � (3; 2)) = (2:5; 3:5).
x3 = (3; 4) ! d(w1; x3) =

p
10:25; d(w2; x3) =

p
0:5. Therefore: Winner w2 = (2:5; 3:5)

Application of the update rule gives:
w2 = (2:5; 3:5) + 0:5((3; 4) � (2:5; 3:5)) = (2:75; 3:75).
Now try it yourself on the fourth example.

Initialisation

A problem of the recursive (online) clustering methods which also holds for the K-means
clustering algorithm is a possiblewrong initialisation of the weight vectors of the neurons.
Therefore it can happen that someneuron never becomesa winner and thereforenever learns.
In that casewe are basically dealing with a dead (or silent) neuron and have one cluster less
in our algorithm. To deal with this problem, there are two methods:

6.2. COMPETITIVE LEARNING 97

� Initialise a neuron on someinput pattern

� Use \leaky learning". For this we let all neurons adapt on all examples,although we
usea very small learning rate for this adaption so that this will only make a di�erence
in the long run. The leaky learning rule adapts all neurons (except for the winning
neuron) to the current examplewith a very small learning rate 0 << :

wl (t + 1) = wl (t) + 0(x(t) � wl (t)) ; 8l 6= k

Minimising the cost function

The goal of a clustering method is to obtain a clustering in which the similarities between
inputs of the samecluster aremuch larger than similarities betweeninputs of di�eren t clusters.
The similarit y between two inputs can be computed using the inverse of the (Euclidean)
distance between the two inputs. Therefore if we minimize the distancesbetween a neuron
and all the examplesin the cluster, we will maximize the similarities betweenthe inputs in a
cluster.

A commonmeasureto compute the quality of a �nal obtained set of clusterson a number
of input patterns is to usethe following quadratic cost function E:

E =
1
2

X

p
kwk � xpk2 =

1
2

X

p

X

i

(wk
i � xp

i)2

In which k is the winning neuron on input pattern xp.
Now wecanprove that competitiv e learning searchesfor the minimum of this cost function

by following the negative gradient of this cost function.
Pro of that the cost function is minimized. The cost-function for pattern x p:

E p =
1
2

X

i

(wk
i � xp

i)2

in which k is the winning neuron is minimized by Equation 6.1.
We �rst examinehow the weight-vectors should be adjusted to minimize the cost-function

E p on pattern xp:

� pwo
i = �

@E p

@wo
i

Now we have as the partial derivative of E p to the weight-vectors:

@E p

@wo
i

= wo
i � xp

i ; If unit o wins

= 0; else (6.2)

From this follows (for winner o):

� pwo
i = (xp

i � wo
i)

Thus we demonstrated that the cost-function is minimized by repetitiv e weight-vector up-
dates. Somenotes on this are:

98CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

� If we continue the updating processwith a �xed learning rate, the weight-vectors will
always make some update step, and therefore we do not obtain a stable clustering.
To obtain a stable clustering we should decreasethe learning-rate after each update
according to the conditions of stochastic approximation: (1)

P 1
t=1 t = 1 and (2)

P 1
t=1 2

t < 1 . The �rst condition makessure that the weight-vectors are able to move
an arbitrarily long distance to their �nal cluster-point, and the secondcondition makes
surethat the varianceof updatesgoesto zerowhich meansthat �nally a stable state will
be obtained. A possibleway of setting the learning rate which respect theseconditions
is: t = 1

t .

� It is important to note that the cost-function is likely to contain local minima. Therefore
the algorithm doesnot always obtain the global minimum of the cost-function. Although
the algorithm will converge (given the conditions on the learning-rate), convergenceto
a global minimum is not guaranteed. Better results can therefore be obtained if we
executethe algorithm multiple times starting with di�eren t initial weight-vectors.

� Choosing the number of cluster-points (or neurons) is an art and not a science. Of
course the minimum of the cost-function can be obtained if we use as many cluster-
point as input-patterns and set all the cluster-points on a di�eren t input-pattern. This
would result in a cost of 0. However, using as many cluster-points as input-patterns
doesnot make any sensesincewe want to obtain an abstraction of the input data. It is
also logical that increasing K leads to a smaller minimal cost, so how should we then
chooseK ? Often we need to trade o� the complexity of the clustering (the number of
usedcluster-points) and the obtained error-function. Thus, we like to minimize a new
cost-function:

E f = E + �K

where the user-de�ned parameter � trades o� complexity versusclustering cost. E f can
then be minimized by running the algorithm with di�eren t K .

