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Abstract
Reference annotation datasets containing harmony annotations are at the core of a wide
range of studies in music information retrieval (MIR) and related fields. The majority of these
datasets contain single reference annotations describing the harmony of each piece or song.
Nevertheless, music theoretical insights on harmonic ambiguity and studies showing differ-
ences among annotators in many other MIR tasks make the notion of a single “ground-truth”
reference annotation a tenuous one. In order to gain a better understanding of differences
between annotators, we introduce and analyze the Harmonic Annotator Subjectivity Dataset
(HASD) containing chord labels for fifty songs from four annotators. Our analysis of the chord
labels in the dataset reveals a low overlap between the annotators. We show that annotators
use distinct chord-label vocabularies, with less than 20 percent chord-label overlap across all
annotators. A factor analysis reveals the relative importance of triads, sevenths, inversions,
and other musical factors for each annotator on their choice of chord labels and reported
difficulty of the songs in the dataset. Between annotators, we find only 73 percent overlap
on average for the traditional major–minor vocabulary and 54 percent overlap for the most
complex chord labels. Our results suggest the existence of a harmonic “subjectivity ceiling” :
an upper bound for evaluations in computational harmony research. State-of-the-art chord-
estimation systems in MIREX 2017 reported overlap scores that lie beyond this subjectivity
ceiling by about 10 percent. This suggests that current ACE algorithms are powerful enough
to tune themselves to particular annotators’ idiosyncrasies. Overall, our results show that an-
notator subjectivity is an important factor in harmonic transcriptions that should inform future
research on any musical tasks that rely on human annotations.

Keywords: Annotator Subjectivity, Harmony.

1. Introduction
Since the inception of computational harmonic analy-
sis in music information retrieval (MIR) research, sev-
eral reference annotation datasets for chord labels
have been introduced (Mauch et al., 2009; Burgoyne
et al., 2011; De Clercq and Temperley, 2011; Ni et al.,
2013). These datasets are at the center of a wide
range of important computational studies into har-
mony, including but not limited to: automatic chord
estimation (ACE) (McVicar et al., 2014), analysis of
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harmonic trends over time (Mauch et al., 2015; Bur-
goyne et al., 2013; Gauvin, 2015), computational hook
discovery (Van Balen et al., 2015), chorus analysis of
popular music (Van Balen et al., 2013), data fusion of
ACE algorithms (Koops et al., 2016), automatic struc-
tural segmentation (de Haas et al., 2013), and com-
putational creativity, such as automatic generation of
harmony accompaniment (Chuan and Chew, 2007)
and harmonic blending (Kaliakatsos-Papakostas et al.,
2014).

Virtually all of these studies use datasets that con-
tain single reference annotations, i.e., for each corre-
sponding musical moment (e.g., audio frame or sec-
tion), the reference annotation contains a single har-
mony descriptor (e.g., a chord label) from either a sin-
gle expert (Mauch et al., 2009) or a unified consensus
of multiple experts (Burgoyne et al., 2011). Although
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most creators of these datasets warn about (harmonic)
subjectivity and ambiguity, their annotations are nev-
ertheless used in practice as the de facto ground truth
for a large number of studies into harmony and re-
lated tasks (e.g., MIREX ACE). Moreover, using a sin-
gle reference annotation is not exclusive to harmony
research: a wide range of MIR studies and tasks, such
as melody transcription, beat detection and automatic
rhythm transcription, also rely primarily or exclusively
on single reference annotations.

Theoretical insights on harmonic ambiguity from
harmony theory (Schoenberg, 1978; Meyer, 1957;
Harte et al., 2005), experimental studies on the large
degree of annotator subjectivity (Ni et al., 2013), and
the availability of vast amounts of heterogeneous (sub-
jective) harmony annotations in crowd-sourced reposi-
tories (e.g., Ultimate-Guitar6, Chordify7) make the no-
tion of a single harmonic “ground-truth” reference an-
notation a tenuous one.

In an experimental study, Ni et al. found that anno-
tators transcribing the same music recordings disagree
on roughly 10 percent of harmonic annotations (Ni
et al., 2013). Furthermore, they found that state-of-
the-art ACE systems trained on single reference anno-
tations perform worse on a consensus of annotators
than on the single reference annotations. They suggest
that current ACE systems are starting to overfit single
reference annotations, thereby producing models that
fail to represent the variability found in human annota-
tions accurately. A similar lack of inter-rater agreement
was found in an analysis of human annotations in the
MIREX audio similarity task (Flexer, 2014).

The seemingly large differences in chord-label tran-
scriptions among annotators raise questions about the
validity of one-size-fits-all automatic chord-label esti-
mation systems and their training and evaluation on
single reference annotations. Furthermore, the over-
fitting problem described by Ni et al. points towards
the need for more flexible ACE systems that can adapt
themselves to the context (musical proficiency, chord-
label vocabulary, etc.) of a user. In a study by Koops
et al. (2017), a first approach to such a flexible system
is proposed. By taking into account annotator subjec-
tivity in an ACE system, it is shown that a shared har-
monic representation can be learned directly from au-
dio which takes into account multiple (heterogeneous)
reference annotations. From this representation, chord
labels can be personalized for each annotator, yielding
more satisfactory chord labels than those generated by
the same system trained on a single reference annota-
tion.

Unfortunately, current datasets with harmony an-
notations contain either single reference annota-
tions (Burgoyne et al., 2011; Mauch et al., 2009), or
are restricted in size and sampling (Ni et al., 2013;
De Clercq and Temperley, 2011). As a solution to this

6https://www.ultimate-guitar.com/
7https://www.chordify.net/

problem, we introduce a new chord-label dataset con-
taining multiple reference annotations for fifty songs
from the Billboard dataset.8 Specifically, the new
dataset includes four different annotators’ transcrip-
tions of each song.

The contribution of this paper is twofold. First,
we introduce the Harmonic Annotator Subjectivity
Dataset. This open chord-label dataset is linked with
other important datasets containing harmonic tran-
scriptions, as well as with major audio music reposi-
tories. Secondly, we show that within this dataset, sig-
nificant differences exist between annotators, in chord
labels as well as in perceived difficulty and annotation
times. These results show that annotator subjectivity is
an important factor in harmonic transcriptions, which
should be taken into account in future automatic chord
estimation, as well as related computational harmonic
research.

The remainder of this paper is structured as follows.
Section 2 discusses related work into the analyses of
human judgments in music research. In Section 3, we
describe the process of selecting songs, annotators and
their transcription process. In Section 4, we provide an
analysis of the transcriptions obtained from the anno-
tators. The paper closes with a discussion and conclu-
sion in Section 7.

2. Related Work in Analysis of Human
Judgments in Music Information Re-
trieval

Disagreement between human annotators is a well-
known problem in a wide variety of tasks in music
information retrieval research. The lack of an exact
task specification, the differences in the annotators’ ex-
periences, musical background, skill level, and instru-
mental preference, or the usage of different annota-
tion tools are some of the possible causes of disagree-
ment between annotators (Balke et al., 2016; Salamon
et al., 2014; Salamon and Urbano, 2012). Annotator
disagreement has previously been studied in the con-
texts of genre classification (Lippens et al., 2004; Sey-
erlehner et al., 2010), audio music similarity (Flexer,
2014; Flexer and Grill, 2016; Jones et al., 2007), mu-
sic structure analysis (Nieto et al., 2014; Paulus and
Klapuri, 2009; Smith et al., 2011), melody extraction
(Balke et al., 2016; Bosch and Gómez, 2014), and hu-
man harmony annotations (Ni et al., 2013). Never-
theless, the extent of human disagreement and their
impact on these tasks is commonly not taken into ac-
count when creating new music information retrieval
methods.

The extent to which human judgments coincide is
often referred to as inter-annotator agreement (or inter-
rater reliability, concordance). The goal of studying
inter-annotator agreement is to measure the amount

8http://ddmal.music.mcgill.ca/research/
billboard
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of homogeneity or consensus between different anno-
tators (or raters). With high inter-annotator agree-
ment, raters can be used interchangeably without hav-
ing to worry about the categorization being affected
by a significant rater factor. In other words, if inter-
changeability of raters is guaranteed, then their ratings
(or labels) can be used with confidence without asking
which rater produced them. Conversely, if the ratings
are effected by the raters and interchangeability is not
guaranteed, the raters should probably be taken into
account when interpreting the ratings (Gwet, 2014).

