Designing and comparing two
Scratch-based teaching approaches
for students aged 10-12 years —
extended version

Nienke van Es

Johan Jeuring

Technical Report UU-CS-2017-015
October 2017

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Designing and comparing two Scratch-based teaching
approaches for students aged 10-12 years

Nienke van Es
Utrecht University
nfjvanes@gmail.com

ABSTRACT

Programming and computational thinking are becoming more im-
portant in primary education. This raises the question of how dif-
ferent approaches to teaching programming in primary schools
compare with each other. We designed two approaches to teach
programming to primary school students. One approach uses the
instructionistic 4C/ID model, the other approach uses construction-
ism. The learning gains of these two approaches were compared
using a pre- and post test. In total, 129 students from two differ-
ent schools participated. A significant difference (p = .037, d = .59)
between the two approaches was found on one of the schools, fa-
voring the 4C/ID approach. On the other school and for the total
group no significant difference was found. This is explained by
the different backgrounds between the students from the different
schools.

This paper is an extended version of a paper that is published in Koli
Calling 2017, and contains more details about the research performed.

CCS CONCEPTS

« Social and professional topics — Computing education; K-
12 education;

KEYWORDS

teaching Scratch programming, primary school, comparing teach-
ing approaches, constructionism, 4C/ID

ACM Reference format:

Nienke van Es and Johan Jeuring. 2017. Designing and comparing two
Scratch-based teaching approaches for students aged 10-12 years. In Pro-
ceedings of Koli Calling 2017, Koli, Finland, November 1619, 2017, 9 pages.

DOI: 10.1145/3141880.3141883

1 INTRODUCTION

We live in a world where a child spends a couple of hours per
day interacting with software on various kinds of computers. To
understand this world, children need to get an idea of what is behind
software, and how software is constructed. For young students,
learning how to develop a computer program has more advantages
than just gaining the ability to develop a program. The process of
learning to program also improves problem solving, logical thinking,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

Koli Calling 2017, Koli, Finland

© 2017 Copyright held by the owner/author(s). 978-1-4503-5301-4/17/11...$15.00
DOI: 10.1145/3141880.3141883

Johan Jeuring
Utrecht University and Open University of the
Netherlands
j.tjeuring@uu.nl

and organizational skills (Lee, 2011). These skills are also applicable
to real world problems and other courses. In our own country, The
Netherlands, the parliament has asked the secretary of education
to find a place for programming in primary education.

After finding a place for programming in the curriculum, the
immediate follow-up question is how to teach programming ef-
fectively. Quantitative research on learning gains of different pro-
gramming teaching approaches is sparse (Jeuring, Corbalan, van Es,
Leeuwestein, & van Montfort, 2016). Many teachers don’t feel confi-
dent about how to teach programming, and are experimenting with
various ways to approach it. Teaching programming needs to be
approached carefully: confused teachers can harm young students’
attitude towards programming (Duncan, Bell, and Tanimoto, 2014).
It is important to provide teachers with successful approaches to
teach young students programming. This paper contributes to this
goal by describing an experiment in which we design and compare
two different approaches to teaching programming.

The two teaching approaches we investigate are based on con-
structivism and the 4C/ID model, respectively. Using construction-
ism in teaching programming is very popular (Baytack, & Land,
2011; Bruckman, & De Bonte, 1997; Dasgupta et al., 2016; Ngai,
Chan, Leong, & Ng, 2013). With this approach students build their
own meaningful product. The 4C/ID model is designed to teach
complex cognitive skills. Complex cognitive skills are described
as skills that are time consuming to acquire (Van Merriénboer, &
Dijkstra, 1997). As an example of a complex cognitive skill, Van
Merriénboer and Dijkstra (1997) mention computer programming.
Using the 4C/ID approach, teachers often explain a topic using
frontal instruction. After the instruction, a student practices the
skills with worksheets.

We design series of programming lessons based on the above
two teaching approaches, and perform these lessons in five differ-
ent classes at two different primary schools. At each school we
perform both teaching approaches. Students are in between 10 and
12 years old. We compare the learning gains of the two teaching
approaches to find out how the approaches affect the development
of programming competencies of students. The aim of this compar-
ative design-based research is to determine which of the teaching
approaches results in higher learning gains.

We use Scratch to teach programming at primary school. This
tool is often used to study teaching approaches and to teach stu-
dents programming (Aritajati, Rosson, Pena, Cinque, & Segura,
2015; Dasgupta, Hale, Monroy-Hernandez & Hill, 2016; Flannery et
al., 2013; Franklin et al., 2015). According to the Scratch website, it
is used in more than 150 countries and has more than nineteen mil-
lion shared projects (http://scratch.mit.edu). There are a number of
reasons why we choose to use Scratch for teaching programming

https://scratch.mit.edu

Figure 1: Scratch example code: the cat asks for your name,
says something using your name, and then walks a square.

at primary school: Scratch is designed for novice programmers
without any programming experience (Aritajati et al., 2015; Lee,
2011), and the interface of Scratch is student-friendly (Franklin et
al., 2015). Scratch has a drag and drop interface that provides visual
support using programming blocks. Two blocks only fit together
when the corresponding code is syntactically correct. A program-
mer uses the blocks to write software or games without writing the
textual code (Lee, 2011). Figure 1 gives an example of Scratch code.

This paper is an extended version of a paper that is published
in Koli Calling 2017, and contains more details about the research
performed.