6.2.3 Vector quan tisation

Another important useof competitiv e learning is vector quantisation. In vector quantisation
we divide the whole input spaceinto a number of non-overlapping subspaces.The di�erence
with clustering is that we are not so much interested in the clustersof similar input-patterns,
but more in the quantisation of the whole input space. Vector quantisation usesthe same
(unnormalised) competitiv e learning algorithm asdescribedbefore,but wewill �nally examine
the subspacesand not the clusters. It should be noted that the distribution of input-patterns
is respectedby competitiv e learning; more inputs in a region lead to more cluster-points. An
exampleof an obtained vector quantisation is shown in Figure 6.4.

Vector quan tisation combined with sup ervised learning

Vector quantisation canalsobeusedin a preprocessingphasefor supervisedlearning purposes.
In this case,each neuron correspondsto someoutput value which is the averageof the output
values for all input-patterns for which this neuron wins the competition. The output-values
for multiple outputs belongingto someneuron that represents a subspaceof the input spaceis
usually stored in the weights from this neuron to the output neurons. Thus we can denotethe
value for output o which is computed when neuron h is activated as wh

o . If there is only one

6.2. COMPETITIVE LEARNING 99

Figure 6.4: A �nal set of clusters (the big black dots) corresponds with a quantisation of the
input spaceinto subspaces.

output, we sometimeswrite yh to indicate that this value is the output of neuron h. Figure
6.5 shows a supervised vector quantisation network in which vector quantisation in the �rst
layer is combined with supervised learning in the secondlayer.

Vector Feed
Forward

Y

oi h
w wi oh

h

Quantisation

Figure 6.5: A supervisedvector quantisation network. First the input is mappedby a compet-
itiv e network to a single activated internal neuron. Then this neuron is usedfor determining
the output of the architecture.

For learning this network we can �rst perform the (unsupervised) vector quantisation
stepswith the unnormalised vector quantisation algorithm and then perform the supervised
learning steps, but is is also possibleto perform these two updates at the sametime. The
supervised learning step can simply be done with a simple version of the delta-rule. The
complete algorithm for supervisedvector quantisation looks as follows:

� Present the network with input x and target value D = f (x)

� Apply the unsupervised quantisation step: determine the distance of x to the (input)
weight-vector of each neuron and determine the winner k, then update the (input)
weight-vector of neuron k with the unsupervisedcompetitiv e learning rule (Eq. 6.1).

� Apply the supervisedapproximation step, for all outputs o do:

wk
o(t + 1) = wk

o(t) + � (Do � wk
o(t))

100CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

This is a simple versionof the delta-rule where � is the learning-rate and k the winning
neuron.

This algorithm can work well for smooth functions, but may have problemswith uctuat-
ing functions. The reasonis that inside a subspacein which a single neuron is activated, the
generatednetwork output is always the same. This meansthat large uctuations will cause
problems and can only be approximated well when enough neurons are used. For smooth
functions, however, the target values inside a subspaceare quite similar so that the approxi-
mation can be quite good. Given a vector quantisation and input-patterns with their target
outputs, we can compute to which valueswk

o the network converges.First we de�ne a function
g(x; k) as:

g(x; k) = 1; If k is the winner

= 0; Else

Now it can be shown that the supervisedvector quantisation learning rule convergesto:

wh
o =

R
< n Do(x)g(x; h)p(x)dx

R
< n g(x; h)p(x)dx

whereDo(x) is the desiredoutput valueof output o on input-pattern x and p(x) is a probabilit y
density function which models the probabilities of receiving di�eren t inputs. Thus, each
weight from neuron h to output o convergesto the averagetarget output value for output o
for all the casesthat neuron h wins.

Example of sup ervised vector quan tisation. The winning neuronmovesaccordingto
the sameupdate rule as normalised competitiv e learning. Sincethere is only a single output
in the examplebelow, we will write yk to denote the output value of neuron k. The value yk

for the winning neuron wk is adapted after each exampleby the following update rule:

yk = yk + � (D p � yk)

Supposewe start again with 2 cluster-points and set their output-valuesto 0 :
w1 = (1; 1); y1 = 0 and w2 = (3; 2); y2 = 0.
Now we receive the following learning examples:
(x1 ! D 1) = (1; 2 ! 3)
(x2 ! D 2) = (2; 5 ! 7)
(x3 ! D 3) = (3; 4 ! 7)
(x4 ! D 4) = (2; 3 ! 5)