The joint-probability of agreement is the simplest
and least robust measure for studying inter-annotator
agreement. Several formal methods have been in-
troduced that improve simple calculations of joint-
probability. For example, Kappa (κ) statistics such as
Cohen’s κ (for two raters) (Cohen, 1960) and Fleiss’s κ
(for any number of raters) (Fleiss, 1975) correct for the
amount of agreement that could be expected through
chance. Cohen’s κ was for example used in a study
into the mood recognition of Chinese pop music (Hu
and Yang, 2017). Jones at al. used Fleiss’s κ to analyze
human similarity judgments of symbolic melodic sim-
ilarity and audio music similarity (Jones et al., 2007).
Balke et al. adapted Fleiss’ Kappa for evaluating mul-
tiple predominant melody annotations in jazz record-
ings (Balke et al., 2016). A more versatile statis-
tic, Krippendorff’s α (Krippendorff, 1970) assesses the
agreement achieved among observers who rate a given
set of objects in terms of the values of a variable. Krip-
pendorff’s α accepts any number of observers, and can
be applied to nominal, ordinal, interval, and ratio lev-
els of measurement. Furthermore, it is able to han-
dle missing data, and corrects for small sample sizes.
Schedl et al. (2016) used Krippendorff’s α to inves-
tigate the agreement of listeners on perceptual music
aspects (related to emotion, tempo, complexity, and in-
strumentation) of classical music.

3. Harmonic Annotator Subjectivity
Dataset

We introduce the Harmonic Annotator Subjectivity
Dataset (HASD), with chord labels for 50 songs from
4 annotators.

3.1 Song Selection
Currently available chord-label annotation datasets
containing more than one reference annotation are
limited by size, sampling strategy, or lack of a stan-
dardized encoding (Ni et al., 2013; De Clercq and Tem-
perley, 2011). To account for these potential prob-
lems in our own dataset, we chose to select fifty songs
from the Billboard dataset (Burgoyne et al., 2011) that
have a stable online presence in widely accessible mu-
sic repositories. This way, listening to the songs is easy,
stimulating future research with the dataset. After
searching the YouTube website for the title and artist
tags of the Billboard dataset, we ranked the results of

each query by number of views and selected the top
fifty songs by this ranking. At the time they were col-
lected, the least-viewed song in the dataset had 67
thousand views and the most-viewed song over 13 mil-
lion, and an average of 11.9 unique chords according
to the Billboard dataset annotations.

3.2 Annotator Selection
To study annotator subjectivity and account for a po-
tential instrument bias, we recruited four annotators:
two guitarists and two pianists. All annotators had ei-
ther studied composition or music performance at the
undergraduate or graduate level. All annotators were
also successful professional music performers, with be-
tween 15 and 20 years of experience on their primary
instrument. Two of the annotators further identified
themselves as composers. We reviewed the first ten
transcriptions from each annotator to ensure the an-
notators had sufficient aptitude to continue; all four
annotators completed the initial screening successfully
and were hired to continue to annotate the remaining
forty songs. The annotators were compensated finan-
cially for their annotations at a fixed rate per song.

3.3 Transcription Process
To ensure the annotators were all focused on the same
task, we provided them with a guideline for the anno-
tating process. We asked them to listen to the songs as
if they wanted to play the song on their instrument in a
band, and to transcribe the chords with this purpose in
mind. They were instructed to assume that the band
would have a rhythm section (drum and bass) and
melody instrument (e.g., a singer). Therefore, their
goal was to transcribe the complete harmony of the
song in a way that, in their view, best matched their
instrument.

We used a web interface to provide the annotators
with a central, unified transcription method. This in-
terface provided the annotators with a grid of beat-
aligned elements, which we manually verified for cor-
rectness. Chord labels could be chosen for each beat.
The standard YouTube web player was used to provide
the reference recording of the song. Through the in-
terface, the annotators were free to select any chord
of their choice for each beat. While transcribing, the
annotators were able to watch and listen not only to
the YouTube video of the song, but also a synthesized
version of their chord transcription.

In addition to providing chords and information
about their musical background, we asked the anno-
tators to provide for each song a difficulty rating on a
scale of 1 (easy) to 5 (hard), the amount of time it took
them to annotate the song in minutes, and any remarks
they might have on the transcription process.

3.4 Dataset Technical Specifications
To provide the MIR research community with a dataset
that is easily accessible, expandable, encourages repro-
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Annotator
Primary
instrument

Average
annotation time

Average
reported difficulty

Average number of
chord labels per song

A1 Guitar 23.10 (σ = 14.91) 2.40 (σ = 1.16) 9.46 (σ = 5.13)
A2 Piano 15.66 (σ = 9.91) 1.60 (σ = 1.18) 9.42 (σ = 4.20)
A3 Guitar 22.00 (σ = 7.42) 2.42 (σ = 0.73) 12.44 (σ = 5.83)
A4 Piano 26.10 (σ = 12.18) 1.96 (σ = 1.07) 8.86 (σ = 4.70)

Table 1: Overview of annotators, their primary instrument and average annotation time and chord labels per
song statistics.

ducibility and stimulates future research into annotator
subjectivity, we adopted a number of standard encod-
ings that are commonly used in MIR research.

For each of the fifty songs, the dataset contains
chord labels provided by four annotators. These chord
labels are encoded using the chord-label syntax intro-
duced by Harte et al. (2005). This syntax provides
a simple and intuitive encoding that is highly struc-
tured and unambiguous to parse with computational
means. In addition to chord labels, the dataset con-
tains information about the four annotators, such as
musical background, music education and their main
instrument. To promote and stimulate future research,
we include identifiers for music repositories (e.g.,
YouTube), allowing researchers to listen to the tracks
easily. Furthermore, we provide Billboard dataset iden-
tifiers which make it possible to cross-reference our
dataset with data from the Billboard dataset, ACE out-
put from the MIREX task, and other datasets that use
these identifiers.

The complete dataset is encoded using the JAMS

format: a JSON-annotated music specification for
reproducible MIR research, which was introduced
by Humphrey et al. (2014). JAMS provides an interface
with the standard MIREX evaluation measures used in
this paper, making it very easy to evaluate and com-
pare annotations. To provide easy access, we make the
dataset publicly available in a Git repository9. By way
of Git and JAMS, we encourage the MIR community to
exchange, update, and expand the dataset.

4. Global View of Annotator Subjectivity
To obtain a general idea of the degree of annotator
subjectivity in our dataset, we first analyze the annota-
tions in terms of descriptive statistics. First, we analyze
the difficulty scores and remarks (Section 4.1) and the
overall chords the annotators provided (Section 4.2).
Next, we provide an analysis of the differences in chord
labels used by the annotators (Section 6). Building on
these findings, we will investigate the cause of anno-
tator subjectivity in more detail with more advanced
statistical methods in the sections that follow.

4.1 Reported Annotation Time and Difficulty
Overall, the four annotators (A1, A2, A3, A4) took
22 min on average to transcribe a song (σ = 12), with

9RepositoryURL removed for double blind reviews

a minimum of 5 min and a maximum of 60 min. In-
dividually, the averages per annotator were 23 min
(σ = 15), 16 min (σ = 10), 22 min (σ = 7), and
26 min (σ = 12) for A1, A2, A3, and A4, respectively.

The annotators also ranked their perceived diffi-
culty of all songs on a scale from 1 (easy) to 5 (dif-
ficult). Individually, the annotators reported average
difficulties of 2.4 (σ = 1.2), 1.7 (σ = 1.1), 2.6 (σ = .8),
and 2.0 (σ = 1.3), for A1, A2, A3, and A4, respectively.
Both the average annotation times and reported diffi-
culty for all annotators can be found in Table 1.

Intuitively, the more difficult a song is, the longer it
should take to annotate. We can test this relationship
using Pearson’s correlation coefficient (r). Between the
average reported difficulties and average annotation
times, we find a very strong positive linear correlation,
r = .93, p � .05. The correlations per annotator ap-
pear in Figure 1. The figure shows that for A1 and A2,
the correlation is very strong, r = .92 and r = .84,
respectively. A4’s measurements are also strongly cor-
related (r = .76); A3 shows a strong correlation that
is nonetheless perhaps weaker than the rest (r = .61).
Figure 1 shows that A3’s annotations cluster around
20–30 min in length and a reported difficulty of 2–
3, while the other annotators exhibit a wider spread
across both time and difficulty. The outlier in Figure 1,
with a reported difficulty of 1 and a reported annota-
tion time of 60 minutes, can be explained by it being
the first song annotated by A4, who had to get used to
the interface and annotation process. However, in Sec-
tion 5 we will see that the order of songs does not have
a significant effect on annotation time and perceived
difficulty for any annotator.