This paper is organised as follows. Section 2 further introduces
the two teaching approached we use. Section 3 discusses the design
of our research, and Section 4 the research method. Section 5 gives
the results, which are discussed in Section 6. Section 7 concludes.

2 BACKGROUND

We use two teaching approaches in this study: constructionism and
4C/ID. This section discusses the learning theory behind and the
practical implications of each of the approaches. We explain where
the two teaching approaches, as we develop them, are similar and
how they differ from each other. The outcomes of this research not
only depend on these theories, but also on how well we manage
to use the characteristics of the theories in the development of
education (DiSessa, & Cobb, 2004).

2.1 Constructionism

Constructionism is a learning theory that builds on Piaget’s con-
structivism. In constructionism, the learner actively constructs
knowledge. The theory emphasizes that a learner constructs this
knowledge through developing, for example, a computer program,
in a development cycle in which sharing plays an important role
(Kafai & Resnick, 1996, pp. 176-178). The product to be developed
should be meaningful for the student, because constructing person-
ally meaningful products is effective for learning. The approach
assumes a teacher to act as a coach instead of a facilitator of knowl-
edge (Kafai & Resnick, 1996, pp. 176-178, 208-214).

Papert and Harel (1991) describe constructionism as “learning-
by-making”, and mention “playful” as an important characteristic.
In their book, Kafai and Resnick (1996) characterise constructionism
by learning through design, and learning in communities. Ngai and
colleagues (2013) characterise constructionism as a way to incre-
mentally enlarge and build knowledge into fundemental concepts.
Bruckman and De Bonte (1997) argue that the process of learning is
successful when the students are working on projects that are chal-
lenging their skills and give opportunities for creativity. Another
important aspect described by Bruckman and De Bonte is a com-
munity in which students can help each other. Within the learning
process, the students can either ask their teacher or fellow students
for help and construct knowledge together. This corresponds to
learning in communities as described by Kafai and Resnick (1996).
An example of using Scratch with the constructionist approach is
to let students design and program their own games.

2.2 The 4C/ID model

The four component instruction model, 4C/ID in short, is a guide-
line for instructional design. The model consists of four components
which, when combined, support complex learning. The four com-
ponents are learning tasks, supportive information, just in time
information, and subtask practice. Whereas other design models
follow the theory that a complex learning task can be achieved by
the sum of the parts, this does not hold for the 4C/ID model. The
4C/ID model is based on the theory that the whole is more than the
sum of the parts. There is evidence that the theory in which the
whole is equal to the sum of the parts is not valid (Van Merriénboer,
Clark & De Croock, 2002).

One of the major assumptions of the 4C/ID model is that complex
skills can only be learned by doing. The learner must be confronted
with tasks in which (s)he can perform the skills that have to be
learned (Van Merriénboer & Dijkstra, 1997). With learning by do-
ing, a student will learn procedural knowledge. According to Van
Merriénboer and Dijkstra, the 4C/ID model makes a distinction
between controlled and automatic information processing for pro-
cedural knowledge. Controlled information processing requires
effort from the learner, whereas automatic information processing
requires hardly any effort because it just happens. It is therefore im-
portant to determine the desired behaviour of the learner. With the
knowledge of what behaviour can be expected, a test can determine
whether a learner managed to learn the skill. More importantly, the
teacher can determine if the skill is automated or controlled (Van
Merriénboer & Dijkstra, 1997).

Rule automation helps in achieving automated processing. Rule
automation is the construction of specific procedures that can be
used to decompose problems into subproblems. The procedures can
then be used to solve these subproblems. For effective controlled
processing, schema acquisition is important. A schema provides
knowledge that can be used to solve particular problems. If a schema
is more developed it can provide more generalized knowledge. Rule
automation and schema acquisition both occur when learning a
cognitive complex skill. With this knowledge, the four components
of the 4C/ID model are developed (Van Merriénboer & Dijkstra,
1997).

Learning tasks, supportive information, just in time information,
and subtask practice are the four components of the 4C/ID model.
Together they provide a basis that can be used in different contexts.
The first component, learning tasks, is based on the principle that
learners learn by performing meaningful tasks. By performing these
tasks the learner integrates knowledge and subskills in her existing
knowledge. All subskills are practiced in the context of a whole com-
plex task. The second component, supportive information, helps in
obtaining the knowledge necessary for the learning tasks. The just
in time information consists of procedural knowledge needed to
perform the task. This information is given just before the learner
needs it. The last component is subtask practice, which means that
alearner practices subtasks as long as these are not automated (Van
Merriénboer et al., 2002; Poortman & Sloep, 2006).

An example of a learning task for programming in Scratch is: let
the avatar ask your name and then greet you with your name. The
supportive information for this task is about variables. The just in
time or procedural knowledge for this task is information about
how to create an avatar and use blocks and variables in Scratch.
Some subtasks to practice are creating variables and changing or
combining them with the help of blocks.

2.3 Research question

In previous research, Baytak, and Land (2011) used the construc-
tionistic theory to develop a Scratch-based teaching approach for
5th grade students. In this approach, students are asked to design
an educational game for 2nd graders in Scratch. The students de-
velop the games in 21 sessions of 45 minutes. From interviews,
transcriptions, and the collected games, the researchers concluded
that the students were motivated to make a game, and that all ten
students succeeded in making a game. A limitation of this study
is the absence of pre- and post assessments to identify gains in
programming skills.