Supposewe set the learning-rate to 0.5 and the learning rate for the supervisedlearning
step � = 0:5. Now if we update on the four learning examples, the following updates are
made:
x1 = (1; 2) ! d(w1; x1) = 1; d(w2; x1) = 2. Thus: Winner w1 = (1; 1). Application of the
update rule gives:
w1 = (1; 1) + 0:5((1; 2) � (1; 1)) = (1; 1:5).
This is just the sameas in the exampleof unnormalised competitiv e learning before.
The only di�erence in computations is that we also adjust the output valuesof the winning
neuron:
y1 = 0 + 0:5(3 � 0) = 1:5

6.3. LEARNING VECTOR QUANTISA TION (LVQ) 101

Sincethe weight-vectors wi are adjusted in the sameway as in the exampleof competitiv e
learning, we only show the updates of the neurons' output values:
x2 = (2; 5). Winner is neuron 2.
y2 = 0 + 0:5(7 � 0) = 3:5.
x3 = (3; 4). Winner is neuron 2.
y2 = 3:5 + 0:5(7 � 3:5) = 5:25.

Now try it yourself on the fourth example.

6.3 Learning Vector Quan tisation (LV Q)

Learning vector quantisation is basically a supervised learning algorithm, since the neurons
have labels associated to them and therefore can classify inputs into a �xed number of cat-
egories. Using the training examples,which in this caseconsist of an input pattern and an
associated discrete label (or output), LVQ learns decisionboundarieswhich partition the in-
put spaceinto subspaceswith an associated label. The goal is that each input patterns falls
into a subspacewith the sameassociated label.

The algorithm looks as follows:

� Initialize the weight-vectors of a number of neurons and label each neuron o with a
discrete classlabel yo

� Present a training example (xp; dp)

� Usethe distancemeasurebetweenthe weight-vectorsof the neuronsand the input vector
xp to compute the winning neuron k1 and the secondclosestneuron k2:

kxp � wk1 k < kxp � wk2 k < kxp � wi k 8i 6= k1; k2

� The labels yk1 and yk2 are comparedto the desiredlabel of the exampledp from which
an update is computed

The update rule causesthe winning neuron to move closerto the input examplewhen its
label corresponds to the desired label for that example. In casethe labels are not the same,
the algorithm looks at the second-best neuron and when its label is correct it is moved closer
and in this casethe winning neuron is moved away from the input example. Formally, the
update rules look as follows:

� If yk1 = dp: Apply the weight update rule for k1:

wk1 (t + 1) = wk1 (t) + (xp � wk1 (t))

� Else, if yk1 6= dp and yk2 = dp: Apply the weight update rule for k2:

wk2 (t + 1) = wk2 (t) + (xp � wk2 (t))

and move the winning neuron away from the example:

wk1 (t + 1) = wk1 (t) � (xp � wk1 (t))

102CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

The algorithm does not perform any update if the labels of the winning and second-best
neurons do not agreewith the label of the example. One could make an algorithm which
would move the closestneuron with the correct label to the example (and possibly move all
others away from it), but this is not done in LVQ. A possibleproblem of this would be strong
oscillation of the weight-vectors of the neuronsdue to noise.

LV Q example. In LVQ, we useK cluster-points (neurons) with a labelled output. We
compute the closest(winning) neuron wk1 and the secondclosestneuron wk2 for each training
exampleand apply the weight update rules.

Supposewe start with 2 cluster-points: w1 = (1; 1) with label y1 = A, and w2 = (3; 2)
with label y2 = B . We set the learning rate to 0.5.

Now we receive the following training examples:
(x1 ! D 1) = (1; 2 ! A)
(x2 ! D 2) = (2; 5 ! B)
(x3 ! D 3) = (3; 4 ! A)
(x4 ! D 4) = (2; 3 ! B)

Then we get the following update rules: For (1; 2 ! A), the winner is neuron 1 and the second
best is neuron 2. The label of neuron 1 y1 = D 1. Therefore neuron 1 is moved closer to the
example:
w1 = (1; 1) + 0:5((1; 2) � (1; 1)) = (1; 1:5).

x2 = (2; 5). Winner is neuron 2. Secondclosest is neuron 1. The label of neuron 2 is the
sameas the label D 2, therefore neuron 2 is moved closer to the example:
w2 = (3; 2) + 0:5((2; 5) � (3; 2)) = (2:5; 3:5).

x3 = (3; 4). Winner is neuron 2. Secondclosestis neuron 1. The label of neuron 2 is not the
sameas the label D 3. The label of neuron 1 is the sameas D 3. Therefore we move neuron 1
closer to the example,and neuron 2 away from the example:
w1 = (1; 1:5) + 0:5((3; 4) � (1; 1:5)) = (2; 2:75).
w2 = (2:5; 3:5) � 0:5((3; 4) � (2:5; 3:5)) = (2:25; 3:25).

