DOMain Specific Type Error
Diagnosis (DOMSTED)

Jurriaan Hage

Technical Report UU-CS-2014-019
July 2014

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences
Utrecht University
P.O. Box 80.089

3508 TB Utrecht
The Netherlands

DOMain Specific Type Error Diagnosis
(Project Paper)

Jurriaan Hage

Department of Information and Computing Sciences, Utrecht University
P.O.Box 80.089, 3508 TB Utrecht, The Netherlands
J.HageQuu.nl

Abstract. Domain-specific languages (DSLs) have the potential both
to reduce the effort of programming, and to result in programs that are
easier to understand and maintain. For various good reasons, researchers
have proposed to embed DSLs (then called EDSLSs) into a general pur-
pose host language. An important disadvantage of such an embedding is
that it is very hard to make type error diagnosis domain-aware, because
inconsistencies are by default explained in terms of the host language. In
earlier work we have developed a method to make type error diagnosis
domain-specific, and we have applied the method to Haskell 98.

The practice of Haskell programming shows that currently applications
and libraries employ type system features well beyond those offered by
Haskell 98. Here lie both a practical and fundamental challenge that
the project aims to address. It is practical because only after meeting
this challenge, can our ideas be employed in everyday programming; it is
fundamental because an essential understanding of Haskell’s type system
features, such as GADTs and type families, is necessary to achieve the
necessary control over the type system that can then be passed on to the
EDSL developer.

Our work will enable EDSL developers to safely, transparently and non-
invasively provide domain specific type error diagnosis. It is transparent
because the designer of the rules does not need to have intimate knowl-
edge of the internals of the compiler, safe because it cannot be used to
circumvent the strong type system, and non-invasive since the EDSL
code itself need not be changed.

The work in this project will be undertaken by a PhD student under the
supervision of the first author of this paper, in collaboration with Atze
Dijkstra and others at Utrecht University.

Keywords: type systems, type error diagnosis, embedded domain specific lan-
guages, Haskell

1 Introduction

Over the last few years, many computer scientists and professionals have shifted
their attention from general purpose languages (GPL) to domain specific lan-
guages (DSLs) [22, 20, 16], having realized it is much more productive to program

in languages designed for effectively solving problems in a particular domain.
Moreover, a DSL is often easier to grasp by non-professionals and therefore can
expect to have more wide-spread use. A well-known example is the SQL language
for database querying.

According to Walid Taha [31], a DSL has four essential characteristics: the
domain is well-defined and central, the notation is clear, the informal meaning
is clear, and the formal meaning is clear and implemented. It is the latter char-
acteristic that sets a DSL aside from a jargon [31]. To these characteristics, we
add:

e an implementation of the DSL can communicate with the programmer about
the program in terms of the domain.

The rationale is that programmers make mistakes, and communicating the di-
agnosis of a mistake in terms other than that of the domain completely defeats
the purpose of working with a DSL!

Although providing domain level feedback can demand a substantial engi-
neering effort, the problem is not particularly difficult if for every DSL we es-
sentially implement a new compiler. But this is not always the best approach.
In [21], Paul Hudak argues that DSLs are the “ultimate abstraction”, and intro-
duces the idea of embedded DSLs (EDSLs) (also called internal DSLs [8]). EDSLs
typically inherit the style, syntax, type system, infrastructure, and tooling of a
chosen host language. There are significant advantages:

e The complete infrastructure of the host language can be reused, e.g., li-
braries, code generation, debuggers, implementation of floating point num-
bers, that are costly to implement and maintain for separate DSLs.

e EDSLs (for the same host language) can typically be combined relatively
easily. Combining multiple DSLs, each with their own tool chain, is a daunt-
ing task by itself and at worst for every useful combination a separate tool
chain must be maintained.

Arguably, a further benefit is that when the EDSL is not expressive enough
to solve a particular problem, the programmer can always fall back on the host
language, which is usually Turing complete. Finally, the host language provides
a form of basic syntax, leading to EDSLs that are similarly styled and therefore
may be easier to learn.

