
[Faculty of Science
Information and Computing Sciences]

Advanced Functional Programming

2011-2012, period 2

Andres Löh and Doaitse Swierstra

Department of Information and Computing Sciences
Utrecht University

Jan 19, 2012

[Faculty of Science
Information and Computing Sciences]

15-1

15. Dependently typed programming with Agda

[Faculty of Science
Information and Computing Sciences]

15-2

15.1 Dependent functions

[Faculty of Science
Information and Computing Sciences]

15-3

From functions to dependent functions

Normal functions

A→ B

Domain (source) A, codomain (target) B. The target type B
does not depend on the input value.

Dependent functions

(x : A)→ B x

Here, x is a name for the function argument, and B is a
function from a term (x) to a type!

Dependent types break down the barrier between terms
and types.

[Faculty of Science
Information and Computing Sciences]

15-3

From functions to dependent functions

Normal functions

A→ B

Domain (source) A, codomain (target) B. The target type B
does not depend on the input value.

Dependent functions

(x : A)→ B x

Here, x is a name for the function argument, and B is a
function from a term (x) to a type!

Dependent types break down the barrier between terms
and types.

[Faculty of Science
Information and Computing Sciences]

15-3

From functions to dependent functions

Normal functions

A→ B

Domain (source) A, codomain (target) B. The target type B
does not depend on the input value.

Dependent functions

(x : A)→ B x

Here, x is a name for the function argument, and B is a
function from a term (x) to a type!

Dependent types break down the barrier between terms
and types.

[Faculty of Science
Information and Computing Sciences]

15-4

Why?

I Can well-typed programs go wrong?

I error "the impossible happened"

I More precise specifications.

I Express properties about programs.

Similar motivation as for type-level programming in Haskell.
Haskell needs many extensions for this. Agda is conceptually
simpler.

[Faculty of Science
Information and Computing Sciences]

15-4

Why?

I Can well-typed programs go wrong?

I error "the impossible happened"

I More precise specifications.

I Express properties about programs.

Similar motivation as for type-level programming in Haskell.
Haskell needs many extensions for this. Agda is conceptually
simpler.

[Faculty of Science
Information and Computing Sciences]

15-5

15.2 Agda

[Faculty of Science
Information and Computing Sciences]

15-6

Agda

We are going to explore dependent types using Agda:

I An experimental dependently typed programming language.

I Actually Agda 2, the successor of Agda 1, a proof assistant.

I Developed at Chalmers University in Gothenburg, by Ulf
Norell and others.

I Close to Haskell in many respects; also written in Haskell.

I Good enough to play with and run simple program, but not
ready for production use.

Notable features not directly related to dependent types:

I Quite flexible syntax.

I Interactive programming mode for Emacs.

[Faculty of Science
Information and Computing Sciences]

15-6

Agda

We are going to explore dependent types using Agda:

I An experimental dependently typed programming language.

I Actually Agda 2, the successor of Agda 1, a proof assistant.

I Developed at Chalmers University in Gothenburg, by Ulf
Norell and others.

I Close to Haskell in many respects; also written in Haskell.

I Good enough to play with and run simple program, but not
ready for production use.

Notable features not directly related to dependent types:

I Quite flexible syntax.

I Interactive programming mode for Emacs.

[Faculty of Science
Information and Computing Sciences]

15-7

Agda vs. others

There are other dependently typed languages, or systems that
provide some form of dependent types:

I Cayenne, one of the first dependently typed programming
languages, by Lennart Augustsson – no longer actively
developed or maintained

I Coq, a well-known proof assistant that can be used as a
programming language, developed by INRIA

I Epigram, a dependently typed system by Conor McBride –
quite good ideas, but not very usable – a new version is in
development

I Idris, an interesting new language by Edwin Brady, with a
potentially good compiler and a relatively pragmatic
approach

I . . .

[Faculty of Science
Information and Computing Sciences]

15-8

Agda vs. Haskell – quick overview

I No enforced naming conventions for identifiers.

I Unicode allowed and actively used.

I Use spaces to separate tokens.

I Type signatures for abstractions mandatory.

I No case, but with.

I Use : instead of :: for “is of type”.

I Set replaces “kind” ∗.
I Polymorphism is type abstraction.

I Implicit arguments.

I No partial functions.

I More flexible module system.

[Faculty of Science
Information and Computing Sciences]

15-9

No prelude

By default, Agda comes with absolutely nothing pre-loaded.

Agda has essentially no built-in types except Set.

However, Agda offers syntactic sugar for a few types.

[Faculty of Science
Information and Computing Sciences]

15-9

No prelude

By default, Agda comes with absolutely nothing pre-loaded.

Agda has essentially no built-in types except Set.

However, Agda offers syntactic sugar for a few types.

[Faculty of Science
Information and Computing Sciences]

15-9

No prelude

By default, Agda comes with absolutely nothing pre-loaded.

Agda has essentially no built-in types except Set.

However, Agda offers syntactic sugar for a few types.

[Faculty of Science
Information and Computing Sciences]

15-10

Modules

Every Agda module needs a header (cannot be omitted):

module Lecture where

[Faculty of Science
Information and Computing Sciences]

15-11

15.3 Getting started

[Faculty of Science
Information and Computing Sciences]

15-12

Datatypes

data N : Set where
zero : N
suc : N→ N

GADT syntax.