Kalelioglu and Giilbahar (2014) use frontal instruction to teach
students programming with Scratch. They start simple and increase
the complexity of the exercises every week. The lesson series con-
sists of five lessons of one hour. The aim of the research is to find
a difference in the students’ perceptions of their problem solving
skills. Learning gains of the approach are not investigated. The
main conclusion is that there is no significant difference in the
students’ perceptions of their own problem solving skills.

None of the above studies aims to identify gains in programming
competencies. We think that with the right assessment, these teach-
ing approaches are suitable to test learning gains. We design two
lesson series for teaching programming in Scratch: a lesson series
based on the constructionistic approach of Baytak and Land’s (2011)
study, and a lesson series based on the 4C/ID model. The aim of
our research is to find out which approach leads to higher learning
gains in programming competencies of students: a constructionistic
approach or the 4C/ID approach. Our main research question is:

Which teaching approach, constructionism or 4C/ID,
results in higher learning gains in terms of program-
ming competencies for students aged 10-12 years?

2.3.1 Hypothesis. Sawyer (2005) argues that the instructionistic
approach mostly teaches facts and procedures to students. In to-
dayaAZs society students need more than just facts and procedures,

namely a deeper understanding of complex concepts. Students also
need the skills to use this understanding to create new ideas, knowl-
edge, products, or procedures. Instructionism results in knowledge
which is hard to use outside the classroom, because the student has
to know how the learned knowledge is applicable in new situations
(Sawyer, 2005, pp.1-3).

On the other hand, Kirschner, Sweller, and Clark (2006) argue
that guidance and instruction are more effective than construc-
tivistic approaches. They also argue that less guidance may cause
misconceptions. The arguments are based on the knowledge of the
human cognitive architecture. The main components of this archi-
tecture are the working memory, the long term memory, and the
relation between these two kinds of memory. Learning something
implies a change in the long term memory. When new knowledge
is provided, the capacity of the working memory and the duration
of how long the working memory can hold the information are two
limiting factors. These limitations are lifted when the memory can
work with familiar knowledge. Minimal guiding approaches, like
problem based learning, are causing an overloading of the working
memory and result in less effective learning.

Brunstein, Betts, and Anderson (2009) do not agree with the
above arguments. According to them, there is a difference between
no or very little guidance and helping students by giving hints and
putting them on the right track when they are developing their
products. When there is guidance during the learning process, a
minimal guiding approach can be effective.

There is no clear answer to the question which approach results
in higher learning gains. Therefore, our hypothesis is that there is
no significant difference in learning gains.

3 DESIGN

We develop five lessons for each teaching approach. For the 4C/ID
model, we used the ten steps to complex learning as a guideline
to develop these lessons. These ten steps are based on the 4C/ID
model and the Instructional Systems Design (ISD) process (Van
Merriénboer, & Kirschner, 2012). Each lesson covers one of the
main programming themes from the Dutch computer science cur-
riculum (Barendsen, & Tolboom, 2016): sequences, conditionals
(if-statements), loops, and combined conditions and variables.

Each lesson starts with a short introduction into the theme by
working through some case studies. We choose this explanatory
inductive strategy because it works well for students with little prior
knowledge and is time effective (Van Merriénboer et al., 2002). After
the introduction, the students work individually on an assignment
distributed through hand-outs. The hand-outs incorporate the other
components of the 4C/ID model. The just-in-time information is
presented in red outlined squares. These squares give step by step
instructions on how to deal with the practical aspects of Scratch.
The part time practice assignments are presented in purple outlined
squares. These squares contain small exercises to get more familiar
with important subskills.

In the constructionist approach, the students develop their own
game. To ensure that students have some prior knowledge before
developing a game, the first lesson is spent on the basics of Scratch
and programming. The students explore the programming blocks by
using the Scratch cards from the Scratch website, which encourage

4C/ID Constructionism

Instruction at the start of each No instruction, except for ex-
class about the main concept plaining the assignment

Students explore Scratch and
Information on how to use programming by themselves
Scratch and how to program with a little help from the
Scratch cards

Small assignments to help with One assignment to learn all con-
the bigger assignment cepts

Assignments to illustrate a sin-

gle concept

Table 1: Differences between the two teaching approaches

the students to learn by exploring (Wilson, Hainey, & Connolly,
2012). After this first lesson, the students start with developing their
own game. They get three and a half hour to complete a game. In the
last half hour students play the games developed by other students,
and ask questions about them. The main sources for programming
knowledge are the Scratch cards and the help they request from
the researcher.

While guiding the students, the researcher tries to stimulate
cooperation between classmates by passing questions to students
who asked the same thing. This kind of cooperation is strongly
suggested for constructionism (Sawyer, 2005, pp. 39-40; Baytak, &
Land, 2011). When helping the students, it is important to tell the
students just enough so they can go on by themselves. It is not the
intention to program the game for the students (Blaho, & Salanci,
2011). Students who do not know how to start receive a design
form. This form contains some questions to guide the students in
the process of designing a game. For example, the students are
asked to make a sketch of the layout of the game, and to write
down some rules.

The main differences between the two approaches are summa-
rized in Table 1. There are also some similarities between the ap-
proaches. Students are working on real world tasks in both ap-
proaches. There is some guidance at the start of the game design
assignment for students who need this. The students who need
help at the start are guided using a top-down approach, while the
other students have the option to work bottom-up.