EDSLs also have two important disadvantages: since the EDSL is embedded
inside (encoded into) some general purpose language, the compiler for the latter
has no awareness of concepts in the EDSL, which leads to the inabilities

e to report type error messages in terms of the domain (domain specific error
diagnosis),

e to exploit knowledge of the domain to generate better code (domain specific
optimisations).

The DOMSTED project aims to address the first of these two issues: domain
specific type error diagnosis. We shall do so within the context of the Haskell
programming language [9].

In earlier work [19], we have shown an approach to making type error diagno-
sis domain-specific for Haskell 98 (a subset of Haskell). Because of its importance
for this paper, we introduce the specification language (a DSL!) for specialized
type rules that it describes.

As an example, consider a parser combinator library, i.e., an extensible imple-
mentation of EBNF. The primitives in such a language are parsers that: always
succeed (succeed), always fail (fail), and recognize a symbol (symbol). Moreover,
there are combinators that construct parsers out of other parsers: for parsers p1
and p2, pl <x> p2 parses pl followed by p2, pl <|> p2 parses pl or p2,
and f <$> pl parses pl and transforms the outcome by the function f. In the
example below, we use the option combinator that takes a value z of type a,
and a parser p that produces values of type a, so that option p x is the parser
that parses zero or one p, returns z if p fails, and the result of the parse if it
succeeds. With these in hand, we can define a parser that given a parser p and
a number n constructs a parser that parses at most n instances of p and returns
the results in a list, as follows.

atmost p 0 = succeed]
atmost p n = option ((:) <$> p <*> atmost p (n — 1)) []

This implementation is type correct, but what happens if the arguments to
option are interchanged? A domain-agnostic type error message may then expose
the underlying implementation of parsers to the user, as the following message
(from Hugs) shows:

ERROR "Parsex.hs":17 - Type error in application

*** Expression : option [1 ((:) <$> p <*> atmost p (n - 1))
*x*x* Term : (1]
**x* Type : [al

*x*x Does not match : [b] -> [([c] -> [([d]l,[c])],[b1)]

To make the message domain aware, so that the error messages themselves
can abstract away from underlying details, we have defined a specialized type
rule for the option parser in Figure 1. The rule consists of a type rule, at the
top, followed by a list of constraints. The expression below the line option p v
tells us to which kind of expression the rule applies. Because p and v occur above
the line, these variables are considered to be meta-variables that range over all
Haskell expressions. The identifier option does not occur above the line, which
tells us that this is a particular identifier that is in scope as the rule is read by
the compiler. In other words: this rule applies to all calls to the function option
irrespective of the form of its two arguments.

Behind each of the occurences of :: the rule has a type associated with
the expression before the ::. In this case p and v have a variable type, which
by itself imposes no restriction on them, while the type of the consequent is
Parser t6 t4; this tells us that the result type is a parser of some sort (6 and
t4 are at this point still unconstrained).

option p v :: Parser t6 t4 ;;

t1l == Parser t5 t2: "Qexpr.range@: @p.pp@ should be a parser"
t5 == t6: "Qexpr.range@: the parsers Qp.pp@ and Qexpr.ppQ@
" do not work on the same kind of token"
t2 == t4: "Qexpr.range@: the return type of Qexpr.pp@ and
" @p.pp@ do not coincide"
t2 == t3: "@expr.range@: the type @t3Q@ of the optional value"
" Qv.ppQ"
"does not match the parser return type @t2Q";

Fig. 1. A specialized type rule for option parsers

Further restrictions are imposed by the constraints below the rule, such as
t1 == Parser t5 t2. The constraints are a convenient syntax for the unifica-
tions that need to be performed to verify the type correctness of the consequent,
option p V.

The constraints below the rule are, during type inference, checked from top
to bottom. This means that as we check that t5 == t6 (i.e., we unify the type
associated with t5 with the one associated with t6), we know that the previous
constraint(s) could be satisfied. We can employ that information in the type error
message that follows the constraint. Because the first constraint tells us that p1
is a parser of some kind, we do not run any risk when saying so in the error
message that comes with t5 == t6. Although our work allows a larger variety
of control over the way constraints are solved (unifications are performed), this
example captures the essence of our work.