Convention to write types and type-variables with uppercase
letters, constructors and functions with lowercase letters
(different from Haskell).

[Faculty of Science
Information and Computing Sciences]

15-12

Datatypes

data N : Set where
zero : N
suc : N→ N

GADT syntax.

Convention to write types and type-variables with uppercase
letters, constructors and functions with lowercase letters
(different from Haskell).

[Faculty of Science
Information and Computing Sciences]

15-13

Functions

+ : N→ N→ N
zero + n = n
suc m + n = suc (m + n)

Type signatures are required.

Infix (and mix/distfix operators) can be defined by using
underscores as placeholders.

There are infix statements for defining priorities like in Haskell.

Functions are defined via multiple lines as in Haskell, but there
is no case statement.

[Faculty of Science
Information and Computing Sciences]

15-13

Functions

+ : N→ N→ N
zero + n = n
suc m + n = suc (m + n)

Type signatures are required.

Infix (and mix/distfix operators) can be defined by using
underscores as placeholders.

There are infix statements for defining priorities like in Haskell.

Functions are defined via multiple lines as in Haskell, but there
is no case statement.

[Faculty of Science
Information and Computing Sciences]

15-14

Totality

Agda is (or tries to be) a total language. Functions terminate
on every valid argument, and cannot fail:

I Pattern matching must be exhaustive. Non-exhaustive
patterns are a compile-time error.

I Recursion must be structural.

+ : N→ N→ N
zero + n = n
suc m + n = suc (m + n)

Note that m is structurally smaller than suc m.

[Faculty of Science
Information and Computing Sciences]

15-14

Totality

Agda is (or tries to be) a total language. Functions terminate
on every valid argument, and cannot fail:

I Pattern matching must be exhaustive. Non-exhaustive
patterns are a compile-time error.

I Recursion must be structural.

+ : N→ N→ N
zero + n = n
suc m + n = suc (m + n)

Note that m is structurally smaller than suc m.

[Faculty of Science
Information and Computing Sciences]

15-15

Lists

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

Double-colon and colon have reversed meaning compared to
Haskell. (This is like they are used in ML and OCaml).

The type List has a parameter A of type Set, so

List : Set→ Set

[Faculty of Science
Information and Computing Sciences]

15-15

Lists

data List (A : Set) : Set where
[] : List A

:: : A→ List A→ List A

Double-colon and colon have reversed meaning compared to
Haskell. (This is like they are used in ML and OCaml).

The type List has a parameter A of type Set, so

List : Set→ Set

[Faculty of Science
Information and Computing Sciences]

15-16

Functions on lists

We cannot define head and tail on lists – they are not total.

We can, however, define map:

Polymorphism is expressed by explicitly abstracting from types.
Note that the type of map makes use of dependent functions!

Recursion is structural again.

There is syntactic sugar to group arguments of the same type.

Arguments that can be inferred from the context can be made
implicit.

[Faculty of Science
Information and Computing Sciences]

15-16

Functions on lists

We cannot define head and tail on lists – they are not total.

We can, however, define map:

map : (A : Set)→ (B : Set)→ (A→ B)→ (List A→ List B)
map A B f [] = []
map A B f (x :: xs) = f x :: map A B f xs

Polymorphism is expressed by explicitly abstracting from types.
Note that the type of map makes use of dependent functions!

Recursion is structural again.

There is syntactic sugar to group arguments of the same type.

Arguments that can be inferred from the context can be made
implicit.

[Faculty of Science
Information and Computing Sciences]

15-16

Functions on lists

We cannot define head and tail on lists – they are not total.

We can, however, define map:

map : (A : Set)→ (B : Set)→ (A→ B)→ (List A→ List B)
map A B f [] = []
map A B f (x :: xs) = f x :: map A B f xs

Polymorphism is expressed by explicitly abstracting from types.
Note that the type of map makes use of dependent functions!

Recursion is structural again.

There is syntactic sugar to group arguments of the same type.

Arguments that can be inferred from the context can be made
implicit.

[Faculty of Science
Information and Computing Sciences]

15-16

Functions on lists

We cannot define head and tail on lists – they are not total.

We can, however, define map:

map : (A B : Set)→ (A→ B)→ (List A→ List B)
map A B f [] = []
map A B f (x :: xs) = f x :: map A B f xs

Polymorphism is expressed by explicitly abstracting from types.
Note that the type of map makes use of dependent functions!

Recursion is structural again.

There is syntactic sugar to group arguments of the same type.

Arguments that can be inferred from the context can be made
implicit.

[Faculty of Science
Information and Computing Sciences]

15-16

Functions on lists

We cannot define head and tail on lists – they are not total.

We can, however, define map:

map : {A B : Set} → (A→ B)→ (List A→ List B)
map f [] = []
map f (x :: xs) = f x :: map f xs

Polymorphism is expressed by explicitly abstracting from types.
Note that the type of map makes use of dependent functions!

Recursion is structural again.

There is syntactic sugar to group arguments of the same type.

Arguments that can be inferred from the context can be made
implicit.