To test if there is a learning gain after performing the five lessons,
we develop a pre- and post test. The two tests cover the three main
concepts we test, namely sequences, conditions, and loops. These
are derived from the renewed Dutch curriculum for computer sci-
ence for secondary schools. This curriculum mentions sequenc-
ing, repetition (or loops), conditions, and variables as basic pro-
gramming constructions (Barendsen, & Tolboom, 2016. pp. 16-17).
Barendsen and Tolboom also mention some constructions to sup-
port abstraction by programming, but we feel that these topics are
less suitable for primary school students. The tests do not contain
specific questions about variables, because this topic is implicitly
covered in the other questions. The test groups the questions by
topic. For the post test we use the same kind of questions as for the

Figure 2: Question inspired by Lewis (2010)

Yoor coon SR o=
o €@ e

Figure 3: Question where a student has order programming
blocks correctly

pre test, with a slightly changed context. We also change the order
of the questions in the post test.

The literature says little about what kind of questions related
to programming this age group can deal with. Lewis (2010) gives
some questions in her test for the same target audience. We use
these examples to develop two similar questions in our tests. Figure
2 shows an example question from the pre test. Students are asked
how many beats the program lasts in total, and how many beats
note 60 is played.

The other questions are based on the description of learning
goals in the Dutch curriculum for computer science for secondary
education, namely developing code, adapting code, and explaining
code (Barendsen, & Tolboom, 2016, pp. 36).

One part of the questions is about sequencing. These questions
ask to put the programming blocks in the right order. Such a ques-
tion tests the ability of a student to develop a program. In some
of the questions, we ask students to give the right order if some-
thing in the program changes. Such a question is derived from the
learning goal that students are able to adapt a program when the
requirements change (Barendsen, & Tolboom, 2016, pp. 36). Figure
3 shows a part of a question in which programming blocks have
to be put in the right order. Students have to order the blocks to
obtain a program that draws a line of 20 steps.

The last kind of questions are the questions where students
explain a piece of code. We use a question as shown in Figure 4 to

~ touching edge 2 and key

Figure 4: Question where students were asked to explain
what happened

test students on explaining the structure and working of a program
(Barendsen, & Tolboom, 2016, pp. 36). Such questions are similar
to some of the review questions in Calder’s book (2011), in which
students have to explain what a program does when it is executed.

4 METHOD

We perform a comparative design-based study. To answer the re-
search question, we design two sets of lessons, which we teach at
two schools. The two lesson sets are based on constructionism and
the 4C/ID model, respectively.

The first author taught the Scratch programming lessons on one
school for one hour per week. She organised one hour sessions
twice a week for three weeks at the other school. The experiment
took three to five weeks, and took place in October and November
2016.

4.1 Participants

The lessons were taught at two Dutch primary schools with 5th and
6th grade students, aged nine to twelve years. The schools where
the experiments took place are located in Utrecht and Wageningen.
The schools participated voluntarily. We solicited schools through
a newsletter for elementary schools, and got responses from the
two schools at which we performed the experiments.

The students from the school in Utrecht were distributed over
three classes, one 5th grade, one 6th grade and one combined 5th
and 6th grade class. In total 87 students between 9 and 12 years old
participated. The 5th grade students (18 female, 13 male) were on
average 10,1 years old in the range from 9 to 11. Eight out of thirty-
one students were familiar with Scratch. The 6th grade students (11
female, 15 male) were on average 11,1 years old in the range from
10 to 12. In this class, twelve students were familiar with Scratch.
The combined 5th and 6th grade class students (14 female, 15 male)
were on average 10,4 years old in the range from 9 to 12. Out of
the 29 students, 10 students said they knew Scratch. The school
is located in the Vogelenbuurt just outside the centre of Utrecht.
The school is a public school, and is accessible for students with all
cultural backgrounds and religions.

The students from the school in Wageningen were distributed
over two combined 5th and 6th grade classes. In total, this school
had 57 students between 9 and 12 years old that participated. The
first class had 28 students (17 female, 11 male) with an average
age of 10,5 years in the range from 9 to 12. In this class, only five
students knew Scratch before the project started. The second class
contained 29 students (13 female, 16 male) with an average age of
10,6 in the range from 9 to 12. Eleven students were familiar with
Scratch at the start of the project. The school is a Catholic school.

To prevent differences between students of the different schools
from influencing the research as much as possible, we taught both
teaching approaches on both schools. The distribution of students
over the teaching approaches is shown in Tables 2 and 3. We as-
sumed that similar groups within the schools were equally diverse.
This means that we assumed that the different groups within the
schools had an equal spread of ethnic backgrounds. Also, we as-
sumed the students had approximately the same learning history,
and the same spread of learning levels. So we assumed that by us-
ing the fixed groups in the schools, these groups were comparable
within the schools.

Constructionism 4C/ID
31 students
27 students

Grade 5
Grade 6
Combined grade 5-6

29 students

Table 2: Distribution of the approaches in Utrecht

Constructionism 4C/ID
Combined grade 5-6a 29 students
Combined grade 5-6b

28 students

Table 3: Distribution of the approaches in Wageningen

4.2 Instruments

As explained above, the two teaching approaches which were
used differ in how students learned to program in Scratch. Due
to the lack of computers in Wageningen, the students learned to
program with an app called Pyonkee. This Scratch-based applica-
tion works on iPads and contains the same programming blocks
as Scratch. Pyonkee is based on version 1.4 of Scratch for iPads
(https://wiki.scratch.mit.edu/wiki/Pyonkee). The worksheets and
tests were not changed for these students. The explanation was
given in Scratch.