Now try it yourself on the fourth example. An example partitioning of a 2-dimensional
input space is shown in Figure 6.6. The structure of the decision boundaries of such a
partitioning is often called a Voronoi diagram.

A

B

C

A

D

Figure 6.6: An exampleof a partitioning created by LVQ.

6.4. KOHONEN NETW ORKS 103

6.4 Kohonen Net works

Kohonen networks or Kohonen maps are self-organisingmaps (SOMs) in which the neurons
are ordered in a speci�c structure such as a 2-dimensional grid. This ordering or structure
determineswhich neuronsare neighbours. Input patterns which are lying closetogether are
mapped to neurons in the structure S which are closetogether (the sameneuron or neigh-
bouring neurons). The learning algorithm causesthe structure of the neuronsto get a speci�c
shape which reects the underlying (low dimensional) manifold of the input patterns received
by the algorithm. The structure of a Kohonen network is determined before the learning
process,and often a structure is usedwhich has lower dimensionality than the dimensionality
of the input space.This is very useful to visualisethe structure of inputs which fall on a sub-
spaceof the input space,seeFigure 6.7. The structure usedhere is a 2-dimensionalstructure
consisting of 4 � 4 neurons.

Figure 6.7: In this example, the 2-dimensional4� 4 structure of the Kohonen network covers
a manifold of lower dimensionality than the input space.

6.4.1 Kohonen net work learning algorithm

Again we compute the winning neuron for an incoming input pattern using somedistance
measuresuch as the Euclidean distance. Instead of only updating the winning neuron, we
alsoupdate the neighbours of the winning neuron for which we usea neighbourhood function
g(o;k) betweentwo neurons. Herewe de�ne g(k; k) = 1 and with a longer separationdistance
in the structure we decreasethe value of the neighbourhood function g(o;k). So the update
is done using:

wo(t + 1) = wo(t) + g(o;k)(x(t) � wo(t)) 8o 2 S:

Where k is the winning neuron and we have to de�ne a function g(o;k). For examplewe can
usea Gaussianfunction de�ned as:

g(o;k) = exp(� distanceS(o;k))

Where distanceS(o;k) computes the distance in the structure S between two neurons. This
distance is the minimal number of edgeswhich have to be traversedin the structure to arrive
at neuron o from winning neuron k.

By this collective learning method input patterns which lie closetogether are mapped to
neurons which are close together in the structure. In this way the topology which can be

104CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

found in the input signals is represented in the learned Kohonen network. Figure 6.8 shows
an example of the learning processin which input patterns are drawn randomly from the
2-dimensionalsubspace.

Iteration 0 Iteration 600 Iteration 1900

Figure 6.8: The Kohonen network learns a representation which preserves the structure of
the input patterns.

If the intrinsic dimensionality of the structure S is smaller than the dimensionality of the
input space,the neuronsof the network are \folded" in the input space.This can be seenin
Figure 6.9.

Figure 6.9: If the dimensionality of the structure is smaller than the manifold from which
input patterns are generated,the resulting Kohonen map is folded in the input space. Here
this folding is shown for a 1-dimensionalstructure in a 2-dimensional input-space.

Example Kohonen net work. Suppose we use a Kohonen network with 3 neurons
connected in a line (thus 1-dimensional) structure. We use a neighbourhood relation as
follows: g(k; k) = 1 and g(h; k) = 0:5 if h and k are direct neighbours on the line, else
g(h; k) = 0.

Again we always compute the winning neuron on each input pattern, and then we update
all neuronsas follows:

wi = wi + g(i; k)(xp � wi)

We initialise: w1 = (1; 1), w2 = (3; 2), w3 = (2; 4). We set = 0:5. Now we obtain the
examples:
x1 = (1; 2)
x2 = (2; 5)
x3 = (3; 4)
x4 = (2; 3)

