
Evaluating Haskell expressions in a tutoring
environment

Tim Olmer

Bastiaan Heeren

Johan Jeuring

Technical Report UU-CS-2014-021

September 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl



0

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands



Preliminary Report. Final version to appear in:
TFPIE 2014

Evaluating Haskell expressions in a tutoring environment

Tim Olmer Bastiaan Heeren
Open University of the Netherlands

Faculty of Management, Science and Technology
Heerlen, The Netherlands

tim.olmer@gmail.com bhr@ou.nl

Johan Jeuring
Universiteit Utrecht

Department of Information and Computing Sciences
Utrecht, The Netherlands
J.T.Jeuring@uu.nl

A number of introductory textbooks for Haskell use calculations right from the start to give the
reader insight into the evaluation of expressions and the behavior of functional programs. Many
programming concepts that are important in the functional programming paradigm, such as recursion,
higher-order functions, pattern-matching, and lazy evaluation, can be partially explained by showing
a stepwise computation. A student gets a better understanding of these concepts if she performs these
evaluation steps herself. Tool support for experimenting with the evaluation of Haskell expressions
is currently lacking. In this paper we present a prototype implementation of a stepwise evaluator for
Haskell expressions that supports multiple evaluation strategies, specifically targeted at education.
Besides performing evaluation steps the tool also diagnoses steps that are submitted by a student,
and provides feedback. Instructors can add or change function definitions without knowledge of the
tool’s internal implementation. We discuss some preliminary results of a small survey about the tool.

1 Introduction

Many textbooks that introduce the functional programming language Haskell begin with showing calcu-
lations that illustrate how expressions are evaluated, emphasizing the strong correspondence with math-
ematical expressions and the property of referential transparency of the language. For instance, Hutton
presents calculations for the expressions double 3 and double (double 2) on page 1 of his textbook [12],
and Bird and Wadler show the steps of reducing square (3+ 4) on page 5 of their book [3]. Similar
calculations can be found in the first chapter of Thompson’s The Craft of Functional Programming [28]
and Hudak’s The Haskell School of Expression. Textbooks that do not show these calculations [23, 18]
compensate for this by giving lots of examples with an interpreter.

Stepwise evaluating an expression on a piece of paper can give a student a feeling for what a program
does [4]. However, there is no simple way to view intermediate evaluation steps for a Haskell expression.
In this paper we present a prototype implementation of the Haskell Expression Evaluator (HEE) that can
show evaluation steps, and lets students practice with evaluating expressions on their own by providing
feedback and suggestions (see Figure 1).1 The tool supports multiple evaluation strategies and can handle
multiple (alternative) definitions for functions from the prelude. It is relatively easy for instructors to
change the granularity of the steps, or to customize the feedback messages that are reported by the tool.

Showing calculations can be a useful approach to let a student better understand some of the central
programming concepts behind the programming language Haskell, such as pattern-matching, recursion,
higher-order functions, and lazy evaluation. This approach is also used in textbooks on Haskell [12,
3]. For instance, Haskell’s lazy evaluation strategy is fundamentally different from other mainstream
programming languages (such as C, C++, C# and Java), and the tool can highlight these differences.
A novice functional programmer often faces difficulties in understanding the evaluation steps in a lazy

1The prototype is available via http://ideas.cs.uu.nl/HEE/.

http://ideas.cs.uu.nl/HEE/


2 Evaluating Haskell expressions in a tutoring environment

Figure 1: Prototype screen for student interaction

language, and even more experienced programmers find it hard to predict the space behavior of their
programs [2]. Another stumbling block is the very compact syntax that is used in Haskell, which makes
it sometimes hard to get an operational view of a functional program [27]. More generally, students often
do not clearly understand operator precedence and associativity and misinterpret expressions [14, 15].
Showing evaluation steps can partly alleviate these problems.

Contributions and scope. This paper presents a tool that enables students to practice with evaluation
steps for Haskell expressions. A student can not only inspect the evaluation steps of a program, but can
also provide evaluation steps as input, which can then be checked against various evaluation strategies.
Furthermore, the steps are presented at a level of abstraction typically expected in an educational setting.
Practicing with evaluation steps gives a student insight into how certain programming concepts such as
recursion, higher-order functions, and pattern matching work. It also gives a student insight into various
evaluation strategies.

Our evaluation tool only supports integers, list notation, recursion, higher order functions, and pattern
matching. The target audience for the evaluator is students taking an introductory course on functional
programming. Another limitation is that only small code fragments are considered, which is sufficient
for the intended audience. We assume that the expressions evaluated by the tool are well-typed and do
not contain compile-time errors, although we could let the tool check for errors before evaluating.

Related work mainly focuses on showing evaluation steps [17, 25], and does not offer the possibility
to let a student enter evaluation steps herself, or presents evaluation steps at a lower level of abstraction,
such as the lambda-calculus [26, 1].



T. Olmer, B. Heeren & J. Jeuring 3

Roadmap. The rest of the paper is structured as follows. We start with an example that illustrates
different evaluation strategies in Section 2. Next, we define rewrite rules and rewrite strategies for a
simple expression language in Section 3, which are used for stepwise evaluating an expression and for
calculating feedback. We also discuss how rewrite rules and rewrite strategies can be generated for
arbitrary function definitions. Section 4 discusses the prototype in more detail, shows how we present
feedback, and describes the results of the survey. We conclude the paper with a discussion on related
work (Section 5) and present conclusions and future work (Section 6).