To determine the internal consistency of the tests, Cronbach’s
alpha (Field, 2009, pp. 673-676) was calculated. This value has to be
above 0.7 for the test to be accepted as reliable. Other test quality
measures are the p value, rit, and rir of the questions. The p value
says something about how well students answered a question, and is
preferably in between 0.3 and 0.8. The rit and rir give an impression
of the distinctiveness of the question, and are computed to relate the
score of the single question to the total score. For the rir, in contrary
to the rit, the total score minus the score of the question for which
the rir is calculated is used. The rit and rit are considered good
from 0.35 and up. For the pre test, Cronbach’s alpha was 0.83. The
other quality measures are presented in Table 4. The Cronbach’s
alpha of the post test was 0.81, and Table 5 presents its other quality
measures.

All tests were graded by the first author. A randomly picked
sample of 30 of the 129 tests, both pre- and post tests, was indepen-
dently graded by a second grader. The first author determined if
there were major differences in scores. For both the pre- and post

https://wiki.scratch.mit.edu/wiki/Pyonkee

p variance rit rir

1 44 81 54 43
2a .14 .39 54 47
2b 13 41 52 44
3 39 74 72 .64
4 40 91 .65 .54
5 .60 1.12 .63 .51
6 31 173 72 .59
7 35 91 .62 51
8 27 230 72 .56
9a .20 .49 59 51
9b .27 .20 51 .46

Table 4: Statistics of the pre test

p variance rit rir

1 .62 .66 55 454
2a .50 .56 .63 .55
2b .87 .13 47 42
3 S0 .75 56 .45
4 37 1.05 51 .38
5 74 75 .64 .55
6 .52 3.00 75 .59
7a .22 .55 57 .48
7b .18 .54 .62 .54
8 .64 1.73 .69 .56
9 .55 .77 56 .46

Table 5: Statistics of the post test

test the first author discussed with the second grader the differences
in how questions were scored. After this, the first author adapted
the correction model where needed and corrected all the pre- and
post tests again. Then, Cohen’s Kappa for inter-rater reliability was
calculated. The value of Cohen’s Kappa has to be above 0.6 to be
acceptable (McHugh, 2012). For the pre test, Cohen’s Kappa was
0.79 and for the post test 0.68. Therefore, we assume there was
enough agreement between the graders.

4.3 Data collection and analysis

Pre- and post test data on programming competencies of all par-
ticipants was collected and graded. Data from students who did
not attend the pre- or post test was removed from the final results.
In total, we have data of 129 students. We used the score on the
test expressed as a percentage (100%: fully correct, 0%: completely
wrong) to analyse the data. Unless indicated otherwise, the analysis
was performed with SPSS.

First, we tested whether the pre- and post test had a significant
difference for each teaching approach and school. We performed a
paired sample t-test (Field, 2009, pp. 326-330). To perform a paired
samples t-test, the learning gains data should be normally dis-
tributed. If the data is not normally distributed, we have to use a
similar test, without a normally distributed data condition. Such
tests are called non-parametric tests. Non-parametric tests have a

Abbreviation = Shapiro-Wilk

Wageningen 4C/ID W4 p=.584
Wageningen constructionism WC p=.020
Utrecht 4C/ID 5th grade Us p=.252
Utrecht 4C/ID 6th grade U6 p=.888
Utrecht constructionism ucC p=.470

Table 6: Results of the Shapiro-Wilk normality test of the
learning gains

disadvantage compared with a t-test: they cannot use the informa-
tion of the underlying distribution of the data, and are therefore
less informative. To test for normal distribution of data, we used a
Shapiro Wilk normality test (Field, 2009, pp. 144-148).

The results of the normality tests can be found in Table 6. For
the Wageningen constructionism group, the p value is smaller than
0.05 which means the data is not normally distributed according to
this test. However, when we look at the histogram and the Q-Q plot
of the learning gains, there is no reason to assume the data is not
normally distributed. Therefore, we did not perform non-parametric
tests. All other groups have p values that are larger than 0.05 which
implies that the data is normally distributed, and hence that the
t-test can be performed. When there is a significant difference
between the pre- and post test, Cohen’s d will be calculated to
measure the effect of the intervention.

To compare the two teaching approaches per school, we calcu-
lated the learning gain by subtracting the pre test score from the
post test score. We used a two tailed t-test to determine if there is a
significant difference between the two teaching approaches (Field,
2009, pp. 334-339). If there is a significant difference, we use the
means of the scores to determine which teaching approach was
more successful on that school. We also tested if there is a differ-
ence between the schools. Therefore, we used a two tailed #-test
for both approaches on both schools. Again, if there is a significant
difference, the means are used to determine which approach on
what school had the higher learning gain.

We also tested if there was a significant difference between the
two teaching approach for all the participants together. We used
a two tailed t-test to determine if there is a difference. We also
performed a two tailed t-test on some variances of the data. For any
significant difference, the means will be used to determine which
approach had the higher learning gains.

Lastly, we measured the experiences of the students with the
programming lessons. These questions were on the front page of the
post test, and consisted of seven questions. Six of these questions
should be answered on a five point Likert scale. The last question
asked how many hours the students worked with Scratch beside the
lessons during the intervention. All the questions gave an overall
impression on how students experienced the programming lessons.