4.2 Chord-Label Statistics

Turning to the harmonic transcriptions, we investigate
the extent to which annotator subjectivity in terms of
chord labels can be found in our dataset. We analyze
the chord-label annotations in several ways. First, we
investigate which chord labels are used in our dataset
and how much overlap in chord vocabulary there is
among annotators. This will provide a general indica-
tion of annotator subjectivity in our dataset, as it shows
the difference in chord-label vocabularies among anno-
tators. Then we analyze the number of unique chord
labels in a song and its reported difficulty.
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Figure 1: We find strong, but differing, correlations
per annotator between reported annotation time
and reported difficulty from 1 (easy) to 5 (hard).
In general, songs perceived as difficult took longer
to annotate than easy songs. Random jitter added
to aid visualization.

A1 A2 A3 A4

A1

A2

A3

A4

148

85 127

104 86 201

82 72 90 120

Figure 2: Pairwise intersection sizes of all 290 unique
chord-labels in the dataset for all annotators. On
average, the annotators share less than half of their
chord label vocabulary with the other annotators.

4.2.1 Chord-label vocabularies
On average, the four annotators (A1, A2, A3, A4) used
10.3 chord labels per song (σ = 5.2), with a mini-
mum of 3 chord labels and a maximum of 27 chord
labels. Individually, the averages per annotator were
9.46 chord labels (σ = 5.13), 9.42 chord labels (σ =
4.2), 12.44 chord labels (σ = 5.83), and 8.86 chord
labels (σ = 4.7) for A1, A2, A3, and A4, respectively.
These statistics are similar to what was found in the
Billboard dataset by Burgoyne et al. (2011), in which
songs contain on average 11.8 unique chord labels.

Altogether, the annotators used 290 unique chord
labels in their transcriptions, of which the most fre-
quently used chords are common chord labels such
as G:maj, C:maj, D:maj, and A:maj. Annotators
A1, A2, A3, and A4 used 148, 127, 201, and 120
unique chord labels respectively. The intersection of
the unique chords of all annotators contains only 56
chord labels, corresponding to less than 20 percent of
all chord labels in the dataset, which already provides
some evidence that each annotator uses a distinct set
of chord labels. The intersection set contains only two
enharmonically equivalent chords, and only three in-
verted chords: F:maj/3, E:maj/2, D:maj/5. Never-
theless, inversions are generally used by all annotators.
Around 11 percent of the chord labels in the dataset
contain inversion. Nevertheless, the annotators differ
in the amount of chord labels that include inversions.
Of all the chord labels that the annotators A1, A2, A3,
and A4 use, 0.08, 0.04, 0.15 and 0.16 percent include
inversions, respectively. Of their unique chord labels,
0.26, 0.27, 0.43, 0.39 percent include inversions for
A1, A2, A3, and A4 respectively. This seems to suggest
that while there is relatively little disagreement about
pitch spelling, there is a large amount of disagreement
on the level of inversions. If we consider a chord label
equivalent to all its possible inversions, we find a total
of 139 unique chord labels, and an intersection size of
only 38 chord labels, corresponding with 27 percent of
all chord labels in the dataset.

The intersection sizes for unique chord labels for all
songs for each pair of annotators can be found in Fig-
ure 2. This figure shows that A1 and A3 share the most
chord labels (104). Fewer chord labels are shared be-
tweenA2 andA4 than with the rest. This is interesting,
as A1 and A3 are both guitar players, and A2 and A4
are piano players. This seems to suggest that our piano
players are on average more diverse in terms of their
chord-label vocabulary, while the guitar players seem
to be more similar to each other in their chord-label
vocabulary – although the usual caveats with respect
to small sample size apply.

4.2.2 Difficulty versus number of chord labels in a song
It can be expected that songs with a large number of
chord labels, and therefore a large number of chord
changes should be harder to transcribe than songs with
a small number of chord labels. We indeed find a pos-



6 Koops, H.V. et al.: Technical Report: Harmonic Subjectivity in Popular Music

0 5 10 15 20 25 30
Number of unique chord-labels

1

2

3

4

5

Re
po

rte
d 

di
ffi

cu
lty

A1
A2
A3
A4

Figure 3: Reported difficulty and number of chord la-
bels per song are strongly correlated for all anno-
tators. The larger the number of chords used, the
more difficult to annotate was the song perceived.

itive correlation between the reported difficulty of a
song and the number of unique chord labels for that
song. In Figure 3, the number of unique chords used
by an annotator for a song is plotted against that anno-
tators’ reported difficulty for that song. Furthermore,
in Figure 4 the number of unique chords used by an
annotator for a song is plotted against that annotators’
reported annotation time for that song.

We find a strong positive correlation between the
average reported difficulty and average number of
unique chords, r = .80, p � .01. Nevertheless, when
we turn to individual annotators, we see that not all
correlations are similar for all annotators. For A1
(r = .79) and A4 (r = .75) the degree of correlation is
comparable, but the correlations for A2 (r = .67) and
A3 (r = .65) are strong but somewhat weaker.

In an inspection of Figure 3, we see that some songs
are annotated with a low number of unique chords,
but with a relatively high difficulty. When we look at
those transcriptions, we find indeed a low number of
unique chord labels, but with a high amount of detail.
These chord labels are often intricate labels with added
sevenths, ninths, or thirteenths, or inversions (e.g.,
C#:min7/b7 or Bb:min9/b3), which are harder to
play and transcribe. These differences among annota-
tors help us understand the subjectivity of perceived
difficulty: for some annotators difficulty is about the
amount of (change in) chord labels per song, while
others report songs to be more difficult if the chord
labels themselves are more complex.

5. Individual Differences in Annotation
Ability

The previous section highlights several areas of vari-
ance among the annotators: annotation time, chord
vocabulary, and how difficulty is perceived. In order
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Figure 4: Annotation time and number of chord labels
per song are strongly correlated for all annotators.
The larger the number of chords used, the more
time it took to annotate.

to formalize the potential causes of this variance, we
examined the correlation of these annotator behavior
measures – reported annotation time, reported anno-
tation difficulty, and number of unique chords used
– with the annotators’ agreement with the Billboard
ground truth. We also considered two potential exter-
nal causes of difficulty or disagreement, the length of
the song (in seconds) and a learning effect after com-
pleting several annotations, represented by the tranche
in which annotators received each song (first, second,
or third). We were particularly interested the fol-
lowing. First, in checking whether there is indeed a
general chord complexity factor that goes beyond tri-
ads and inversions. Secondly, whether song length or
learning affects reported difficulty or annotation dis-
agreement. Thirdly, whether there is a consistent re-
lationship among the behaviour and agreement mea-
sures independent of individual annotators. And fi-
nally, whether there are differences between annota-
tors with respect to agreement in addition to the dif-
ferences in the behavioral measures (. . . ). These ques-
tions focused on differences among annotators as inde-
pendent individuals with reference to a global ground
truth, without (yet) considering the annotators’ agree-
ment with each other.

We measured agreement with the original Billboard
ground truth using the MIREX weighted chord symbol
recall (WCSR) metrics, i.e., the proportion of correct la-
bels weighted by song duration, after both the labels
and the ground truth have been simplified to one of
seven following vocabularies: ROOT only compares the
root of the chords; MAJMIN only compares major, mi-
nor, and no-chord labels; MIREX considers a chord label
correct if it shares at least three pitch classes with the
reference label; THIRDS compares chords at the level of
root and major or minor third; TRIADS compares at the
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level of triads (major, minor, augmented, etc.), i.e., in
addition to the root, the quality is considered through
a possibly altered 5th; SEVENTHS compares all above
plus any notated sevenths; TETRADS compares at the
level of the entire quality in closed voicing, i.e., wrapped
within a single octave. Extended chords (9ths, 11ths
and 13ths) are rolled into a single octave with any up-
per voices included as extensions. For MAJMIN, THIRDS,
TRIADS, TETRADS and SEVENTHS, we also test with in-
versions: MAJMIN INV, THIRDS INV, etc. For a detailed
explanation of these measures, we refer the reader
to the standardized MIR evaluation software package
mir eval by Raffel et al. (2014) and the MIREX ACE

website10.
Before computing correlation coefficients, we trans-

formed each of our measures to improve normality.
(Using Spearman’s correlation coefficients instead of
Pearson’s to avoid normalization transforms was not
possible because some of our research hypotheses in-
volve differences in means.) For annotation time and
the number of unique chords per annotator, as well as
song length, we used a log transform (base 2). For
the MIREX WCSR measures, which range from 0 to 1,
we used a probit (standard normal quantile) trans-
form. We also reversed the sign of the transformed
WCSR measures so that they would represent diffi-
culty/disagreement rather than easiness/agreement.