2 An example

We start by demonstrating some evaluation strategies that are supported by the tool. We use the expres-
sion sum ([3,7] ++ [5 ]) as a running example in the rest of the paper. Because the tool is developed
for education, we use list notation when showing expressions and we make associativity explicit. The
evaluation steps in our examples are based on the following standard definitions for prelude functions:

sum :: [Int ]→ Int
sum = foldl (+) 0

foldl :: (a→ b→ a)→ a→ [b ]→ a
foldl f v [ ] = v
foldl f v (x : xs) = foldl f (f v x) xs

(++) :: [a]→ [a ]→ [a]
[ ] ++ ys = ys
(x : xs)++ ys = x : (xs++ ys)

Figure 2 shows two different ways to evaluate the expression sum ([3,7 ] ++ [5]). The evaluation
steps on the left-hand side of Figure 2 correspond to an outermost evaluation order (call-by-name). After
rewriting sum into a foldl, it is the list pattern in foldl’s definition (its third argument) that drives evalua-
tion. The evaluation steps nicely show the accumulating parameter of foldl for building up the result, the
interleaving of steps for ++ (which produces a list) and foldl (which consumes list), and the additions
that are calculated at the very end. The evaluation steps on the right-hand side of Figure 2 illustrate the
left-most innermost evaluation order (call-by-value), which fully evaluates sub-expression [3,7 ]++ [5 ]
before using foldl’s definition. Observe that in contrast to call-by-name evaluation the additions are im-
mediately computed. Also observe that sum is immediately rewritten into foldl. This might be surprising
behavior of an innermost evaluation strategy where arguments are completely evaluated before the func-
tion is evaluated. The reason for this behavior lies in the definition of sum. The definition of sum does
not have an explicitly specified parameter, but it applies foldl partially. Therefore, the evaluator does not
handle the sub-expression [3,7]++[5 ] as a child of sum but as a neighbor of sum.

From an educational perspective it is interesting to allow for alternative definitions of prelude func-
tions, e.g. sum defined with explicit recursion, or sum defined with the strict foldl′ function. With our
tool it is possible to switch between these alternative definitions and to observe the consequences for
evaluation.

It is important to keep in mind that the tool is capable of doing more than only showing evaluation
steps. The tool also lets students practice with evaluating expressions, and can diagnose intermediate
steps, suggest reducible expressions, and provide progress information by showing the number of eval-



4 Evaluating Haskell expressions in a tutoring environment

sum ([3,7]++[5 ])
= { definition sum }

foldl (+) 0 ([3,7 ]++[5])
= { definition ++ }

foldl (+) 0 (3 : ([7 ]++[5 ]))
= { definition foldl }

foldl (+) (0+3) ([7 ]++[5])
= { definition ++ }

foldl (+) (0+3) (7 : ([ ]++[5 ]))
= { definition foldl }

foldl (+) ((0+3)+7) ([ ]++[5 ])
= { definition ++ }

foldl (+) ((0+3)+7) [5]
= { definition foldl }

foldl (+) (((0+3)+7)+5) [ ]
= { definition foldl }

((0+3)+7)+5
= { applying + }

(3+7)+5
= { applying + }

10+5
= { applying + }

15

sum ([3,7 ]++[5])
= { definition sum }

foldl (+) 0 ([3,7]++[5 ])
= { definition ++ }

foldl (+) 0 (3 : ([7 ]++[5 ]))
= { definition ++ }

foldl (+) 0 (3 : (7 : ([ ]++[5 ])))
= { definition ++ }

foldl (+) 0 [3,7,5]
= { definition foldl }

foldl (+) (0+3) [7,5 ]
= { applying + }

foldl (+) 3 [7,5 ]
= { definition foldl }

foldl (+) (3+7) [5 ]
= { applying + }

foldl (+) 10 [5 ]
= { definition foldl }

foldl (+) (10+5) [ ]
= { applying + }

foldl (+) 15 [ ]
= { definition foldl }

15

Figure 2: Evaluating sum ([3,7] ++ [5 ]) using the outermost (left-hand side) or innermost (right-hand
side) evaluation strategy

uation steps remaining. It is possible to train one particular evaluation strategy, or to allow any possible
reduction step.

3 Rewrite rules and strategies

We use IDEAS, a framework for developing domain reasoners that give intelligent feedback [9], for
rewriting expressions. Many exercises, such as solving a mathematical equation or a programming exer-
cise, can be solved by following some kind of procedure. A procedure or strategy describes how basic
steps may be combined to solve a particular problem. Such a strategy is expressed in an embedded
domain-specific language. IDEAS interprets a strategy as a context-free grammar. The sentences of this
grammar are sequences of rewrite steps that are used to check if a student follows the strategy. The main
advantage of using IDEAS in our tool is that it is a generic framework that makes it possible to define
exercises that must be solved using some kind of strategy, and that it provides feedback to a student who
is solving an exercise. Feedback is added by means of labels at particular locations in the strategy.

To use the IDEAS framework, we construct three components: the domain of the exercise (an expres-
sion datatype), rules for rewriting terms in this domain (the evaluation steps), and a rewrite strategy that



T. Olmer, B. Heeren & J. Jeuring 5

data Expr = App Expr Expr -- application
| Abs String Expr -- lambda abstraction
| Var String -- variable
| Lit Int -- integer

-- smart constructors
appN = foldl App -- n-ary application
nil = Var "[]"
cons x xs = appN (Var ":") [x,xs]

Figure 3: Datatype for expressions

combines these rules. Other components, such as parsing, pretty-printing, and testing expressions for
equality, are omitted in this paper.

Figure 3 defines an expression datatype with application, lambda abstraction, variables, and integers,
together with some helper functions for constructing expressions. The Var constructor is also used to
represent datatype constructors (e.g., constructor : for building lists).