6.5. DISCUSSION 105

On x1 = (1; 2) neuron 1 wins the competition. This results in the update:
w1 = (1; 1) + 0:5 � 1((1; 2) � (1; 1)) = (1; 1:5).
We also have to update the neighbours. g(2; 1) = 0:5 en g(3; 1) = 0. So we update neuron 2:
w2 = (3; 2) + 0:5 � 0:5((1; 2) � (3; 2)) = (2:5; 2).
On x2 = (2; 5) neuron 3 wins. This results in the update:
w3 = (2; 4) + 0:5 � 1((2; 5) � (2; 4)) = (2; 4:5).
We also have to update the neighbours. g(2; 3) = 0:5 en g(1; 3) = 0. So we update neuron 2:
w2 = (2:5; 2) + 0:5 � 0:5((2; 5) � (2:5; 2)) = (2:375; 2:75).
On x3 = (3; 4) neuron 3 wins. This results in the update:
w3 = (2; 4:5) + 0:5 � 1((3; 4) � (2; 4:5)) = (2:5; 4:25).
We also have to update the neighbours. Again g(2; 3) = 0:5 en g(1; 3) = 0. So we update
neuron 2:
w2 = (2:375; 2:75) + 0:5 � 0:5((3; 4) � (2:375; 2:75)) = (2:53; 3:06).

Try it yourself on the last example.

6.4.2 Supervised learning in Kohonen net works

A Kohonen network can also be usedfor supervisedlearning. For this we useoutputs wh
o for

each neuron h and each output o. In casethere is only a single output we can denote the
output of a neuron h as yh. To determine the overall output on a training example, we use
the outputs of all activated neurons (neurons are activated if g(h; k) > 0. So we obtain the
output yo by the following formula which weighsthe neuron outputs by their activations:

yo =
P

h2 S g(h; k)wh
oP

h2 S g(h; k)

This is basically a weighted sum and causessmoother functions when larger neighbourhood
function valuesare used.

Now each neuron can learn output valuesin two di�eren t ways. The �rst possibility is to
let neuronslearn the averageoutput weighted by its activation using:

wh
o = wh

o + � (Do � wh
o)

g(h; k)
P

i 2 S g(i; k)

Where Do is the target value for output o.
We can also let each neuron learn to reducethe overall error of the network. In this case

neuronscollaborate more. The following learning rule doesthis:

wh
o = wh

o + � (Do � yo)
g(h; k)

P
i 2 S g(i; k)

Furthermore for supervisedlearning in Kohonen networks, the unsupervisedstepscan be
changedsothat neuronswith small errors are moved faster to the input pattern than neurons
with larger errors.

6.5 Discussion

In this chapter we examinedunsupervisedlearning methods which can be usedfor clustering
data, vector quantisation, dimensionality reduction, and feature extraction. The K-means

106CHAPTER 6. UNSUPERVISED LEARNING AND SELF ORGANISING NETW ORKS

algorithm is a well-known method for clustering, but is a batch learning method meaning
that it has to be executedon all input patterns. In competitiv e learning, updates are made
online. The neurons compete for becoming activated basedon their distance to the input
pattern. Unsupervisedlearning methods can alsobe extendedwith additional output weights
to make supervisedlearning possible. In this casewe can simply usethe delta rule for learning
outputs of each neuron. The shown algorithms are well able in dealingwith continuousinputs,
for discrete inputs someadaptions may be necessaryto improve the algorithms. All learning
algorithms respect the locality principle; inputs which lie close together in the input space
are grouped together. For supervised learning, the shown algorithms can be very suitable if
the function is smooth. By using additional neurons a good approximation of a uctuating
target function can be learned,but �nding the winning neuron becomesslow if many neurons
are used.

Bibliograph y

[Dawkins, 1976] Dawkins, R. (1976). The Sel�sh Gene. Oxford University Press.

[Dorigo and Gambardella, 1997] Dorigo, M. and Gambardella, L. M. (1997). Ant colony
system: A cooperative learning approach to the traveling salesmanproblem. Evolutionary
Computation, 1(1):53{66.

[Dorigo et al., 1996] Dorigo, M., Maniezzo, V., and Colorni, A. (1996). The ant system:
Optimization by a colony of cooperating agents. IEEE Transactionson Systems,Man, and
Cybernetics-Part B, 26(1):29{41.

[Glover and Laguna, 1997] Glover, F. and Laguna, M. (1997). TabuSearch. Kluwer Academic
Publishers.

[Merz and Freisleben, 1999] Merz, P. and Freisleben, B. (1999). A comparison of memetic
algorithms, tabu search, and ant coloniesfor the quadratic assignment problem. In et al.,
P. J. A., editor, Proceedings of the Congresson Evolutionary Computation, volume 3, pages
2063{2070.

[Radcli�e and Surry, 1994] Radcli�e, N. J. and Surry, P. D. (1994). Formal memetic algo-
rithms. In Evolutionary Computing, AISB Workshop, pages1{16.

107