We treated reported annotation difficulty as an or-
dinal variable, using polyserial correlation coefficients
instead of Pearson’s. Polyserial correlation coefficients
assume that an ordinal variable with k levels is a coarse
observation of a latent normal variable, with k − 1 cut
points determining which ordinal level is observed. For
example, for a binary variable there is one cutpoint, it
assumes that all values of the latent variable below the
cut point are observed as 0 and all values above the cut
point are observed as 1. When using polyserial corre-
lation coefficients in a statistical model, one usually es-
timates the cut points as extra parameters, sometimes
independently for each participant or group. This esti-
mation is not computationally trivial, and it is sensitive
to empty rating categories; common estimation proce-
dures can also yield mildly non-positive-definite corre-
lation matrices. We collapsed rating difficulties 4 and
5 into a single category to avoid some of these prob-
lems, but Annotator 2 rated such a large majority of
songs as having difficulty 1 that violations of positive
definiteness were impossible to avoid entirely.

5.1 Exploratory Factor Analysis
We began with an exploratory factor analysis to de-
termine the dimensionality of our set of measures.
Both parallel analysis (Humphreys and Jr., 1975) and
Velicer’s MAP criterion (Velicer, 1976), two common
techniques for choosing the dimensionality, suggest
that four factors are sufficient. Table 2 presents the

10http://www.music-ir.org/mirex/wiki/2017:
Audio_Chord_Estimation

four-factor solution, using the principal-factor method
(similar to principal-component analysis but allow-
ing for an additional error sources for each measure)
with an oblique rotation (oblimin) to maximize inter-
pretability. The pattern in the loadings (correlations
between the factors and the original measures) lends
itself to a clear and meaningful interpretation of the
factors. Factor 1 represents a baseline, triad-level dif-
ficulty, Factor 2 represents additional difficulty arising
from sevenths, and Factor 4 represents additional diffi-
culty arising from inversions. Factor 3 collects all three
of the annotator-dependent difficulty measures, sug-
gesting that there is indeed a distinct complexity as-
pect to some songs that goes beyond triads, sevenths,
and inversions. Because we used an oblique rotation
rather than an orthogonal one, correlations among the
factors were possible, and all four of the factors are
inter-correlated positively, suggesting that a higher-
level, general difficulty factor may be present that is
partially responsible for all four lower-level types of
difficulty. The communalities (h2, or proportion of
variance explained for each measure) are very high for
the MIREX vocabularies, showing that the four-factor
model does an excellent job explaining these measures.
The annotator-dependent indicators have lower com-
munalities, especially the number of unique chords,
but still represent a good fit. Overall, the four-factor
exploratory model explains 92 percent of the variance
in the data we collected.

In summary, the exploratory factor analysis sug-
gested that annotator’s performance depends on a
baseline triad-level difficulty, additional difficulty aris-
ing from sevenths or inversions, and a further chord
complexity factor; it also suggests that there may be
a general difficulty factor contributing to each of the
four difficulty types. As a final check on the four-factor
model, we compared three- and five-factor models as
alternatives. Neither alternative was compelling. A
three-factor model simply eliminates Factor 4 (inver-
sions), which has considerable explanatory value; the
extra factor in a five-factor model, in contrast, has no
obvious interpretation and no items with loadings of
greater magnitude than the four-factor model.

5.2 Confirmatory Factor Analysis
The exploratory factor analysis suggested a basic un-
derlying model for how annotators’ perceived difficulty
in transcribing a song relates to their agreement with
the ground truth for that song. The factors in this
model are inter-correlated, suggesting that there may
also be a higher-order common cause of difficulty. Ex-
ploratory factor analysis is limited, however, in its abil-
ity to specify the factor structure further, and it also
offers no good way to test for the effect of external
factors, such as song length and learning effects. It
also makes it difficult to separate which aspects of the
model are common to all annotators from those as-
pects that differ among annotators, i.e., potential as-
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Indicator Factor 1 Factor 2 Factor 3 Factor 4 h2

Loadings

MIREX vocabulary
THIRDS .96 .02 .01 −.01 .96
MAJMIN .95 .05 −.03 .03 .97
TRIADS .92 .02 .09 .01 .96
ROOT .92 .03 .01 .01 .91
MIREX .94 −.02 .02 .00 .88
THIRDS INV .46 .15 .11 .55 .97
MAJMIN INV .47 .15 .05 .58 .99
TRIADS INV .48 .12 .14 .53 .98
SEVENTHS .18 .92 −.04 .22 .98
TETRADS .19 .89 .05 −.24 .98
SEVENTHS INV −.10 .97 .00 .23 .99
TETRADS INV −.08 .94 .08 .20 .98

Difficulty rating −.04 .00 .94 −.06 .83
Annotation time .07 −.03 .88 .00 .83
Number of unique chords −.07 .02 .80 .01 .60

Inter-Correlations (Proportion Variance Explained on Diagonal)

Factor 1 .39
Factor 2 .67 .26
Factor 3 .49 .36 .17
Factor 4 .39 .29 .24 .10

Note. N = 200. The largest factor loading for each indicator appears in boldface. Factor 1 seems to represent
a baseline, triad-level difficulty, Factor 2 additional difficulty arising from sevenths, Factor 4 additional difficulty
arising from inversions, and Factor 3 a chord-complexity factor beyond these components that also contributes to
annotators’ perceived difficulty. h2 = communality, the percent of variance per indicator explained by the factor
model.

Output of the R psych package, version 1.7.8, using the principal-factor method (Revelle, 2017).

Table 2: Exploratory Factor Analysis of Annotation Difficulty Indicators (Oblimin Rotation)
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pects where annotator subjectivity is at work. We thus
used the four-factor model as a basis for a confirma-
tory factor analysis, where we could verify the plausi-
bility of the exploratory model and test for the pres-
ence of the general difficulty factor, the effects of song
length and learning, and whether annotators differ sig-
nificantly on each of the factors – or in other words,
what exactly causes annotators’ transcriptions to vary.

Our first step in the confirmatory analysis was to
define the factors more rigorously. Given the loading
patterns and high inter-correlations in the exploratory
model, we allowed the Triad Difficulty factor to load
on all twelve of the MIREX WCSR measures, and thus
serving as a baseline for all measures of this type. All
other loadings for this factor were constrained to zero.
We allowed the Sevenths Difficulty factor to load only
the four MIREX vocabularies involving sevenths and the
Inversions Difficulty factor to load only on the five vo-
cabularies involving inversions, again constraining all
other possible loadings on these factors to zero. We
allowed the Annotation Difficulty factor to load only
on the three annotator-dependent measures, reported
difficulty, reported annotation time, and number of
unique chords. To ensure that the model remained
identified given the overlapping factors, we enforced
independence (zero covariance) between Triad Diffi-
culty and Sevenths Difficulty and also between Triad
Difficulty and Inversions Difficulty, but we allowed all
other possible pairs of factor to covary.

We fit this first-order model to each annotator indi-
vidually. Table 3 includes goodness-of-fit statistics for
these models. The model fits well for Annotators 3 and
4, adequately for Annotator 1, and less well for Anno-
tator 2. Annotator 2 exhibited so little variance in dif-
ficulty ratings that the polyserial correlations lead to
a non-positive-definite matrix. So many of the ratings
are 1 that it is impossible to estimate an underlying
normal variable reliably. Once we combined Annotator
2 back with other annotators in later models, however,
the problem subsided somewhat, and despite the over-
all instability of the fit for Annotator 2, all loadings in
this first-order model are large, statistically significant
(p < .05), and of comparable magnitude for every in-
dividual annotator. We accepted the first-order model,
and for further analysis, we assumed that all annota-
tors shared a common model form.