3.1 Rewrite rules

We introduce a rewrite rule for each function (and operator) from the prelude. The rewrite rules are
based on datatype-generic rewriting technology [21], where rules are constructed using operator  .
This operator takes expressions on the left-hand side and the right-hand side. Based on sum’s definition,
we define the rewrite rule for sum as follows:

sumRule :: Rule Expr
sumRule = describe "Calculate the sum of a list of numbers" $

rewriteRule "eval.sum.rule" $
Var "sum" appN (Var "foldl") [Var "+",Lit 0]

Each rule has an identifier (here "eval.sum.rule") that is used for identifying the rewrite step, and
optionally also a description for explaining the step. The descriptions of the prelude functions are taken
from the appendix of Hutton’s textbook [12]. Note that functions such as describe, rewriteRule, operator
 and type constructor Rule are provided by the IDEAS framework.

The rewrite rule for foldl’s definition is more involved since it uses pattern matching. The pattern
variables in foldl’s definition are turned into meta-variables of the rewrite rule by introducing these
variables in a lambda abstraction:

foldlRule :: Rule Expr
foldlRule =

describe "Process a list using an operator that associates to the left" $
rewriteRules "eval.foldl.rule"

[λ f v x xs→ appN (Var "foldl") [f ,v,nil ] v
,λ f v x xs→ appN (Var "foldl") [f ,v,cons x xs ] 

appN (Var "foldl") [f ,appN f [v,x ],xs]
]



6 Evaluating Haskell expressions in a tutoring environment

Combinator Description

s <?> t first s, then t
s <|> t either s or t
s . t apply s, or else t
fix f fixed point combinator
label ` s attach label ` to s
succeed always succeeds

Combinator Description

sequence xs generalizes sequence (<?>) to lists
alternatives xs generalizes choice (<|>) to lists
repeat s apply s as long as possible
child n s apply s to the n-th child
outermost s apply s at left-most outermost position
spinebu s apply s to the left-spine (bottom-up)
checkCurrent p succeeds if predicate p holds

Figure 4: Strategy combinators

The rewrite rules sumRule, foldlRule, and appendRule (for operator ++) have an intensional repre-
sentation with a left- and right-hand side, which does not only make the rules easier to define, but also
lets us generate documentation for the rule, take the inverse of the rule, or alter the matching algorithm
for the rule’s left-hand side (e.g., to take associativity of an operator into account).

Besides the rewrite rules, we also introduce a rule for the primitive addition function (addRule), and
a rule for beta-reduction. Adding two integers cannot be defined by a rewrite rule, and therefore we use
the function makeRule from the IDEAS framework to turn a function of type Expr→Maybe Expr into a
value of type Rule Expr.

addRule :: Rule Expr
addRule = describe "Add two integers" $ makeRule "eval.add.rule" f

where
f :: Expr→Maybe Expr
f (App (App (Var "+") (Lit x)) (Lit y)) = Just $ Lit (x+ y)
f = Nothing

In a similar way we define betaReduction :: Rule Expr that reduces expressions of the form (λx→ e1) e2
by using makeRule and implementing a capture-avoiding substitution.

3.2 Rewrite strategies

The embedded domain-specific language for specifying rewrite strategies in IDEAS defines several ge-
neric combinators to combine rewrite rules into a strategy [9]. We briefly introduce the combinators that
are used in this paper. The combinators are summarized in Figure 4.

Rewrite rules are the basic building block for composing rewrite strategies. All strategy combinators
in the IDEAS framework are overloaded and take rules or strategies as arguments. The sequence combi-
nator (<?>) specifies the sequential application of two strategies. The choice combinator (<|>) defines
that either the first operand or the second operand is applied: combinator alternatives generalizes the
choice combinator to lists. The left-biased choice combinator (.) only tries the second strategy if the first
strategy fails. Combinator repeat is used for repetition: this combinator applies its argument strategy as
often as possible. The fixed point combinator fix is used to explicitly model recursion in the strategy. It
takes as argument a function that maps a strategy to a new strategy. We can use labels at any position in
the strategy to specialize the feedback that is generated.

The strategy language supports all the usual traversal combinators such as innermost and oncebu [30].
The strategy child n s applies strategy s to the n-th child and can be used to define other generic traversal



T. Olmer, B. Heeren & J. Jeuring 7

isApp :: Expr→ Bool
isApp (App ) = True
isApp = False

isFun :: String→ Int→ Expr→ Bool
isFun fn 0 (Var s) = fn== s
isFun fn n (App f ) = isFun fn (n−1) f
isFun = False

Figure 5: Predicates on expressions (helper functions)

combinators. Combinator checkCurrent takes a predicate and only succeeds if the predicate holds for the
current expression.

An evaluation strategy defines in which order sub-expressions are reduced. We can use the standard
left-most outermost (or innermost) rewrite strategy to turn the rewrite rules into an evaluation strategy:

rules :: [Rule Expr ]
rules = [sumRule, foldlRule,appendRule,addRule,betaReduction]

evalOutermost :: LabeledStrategy (Context Expr)
evalOutermost = label "eval.outer" $

outermost (alternatives (map liftToContext rules))

Note that we use the Context type from the IDEAS framework as a zipper [11] datatype for traversing
expressions. A zipper maintains a sub-expression that has the focus, and is used by traversal combinators
such as outermost. We lift the rules to the Context type with the function liftToContext :: Rule a→
Rule (Context a) that applies the rule to the sub-expression that currently has the focus.