5 RESULTS

This section presents the main results. First, we want to determine if
there is a learning gain for the students after taking the five lessons.
Table 7 shows the results of the paired sample t-test. All classes
significantly improved between the pre- and post test (p <.05). The

W4 WwC Us U6 ucC Wageningen Utrecht All*
Pre Mean 32.23 30.96 36.44 23.64 37.93 4C/ID Mean 38.46 18.65 25.52
SD 23.69 24.69 24.15 27.61 25.39 SD 22.39 23.00 24.55
Post Mean 62.77 50.52 46.44 42.18 50.43 N 26 49 75
SD 18.65 29.86 21.40 26.44 24.59 Constructionism Mean 25.25 17.69 21.41
t 7.581(25) 6.129(26) 2.402(26) 4.284(21) 4.174(27) SD 17.25 16.52 17.16
p <.001 <.001 =.024 <.001 <.001 N 27 28 55
d 1.41 0.71 0.4 0.69 0.50 t 2411(51) .132(75) 1.123(128)
p .020 .848 .263
Table 7: Results of the paired sample t-tests for the pre- and d 0.66 0.05 019
post test for each class Shapiro-Wilk p=.140 p=.403 p=.156
Wageningen Utrecht All* Table 9: Results of comparing the two teaching approaches
4C/ID Mean 30.54 13.84 19.63 without the excluded question
SD 20.54 21.27 2236 * equal variances not assumed (F = 9.679, p = .002)
N 26 49 75
Constructionism Mean 19.56 12.50 15.96 Utrecht All*
SD 16.58 15.85 16.45 4C/ID Mean 18.55 25.04
N 27 28 55 SD 20.30 21.10
t 2.146(51) .289(75) 1.028(128) N 22 48
P 037 773 284 Constructionism Mean 12.50 15.96
d 0.59 0.07 0.18 SD 15.85 16.45
N 28 55
Table 8: Results of comparing the two teaching approaches t 1(48) = 1.183 #(88) = 2.410
* equal variances not assumed (F = 5.782, p = .018) P p=.243 p=.018
d 0.34 0.48
Shapiro-Wilk p=.818 p=.142

effect sizes (Cohen’s d) of the school in Wageningen are higher
than in Utrecht. The effect measured for the 5th grade students
in Utrecht is the lowest effect of all classes. The other classes in
Utrecht are in between the lowest and highest effect sizes.

The results of the t-test are presented in Table 8. There is a sig-
nificant difference between the learning gains for the two teaching
approaches in Wageningen (p = .037). By looking at the means, the
difference is in favour of the 4C/ID approach (M = 30.54) There is no
significant difference between the learning gains of the two teaching
approaches for Utrecht or the schools combined (p >.05). However,
when we take a closer look at the data we find that students scored
lower on one question in the post test in comparison with the pre
test. This question was about conditionals. When designing the
post test we assumed the students would learn something about
coordinates in both approaches and would therefore be able to
answer the question. In the pre test we assumed the students did
not know this and we therefore used more readable programming
blocks for this question. Since most students failed to answer the
question in the post test, we excluded the question from both the
pre- and post test and performed the t-test once more. The results
of these tests are presented in Table 9.

There is no difference in the main results with the excluded
question. For the school is Wageningen, there is still a significant
difference (p = .020) between the two teaching approaches. For the
other groups, there is no significant difference.

Due to the small effect of the 5th grade in Utrecht, we were
curious what would happen if we excluded this class from our
original results. The results of this exclusion can be found in Table
10. The main difference is that there is a significant difference
between the two teaching approaches for the two schools combined

Table 10: Results of comparing the two teaching approaches
without the 5th grade of Utrecht
* equal variances not assumed (F = 5.095, p = .026)

(p = .018). However, there is still no significant difference for the
school in Utrecht.

Finally, Table 11 presents the results of the survey on how stu-
dents experienced the programming lessons. Overall, the students
gave the programming lessons a score of around 4 out of 5. They
scored the difficulty of developing programs in between 2.80 and
3.20. The students also scored how much they thought they had
learned. These scores are between 3.40 and 3.90.

6 DISCUSSION

This study investigates the research question

Which teaching approach, constructionism or 4C/ID,
results in higher learning gains in terms of program-
ming competencies for students aged 10-12 years?

Because there was not enough evidence to support one theory over
the other, our hypothesis is that there is no significant difference
between the learning gains of the two approaches.

The results show a significant learning gain of the students
between the pre- and post test. The effect in Wageningen is larger
than in Utrecht. In Wageningen, the effect of the 4C/ID approach
is almost 2 times larger than the effect of the constructionistic
approach. In Utrecht the effect between pre- and post test for both
teaching approaches are smaller. For the 4C/ID approach, the 5th

(1) Did you like constructing programs on a computer?
(2) Did you like working with Scratch?

(3) Was it hard to develop programs on the computer?
(4) Was it hard to work with Scratch?

(5) Did you like the programming classes?

(6) How much do you think you have learned?

(7) Hours spent on programming outside classes

m @ 6 @ 6 © 0
W4 419 4 319 288 404 373 1
WC 4.04 374 294 289 396 341 1.06
U5 446 446 3.11 264 432 386 1.07
U6 423 432 284 252 398 380 5.18"
UC 438 414 296 283 432 379 175

Table 11: Results of the survey. For questions starting with
"Did you like", 1 denoted "did not enjoy", and 5 "liked it a
lot". For questions starting with "Was it hard", 1 was "very
easy”, and 5 "very hard". For the question about learning, 1
denoted "nothing", and 5 "a lot".