[Faculty of Science
Information and Computing Sciences]

15-17

Folding lists

foldr : {A R : Set} → R→ (A→ R→ R)→ List A→ R
foldr nil cons [] = nil
foldr nil cons (x :: xs) = cons x (foldr nil cons xs)

Once again, we have structural recursion.

Functions defined using foldr are total (given the arguments to
foldr are total).

[Faculty of Science
Information and Computing Sciences]

15-17

Folding lists

foldr : {A R : Set} → R→ (A→ R→ R)→ List A→ R
foldr nil cons [] = nil
foldr nil cons (x :: xs) = cons x (foldr nil cons xs)

Once again, we have structural recursion.

Functions defined using foldr are total (given the arguments to
foldr are total).

[Faculty of Science
Information and Computing Sciences]

15-18

Length of a list

length : {A : Set} → List A→ N
length = foldr zero (λ n→ suc zero + n)

Lambda abstractions are as in Haskell.

We can enable some syntactic sugar for natural numbers

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

length : {A : Set} → List A→ N
length = foldr 0 (λ n→ 1 + n)

[Faculty of Science
Information and Computing Sciences]

15-18

Length of a list

length : {A : Set} → List A→ N
length = foldr zero (λ n→ suc zero + n)

Lambda abstractions are as in Haskell.

We can enable some syntactic sugar for natural numbers

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

length : {A : Set} → List A→ N
length = foldr 0 (λ n→ 1 + n)

[Faculty of Science
Information and Computing Sciences]

15-18

Length of a list

length : {A : Set} → List A→ N
length = foldr zero (λ n→ suc zero + n)

Lambda abstractions are as in Haskell.

We can enable some syntactic sugar for natural numbers

{-# BUILTIN NATURAL N #-}
{-# BUILTIN ZERO zero #-}
{-# BUILTIN SUC suc #-}

length : {A : Set} → List A→ N
length = foldr 0 (λ n→ 1 + n)

[Faculty of Science
Information and Computing Sciences]

15-19

Safe head and tail

More of the same:

data Maybe (A : Set) : Set where
nothing : Maybe A
just : A→ Maybe A

safeHead : {A : Set} → List A→ Maybe A
safeHead [] = nothing
safeHead (x :: xs) = just x

safeTail : {A : Set} → List A→ Maybe (List A)
safeTail [] = nothing
safeTail (x :: xs) = just xs

[Faculty of Science
Information and Computing Sciences]

15-20

15.4 Vectors

[Faculty of Science
Information and Computing Sciences]

15-21

Vectors

Let us introduce proper dependent types:

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Agda distinguishes between parameters and indices:

I A is a parameter for the datatype and cannot change,

I the N is an index, and every constructor can target specific
indices (like GADTs in Haskell can for types).

Agda allows us to overload constructors. We are reusing the list
constructors.

Note that N is not a kind, it’s the type of natural numbers.

[Faculty of Science
Information and Computing Sciences]

15-21

Vectors

Let us introduce proper dependent types:

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Agda distinguishes between parameters and indices:

I A is a parameter for the datatype and cannot change,

I the N is an index, and every constructor can target specific
indices (like GADTs in Haskell can for types).

Agda allows us to overload constructors. We are reusing the list
constructors.

Note that N is not a kind, it’s the type of natural numbers.

[Faculty of Science
Information and Computing Sciences]

15-21

Vectors

Let us introduce proper dependent types:

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Agda distinguishes between parameters and indices:

I A is a parameter for the datatype and cannot change,

I the N is an index, and every constructor can target specific
indices (like GADTs in Haskell can for types).

Agda allows us to overload constructors. We are reusing the list
constructors.

Note that N is not a kind, it’s the type of natural numbers.

[Faculty of Science
Information and Computing Sciences]

15-21

Vectors

Let us introduce proper dependent types:

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Agda distinguishes between parameters and indices:

I A is a parameter for the datatype and cannot change,

I the N is an index, and every constructor can target specific
indices (like GADTs in Haskell can for types).

Agda allows us to overload constructors. We are reusing the list
constructors.

Note that N is not a kind, it’s the type of natural numbers.

[Faculty of Science
Information and Computing Sciences]

15-22

Vectors – contd.

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that a term argument (the n) is implicit. The full type of
:: is

:: : {A : Set} → {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that we use the function + in the definition of Vec.

Recall that 1 is syntactic sugar for suc zero, so really the
definition is

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N} → A→ Vec A n→ Vec A (suc zero + n)

[Faculty of Science
Information and Computing Sciences]

15-22

Vectors – contd.

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that a term argument (the n) is implicit. The full type of
:: is

:: : {A : Set} → {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that we use the function + in the definition of Vec.

Recall that 1 is syntactic sugar for suc zero, so really the
definition is

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N} → A→ Vec A n→ Vec A (suc zero + n)

[Faculty of Science
Information and Computing Sciences]

15-22

Vectors – contd.

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that a term argument (the n) is implicit. The full type of
:: is

:: : {A : Set} → {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that we use the function + in the definition of Vec.

Recall that 1 is syntactic sugar for suc zero, so really the
definition is

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N} → A→ Vec A n→ Vec A (suc zero + n)

[Faculty of Science
Information and Computing Sciences]

15-22

Vectors – contd.

data Vec (A : Set) : N→ Set where
[] : Vec A 0

:: : {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that a term argument (the n) is implicit. The full type of
:: is

:: : {A : Set} → {n : N} → A→ Vec A n→ Vec A (1 + n)

Note that we use the function + in the definition of Vec.