The attentive reader will have noticed that the evalOutermost strategy does not result in the evaluation
that is shown on the left-hand side of Figure 2. Evaluation of a foldl application is driven by pattern
matching on the function’s third argument (the list). The expression at this position should first be
evaluated to weak-head normal form (whnf), after which we can decide which case to take. We define
a rewrite strategy that first checks that foldl is applied to exactly three arguments, then brings the third
argument to weak-head normal form, and finally applies the rewrite rule for foldl. We need a strategy
that can evaluate an expression to weak-head normal form, and pass this as an argument to the strategy
definition.

foldlS :: Strategy (Context Expr)→ LabeledStrategy (Context Expr)
foldlS whnf = label "eval.foldl" $

checkCurrent (isFun "foldl" 3) -- check that foldl has exactly 3 arguments
<?> arg 3 3 whnf -- bring the third argument (out of 3) to whnf
<?> liftToContext foldlRule -- apply the rewrite rule for foldl’s definition

The predicate isFun (defined in Figure 5) tests whether an expression is a function application of a
specific function with an exact number of arguments. We define the strategy combinator arg i n s, used in
the definition of foldlS, to apply strategy s to the i-th argument of a function application with n arguments.
For the last argument (i==n), we apply s to the second sub-expression of an application. Otherwise, we
visit the first sub-expression and call arg recursively. The combinator is not defined for i>n.



8 Evaluating Haskell expressions in a tutoring environment

arg :: Int→ Int→ Strategy (Context a)→ Strategy (Context a)
arg i n s | i==n = child 1 s

| i<n = child 0 (arg i (n−1) s)

We also give the evaluation strategy for the definition of the append function, to emphasize its simi-
larity with the definition of foldlS. Other function definitions have a similar evaluation strategy.

appendS :: Strategy (Context Expr)→ LabeledStrategy (Context Expr)
appendS whnf = label "eval.append" $

checkCurrent (isFun "++" 2) -- check that append (++) has exactly 2 arguments
<?> arg 1 2 whnf -- bring the first argument (out of 2) to whnf
<?> liftToContext appendRule -- apply the rewrite rule for append’s definition

Evaluating an expression to weak-head normal form is a fixed-point computation over the evaluation
strategies for the definitions, since each definition takes the whnf strategy as an argument. We combine
the evaluation strategies with the rewrite rule for beta-reduction, apply it to the left-spine of an applica-
tion (in a bottom-up way), and repeat this until the strategy can no longer be applied. This brings the
expression in weak-head normal form.

prelude :: [Strategy (Context Expr)→ LabeledStrategy (Context Expr)]
prelude = [sumS, foldlS,appendS,addS ]

spinebu :: Strategy (Context Expr)→ Strategy (Context Expr)
spinebu s = fix $ λx→ (checkCurrent isApp <?> child 0 x) . s

evalWhnf :: LabeledStrategy (Context Expr)
evalWhnf = label "eval.whnf" $ fix $ λwhnf →

repeat (spinebu (liftToContext betaReduction <|> alternatives [f whnf | f ← prelude ]))

The repeat combinator in the definition of evalWhnf applies its argument strategy zero or more times.
For example, the strategy does not have to be applied for an expression that already is in weak-head
normal form, and is applied twice to rewrite the expression (id id) 3 into id 3 and then 3 (where id is
Haskell’s identity function).

The result of applying evalWhnf to the expression sum ([3,7]++[5 ]) gives the calculation shown in
Figure 2 on the left-hand side. To fully evaluate a value (such as a list), we have to repeat the evalWhnf
strategy for the sub-parts of a constructor.

3.3 User-defined function definitions

From an educational viewpoint it is interesting to experiment with different function definitions for the
same function and to observe the implications. For example, the function sum can be defined using foldl,
foldr, the strict foldl′, or as an explicit recursive definition. This feature is also interesting for instructors
who would like to incorporate the tool into their course on functional programming because they can
then use their own examples to explain programming concepts to their students.

Multiple functions definitions can be added by giving each definition a different name (for instance,
sum, sum′, and sum′′) and by manually adding rewrite rules and evaluation strategies for these defini-
tions. However, this approach has some drawbacks. To define rewrite rules and evaluation strategies,
the maintainer of the prototype (probably the instructor) needs to have knowledge of the datatype for



T. Olmer, B. Heeren & J. Jeuring 9

data Pat = PCon String [Pat ] -- pattern constructor
| PVar String -- pattern variable
| PLit Int -- integer pattern

data Def = Def String [Pat ] Expr -- function definition

Figure 6: Datatype for patterns and function definitions

Haskell expressions and of the internal implementation to construct rules and evaluation strategies. After
adding definitions, the prototype needs to be recompiled, and hence a maintainer also needs a complete
build environment (Haskell compiler and libraries used). Another disadvantage is that the translation of
function definitions to rewrite rules is a manual, error-prone process.

Function definitions have rewrite rules and evaluation strategies of a similar structure. An alternative
approach to manually adding rewriting strategies is therefore to generate rewrite rules and evaluation
strategies from function definitions. These function definitions can be defined in a Haskell source file,
and using annotations [7] we can add a description to every function definition. Annotations are multi-
line comments, so the file remains a valid Haskell source file. Annotations have an identifier, for instance
DESC for description, which is used by the prototype to interpret the string after DESC as the rule
description. With this approach there is a single file, located on the web server, that contains the function
definitions, and their corresponding descriptions. No knowledge of the tool’s internal implementation is
required to add or change function definitions. An example of such a file is given below:

{-# DESC sum defined with a foldr to sum up all elements of a list. #-}
sum′ = foldr (+) 0

{-# DESC sum defined recursively to sum up all elements of a list. #-}
sum′′ [ ] = 0
sum′′ (x : xs) = x+ sum′′ xs

{-# DESC double function to double a number. #-}
double x = x+ x

We name this file the evaluator’s prelude because it defines the functions that can be used in the
evaluator. Notice that primitive functions (such as the operator +) cannot be defined in the prelude
file. Primitive functions are functions that cannot be implemented directly in Haskell and are provided
natively by the compiler.