* One of the students entered a very high amount of hours,
namely 105

grade had a small effect and the 6th grade a medium effect. The
constructionistic approach in Utrecht also had a medium effect.

The t-test shows that there is a significant difference between
the two approaches in Wageningen. The effect of this difference is a
medium effect (d = 0.59). This difference is not measured for Utrecht
or for all the students combined. The effects for these comparisons
are not even small, which raises some questions about why this
difference is only measured for Wageningen. Also remarkable is
that the average learning gains in Wageningen (4C/ID: M=30.54,
constructionism: M=19.56) are much higher than in Utrecht (4C/ID:
M=13.84, constructionism: M=12.50).

6.1 Only one significant difference?

We first discuss some of the circumstances that might have caused
some differences between the schools. The first difference is that
the Utrecht school did not book additional time for the post test.
The Wageningen school booked an extra slot for the post test. This
means that the Utrecht students worked on the post test starting half
an hour into the final lesson. The Utrecht students thus had thirty
minutes less to learn programming. Also the transition between
working on computers to focussing on a test may have influenced
the results.

The differences between Wageningen and Utrecht might also be
explained by the planning of the lessons. The students in Wagenin-
gen had programming lessons twice a week for three weeks. In
Utrecht the students had one programming lesson for five consecu-
tive weeks. The programming lessons in Wageningen were closer
to each other, which might have helped the students remember
prior knowledge. By remembering prior knowledge, the working
memory can more efficiently process new information (Kirschner et

al., 2006). This may have created an advantage for the Wageningen
students.

Another explanation for why the difference is only present in
Wageningen might be that the schools have slightly different ap-
proaches to learning. The Utrecht school propagates a learning by
doing approach, and mentioned so at the intake discussion. It might
hence be the case that the Utrecht students are more used to con-
structionistic approaches than the students in Wageningen. When
asked, the Wageningen school said that their students were also
familiar with learning by doing approaches to learning. However,
the students in Wageningen could have had a preference for the
4C/ID approach.

Sun, Pan, and Wang (2010) argue that researchers always have to
put the effect sizes in context of the subject and research field. If we
take all above mentioned considerations into account, the planning
of the lessons and post test, we can still say that the effect between
pre- and post test for the 4C/ID approach in Wageningen is large.
Comparing with the other effect sizes between pre- and post test,
the 4C/ID approach in Wageningen is two times larger than the
highest effect size of the others. The difference between the 4C/ID
and constructionistic approach in Wageningen had an effect of 0.59.
Because there was no effect between the two approaches in Utrecht
and with the two schools combined, the effect size from Wageningen
also indicates that the 4C/ID approach was more successful in
Wageningen.

The main learning theory underpinning the 4C/ID approach
is the human cognitive architecture (Kirschner et al., 2006). The
students get the information in small pieces so the working mem-
ory can process them using prior knowledge. This will eventually
result in a change in the long term memory, which is needed to
develop learning schemes (Van Merriénboer, & Dijkstra, 1997). The
Wageningen students had less time between programming classes.
Students might have had an advantage here, because they remem-
bered the prior knowledge better.

6.2 Further analysis

After looking at the overall data, we also looked at two special sets
of data, obtained through filtering the original data. The first set
was obtained by excluding a question the validity of which was
doubtful. Using this data, the effect size in Wageningen between
4C/ID and constructionism slightly rose to 0.66. In Utrecht and for
the two schools combined, there was no difference.

The next data set was obtained by excluding the data from the
5th grade in Utrecht. This was the youngest group that depended
most on help when working on the exercises, and had the smallest
learning effect. Excluding this class from the data gives a significant
difference between the teaching approaches for the total group,
with an effect size of 0.48. This difference did not occur in Utrecht
alone.

Using these filtered data sets, there is no proof that there is a
significant difference between the two approaches for the Utrecht
school. The question of doubtful validity had little effect on this
school. Also the 5th grade students did not cause noise for Utrecht.
For the total group, excluding the 5th grade from Utrecht, there was
a significant difference with a small effect. We think this difference
is mostly explained by the effect of Wageningen on the total group.

7 CONCLUSIONS

The 4C/ID approach leads to significantly better learning gains
when learning programming than a constructionistic approach
for the Wageningen school. We thus reject our hypothesis for the
Wageningen school. However, we cannot reject our hypothesis for
the Utrecht school or the total group. The difference between the
schools might be explained by students having a preference for one
teaching approach over another, and the students from the different
schools have different backgrounds. All students seemed to like the
programming lessons, no matter what approach was used.

For future research it would be interesting to see what happens if
the lessons are performed with the same time between the lessons
on both schools. Additionally, an adapted post test in which the
question of which the validity is dubious is excluded should be used.
It would also be interesting to see what happens when the research
is performed with more homogeneous classes and more students.
For example, all 5th and 6th grade classes or all combined 5th and
6th grade classes. With the separate 5th and 6th grade classes there
might be a difference in age groups.

REFERENCES

Aritajati, C., Rosson, M. B., Pena, J., Cinque, D., & Segura, A. (2015). A socio-cognitive
analysis of summer camp outcomes and experiences. Proceedings of the 46th ACM
Technical Symposium on Computer Science Education, 581-586.

Barendsen, E., & Tolboom, J. (2016). Advies examensprogramma informatie havo/vwo.
From: http://www.slo.nl/organisatie/recentepublicaties/adviesinformatica/, En-
schede: SLO.

