
FP 2009-2010, Eindtoets
2010, Mar 17 , 14.00-17.00, EDUC Gamma

Hand in the separate sheet with the 5 solutions. Don’t forget to fill out your name! Do not forget
necessary parentheses! Each question has a value of 2 points (total 10).

1. Induction Proof
Prove by induction that foldr f e (reverse xs) = foldl (flip f) e xs.

2. Huffman Trees

(a) Give the data type definition for a Huffman tree, i.e. Huff a which encodes for values of
some type a.

(b) Write a function mkHuff ::Ord a ⇒ [(a,Weight)] → Huff a which constructs the Huffman
tree that is used in the encoding for the argument of mkHuff . Note that type Weight =
Int .

3. Generalised Trees were defined as:

data GTree f a = GLeaf | GNode a (f (GTree f a))

If we ask Hoogle what it knows about f b → [b] it tells us something about the module
Data.Foldable:

class Foldable t where
... -- left out and not important for this exercise
foldr :: (a → b → b) → b → t a → b -- generalise the function foldr

toList :: Foldable t ⇒ t b → [b] -- Lists the elements of a structure.

(a) Define the type of a function enumPrefix which flattens a generalised tree (i.e. produces
a list of all the a values occurring in the generalised tree instance) in such a way that a
value in a node precedes all the node values of the children of that node (hence we return
the prefix order)

(b) Give the definition for instance Foldable [] and define the function toList .

(c) Give an (efficient) definition of enumPrefix , using an accumulating parameter or equivalent
approach.

4. Enumerating Trees In the context of the following definitions:

data Tree = Leaf | Bin Tree Tree

h Leaf = 0
h (Bin l r) = 1 + max (h l) (h r)

we call h t the height of a tree t .

(a) Assuming that a function ex :: Int → [Tree] exists which returns all trees with height
exactly equal to the parameter, write a function lt :: Int → [Tree] that returns all trees
with height less than its parameter.

(b) Use the function lt to define the function ex .

(c) If you have not done so yet write an efficient version of the function ex which has costs
which are linear in the size of the result (hint: tuple the computations of lt and ex).

5. Graphs
We may represent labelled graphs for which all nodes are reachable from a designated root node
by the data type:

data Graph label = Graph label [Graph label]

1

(a) Write a function build :: Eq a ⇒ [(a, [a])] → a → Graph a, which converts a description
of a graph to a Graph a. The first element of each pair (in the first argument) is the label
of a node, and the associated list contains the labels of the nodes at the other end of the
outgoing edges of that node. The second parameter is the designated root node by which
we can refer to the graph. Hint: use lazy evaluation and build a table which for each
label contains its Graph label . You may assume that the parameters to the function build
actually describe a proper structure, and especially that all nodes are actually occurring
in the description. You may complete the following code fragment:

build nodes root = locate root
where allgraphs = ...

locate n = ...

(b) Write a function isCircular ::Eq a ⇒ Graph a → Bool which checks whether the argument
graph contains (reachable) cycles. Hint: maintain a list of visited nodes during the traversal
of the graph.

2