The function definitions given in the example prelude file use pattern matching. The left-hand side
of the equal sign consists of the function name and zero or more patterns. If the function name and the
patterns match with a particular expression the expression is rewritten to the expression at the right-hand
side of the equal sign (after substituting the pattern variables). Figure 6 defines a datatype for patterns
and function definitions.

A function definition can have multiple function bindings. For example, the function foldl has a
binding for the empty list and the non-empty list. In the remainder of the paper we will only consider
function definitions with one binding. Definitions with more bindings can be supported by combining
generated rules and strategies. An evaluation strategy is generated for each function binding, and these
strategies are tried in order of appearance in the corresponding definition. For this, we use the strategy
combinator . from the IDEAS framework.



10 Evaluating Haskell expressions in a tutoring environment

Generation of rewrite rules. We need a function that takes a rule identifier (that may contain a de-
scription) and a function definition and turns these into a rewrite rule for expressions.

genRule :: Id→ Def → Rule Expr

Rewrite rules are constructed with operator that expects two expressions as its operands. Hence, we
need a function to convert the patterns on the left-hand side of a definition into an expression.

patToExpr :: Pat→ Expr
patToExpr (PCon s ps) = appN (Var s) (map patToExpr ps)
patToExpr (PVar s) = Var s
patToExpr (PLit n) = Lit n

Note that the pattern variables of a function definition act as meta-variables in the rewrite rule, and the
corresponding variables on the right-hand side have to be substituted when the rewrite rule is applied.
We omit the definition of genRule that uses patToExpr.

Generation of evaluation strategies. We can generate an evaluation strategy for a function definition
used in the outermost evaluation strategy based on pattern matching. Such an evaluation strategy consists
of three steps: check the name of the function, bring some arguments to weak-head normal form, and
apply the definition’s rewrite rule. We first focus on the second step of bringing arguments to weak-head
normal form and define strategy combinator args for applying a list of strategies to the arguments of a
function application. We reuse combinator arg:

args :: [Strategy (Context a)]→ Strategy (Context a)
args xs = sequence [arg i (length xs) s | (i,s)← zip [1 . .] xs]

The function patS constructs an evaluation strategy for a given pattern. For pattern variables, nothing
has to be evaluated. For a pattern constructor, we bring the expression to weak-head normal form, check
the name of the constructor, and then recursively deal with the constructor’s sub-patterns. For a literal
pattern, we bring the expression to weak-head normal form and then check whether it is the same number.

patS :: Strategy (Context Expr)→ Pat→ Strategy (Context Expr)
patS whnf (PCon s ps) = whnf <?> patListS whnf s ps
patS whnf (PVar s) = succeed
patS whnf (PLit n) = whnf <?> checkCurrent (==Lit n)

patListS :: Strategy (Context Expr)→ String→ [Pat ]→ Strategy (Context Expr)
patListS whnf s ps = checkCurrent (isFun s (length ps))

<?> args (map (patS whnf ) ps)

Function genEvalStrat takes a rule identifier, a function definition and the weak-head normal form strat-
egy and returns an evaluation strategy for that function definition. First, arguments are evaluated by
patListS. Second, the generated rewrite rule for the definition is applied.

genEvalStrat :: Id→ Def → Strategy (Context Expr)→ Strategy (Context Expr)
genEvalStrat rId (Def s ps e) whnf = patListS whnf s ps

<?> liftToContext (genRule rId (Def s ps e))



T. Olmer, B. Heeren & J. Jeuring 11

Figure 7: Component diagram of the prototype

The generated evaluation strategy defined above does not behave correctly for multiple or nested patterns.
The strategy s <?> t only succeeds if both s and t succeed. In the context of an evaluation strategy this is
undesirable because the effect of partly evaluating expressions with strategy s is undone (and cannot be
observed) if strategy t fails. The solution is to replace all occurrences of <?> (and derived combinators
such as sequence) in the generated strategy by a new combinator <?, which we define as:

(<?) :: Strategy a→ Strategy a→ Strategy
s <? t = s <?> (t . succeed)

4 Prototype

The prototype for practicing with evaluation steps is divided into a number of separate components.
Figure 7 shows the component model of the prototype: it consists of a front-end, a back-end, and a
strategy component. The strategy component contains all rewrite rules and rewrite strategies for a certain
evaluation strategy. The back-end component uses the external components IDEAS and Helium, and
reads the prelude file with function definitions that resides on the server. This paper focuses on the
back-end and strategy components.

In the future we hope to integrate the evaluator with the ASK-ELLE programming tutor [7] for learn-
ing Haskell. This tutor supports students in solving introductory programming exercises by providing
hints on how to continue, and by diagnosing intermediate programs that are submitted by a student.
Having a stepwise evaluator in the ASK-ELLE environment is promising because it allows students to
see their programs being evaluated, and to pinpoint mistakes in their definitions (e.g. by evaluating a
counter-example). ASK-ELLE is also build on top of the IDEAS framework and the Helium compiler.
Decomposing the evaluator into components, some of which are shared with ASK-ELLE, should make
future integration easier.

Front-end. The front-end is web-based and written in HTML and JavaScript. It uses JSON to commu-
nicate with the back-end. It provides an interface to inspect the evaluation of a Haskell expression or to



12 Evaluating Haskell expressions in a tutoring environment

practice with the evaluation of a Haskell expression. The prototype front-end can easily be replaced by
another front-end and the purpose of this prototype front-end is to show what kind of IDEAS services [8]
can be used.