Baytak, A., & Land, S. M. (2011). An investigation of the artifacts and process of
constructing computers games about environmental science in a fifth grade classroom.
Educational Technology Research and Development, 59(6), 765-782.

Blaho, A., & Salanci, L. U. (2011). Informatics in primary school: principles and
experience. In International Conference on Informatics in Schools: Situation, Evolution,
and Perspectives, Springer Berlin Heidelberg, 129-142.

Bruckman, A., & De Bonte, A. (1997). MOOSE goes to school: A comparison of
three classrooms using a CSCL environment. In Proceedings of the 2nd international
conference on Computer support for collaborative learning, International Society of the
Learning Sciences, 20-27.

Brunstein, A., Betts, S., & Anderson, J. R. (2009). Practice enables successful learning
under minimal guidance. Journal of Educational Psychology, 101(4), 790-802.

Calder, T. (2011). Learning to Scrath a beginners guide to computer programming
for kids. Prince Rupert, ISBN: 978-0-9811587-1-6.

Cohen, J. (1992). A power primer. Psychological bulletin, 112(1), 155.

Dasgupta, S., Hale, W., Monroy-Hernandez, A., & Hill, B. M. (2016) Remixing as a
pathway to computational thinking.

DiSessa, A. A., & Cobb, P. (2004). Ontological innovation and the role of the-
ory in design experiments. The journal of the learning sciences, 13(1), 77-103. doi:
10.1207/s15327809j1s1301_4

Duncan, C., Bell, T., & Tanimoto, S. (2014, November). Should your 8-year-old learn
coding?. In Proceedings of the 9th Workshop in Primary and Secondary Computing
Education, ACM, 60-69.

European Schoolnet (2014). Computing our future: Computer programming
and coding- priorities, school curricula and initiatives across Europe. From:
http://www.eun.org/publications/detail’publicationID=481

Field, A. (2009). Discovering statistics using SPSS. Sage publications. ISBN: 978-1-
84787-906-6.

Flannery, L. P., Silverman, B., Kazakoft, E. R., Bers, M. U, Bonta, P., & Resnick, M.
(2013). Designing Scratch]r: Support for early childhood learning through computer
programming. In Proceedings of the 12th International Conference on Interaction Design
and Children, ACM, 1-10.

Franklin, D., Hill, C., Dwyer, H., Iveland, A., Killian, A., & Harlow, D. (2015). Getting
started in teaching and researching computer science in the elementary classroom.
In Proceedings of the 46th ACM Technical Symposium on Computer Science Education,
ACM, 552-557.

Jeuring, J., Corbalan, G., van Es, N. Leeuwestein, H., van mont-
fort, J. (2016). Leren programmeren in het PO - een literatuurreview.
NRO. From: https://www.nro.nl/kennisrotondevragenopeenrij/effecten-
programmeeronderwijs-op-programmeervaardigheden/

Kafai, Y. B., & Resnick, M. (1996). Constructionism in practice: Designing, thinking,
and learning in a digital world. New Jersey: Lawrence Erlbaum Associates.

Kalelioglu, F., & Giilbahar, Y. (2014). The effects of teaching programming via scratch
on problem solving skills: A discussion from learners’ perspective. Informatics in
Education, 13(1), 33.

Kirschner, P. A, Sweller, J., & Clark, R. E. (2006). Why minimal guidance during
instruction does not work: An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teaching. Educational psychologist,
41(2), 75-86.

Lee, Y. J. (2011). Scratch: Multimedia programming environment for young gifted
learners. Gifted Child Today, 34(2), 26-31.

Lewis, C. M. (2010). How programming environment shapes perception, learning
and goals: logo vs. scratch. In Proceedings of the 41st ACM technical symposium on
Computer science education, ACM, 346-350.

McHugh, M. L. (2012). Interrater reliability: the kappa statistic. Biochemia Medica,
22(3), 2761A$282.

Ngai, G., Chan, S. C., Leong, H. V., & Ng, V. T. (2013). Designing i* CATch: A multi-
purpose, education-friendly construction kit for physical and wearable computing.
ACM Transactions on Computing Education (TOCE), 13(2).

Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, Westport:
Ablex Publishing, 1-11.

Poortman, S., & Sloep, P. (2006). Education models.

Sawyer, R. K. (2005). The Cambridge handbook of the learning sciences. Cambridge
University Press.

Sun, S., Pan, W, & Wang, L. L. (2010). A comprehensive review of effect size reporting
and interpreting practices in academic journals in education and psychology. Journal
of Educational Psychology, 102(4), 989 - 1004.

Van Merriénboer, J. J., Clark, R. E., & De Croock, M. B. (2002). Blueprints for complex
learning: The 4C/ID-model. Educational technology research and development, 50(2),
39-61, doi: 10.1007/BF02504993.

Van Merriénboer,]JJ.G., & Dijkstra, S. (1997). The four-component instructional
design model for training complex cognitive skills. R.D. Tennyson, F. Schott, N.Seel &
S. Dijkstra (Eds.),Instructional design: International perspectives. Theory, Research, and
Models (Vol. 1). Mahwah, New Jersey: Lawrence Erlbaum Associates, 427-445.

Van Merriénboer, J. J., & Kirschner, P. A. (2012). Ten steps to complex learning: A
systematic approach to four-component instructional design. New York and London:
Routledge.

Wilson, A., Hainey, T., & Connolly, T. (2012). Evaluation of computer games developed
by primary school children to gauge understanding of programming concepts. In
European Conference on Games Based Learning. Academic Conferences International
Limited.