Recall that 1 is syntactic sugar for suc zero, so really the
definition is

data Vec (A : Set) : N→ Set where
[] : Vec A zero

:: : {n : N} → A→ Vec A n→ Vec A (suc zero + n)

[Faculty of Science
Information and Computing Sciences]

15-23

Equality of types

Question

Are the two types

Vec A (suc zero + n)

Vec A (suc n)

the same?

Answer

Yes, because suc zero + n can be symbolically reduced to
suc n by applying the definition of + . Agda considers types
equal if and only if they (symbolically) reduce to the same term.

[Faculty of Science
Information and Computing Sciences]

15-23

Equality of types

Question

Are the two types

Vec A (suc zero + n)

Vec A (suc n)

the same?

Answer

Yes, because suc zero + n can be symbolically reduced to
suc n by applying the definition of + . Agda considers types
equal if and only if they (symbolically) reduce to the same term.

[Faculty of Science
Information and Computing Sciences]

15-24

Equality of types – contd.

Followup question

Are the two types

Vec A (n + suc zero)

Vec A (suc n)

(note the difference to the situation before!) the same?

Answer

No, because + is defined by pattern matching on the first
argument. We do not know anything about n, so we cannot
symbolically reduce n + suc zero. Agda cannot see that both
types are equivalent, but we can help Agda by manually
coercing the types (we will see that later).

[Faculty of Science
Information and Computing Sciences]

15-24

Equality of types – contd.

Followup question

Are the two types

Vec A (n + suc zero)

Vec A (suc n)

(note the difference to the situation before!) the same?

Answer

No, because + is defined by pattern matching on the first
argument. We do not know anything about n, so we cannot
symbolically reduce n + suc zero. Agda cannot see that both
types are equivalent, but we can help Agda by manually
coercing the types (we will see that later).

[Faculty of Science
Information and Computing Sciences]

15-25

Functions on vectors

Like in Haskell:

head : {A : Set} {n : N} → Vec A (1 + n)→ A
head (x :: xs) = x

tail : {A : Set} {n : N} → Vec A (1 + n)→ Vec A n
tail (x :: xs) = xs

map : {A B : Set} {n : N} → (A→ B)→ Vec A n→ Vec B n
map f [] = []
map f (x :: xs) = f x :: map f xs

[Faculty of Science
Information and Computing Sciences]

15-26

Appending vectors

Easier than in Haskell – we just use + again:

++ : {A : Set} {m n : N} →
Vec A m→ Vec A n→ Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Verify that symbolic reduction is sufficient to typecheck this
function!

[Faculty of Science
Information and Computing Sciences]

15-26

Appending vectors

Easier than in Haskell – we just use + again:

++ : {A : Set} {m n : N} →
Vec A m→ Vec A n→ Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Verify that symbolic reduction is sufficient to typecheck this
function!

[Faculty of Science
Information and Computing Sciences]

15-27

Safe projection

Let us now try to write a total projection/indexing function for
vectors.

Clearly,

! : {A : Set} {n : N} → Vec A n→ N→ A

will not work.

We need a type that represents natural numbers smaller than a
certain bound.

[Faculty of Science
Information and Computing Sciences]

15-27

Safe projection

Let us now try to write a total projection/indexing function for
vectors.

Clearly,

! : {A : Set} {n : N} → Vec A n→ N→ A

will not work.

We need a type that represents natural numbers smaller than a
certain bound.

[Faculty of Science
Information and Computing Sciences]

15-27

Safe projection

Let us now try to write a total projection/indexing function for
vectors.

Clearly,

! : {A : Set} {n : N} → Vec A n→ N→ A

will not work.

We need a type that represents natural numbers smaller than a
certain bound.

[Faculty of Science
Information and Computing Sciences]

15-28

Fin

The datatype Fin n contains the numbers from 0 to n− 1:

data Fin : N→ Set where
zero : {n : N} → Fin (1 + n)
suc : {n : N} → Fin n→ Fin (1 + n)

Both constructors target Fin (1 + n), so Fin 0 has no elements
(as desired).

Fin 0 Fin 1 Fin 2 Fin 3 . . .

zero zero zero . . .

suc zero suc zero . . .

suc (suc zero) . . .

[Faculty of Science
Information and Computing Sciences]

15-28

Fin

The datatype Fin n contains the numbers from 0 to n− 1:

data Fin : N→ Set where
zero : {n : N} → Fin (1 + n)
suc : {n : N} → Fin n→ Fin (1 + n)

Both constructors target Fin (1 + n), so Fin 0 has no elements
(as desired).

Fin 0 Fin 1 Fin 2 Fin 3 . . .

zero zero zero . . .

suc zero suc zero . . .

suc (suc zero) . . .

[Faculty of Science
Information and Computing Sciences]

15-28

Fin

The datatype Fin n contains the numbers from 0 to n− 1:

data Fin : N→ Set where
zero : {n : N} → Fin (1 + n)
suc : {n : N} → Fin n→ Fin (1 + n)

Both constructors target Fin (1 + n), so Fin 0 has no elements
(as desired).