A user can select an example Haskell expression by clicking on the ‘Select’ button (see Figure 1)
or she can enter a Haskell expression. The prototype currently only supports a subset of the Haskell
syntax, so it is possible that this operation fails. After typing or selecting a Haskell expression the user
can choose between the innermost evaluation strategy and the outermost evaluation strategy. The user
can now call several standard IDEAS services such as the service for calculating the number of steps left,
getting information about the next rule that should be applied, or finding out what the result is of applying
the rule. The user can fill in the next evaluation step, possibly with the help of the services, and click on
the button ‘Diagnose’ to see if the provided next step is the correct step according to the strategy.

The string representation of a rule is used by the feedback service that gives information about the
next rule that should be applied. This string representation can be modified in a script file [8] where rule
identifiers are mapped to textual representations. Every rewrite rule has an identifier. For example, the
identifier of the foldl rewrite rule is "eval.foldl.rule" (Section 3.1). This identifier is mapped to
‘Apply the fold left rule to process a list using an operator that associates to the left’ in the script file.
This script file can be changed without recompiling the evaluator, which makes it possible to easily adapt
the information, for example to support feedback in another language.

Back-end. The back-end is developed in Haskell, and uses the Helium compiler [10] for parsing and
pretty-printing expressions. The back-end operates as a glue component that connects all other compo-
nents. It receives a string from the front-end, uses the Helium compiler to parse the string, and converts
the abstract syntax tree produced by Helium to the expression datatype. The back-end receives expression
results from IDEAS, converts values from the expression datatype back to Helium’s expression datatype,
and uses the Helium compiler to convert this value to a string. This string is presented to the user using
the front-end.

To determine if a provided step follows the evaluation strategy, the IDEAS framework is instantiated
with functionality for determining if the provided expression is equal to the expected expression. The
evaluator therefore needs to implement two functions that are required by the framework: one function
to determine if two expressions are semantically equivalent, and one function to determine if two expres-
sions are syntactically equivalent. Syntactic equivalence is obtained by deriving an instance of the Eq
type class for the Expr datatype. Semantic equivalence is more subtle because a student may submit an
expression that is syntactically different from the expression we expect to get from the step, but semanti-
cally the same. Semantic equivalence is defined by using a function that applies the rewrite strategy until
it cannot be applied any further and returns True if both results are the same. With these two functions
we can also spot mistakes in rewrite steps, even when an incorrect expression happens to produce the
same result.

Survey. We carried out a small survey to find out if the tool has potential in an educational setting. We
invited instructors of functional programming courses at several universities, primarily but not only in
the Netherlands, and students that follow or completed the functional programming course at the Open
Universiteit to experiment with the prototype, and to answer open-ended and closed-ended questions
about the tool. All participants were approached via email on April 30, 2014. By May 12, 7 instructors
(out of 8) and 9 students (out of 29) completed the survey. All questions and answers are included in the
first author’s master’s thesis [22]. We discuss the most important observations.



T. Olmer, B. Heeren & J. Jeuring 13

All participants agree that it is useful for students following an introductory course in functional pro-
gramming to inspect how an expression is evaluated. Eleven participants agree that it is also useful to
inspect multiple evaluation strategies. One student argued that the examples in Hutton’s textbook [12]
are sufficient to get a good understanding of the evaluation steps, and two participants argued that in-
specting evaluation steps according to multiple evaluation strategies may be confusing for those who start
programming for the first time. There is less consensus about the question if more evaluation strategies
should be supported. Four instructors argue that lazy evaluation should be supported because it is very
subtle, but two other instructors argue that this is too much for the basic understanding of programming
concepts. Another instructor thinks it would be nice to add lazy evaluation, but is not sure if this is worth
the effort. Students find the addition of lazy evaluation useful.

Practicing with the evaluation steps was well received by all participants. Three participants argue
that it is only useful at the very start, and that students can quickly become bored by entering all eval-
uation steps. Another remark from an instructor is that studying evaluation steps is not the only way to
reason about a program. To ensure that students do not get bored quickly it might be useful to skip certain
evaluation steps. However, participants disagree about whether or not this feature should be supported.
Five instructors and one student argue that it should not be possible to skip steps to illustrate that each
step is necessary. The other participants would like to see this feature added to the prototype.

Nine participants find it possibly useful to add user-defined function definitions and to adjust function
definitions to be able to inspect the effect of these changes on the evaluation of expressions. Three
participants do not find this useful and think support for prelude functions is sufficient. Some participants
suggest to also show the function definitions. This could help students in understanding the evaluation
steps. Another suggestion is to show a derivation according to multiple evaluation strategies side by
side, so that the student can easily observe the differences. Some participants also suggest to detect if an
expression cannot be evaluated according to the innermost strategy and notify the user accordingly.

It is clear that instructors not always agree upon desirability of features. Therefore, it is important
that features are configurable for instructors, and that an instructor can adapt the tool to her own course.

5 Related work

There are roughly three approaches to inspect the evaluation steps of a Haskell expression: trace gen-
eration, observing intermediate data structures, and using rewrite rules. The central idea of the trace
generation approach, which is mainly used for debugging, is that every expression is transformed into
an expression that is supplemented with a description in the trace. The trace information is saved in a
datatype that can be viewed by a trace viewing component. There are two methods for trace generation.
The first method is to instrument Haskell source code. Pure Haskell functions are transformed to Haskell
functions that store the evaluation order in a certain datatype that can be printed to the user. This ap-
proach is used to show complete traces in so called redex trail format [27], and this is also the approach
used in the Hat debug library [5]. An advantage of this method is that it is completely separated from
the compiler, so it does not matter which compiler is used. A disadvantage of this method is that the
instrumentation of the original code can alter the execution of the program. The second method, which
is used for example by WinHIPE [24], is to instrument the interpreter. The advantage of this method
is that the execution of the program is exactly the same, but a disadvantage is that the interpreter (part
of the compiler) needs to be adjusted. The approach to observe intermediate data structures, which is
also mainly used for debugging, is used in the Hood debugger [27]. The approach to specify rewrite
rules to inspect the evaluation of expressions is used for example in the stepeval project where a subset



14 Evaluating Haskell expressions in a tutoring environment

of Haskell expressions can be inspected [20]. With the above approaches it is possible to inspect the
evaluation steps of a Haskell expression, but it is not possible to practice with these evaluation steps.