In both the exploratory factor analysis and the
first-order model, the four factors are highly inter-
correlated, which suggested that there may be an un-
derlying General Difficulty factor that is responsible for
this correlation, i.e., a second-order model (see Fig-
ure 5). The second-order model had one fewer pa-
rameter per annotator – in place of the four free corre-
lations between factors in the first-order model there
are four loadings from General Difficulty to each of
the original four factors, and one of these must be
fixed in order to identify the model. As such, second-
order model should normally have a poorer fit than

the first-order model, but if the difference is not sta-
tistically significant and the model still fits acceptably,
we should prefer the more parsimonious second-order
model. As Table 3 shows, the second-order model does
indeed fit acceptably well and the degradation in fit
from the first-order model is not statistically significant
(p = .90). Looking in detail at the model parameters,
however, we noticed that the loadings on Sevenths Dif-
ficulty was small and not statistically significant for any
annotator. As such, we also tested an even more par-
simonious model wherein the General Difficulty factor
was not allowed to load on Sevenths Difficulty (i.e., we
fixed the loading to zero). This second-order model
without a connection between General Difficulty and
Sevenths Difficulty also fit acceptably well and showed
no significant degradation from the model where the
loading between General Difficulty and Sevenths Dif-
ficulty was free (p = .44). We accepted the presence
of a General Difficulty factor and used the model with-
out a connection to Sevenths Difficulty as our basis for
further testing.

Given the General Difficulty factor, we then exam-
ined whether song length or learning affected General
Difficulty. Again, we used a backward step-wise se-
lection process for consistency with the other selec-
tion procedures. We first tested a model with both
of these covariates as exogenous predictors of Gen-
eral Difficulty and found that while song length had
a significant effect for all annotators, tranche did not
have a significant effect for any annotator. Removing
tranche showed no significant degradation in model fit
(p = .38), but removing song length degraded model
fit substantially (p = .01). We chose the model with
only song length as a predictor of General Difficulty.
Figure 5 depicts this model structure.

In order to test whether the latent difficulty fac-
tors differed across annotators, we followed the proce-
dure recommended by Brown (2015). We first tested
measurement invariance: that the relationship between
the latent factors in the model and the observed mea-
sures is the same for all annotators. In the absence
of measurement invariance, comparing the latent fac-
tors would be meaningless. Starting with a baseline
“equal form” model, namely the model with a General
Difficulty factor and song length as an exogenous pre-
dictor, we first tested whether the loadings and inter-
cepts in the model were equal for all annotators. As
with adding the General Difficulty factor, this restric-
tion should not improve model fit, but because it is
more parsimonious, we accept it if the degradation in
model fit is not significant. The model with equal load-
ings and intercepts still fits well, and the degradation
with respect to the equal-form model is not significant
(p = .65). Further restricting the coefficient of the
song-length regression on General Difficulty retained
a good fit, and the degradation in fit was again not sig-
nificant (p = .52). These restrictions meet the criteria
for “strong” measurement invariance, and as such, we
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Model χ2 df χ2
diff ∆df RMSEA CFit SRMR CFI TLI

Single-Annotator Models (First-Order)

Annotator 1 (n = 50) 107.68∗∗ 77 .090 .07 .028 .92 .89
Annotator 2 (n = 50) 112.52∗∗ 77 .097 .04 .033 .81 .73
Annotator 3 (n = 50) 89.91 77 .059 .38 .059 .94 .92
Annotator 4 (n = 50) 87.72 77 .053 .44 .053 .94 .91

Higher-Order Structure

First-order 392.11∗∗∗ 308 .075 .05 .032 .91 .88
Second-order

w/ Sevenths Difficulty 395.70∗∗∗ 312 0.12 1.7 .074 .06 .033 .91 .96
w/o Sevenths Difficulty 358.64∗∗ 316 0.54 0.9 .052 .43 .035 .96 .94

Exogenous Predictors

Song length and tranchea 446.14 424 .033 .82 .039 .98 .97
Song length 430.54 428 0.75 1.0 .011 .94 .039 1.00 1.00
None 603.30∗∗∗ 436 8.31∗∗ 1.3 .088 <.01 .038 .84 .80

Measurement Invariance

Equal forma 372.57 368 .016 .91 .039 1.00 .99
Equal loadings and intercepts 498.18 467 4.32 6.2 .037 .78 .068 .97 .97
Equal predictor coefficients 480.86 470 0.41 1.0 .022 .92 .068 .99 .99

Annotator Heterogeneity

Equal factor variance 532.66 485 4.16† 1.6 .045 .63 .167 .95 .96
Equal first-order factor meansb 479.78 482 0.36 2.3 <.001 .97 .068 1.00 1.00
Equal second-order factor mean

w/ free ann. time intercept 467.49 482 0.07 1.0 <.001 .99 .068 1.00 1.01
w/o free ann. time intercept 474.24 485 2.63† 0.9 <.001 .98 .068 1.00 1.01

Note. N = 200. χ2
diff and ∆df represent nested differences, scaled using Satorra’s method. Italics represent

the model chosen from each set to be the baseline for the following set. RMSEA = root mean square error of
approximation, ideally / .060; CFit = probability that RMSEA ≤ .050; SRMR = standardized root mean square
residual, ideally / .080; CFI = comparative fit index, ideally ' .95; TLI = Tucker–Lewis index, ideally ' .95. The
model selected from each section of the table appears in italics.

a Statistics differ from the previous model because of the addition or deletion of potential exogenous indicators
in the target correlation matrix.

b Factor variances remain free because there is no evidence of homogeneity; the baseline for comparison remains
the equal-predictor model.

† p < .10 ∗ p < .05 ∗∗ p < .01 ∗∗∗ p < .001

Output of the R lavaan package, version 0.5.23.1097 (Rosseel, 2012).

Table 3: Test Statistics for Measurement Invariance and Annotator Heterogeneity on Annotation Difficulty Indi-
cators
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Figure 5: Second-order factor model for indicators of annotation difficulty. Loadings are unstandardized and
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were not) are omitted for clarity. A second-order General Difficulty factor predicts three of the four first-order
factors. The largest loading on each factor is set to 1.0 in order to fix their scales.
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proceeded to testing annotator differences on the la-
tent difficulty factors. Figure 5 includes the common
loadings and predictor coefficients for this strong in-
variance model.

We first tested for differences in factor variances
across annotators. When restricting the variances of
the factors to be equal across annotators, the degrada-
tion in model fit with respect to the strong invariance
model is weakly significant (p = .09) and the many
goodness-of-fit measures drop to borderline levels. The
standardized root mean square residual (SRMR) is un-
acceptably high – .167 – and more than twice as bad
as any other model we considered. We rejected the
hypothesis of equal factor variance across annotators.

We also tested for difference in factor means across
annotators. We began by restricting the factor means
to be equal only for the first-order difficulty factors.
In contrast to restricting the factor variances, restrict-
ing these factors means yields an acceptable model fit
and no significant degradation (p = .88). Further re-
stricting the second-order mean (General Difficulty) to
be the same across annotators still yields an accept-
able fit with no significant degradation (p = .52). We
concluded that although factor variance differs among
annotators, the factor means are the same.

At this point, we had a largely acceptable model.
As a final step, we examined the modification indices
for any problematic constraint. Modification indices
are an approximation of how much model fit will im-
prove if a single constraint is relaxed. The modification
indices suggested that freeing the intercept for annota-
tor time would improve model fit for most annotators,
and this was plausible: even given a common level of
Annotation Difficulty, it is believable that some anno-
tators will be uniformly faster or slower. We compared
a model with a free annotation-time intercept to our
model with all intercepts restricted, and the degrada-
tion was weakly significant (p = .09). We concluded
that that intercept for annotation time should remain
free.

In summary, we found that a General Difficulty fac-
tor can explain both annotators’ perceived difficulty
and their agreement with the Billboard ground truth;
more difficult songs exhibit less agreement, and our
chosen annotator-dependent measures are consistent
with the common external measures of WCSR. While
we found no evidence of a learning effect from annota-
tion experience, we found song length had a significant
impact on General Difficulty, with longer songs being
more difficult on average. Beyond General Difficulty,
further differences in perceived difficulty or ground-
truth agreement could be explained by four lower-level
factors: Triad Difficulty, Sevenths Difficulty, Inversions
Difficulty, and other Annotation Difficulty. On average,
all annotators found the songs equally difficult with re-
spect to these factors, but the variance differed. Finally,
even after taking into account the difficulty factors,
some annotators were systematically slower or faster

than others.