Fin 0 Fin 1 Fin 2 Fin 3 . . .

zero zero zero . . .

suc zero suc zero . . .

suc (suc zero) . . .

[Faculty of Science
Information and Computing Sciences]

15-29

Safe projection – contd.

! : {A : Set} {n : N} → Vec A n→ Fin n→ A
[] ! ()
(x :: xs) ! zero = x
(x :: xs) ! suc n = xs ! n

Projecting from an empty list is impossible. We need the case,
so that Agda can check for exhaustive patterns.

However, there is no constructor of Fin 0 to use for the second
argument, so we can use the absurd pattern () without a
right-hand side!

Do not confuse absurd patterns with Haskell’s unit type – these
are two different concepts!

[Faculty of Science
Information and Computing Sciences]

15-29

Safe projection – contd.

! : {A : Set} {n : N} → Vec A n→ Fin n→ A
[] ! ()
(x :: xs) ! zero = x
(x :: xs) ! suc n = xs ! n

Projecting from an empty list is impossible. We need the case,
so that Agda can check for exhaustive patterns.

However, there is no constructor of Fin 0 to use for the second
argument, so we can use the absurd pattern () without a
right-hand side!

Do not confuse absurd patterns with Haskell’s unit type – these
are two different concepts!

[Faculty of Science
Information and Computing Sciences]

15-29

Safe projection – contd.

! : {A : Set} {n : N} → Vec A n→ Fin n→ A
[] ! ()
(x :: xs) ! zero = x
(x :: xs) ! suc n = xs ! n

Projecting from an empty list is impossible. We need the case,
so that Agda can check for exhaustive patterns.

However, there is no constructor of Fin 0 to use for the second
argument, so we can use the absurd pattern () without a
right-hand side!

Do not confuse absurd patterns with Haskell’s unit type – these
are two different concepts!

[Faculty of Science
Information and Computing Sciences]

15-30

15.5 Equality

[Faculty of Science
Information and Computing Sciences]

15-31

Agda’s take on equality

data ≡ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

This is an equality between two terms of the same type.

Much more versatile than Haskell’s type-level equality.

One of the A’s is a parameter, one an index, because only the
second one is restricted (to be equal to the first).

[Faculty of Science
Information and Computing Sciences]

15-31

Agda’s take on equality

data ≡ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

This is an equality between two terms of the same type.

Much more versatile than Haskell’s type-level equality.

One of the A’s is a parameter, one an index, because only the
second one is restricted (to be equal to the first).

[Faculty of Science
Information and Computing Sciences]

15-31

Agda’s take on equality

data ≡ {A : Set} (x : A) : A→ Set where
refl : x ≡ x

This is an equality between two terms of the same type.

Much more versatile than Haskell’s type-level equality.

One of the A’s is a parameter, one an index, because only the
second one is restricted (to be equal to the first).

[Faculty of Science
Information and Computing Sciences]

15-32

Using equality

Applying a function to equals results in equals:

cong : {A B : Set} {x y : A} →
(f : A→ B)→ x ≡ y→ f x ≡ f y

cong f refl = refl

We can convert equals to equals in any context P:

subst : {A : Set} {x y : A} →
(P : A→ Set)→ x ≡ y→ P x→ P y

subst P refl p = p

[Faculty of Science
Information and Computing Sciences]

15-32

Using equality

Applying a function to equals results in equals:

cong : {A B : Set} {x y : A} →
(f : A→ B)→ x ≡ y→ f x ≡ f y

cong f refl = refl

We can convert equals to equals in any context P:

subst : {A : Set} {x y : A} →
(P : A→ Set)→ x ≡ y→ P x→ P y

subst P refl p = p

[Faculty of Science
Information and Computing Sciences]

15-33

Equality is symmetric and transitive

sym : {A : Set} {x y : A} → x ≡ y→ y ≡ x
sym refl = refl

trans : {A : Set} {x y z : A} →
x ≡ y→ y ≡ z→ x ≡ z

trans refl refl = refl

[Faculty of Science
Information and Computing Sciences]

15-33

Equality is symmetric and transitive

sym : {A : Set} {x y : A} → x ≡ y→ y ≡ x
sym refl = refl

trans : {A : Set} {x y z : A} →
x ≡ y→ y ≡ z→ x ≡ z

trans refl refl = refl

[Faculty of Science
Information and Computing Sciences]

15-34

Proving equalities

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = ?

The required type at the goal is

suc n + 0 ≡ suc n

which reduces to

suc (n + 0) ≡ suc n

After refining with cong suc, the goal type is

n + 0 ≡ n

[Faculty of Science
Information and Computing Sciences]

15-34

Proving equalities

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = ?

The required type at the goal is

suc n + 0 ≡ suc n

which reduces to

suc (n + 0) ≡ suc n

After refining with cong suc, the goal type is

n + 0 ≡ n

[Faculty of Science
Information and Computing Sciences]

15-34

Proving equalities

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = cong suc ?