The Helium compiler [15] implements these ideas and generates the follow-
ing two type error messages (because as it happens, there are two unsatisfiable
constraints, t1 == Parser t5 t2 and t2 == t3):

(17,14): []1 should be a parser
(17,14) : the type Parser a [b] of the optional value
(:) <$> p <*> atmost p (n - 1)
does not match the parser return type [b]

It is important to realize that a compiler that supports specialized type rules
does not simply generate good type error messages: it only provides the means
to DSL developers to control type error diagnosis. In other words, we provide a
mechanism or infrastructure that can be employed by DSL developers to pro-
scribe type inferencing policies. Such policies may or may not lead to improve-
ments in type error diagnosis, depending on whether the policies actually make
sense. To warn against nonsensical modifications, however, the specialized type
rules are automatically checked for soundness with respect to the built-in type
system. More aspects of specialized type rules are discussed in [19].

In 2003, Haskell 98 was the standard, although GHC already supported many
extensions that our work did not yet support. Since then many new developments
have taken place within the Haskell community: new type system concepts have
been developed and experimented with and, as we show in the next section, are
used by many for the development of libraries and applications. Moreover, type
system concepts such as GADTs that have been in flux for some years, now
seem to have stabilized, making that this is an excellent time for undertaking
the work described in this paper, which is to scale the ideas of [19] up to a full
and mature language.

We have extracted from the Hackage ! database which extensions are enabled
for then most recent version of all available packages (Hackage contents of June
4, 2012, 4164 packages with a total of 5501 executable and library sections).
The extensions that affect the underlying type system and that are enabled
most often are listed in Figure 2. For each such extension we give, in the second
column, the number of packages that explicitly document in their cabal file
that the package employs that extension. The final column of Figure 2 contains
the number of packages of the Top 20 downloaded libraries from Hackage from
2010 [28] that either by their cabal file, or their source code, document the use
of the extension. The number excludes the extensions needed for compiling any
dependencies. While doing this we learnt that the extensions listed in the cabal
files are, as a rule, only a small subset of the extensions that are listed within
the source code itself. In other words, the numbers in the second column are in
reality probably much higher than listed here.

lExtension [#enabled on Hackage[# enabled among library Top 20
FlexibleInstances 332 10
MultiParamTypeClasses (321 9
FlexibleContexts 232 3
ScopedTypeVariables 192 3
ExistentialQuantification|149 6
FunctionalDependencies {139 4
TypeFamilies 114 1
OverlappingInstances 108 3
Rank2Types 100 3
GADTs 88 3
RankNTypes 81 1
UnboxedTuples 20 4
KindSignatures 20 0

Fig. 2. Extensions enabled on Hackage

Haskell has many other extensions besides those mentioned in Figure 2, e.g.,
TypeSynonymlinstances, Arrows, and TypeOperators, but these extensions do

! The infrastructure through which Haskell programmers share libraries and applica-
tions.

not complicate its type system. Dealing with these extensions is therefore ex-
pected to be largely a matter of additional engineering effort, and not to demand
additional research. We did find during our experiments that certain extensions
are employed quite often, so in order for our work to be used extensively, we
cannot simply ignore them.

2 Research questions addressed within this project

The research question central to the project is whether we can control the type
inference mechanism of Haskell with its many advanced type system features
to the extent that we can exploit that control to cater for domain-specific type
error diagnosis.

We aim to prototype our work in the locally developed Utrecht Haskell Com-
piler [3]. It may be possible that the prospective PhD student spends time as an
intern at Microsoft Research in Cambridge in order to implement his work into
the GHC. This internship shall be in addition to the four year appointment of
the PhD. The internship ensures a degree of research impact, while allowing the
student to focus on scientific issues during the PhD period.

Validation of our work amounts to developing specialized type rules for
Haskell EDSLs and showing that they behave as they should for a substan-
tial number of applications and libraries that employ the type system features
under our control. We shall not study whether having domain specific error mes-
sages, as compared to generic ones, are profitable for the Haskell programmer.
We leave it to developers of EDSLs to judiciously employ our work.

Our work can seriously impact the practical application of EDSLs, at first
particulary within the Haskell community. To achieve this, we have to arrive at a
fundamental understanding of a large variety of type system concepts and their
interactions, because the envisioned control over the type inference process can
only be achieved by a deep understanding of the language concepts that make
up Haskell. A second fundamental challenge is to guarantee that modifications
of the type system do not change the set of acceptable programs, and to do so
automatically.