Several intelligent tutoring systems have been developed that support students with learning a func-
tional programming language. One of the main problems for novice programmers is to apply program-
ming concepts in practice [16]. To keep students motivated to learn programming it is therefore important
to teach it incrementally, to practice with practical exercises, and to give them early and direct feedback
on their work [29]. The main advantage of an intelligent tutoring system is that a student can get feed-
back at any moment. An intelligent tutoring system consists of an inner loop and an outer loop. The
main responsibility of the outer loop is to select an appropriate task for the student; the main responsi-
bility of the inner loop is to give hints and feedback on student steps. The Web-Based Haskell Adaptive
Tutor (WHAT) focuses more on the outer loop. It classifies each student into a group of students that
share some attributes and will behave differently based on the group of the student [19]. With WHAT, a
student can practice with three kinds of problems: evaluating expressions, typing functions, and solving
programming assignments. A disadvantage of this tutor is that it does not support the stepwise develop-
ment of a program. ASK-ELLE [7] is a Haskell tutor system that focuses primarily on the inner loop. Its
goal is to help students learn functional programming by developing programs incrementally. Students
receive feedback about whether or not they are on the right track, can ask for a hint when they are stuck,
and see how a complete program is constructed stepwise [13].

6 Conclusions and future work

In this paper we have presented a prototype tool that can be used to show the evaluation steps of a
Haskell expression according to different evaluation strategies. We support the left-most innermost eval-
uation strategy and an outermost evaluation strategy based on pattern matching. The tool can also be
used to practice with evaluation steps. This prototype may help students to better understand important
programming concepts such as pattern matching, higher-order functions, and recursion. How effective
the tool is in practice needs to be further investigated by collecting more empirical data.

The evaluation process is driven by the definition of the rewrite rules and the evaluation strategy that
is used. The rewrite rules and evaluation strategies for the definitions can be generated by the prototype
from a set of function definitions. The extension of adding user-defined function definitions makes
it possible for users to easily get an understanding of how their function will be evaluated. Another
advantage is that alternative definitions for prelude functions can be tried, and that the results can be
inspected. For example, a student can use a strict version of foldl for sum, or define sum recursively. At
the moment, adding user-defined functions requires an instructor to change the content of the prelude file
on the server. Preferably, some support for this feature is added to the front-end.

The expression language in the current tool is limited. In the future, we hope to support other lan-
guage constructs such as guards, conditional expressions, list comprehensions, algebraic datatypes, etc.
Other future work is to offer the possibility to change the step size of a function, and to add sharing to an
evaluation strategy:

• In the examples, we use a fixed step size of one. The step size is the number of steps that the
evaluator uses to rewrite a certain expression. For example, the expression 3+(4+7) is evaluated
to 14 in two steps, although most students will typically combine these steps. More research must
be carried out to automatically derive or configure a certain step size that suits most students.

• The lazy evaluation strategy used by Haskell combines the outermost evaluation strategy with
sharing. Currently, sharing is not supported in the prototype. To help students learn about which



T. Olmer, B. Heeren & J. Jeuring 15

computations are shared, we plan to extend the prototype along the lines of Launchbury’s natural
semantics for lazy evaluation [17], and by making the heap explicit.

The long-term goal of our work is to integrate the functionality of the prototype in the ASK-ELLE

programming tutor, which then results in a complete tutoring platform to help students learn program-
ming. We are also considering to combine the evaluator with QuickCheck properties [6]: when Quick-
Check finds a minimal counter-example that falsifies a function definition (e.g. for a simple programming
exercise), then we can use the evaluator to explain more precisely why the result was not as expected, or
use the evaluator as a debugging tool.

Acknowledgements The authors would like to thank the students and instructors that participated in
the survey for their feedback and suggestions. We also thank the anonymous reviewers for their detailed
comments.

References

[1] Martin Abadi, Luca Cardelli, Pierre-Louis Curien & Jean-Jacques Lvy (1990): Explicit Substitutions. In:
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’90, ACM, New York, NY, USA, pp. 31–46.

[2] Adam Bakewell & Colin Runciman (2000): The Space Usage Problem: An Evaluation Kit for Graph Re-
duction Semantics. In: Selected Papers from the 2nd Scottish Functional Programming Workshop (SFP00),
Intellect Books, Exeter, UK, pp. 115–128.

[3] Richard S. Bird & Philip. Wadler (1998): Introduction to functional programming using Haskell. Prentice-
Hall.

[4] Manuel M.T. Chakravarty & Gabriele Keller (2004): The risks and benefits of teaching purely functional
programming in first year. Journal of Functional Programming 14(1), pp. 113–123.

[5] Olaf Chitil, Colin Runciman & Malcolm Wallace (2003): Transforming Haskell for Tracing. In Ricardo
Peña & Thomas Arts, editors: Implementation of Functional Languages, Lecture Notes in Computer Science
2670, Springer Berlin Heidelberg, pp. 165–181.

[6] Koen Claessen & John Hughes (2000): QuickCheck: A Lightweight Tool for Random Testing of Haskell Pro-
grams. In: Proceedings of the Fifth ACM SIGPLAN International Conference on Functional Programming,
ICFP ’00, ACM, New York, NY, USA, pp. 268–279.

[7] Alex Gerdes (2012): Ask-Elle: a Haskell Tutor. PhD thesis, Open Universiteit Nederland.