The required type at the goal is

suc n + 0 ≡ suc n

which reduces to

suc (n + 0) ≡ suc n

After refining with cong suc, the goal type is

n + 0 ≡ n

[Faculty of Science
Information and Computing Sciences]

15-34

Proving equalities

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = cong suc (n+0≡n n)

The required type at the goal is

suc n + 0 ≡ suc n

which reduces to

suc (n + 0) ≡ suc n

After refining with cong suc, the goal type is

n + 0 ≡ n

[Faculty of Science
Information and Computing Sciences]

15-35

Binary relations

Equality is an example of a binary relation:

Rel : Set→ ?
Rel A = A→ A→ Set

What is the type of A→ A→ Set?

What is the type of Set? Not Set, but Set1.

And the type of Set1 is Set2 and so on.

Note that Rel is like a type synonym in Haskell, without special
syntax.

[Faculty of Science
Information and Computing Sciences]

15-35

Binary relations

Equality is an example of a binary relation:

Rel : Set→ ?
Rel A = A→ A→ Set

What is the type of A→ A→ Set?

What is the type of Set? Not Set, but Set1.

And the type of Set1 is Set2 and so on.

Note that Rel is like a type synonym in Haskell, without special
syntax.

[Faculty of Science
Information and Computing Sciences]

15-35

Binary relations

Equality is an example of a binary relation:

Rel : Set→ ?
Rel A = A→ A→ Set

What is the type of A→ A→ Set?

What is the type of Set? Not Set, but Set1.

And the type of Set1 is Set2 and so on.

Note that Rel is like a type synonym in Haskell, without special
syntax.

[Faculty of Science
Information and Computing Sciences]

15-35

Binary relations

Equality is an example of a binary relation:

Rel : Set→ Set1
Rel A = A→ A→ Set

What is the type of A→ A→ Set?

What is the type of Set? Not Set, but Set1.

And the type of Set1 is Set2 and so on.

Note that Rel is like a type synonym in Haskell, without special
syntax.

[Faculty of Science
Information and Computing Sciences]

15-35

Binary relations

Equality is an example of a binary relation:

Rel : Set→ Set1
Rel A = A→ A→ Set

What is the type of A→ A→ Set?

What is the type of Set? Not Set, but Set1.

And the type of Set1 is Set2 and so on.

Note that Rel is like a type synonym in Haskell, without special
syntax.

[Faculty of Science
Information and Computing Sciences]

15-36

More abstractions

Properties like reflexivity, symmetry and transitivity are
interesting for many relations, not just equality:

Reflexive : {A : Set} → Rel A→ Set
Reflexive {A} R = {x : A} → R x x

Note that we are matching on an implicit argument!

Symmetric : {A : Set} → Rel A→ Set
Symmetric {A} R = {x y : A} → R x y→ R y x

Transitive : {A : Set} → Rel A→ Set
Transitive {A} R =
{x y z : A} → R x y→ R y z→ R x z

[Faculty of Science
Information and Computing Sciences]

15-36

More abstractions

Properties like reflexivity, symmetry and transitivity are
interesting for many relations, not just equality:

Reflexive : {A : Set} → Rel A→ Set
Reflexive {A} R = {x : A} → R x x

Note that we are matching on an implicit argument!

Symmetric : {A : Set} → Rel A→ Set
Symmetric {A} R = {x y : A} → R x y→ R y x

Transitive : {A : Set} → Rel A→ Set
Transitive {A} R =
{x y z : A} → R x y→ R y z→ R x z

[Faculty of Science
Information and Computing Sciences]

15-36

More abstractions

Properties like reflexivity, symmetry and transitivity are
interesting for many relations, not just equality:

Reflexive : {A : Set} → Rel A→ Set
Reflexive {A} R = {x : A} → R x x

Note that we are matching on an implicit argument!

Symmetric : {A : Set} → Rel A→ Set
Symmetric {A} R = {x y : A} → R x y→ R y x

Transitive : {A : Set} → Rel A→ Set
Transitive {A} R =
{x y z : A} → R x y→ R y z→ R x z

[Faculty of Science
Information and Computing Sciences]

15-37

Using the abstractions

The type synonyms can for instance be used in the type
signatures of sym and trans:

sym : {A : Set} → Symmetric {A} (≡ {A})
sym refl = refl

trans : {A : Set} → Transitive {A} (≡ {A})
trans refl refl = refl

Both the synonym and the relation are polymorphic – we need
to fill in the type argument explicitly to make sure that they are
unified.

[Faculty of Science
Information and Computing Sciences]

15-37

Using the abstractions

The type synonyms can for instance be used in the type
signatures of sym and trans:

sym : {A : Set} → Symmetric {A} (≡ {A})
sym refl = refl

trans : {A : Set} → Transitive {A} (≡ {A})
trans refl refl = refl

Both the synonym and the relation are polymorphic – we need
to fill in the type argument explicitly to make sure that they are
unified.

[Faculty of Science
Information and Computing Sciences]

15-38

Observations

I Term and type level are mixed.

I No duplication of concepts: in particular, type-level
abstraction and application is the same as value-level
abstraction and application.

I Dependent functions subsume polymorphism.

I Implicit arguments help to keep the programs concise, and
are relatively orthogonal to the rest (unlike type classes in
Haskell).

I Types become like theorems, and programs like proofs
(Curry-Howard isomorphism).

I Interactive development becomes really helpful, certainly
once we start writing proofs.