How should one interpret differences in factor vari-
ances when the means are the same? Variance in this
case reflects the range of difficulty across the full sam-
ple of songs we asked annotators to transcribe, and
thus low variance suggests a lack of sensitivity to a
particular type of difficulty, whereas high variance sug-
gests that a particular type of difficulty is especially im-
portant for a particular annotator. Put differently, the
results suggest that the core of annotator subjectivity
lies not in differences in raw transription ability per se,
but in the relative importance of triads, sevenths, in-
versions, and other musical factors for each annotator.
In a context where one must interpret variances, how-
ever, one disadvantage of second-order factor models
is that it can be difficult to separate how a higher-
order factor like General Difficulty is affecting the ob-
served measures as distinct from the first-order factors.
The Schmid–Leiman factorization is an equivalent rep-
resentation of second-order models that can be easier
to interpret (Schmid and Leiman, 1957). It separates
the loading for each measure into a portion arising ex-
clusively from the higher-order factor and the portions
arising from the residual variance of the first-order fac-
tors. The factorization is usually standardized so that
each loading represents the correlation between a fac-
tor – either first- or second-order – and an observed
measure. As such, the squared loadings represents the
proportions of variance in each measure that are ex-
plained by each factor, first-order and second-order.

Table 4 presents the Schmid-Leiman factorization
of our chosen confirmatory factor model for each an-
notator. A number of patterns become clear. Song
length has a slightly weaker effect on General Diffi-
culty for Annotator 4 than for the other annotators,
but in general, it is responsible for about a quarter
of the variance in General Difficulty. For Annotators
1 and 2, the annotator-dependent measures are also
influenced by a moderate amount of an independent
Annotation Difficulty, whereas Annotators 3 and 4 ex-
hibit no such variation. As mentioned earlier, this in-
dependent source of Annotation Difficulty could have
something to do with unusual chords or voicings, but a
separate study would be necessary to analyze this find-
ing more deeply. At the first-order level, we see that
Annotator 2 is highly sensitive to Sevenths Difficulty,
and that Annotator 4 is quite sensitive to Inversions
Difficulty. The table also includes residual variances,
i.e., the proportion of variance due to effects external
to the model. Consistent with the earlier tables, the
performance of Annotator 2 is more idiosyncratic with
respect to the model as compared to the other three
annotators. In short, each annotator is indeed unique,
exhibiting a distinct pattern of sensitivity to particular
types of difficulty in our song sample. Inevitably, these
differing sensitivities lead to differing transcriptions.
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General Difficulty Annotation Difficulty Residual Variance

Indicator A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

Exogenous Predictors
Song length .51 .56 .56 .45

Annotator-dependent
Difficulty rating .84 .97 1.08a .91 .49 .37 – – – – – .19
Annotation time .74 .71 .98 .97 .55 .50 – – .21 .36 .16 .08
Number of unique chords .68 .70 .62 .78 .45 .36 – – .33 .38 .66 .41

MIREX vocabulary
TRIADS INV .61 .66 .63 .56 – .21 .04 –
THIRDS INV .60 .65 .62 .55 .02 .23 .09 –
MAJMIN INV .58 .61 .64 .53 .07 .31 .01 .05
TRIADS .54 .58 .56 .58 – .16 .05 –
MAJMIN .52 .55 .59 .57 .03 .26 – .01
THIRDS .52 .57 .54 .58 .02 .19 .11 –
ROOT .51 .55 .54 .57 .07 .26 .12 –
MIREX .49 .55 .55 .54 .15 .25 .07 .09
TETRADS INV .49 .41 .52 .44 – .05 – –
SEVENTHS INV .46 .39 .50 .42 .05 .05 – .02
TETRADS .41 .33 .42 .40 – .01 .06 .08
SEVENTHS .31 .32 .41 .39 .05 – .04 .03

Triad Difficulty Sevenths Difficulty Inversion Difficulty

Indicator A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4

MIREX vocabulary
TRIADS INV .67 .55 .62 .55 .42 .22 .42 .71
THIRDS INV .68 .56 .62 .56 .39 .20 .37 .65
MAJMIN INV .67 .53 .66 .55 .37 .19 .38 .60
TRIADS .87 .71 .80 .83
MAJMIN .84 .67 .84 .82
THIRDS .84 .69 .77 .84
ROOT .82 .66 .77 .83
MIREX .79 .67 .79 .78
TETRADS INV .54 .34 .50 .43 .60 .80 .62 .58 .35 .14 .35 .56
SEVENTHS INV .52 .33 .49 .42 .61 .82 .65 .60 .31 .13 .31 .51
TETRADS .66 .41 .59 .57 .65 .84 .64 .67
SEVENTHS .61 .39 .58 .56 .65 .87 .68 .71

Note. N = 200. Although the measurement model is identical for all annotators (see
Figure 5), differences in factor and indicator variances across Annotators yield different
standardized solutions. Loadings and variances < .01 are represented as –.
a This Heywood case arises due to the scaling factors in the ordinal regressions.

Output of the R lavaan package, version 0.5.23.1097 (Rosseel, 2012).

Table 4: Schmid–Leiman Decomposition of Standardized Factor Loadings and Residual Variance per Annotator
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Figure 6: Visualization of annotator subjectivity at
the chroma level, for all annotators for Billboard
dataset song ID 92. The y-axis represents the 12
pitch classes; the x-axis is time. Comparing the
chroma reveals large differences in chord detail
between annotators. Chroma bins are weighted
according to the average MIREX MAJMIN pairwise
score, revealing areas of agreement (dark blue)
and disagreement (light blue). The figure shows a
random sample of chord-labels on beats that have
some (nonzero) amount of disagreement.

6. Chord-Label Annotator Subjectivity
The factor analysis in the previous suggest that the rel-
ative importance of triads, sevenths, inversions, and
other musical factors for each annotator strongly af-
fect annotator subjectivity. Nonetheless, factor analy-
sis must rely on a single set of measures per annotator,
and thus it still cannot tell us the extent to which an-
notators agree among themselves. In this section, we
examine a final set of tests on inter-annotator agree-
ment. First, in Section 6.1, we discuss the average pair-
wise agreement between the annotators using the stan-
dard MIREX evaluation measures. After that, in Sec-
tion 6.2, we discuss the agreement of the annotators
with the Billboard reference annotations that are com-
monly used in computational harmony research. These
comparisons will give us an intuitive and musically
informed idea of the observed proportion of agree-
ment between annotators and of annotators with the
Billboard annotations. Although the interpretation of
these pairwise comparisons is intuitive, we need to ad-
just for the fact that a certain amount of the agreement
could occur due to chance alone. Therefore, in Section
6.2, we discuss the more sophisticated Krippendorff’s-
α coefficients that measure the inter-annotator agree-
ment of the chord-labels provided by the annotators.

6.1 Pairwise MIREX Chord-Label Agreement
Intuitively, one would expect annotators to agree
mostly on fundamental properties of chord labels (e.g.
root notes) and would disagree more on intricate parts
of chord labels (e.g. inversions and seventh intervals).
To investigate how the annotators differ in terms of
chord label choice at different chord label granulari-
ties, we calculate the average pairwise agreement be-
tween all annotators. To this end, we compare the

annotations of each annotator with each of the three
other annotators, resulting in three agreement scores.
The average of these scores shows the average agree-
ment of the four annotators in their transcriptions of
each song. By agreement, we refer to the commonly
used MIREX evaluation of chord-label overlap of the
standard MIREX chord-label vocabularies (as explained
in Section 5) between two annotations.

The pairwise agreement among all annotators for
all fifty songs and all evaluation methods can be found
in Figure 7. The rows correspond to the MIREX eval-
uations; columns correspond to songs. The corre-
sponding Billboard dataset IDs can be found below the
columns, and the corresponding average reported diffi-
culty scores can be found above the columns. The rows
are ordered by average column value, increasing from
low average agreement to high. The figure shows that
overall, average agreement decreases with an increase
in chord-label granularity: annotators agree more on
the root notes (ROOT) than on complex chords (e.g.,
SEVENTHS). Nevertheless, we find that the average
agreement of root notes is only .76, with some scores
as low as .005. This is surprising, as one would assume
that annotators would in general agree on root notes,
as well as disagree more on the more intricate chord la-
bels. The root-note disagreement propagates through
the disagreement of the other evaluations, which can
be seen in the decreasing average agreements plot-
ted at the right x-axis of the figure. This shows that
as chord labels become more complex, agreement de-
creases. The average agreement scores for the remain-
ing chord-label granularities can be found in Table 5.