[8] Bastiaan Heeren & Johan Jeuring (2014): Feedback services for stepwise exercises. Science of Computer
Programming 88(0), pp. 110 – 129.

[9] Bastiaan Heeren, Johan Jeuring & Alex Gerdes (2010): Specifying Rewrite Strategies for Interactive Exer-
cises. Mathematics in Computer Science 3(3), pp. 349–370.

[10] Bastiaan Heeren, Daan Leijen & Arjan van IJzendoorn (2003): Helium, for learning Haskell. In: Proceedings
of the 2003 ACM SIGPLAN workshop on Haskell, Haskell ’03, ACM, New York, NY, USA, pp. 62–71.

[11] Gérard Huet (1997): The Zipper. Journal of Functional Programming 7(5), pp. 549–554.

[12] Graham Hutton (2007): Programming in Haskell. Cambridge University Press.

[13] Johan Jeuring, Alex Gerdes & Bastiaan Heeren (2012): A Programming Tutor for Haskell. In Viktória Zsók,
Zoltán Horváth & Rinus Plasmeijer, editors: Central European Functional Programming School, Lecture
Notes in Computer Science 7241, Springer Berlin Heidelberg, pp. 1–45.

[14] Aravind K. Krishna & Amruth N. Kumar (2001): A Problem Generator to Learn Expression: Evaluation in
CSI, and Its Effectiveness. J. Comput. Sci. Coll. 16(4), pp. 34–43.



16 Evaluating Haskell expressions in a tutoring environment

[15] Amruth N. Kumar (2005): Results from the Evaluation of the Effectiveness of an Online Tutor on Expression
Evaluation. In: Proceedings of the 36th SIGCSE Technical Symposium on Computer Science Education,
SIGCSE ’05, ACM, New York, NY, USA, pp. 216–220.

[16] Essi Lahtinen, Kirsti Ala-Mutka & Hannu-Matti Järvinen (2005): A Study of the Difficulties of Novice Pro-
grammers. In: Proceedings of the 10th Annual SIGCSE Conference on Innovation and Technology in Com-
puter Science Education, ITiCSE ’05, ACM, New York, NY, USA, pp. 14–18.

[17] John Launchbury (1993): A Natural Semantics for Lazy Evaluation. In: Proceedings of the 20th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’93, ACM, New York,
NY, USA, pp. 144–154.

[18] Miran Lipovaca (2011): Learn You a Haskell for Great Good!: A Beginner’s Guide, 1st edition. No Starch
Press, San Francisco, CA, USA.

[19] Natalia López, Manuel Núñez, Ismael Rodrı́guez & Fernando Rubio (2002): What: Web-Based Haskell
Adaptive Tutor. In Donia Scott, editor: Artificial Intelligence: Methodology, Systems, and Applications,
Lecture Notes in Computer Science 2443, Springer Berlin Heidelberg, pp. 71–80.

[20] Ben Millwood (2011): stepeval library: Evaluating a Haskell expression step-by-step. Available at https:
//github.com/bmillwood/stepeval.

[21] Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Johan Jeuring, Bastiaan Heeren &
José Pedro Magalhães (2010): A lightweight approach to datatype-generic rewriting. Journal of Functional
Programming 20, pp. 375–413.

[22] Tim Olmer (2014): Evaluation of Haskell expressions in a tutoring environment. Master’s thesis, Open
Universiteit Nederland. Available at http://hdl.handle.net/1820/5389.

[23] Bryan O’Sullivan, John Goerzen & Don Stewart (2008): Real World Haskell, 1st edition. O’Reilly Media,
Inc.

[24] Cristóbal Pareja-Flores, Jamie Urquiza-Fuentes & J. Ángel Velázquez-Iturbide (2007): WinHIPE: An IDE
for Functional Programming Based on Rewriting and Visualization. SIGPLAN Not. 42(3), pp. 14–23.

[25] Jan Rochel (2010): The Very Lazy λ -calculus and the STEC Machine. In: Proceedings of the 21st Inter-
national Conference on Implementation and Application of Functional Languages, IFL’09, Springer-Verlag,
Berlin, Heidelberg, pp. 198–217.

[26] Peter Sestoft (2002): Demonstrating lambda calculus reduction. In: The Essence of Computation: Complex-
ity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, number 2566 in Lecture Notes in Computer
Science, Springer-Verlag, pp. 420–435.

[27] Jan Sparud & Colin Runciman (1997): Tracing lazy functional computations using redex trails. In Hugh
Glaser, Pieter Hartel & Herbert Kuchen, editors: Programming Languages: Implementations, Logics, and
Programs, Lecture Notes in Computer Science 1292, Springer Berlin Heidelberg, pp. 291–308.

[28] Simon Thompson (2011): Haskell: The Craft of Functional Programming, 3rd edition. Addison-Wesley
Longman Publishing Co., Inc.

[29] Arto Vihavainen, Matti Paksula & Matti Luukkainen (2011): Extreme Apprenticeship Method in Teaching
Programming for Beginners. In: Proceedings of the 42Nd ACM Technical Symposium on Computer Science
Education, SIGCSE ’11, ACM, New York, NY, USA, pp. 93–98.

[30] Eelco Visser, Zine-el-Abidine Benaissa & Andrew Tolmach (1998): Building Program Optimizers with
Rewriting Strategies. In: ICFP 1998: International Conference on Functional Programming, pp. 13–26.

https://github.com/bmillwood/stepeval
https://github.com/bmillwood/stepeval
http://hdl.handle.net/1820/5389

	Introduction
	An example
	Rewrite rules and strategies
	Rewrite rules
	Rewrite strategies
	User-defined function definitions

	Prototype
	Related work
	Conclusions and future work