[Faculty of Science
Information and Computing Sciences]

15-39

15.6 Induction

[Faculty of Science
Information and Computing Sciences]

15-40

Associativity of addition

+-assoc : (m n o : N)→ (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)

Is this a “fold” on natural numbers?

Not quite, because the result type of the recursive calls is
different from the result type of the original call.

[Faculty of Science
Information and Computing Sciences]

15-40

Associativity of addition

+-assoc : (m n o : N)→ (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)

Is this a “fold” on natural numbers?

Not quite, because the result type of the recursive calls is
different from the result type of the original call.

[Faculty of Science
Information and Computing Sciences]

15-40

Associativity of addition

+-assoc : (m n o : N)→ (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)

Is this a “fold” on natural numbers?

Not quite, because the result type of the recursive calls is
different from the result type of the original call.

[Faculty of Science
Information and Computing Sciences]

15-41

Fold on natural numbers

Recall the fold on natural numbers:

N-Fold : {P : Set} →
P→ (P→ P)→
N→ P

N-Fold pz ps zero = pz
N-Fold pz ps (suc n) = ps (N-Fold pz ps n)

The result type P is constant, but in the case of associativity
(and other properties), it cannot be.

[Faculty of Science
Information and Computing Sciences]

15-41

Fold on natural numbers

Recall the fold on natural numbers:

N-Fold : {P : Set} →
P→ (P→ P)→
N→ P

N-Fold pz ps zero = pz
N-Fold pz ps (suc n) = ps (N-Fold pz ps n)

The result type P is constant, but in the case of associativity
(and other properties), it cannot be.

[Faculty of Science
Information and Computing Sciences]

15-42

Induction on natural numbers

We generalize N-Fold to N-Ind:

N-Ind : (P : N→ Set)→
P 0→ ({n : N} → P n→ P (suc n))→
(n : N)→ P n

N-Ind P pz ps zero = pz
N-Ind P pz ps (suc n) = ps (N-Ind P pz ps n)

N-Fold {P} pz ps n = N-Ind (λx→ P) pz (λ{n} → ps) n

Note that N-Ind corresponds to the proof principle we know as
induction on natural numbers. The implementation is just as
for the fold.

[Faculty of Science
Information and Computing Sciences]

15-42

Induction on natural numbers

We generalize N-Fold to N-Ind:

N-Ind : (P : N→ Set)→
P 0→ ({n : N} → P n→ P (suc n))→
(n : N)→ P n

N-Ind P pz ps zero = pz
N-Ind P pz ps (suc n) = ps (N-Ind P pz ps n)

N-Fold {P} pz ps n = N-Ind (λx→ P) pz (λ{n} → ps) n

Note that N-Ind corresponds to the proof principle we know as
induction on natural numbers. The implementation is just as
for the fold.

[Faculty of Science
Information and Computing Sciences]

15-42

Induction on natural numbers

We generalize N-Fold to N-Ind:

N-Ind : (P : N→ Set)→
P 0→ ({n : N} → P n→ P (suc n))→
(n : N)→ P n

N-Ind P pz ps zero = pz
N-Ind P pz ps (suc n) = ps (N-Ind P pz ps n)

N-Fold {P} pz ps n = N-Ind (λx→ P) pz (λ{n} → ps) n

Note that N-Ind corresponds to the proof principle we know as
induction on natural numbers. The implementation is just as
for the fold.

[Faculty of Science
Information and Computing Sciences]

15-43

Using induction on natural numbers

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = cong suc n+0≡n

n+0≡n = N-Ind (λn→ n + 0 ≡ n)
refl
(λr→ cong suc r)

[Faculty of Science
Information and Computing Sciences]

15-43

Using induction on natural numbers

n+0≡n : (n : N)→ n + 0 ≡ n
n+0≡n 0 = refl
n+0≡n (suc n) = cong suc n+0≡n

n+0≡n = N-Ind (λn→ n + 0 ≡ n)
refl
(λr→ cong suc r)

[Faculty of Science
Information and Computing Sciences]

15-44

Using induction on natural numbers – contd.

+-assoc : (m n o : N)→ (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)

+-assoc = N-Ind
(λm→ (n o : N)→ (m + n) + o ≡ m + (n + o))
(λn o→ refl)
(λr n o→ cong suc (r n o))

[Faculty of Science
Information and Computing Sciences]

15-44

Using induction on natural numbers – contd.

+-assoc : (m n o : N)→ (m + n) + o ≡ m + (n + o)
+-assoc zero n o = refl
+-assoc (suc m) n o = cong suc (+-assoc m n o)

+-assoc = N-Ind
(λm→ (n o : N)→ (m + n) + o ≡ m + (n + o))
(λn o→ refl)
(λr n o→ cong suc (r n o))

[Faculty of Science
Information and Computing Sciences]

15-45

Induction on vectors

For vectors, we obtain a similar generalization from fold to
induction principle:

++ : {A : Set} {m n : N} →
Vec A m→ Vec A n→ Vec A (m + n)

[] ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Here, the result type of recursive calls is also dependent on the
length of the vector.

[Faculty of Science
Information and Computing Sciences]

15-46

Induction on vectors – contd.