The amount of detail an annotator can give to a
chord label does not end with just the set of pitches.
Inversions are an important aspect of harmony, and ar-
guably open to a certain degree of subjectivity. For ex-
ample, when annotating a song that contains a guitar
and a bass guitar, in which the guitarist plays a single
chord while the bass guitar plays a descending arpeg-
gio of that chord, an annotator could choose to an-
notate just the single guitar chord for the entire part
but could also choose to include the moving bass line,
thereby interpreting it as a new inversion of the same
chord for each bass note. Neither of these options is
objectively wrong. As a more specific example, Fig-
ure 6 shows the differences between annotators for a
particular song on the level of chroma over time (i.e.
a chromagram). Chroma captures the pitch-class con-
tent of a chord label in terms of the twelve different
pitch classes folded into a single octave. We extracted
these chroma using the mir eval software by Raf-
fel et al. (2014). We see that A1 annotated rather
coarsely, while A4 annotated with much more detailed
chord labels, inversions, and more frequent chord-label
changes.

Figure 7 also shows that for each evaluation mea-
sure, the agreement is lower if we take into account
inversions. On average the difference is around 5
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Figure 7: Average pairwise agreement of several MIREX evaluations of all songs in the dataset. Annotator agree-
ment decreases with increased chord-label granularity. The checkerboard-like pattern reveals that for each
level of granularity, the level of agreement decreases when inversions are taken into account. Billboard dataset
IDs can be found below the columns; average reported difficulties can be found above the columns. The num-
bers on the right show the average agreement for each chord granularity level. Columns are ordered by
increasing average pairwise agreement.

ROOT MAJMIN MAJMIN INV MIREX THIRDS THIRDS INV TRIADS TRIADS INV TETRADS TETRADS INV SEVENTHS SEVENTHS INV

x .76 .73 .67 .74 .74 .67 .71 .65 .57 .52 .6 .54
σ .19 .2 .24 .18 .19 .24 .21 .24 .24 .24 .24 .25

Table 5: Average (x) and standard deviation (σ) pairwise agreement results between all annotators. Agreement
decreases with increased chord granularity, and is significantly lower when inversions are taken into account.
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Figure 8: Pairwise agreement among four annotators
for all MIREX chord granularity levels. Agreement
is significantly lower when inversions are taken into
account (? vs ? inv) with (p� 0.001).

percentage points, for example, MAJMIN ≈ 0.73 and
MAJMIN INV ≈ 0.67, although the difference in agree-
ment for individual songs can be very large: up to 31
percentage points. All differences are significant in a
Wilcoxon signed-rank test to assess whether the results
of evaluating a chord granularity level has the same
distribution as when taking into account inversions,
with p � 0.001. This shows that for any chord-label
type, the amount of annotator subjectivity significantly
increases when taking into account inversions. This ef-
fect is visualized in Figure 8 which shows the pairwise
agreement between all annotators for all MIREX evalu-
ations for all songs.

One could argue that one aspect of a reported dif-
ficulty for a song has to do with an annotator’s uncer-
tainty about which chord labels to choose for that song:
if the annotators find a song to be relatively simple on

average, one would expect their chord labels to be rel-
atively more similar. In our dataset, we find indeed
that on average, the annotators disagree more when
they perceive a song to be more difficult. The aver-
age agreement is inversely correlated with the average
reported difficulty, r = −0.6, p� 0.01.

6.2 Annotator Agreement with Billboard Annota-
tions

The relatively low overall chord-label agreement be-
tween expert annotators shown in the previous sec-
tion raises questions on the creation of one-size-fits all
chord-label annotations, which are almost universally
used for research relating to computational harmony
analysis. One approach to solving the problem of creat-
ing chord-label annotations with the broadest appeal is
creating a consensus annotation from multiple expert
annotations. This was proposed and presented in the
Billboard dataset. The annotations in this dataset are
the result of an expert creating a consensus from two
expert annotations (Burgoyne et al., 2011). Assum-
ing that a consensus annotation is on average closer
to individual annotations than annotations are to each
other, we hypothesize that our annotators would agree
on average more with the Billboard annotation than
with each other. To test in what way our annotators
agree with the Billboard dataset annotations, we eval-
uate the annotations from A1, A2, A3 and A4 on the
corresponding Billboard dataset annotation.

Figure 9 shows the pairwise agreement between the
annotators and the Billboard annotations for all MIREX

evaluations. Just like in the results of the Sections 6.1
and 6.2, the figure shows again that overall, agreement
decreases with an increase in chord-label granularity:
annotators agree more on the root notes (ROOT) than
on complex chords (e.g., SEVENTHS) of the Billboard



16 Koops, H.V. et al.: Technical Report: Harmonic Subjectivity in Popular Music

root
majmin

majmin_inv
mirex

thirds

thirds_in
v

triads

triads_in
v

tetrads

tedrads_in
v
sevenths

sevenths_in
v

0.0

0.2

0.4

0.6

0.8

1.0

Ag
re

em
en

t w
ith

 B
illB

oa
rd

 a
nn

ot
at

io
n

Figure 9: Agreement of the four annotators with the
BillBoard annotations for all MIREX chord granular-
ity levels. Agreement is significantly lower when
inversions are taken into account (? vs ? inv) with
(p� 0.001).

annotations. We find that the average agreement of
root notes is only 0.77 (σ = 0.16), with some scores as
low as 0.19. The agreement scores for the other chord-
label granularities can be found in Table 6.

Figure 9 shows again that for each evaluation mea-
sure, the agreement is lower if we take into account
inversions. On average the difference is around 5 per-
centage points, for example, MAJMIN ≈ 0.77 and MA-
JMIN INV ≈ 0.72, although the difference in agreement
for individual songs can be very large: up to 62 per-
centage points. All differences in agreement are signif-
icant in a Wilcoxon signed-rank test to assess whether
the results of evaluating a chord granularity level has
the same distribution as when taking into account in-
versions, p � 0.001. This shows that for any chord-
label type, the amount of annotator subjectivity signif-
icantly increases when taking into account inversions.

A first visual comparison of the agreements from
Figure 8 and Figure 9 seems to imply that anno-
tators overall agree a little bit more with the Bill-
board annotations than with each other. Neverthe-
less, none except one of the differences are significant
in a Mann-Whitney U test to assess whether the re-
sults of annotator agreement has the same distribu-
tion as Billboard agreement, all p > 0.05. The ex-
ception is SEVENTHS INV, p < 0.05. While these p-
values tell us that there is no significant difference
between inter-annotator pairwise agreement and the
annotators’ agreement with the Billboard annotations,
we can also measure the magnitude of the difference
between groups through the Common-Language Effect
Size (CL). CL gives a description of the probability that
a score sampled at random from one distribution will
be greater than a score sampled from some other dis-
tribution. We find CL ranging between 0.48 and 0.56
for the chord granularities, indicating a roughly equal
chance of annotators agreeing more with the Billboard
than with the other annotators. These results show
that annotators do not significantly agree more with

a Billboard annotation than with the annotations from
the other three annotators.

These Billboard annotations are a staple dataset
used in training ACE systems. In 2017, the best per-
forming algorithm in the MIREX ACE task on datasets
that intersect with the HASD (Billboard2012 and Bill-
board2013) reported accuracy scores of .86, .86, .83,
.63, and .61 for ROOT, MAJMIN, MAJMIN INV, SEV-
ENTHS, and SEVENTHS INV, respectively.11 Table 7
presents the results for all datasets in the MIREX ACE

task. Although our dataset only overlaps with the Bill-
board2012 and Billboard2013 datasets, they all con-
tain comparable music in terms of genre and popular-
ity. Comparing these to the average pairwise agree-
ment scores found in our dataset shows that the state-
of-the-art ACE algorithms perform beyond the “subjec-
tivity ceiling” found in our dataset.

6.3 Krippendorff’s α Inter-Annotator Agreement
While the pairwise tests in the previous sections pro-
vide a musically informed view on the average pair-
wise agreement between the annotators, it does not
account for agreement by random chance. Therefore,
we also evaluate the four annotators’ chord-labels us-
ing Krippendorff’s α measure of inter-annotator agree-
ment (Krippendorff, 1970).

Krippendorff’s α measures the agreement between
annotators on the labeling of units (in our case beats)
on a scale from 0 (no agreement), to 1 (full agree-
ment). α becomes negative when disagreement is be-
yond that what can be expected from chance. Val-
ues between .4 and .75 represent a fair agreement be-
yond chance. To be able to evaluate the chord-labels at
the different MIREX granularity levels, we re-label the
chord-labels. We follow the standardized MIREX chord
vocabulary mappings that were introduced by Pauwels
and Peeters (2013). Calculating α for each chord label
granularity provides a detailed view into the chance-
corrected agreement of the annotators’ annotations in
our dataset.

Figure 10 shows Krippendorff’s α coefficients of
all annotators for all songs for all chord-label granu-
larities. Similar patterns as in the average pairwise
agreement in Figure 7 can be observed. A higher
inter-annotator agreement can be found in root notes
(ROOT), with decreasing agreement for more com-
plex chord-label granularities. As a general baseline,
α ≥ 0.8 is often brought forward as good agreement,
and α ≥ 0.667 for where “tentative conclusions are still
acceptable” (Krippendorff, 2004). With the exception
of ROOT, we find that the average α ≤ 0.667 indicating
a fair inter-annotator agreement. Nevertheless, over-
all α is quite low for the other chord-label granulari-
ties, with arithmetic means ranging from 0.63 (THIRDS,
σ = 0.18) to 0.42 (TETRADS INV, σ = 0.17). The fig-
ure exhibits the same checkerboard-like pattern as in

11http://www.music-ir.org/mirex/wiki/2017:
Audio_Chord_Estimation_Results
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ROOT MAJMIN MAJMIN INV MIREX THIRDS THIRDS INV TRIADS TRIADS INV TETRADS TETRADS INV SEVENTHS SEVENTHS INV

x .77 .77 .72 .77 .75 .70 .71 .66 .57 .54 .63 .59
σ .16 .16 .19 .13 .16 .19 .18 .20 .22 .23 .21 .23

Table 6: Average (x) and standard deviation (σ) agreement results between the annotators and the Billboard
annotations. Agreement decreases with increased chord granularity, and is significantly lower when inversions
are taken into account.
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Figure 10: Krippendorff’s α inter-rater agreement of all songs in the dataset. The checkerboard-like pattern
reveals that for each level of granularity, the level of agreement decreases when inversions are taken into
account. Billboard dataset IDs can be found below the columns; average reported difficulties can be found
above the columns. The numbers on the right show the average agreement for each chord granularity level.
Columns are ordered by increasing average pairwise agreement.

Dataset ROOT MAJMIN MAJMIN INV SEVENTHS SEVENTHS INV

HASD .76 .73 .67 .6 .54
Isophonics2009 .87 (KBK) .87 (KBK) .83 (KBK) .76 (KBK) .73 (KBK)
Billboard2012 .86 (KBK) .86 (KBK) .83 (KBK) .63 (WL) .61 (JLW)
Billboard2013 .81 (KBK) .78 (KBK) .76 (KBK) .58 (WL) .56 (JLW)
JayChou29 .83 (WL) .82 (WL) .79 (WL) .62 (WL) .59 (WL)
RobbieWilliams .89 (KBK) .88 (KBK) .85 (KBK) .83 (KBK) .81 (KBK)
RWC-Popular .87 (KBK) .87 (KBK) .81 (KBK) .70 (WL) .68 (JLW)
USPOP2002Chords .82 (KBK) .81 (WL) .78 (JLW) .69 (WL) .66 (JLW)

Note. KBK = Korzeniowski et al. (2017), WL = Wu et al. (2017), JLW = Jiang et al. (2017)

Table 7: MIREX 2017 ACE evaluation results. Evaluation results consistently surpass the subjectivity ceiling found
in the HASD.
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Figure 7, indicating that the inter-annotator agreement
for chord-label granularities is lower when inversions
are taken into account.

7. Conclusions and Discussion
In this paper, we presented a new harmonic annotator
subjectivity dataset of expert-annotated chord labels of
popular songs, and an analysis of the extent of annota-
tor subjectivity found in this dataset. We have shown
that the annotators in this dataset each use a particular
chord-label vocabulary, with overlap among all anno-
tators of less than 20 percent.

Furthermore, in a pairwise analysis of the annota-
tions using the commonly used MIREX evaluation mea-
sures, we find that annotators agree on average on
only 73 percent of root notes. This disagreement in-
creases with the complexity of chord labels, with only
59 percent agreement for the most complex vocab-
ulary. Agreement is even lower when we take into
account inversions, with an average of 5 percentage
points less agreement for chords with inversions. In
a comparable experiment using annotations from for-
mally trained amateur musicians, Ni et al. (2013) re-
ported annotator subjectivity of around 10% among
the annotators when compared to a consensus. Al-
though the research of Ni et al. concerned amateurs
annotators in contrast to our expert annotators, com-
parable but slight higher amounts of average pairwise
agreement can be found in their dataset.

In an inter-annotator agreement analysis using
Krippendorff’s α, we find disagreements that underline
the findings from the pairwise comparisons. Compar-
ing the annotators and the commonly used standard
Billboard reference annotation, we find that annota-
tors on avererage agree just as much with each other
as with the Billboard annotations. This suggests that
the Billboard annotations can be seen as another expert
annotation that is equally valid as an expert annotation
from our dataset.

The large differences among annotators show that
annotator subjectivity is an important factor in har-
monic transcriptions, which should figure into serious
computational research on harmony. ACE in partic-
ular should take annotator subjectivity into account
by providing personalized chord labels, tuned to the
idiosyncrasies of each user. Ni et al. (2013) simi-
larly found that state-of-the-art ACE systems perform
closely to that of the annotators found in their dataset
when evaluated on the MAJMIN chord-label granularity.
Chord-label estimation performances beyond a subjec-
tivity ceiling suggest that state-of-the-art ACE systems
are starting to tune themselves to a particular subjec-
tive annotation, and could also be powerful enough for
chord-label personalization. In fact, a first approach to
such a system has already been introduced by Koops
et al. (2017), showing that chord labels can be tuned
to an annotator’s specific vocabulary from a represen-
tation shared by multiple annotators.

We conclude by suggesting that the root causes of
annotator subjectivity should be addressed in future
research. The first instrument of annotators (i.e., a
bias towards listening to the instrument they are ac-
customed to listening to), their preferred level of tran-
scription detail, their musical sophistication (e.g., in-
strument and music theory proficiency), and even their
harmonic taste (i.e., simply preferring the sound of a
chord over another) could all be reasons why anno-
tators differ in their transcriptions. Furthermore, a
harmonic similarity analysis of the chord-label annota-
tions provided by annotators could provide insight into
the relative distances between the annotators’ annota-
tions, if clusters of annotators exist and if these clus-
ters correlate with the possible root causes of annotator
subjectivity. As mentioned in the introduction, a vast
amount of heterogeneous (subjective) harmony anno-
tations can be found in crowd-sourced repositories. It
is currently an unsolved problem how to computation-
ally find useful annotations within these repositories,
and how these can be used for computational harmony
research. A better understanding of annotator subjec-
tivity would help reveal which crowd-sourced chord-
label annotations are within the bounds of subjectivity,
therefore appropriate for research. In the long-term,
results from the growing body of work that reveals the
extent and cause of annotator subjectivity calls for the
development of more flexible computational harmony
MIR (e.g. ACE) systems that can take into account an-
notator subjectivity and the reasons why annotators
may differ. Moreover, it is not unlikely that annotator
subjectivity plays a role in other MIR tasks, as ambigu-
ity plays a large part in music in general.
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Kühnberger, K.-U., Kutz, O., and Smaill, A. (2014).
Concept invention and music: creating novel har-
monies via conceptual blending. In In Proceedings
of the 9th Conference on Interdisciplinary Musicol-
ogy (CIM2014), CIM2014. Citeseer.

Koops, H., de Haas, W., Bountouridis, D., and Volk,
A. (2016). Integration and quality assessment of
heterogeneous chord sequences using data fusion.
In Proc. of the 17th International Society for Mu-
sic Information Retrieval Conference, ISMIR, pages
178–184.

Koops, H. V., de Haas, W. B., Bransen, J., and Volk,
A. (2017). Chord label personalization through
deep learning of integrated harmonic interval-
based representations. In Proceedings of the 1st
Workshop on Deep Learning for Music, pages 19–
25.
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