Vec-Ind :
{A : Set} →
(P : N→ Set)→
P []→
({n : N} {xs : Vec A n} (x : A)→ P xs→ P (x :: xs))→
{n : N} → (xs : Vec A n)→ P xs

Vec-Ind P pn pc [] = pn
Vec-Ind P pn pc (x :: xs) = pc x (Vec-Ind P pn pc xs)

xs ++ ys =
Vec-Ind (λm→ {n : N} → Vec A n→ Vec A (m + n))

(λys→ ys)
(λx r ys→ x :: r ys)

[Faculty of Science
Information and Computing Sciences]

15-46

Induction on vectors – contd.

Vec-Ind :
{A : Set} →
(P : N→ Set)→
P []→
({n : N} {xs : Vec A n} (x : A)→ P xs→ P (x :: xs))→
{n : N} → (xs : Vec A n)→ P xs

Vec-Ind P pn pc [] = pn
Vec-Ind P pn pc (x :: xs) = pc x (Vec-Ind P pn pc xs)

xs ++ ys =
Vec-Ind (λm→ {n : N} → Vec A n→ Vec A (m + n))

(λys→ ys)
(λx r ys→ x :: r ys)

[Faculty of Science
Information and Computing Sciences]

15-47

15.7 Curry-Howard

[Faculty of Science
Information and Computing Sciences]

15-48

Curry-Howard isomorphism

Correspondence between propositions and types, and
(constructive) proofs and programs.

[Faculty of Science
Information and Computing Sciences]

15-49

Pairs

data × (A B : Set) : Set where
, : A→ B→ A × B

[Faculty of Science
Information and Computing Sciences]

15-50

Dependent pairs

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A)→ B x→ Σ A B

The second component of the pair can depend on the value of
the first.

List A = Σ N (Vec A)

A × B = Σ A (const B)

[Faculty of Science
Information and Computing Sciences]

15-50

Dependent pairs

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A)→ B x→ Σ A B

The second component of the pair can depend on the value of
the first.

List A = Σ N (Vec A)

A × B = Σ A (const B)

[Faculty of Science
Information and Computing Sciences]

15-50

Dependent pairs

data Σ (A : Set) (B : A→ Set) : Set where
, : (x : A)→ B x→ Σ A B

The second component of the pair can depend on the value of
the first.

List A = Σ N (Vec A)

A × B = Σ A (const B)

[Faculty of Science
Information and Computing Sciences]

15-51

15.8 Universes

[Faculty of Science
Information and Computing Sciences]

15-52

Computing types

Agda’s unit type:

data > : Set where
tt :>

Yet another way to define vectors:

Vec : A→ N→ Set
Vec A zero = tt
Vec A (suc n) = A × Vec A n

[Faculty of Science
Information and Computing Sciences]

15-52

Computing types

Agda’s unit type:

data > : Set where
tt :>

Yet another way to define vectors:

Vec : A→ N→ Set
Vec A zero = tt
Vec A (suc n) = A × Vec A n

[Faculty of Science
Information and Computing Sciences]

15-53

Universe

A type of codes C together with an interpretation function
el : C→ Set is called a universe.

The type N and the function Vec above are a simple example.

[Faculty of Science
Information and Computing Sciences]

15-53

Universe

A type of codes C together with an interpretation function
el : C→ Set is called a universe.

The type N and the function Vec above are a simple example.

[Faculty of Science
Information and Computing Sciences]

15-54

Reflecting types

data Code : Set where
unit : Code
bool : Code
nat : Code
pair : Code→ Code→ Code

J K : Code→ Set where
JunitK = >
JboolK = Bool
JnatK = N
Jpair x yK = JxK × JyK

[Faculty of Science
Information and Computing Sciences]

15-55

Overloaded functions

eq : (c : Code)→ JcK→ JcK→ Bool

eq unit tt tt = true

eq bool true true = true
eq bool false false = true

eq nat zero zero = true
eq nat (suc m) (suc n) = eq nat m n

eq (pair x y) (a, b) (c, d) = eq x a c ∧ eq y b d

eq = false

[Faculty of Science
Information and Computing Sciences]

15-56

Several applications

For example:

I Computing the arguments of a function from a format
string (printf).

I Computing the type, i.e., dimensions and color depth of an
image from the image header.

I Computing the types of database entries from a database
schema.

I . . .

The latter two are not possible in Haskell. Even the type-level
programming trick does not work, because the input value is
not statically known.

[Faculty of Science
Information and Computing Sciences]

15-57

Datatype-generic programming

Idea: most datatypes are built from a limited number of
concepts.

If we can express datatypes using such a limited number of
concepts, we can write data-type generic functions and
datatypes.

Examples:

I Haskell’s derived classes

I Generic map, fold, unfold

I Traversals and queries

I tries and zippers

I . . .

[Faculty of Science
Information and Computing Sciences]

15-57

Datatype-generic programming

Idea: most datatypes are built from a limited number of
concepts.

If we can express datatypes using such a limited number of
concepts, we can write data-type generic functions and
datatypes.

Examples:

I Haskell’s derived classes

I Generic map, fold, unfold

I Traversals and queries

I tries and zippers

I . . .

[Faculty of Science
Information and Computing Sciences]

15-58

Conclusions

	Dependently typed programming with Agda
	Dependent functions
	Agda
	Getting started
	Vectors
	Equality
	Induction
	Curry-Howard
	Universes