Our work can also serve as an enabler for language design. For example, some
researchers advocate the reintroduction of monad comprehensions in Haskell [10].
According to Chakravarty [12], these were taken from the language, because
type error messages for monad comprehensions were incomprehensible to peo-
ple who were only familiar with list comprehensions. Within this project, we
can investigate whether we can accommodate monad comprehensions generally
by employing specialized type rules to specialize type error diagnosis for list
comprehensions.

The control over the type system also naturally paves the way for the de-
velopment of heuristics to improve type error diagnosis for Haskell, generally.
Combinators for exercising such control over Haskell 98 are described in [14].
Heuristics for Haskell 98 can be found in [13] and [18]. Some of these heuristics
also arise in work on security type error diagnosis [33].

3 Approach

The developers of GHC, the foremost compiler for Haskell [9], have added quite a
number of language concepts to GHC over the years (before, in fact, a committee
was re-established), and are at times quite active in the redesign of Haskell’s type
system and implementation. A recent such activity is documented in [32], and
this document forms the starting point of our work.

In the case of Haskell, there is a large range of advanced type system concepts
to choose from, including but not limited to: existential types, higher-ranked
types, GADTSs, type families, and multi-parameter type classes. As we showed
earlier, these facilities are used often in everyday Haskell programming.

We advocate an incremental approach, starting out with those type system
concepts that, judging from Figure 2, seem most useful, and formulate these
type system concepts in terms of manipulable constraints. Recent redesigns of
Haskell’s type system and its implementation already employ constraints, which
probably eases our task. At this time we also need to consider interference with
already considered constructs, and extending the algorithm that checks that
modifications to the type system do not inadvertently change the intrinsic type
system. During the development, the results will be implemented in prototype
fashion into the UHC [3].

Each type system concept, say GADTSs, can be considered at increasing levels
of maturity. For example, can we add support for GADT's

I so that existing type rules work for programs that contain GADTSs as long
as they do not match on expressions that contain GADTs,
IT so that existing type rules work for programs in which meta-variables can
be associated with expressions that contain GADTSs, and
IIT so that specialized type rules can be written that match on GADTs.

We aim to allow up to level II in all cases, while level III will only be useful for
certain type system concepts. For example, we currently cannot pattern match on
lambda-abstractions, although meta-variables may be bound to such expressions.
We do not yet know which constructs can profit from the level III treatment,
but by considering a range of example EDSLs taken from Hackage, this can be
discovered along the way.

Technical challenges are likely to arise in proving strong (automatically ver-
ified) guarantees that the specified modifications to the type system do not in-
advertently change the type system itself. We have observed that writing down
the specialized type rules in a way consistent with the intrinsic type system is
not an easy task, and that this should be supported by automated soundness
checks, and a diagnostic facility to explain what is wrong if inconsistencies arise.
As the language grows in complexity, this facility will be in need of further matu-
ration, and for the newly added type system concepts, this can be a particularly
challenging aspect.

From a software engineering perspective, specialized type rules do not yet
scale very well. First, there is a lack of abstraction facilities: each specialized

type rule essentially stands on its own. At the very least, some sort of macro fa-
cility will be necessary to standardize the type error format. Also, the rules lack
facilities to tailor type error messages based on the computed types. For example,
for the monad comprehensions mentioned earlier in this paper we want the type
error messages to be specialized for certain instances of an expression, depending
on the type of monad, e.g., the list monad. Such a facility calls for a conditional
structure in the type rules that allow us to further specialize type error diagno-
sis. Furthermore, we also need to address the issue of composing collections of
specialized type rules, because a single application may employ various EDSLs
at the same time. We expect these issues to be addressed throughout the project.

Finally, we envisage an extension to specialized type rules to better control
their application. As the expressions in the consequent of a specialized type
rule become more complicated, and multiple EDSLs are applied within a single
application, we should be able to describe strategies that govern how the type
rules are to be employed.

4 Related Work

The field of domain specific languages is booming, and a huge number of publi-
cations exist. To provide some structure to the field, there have been a number of
surveys, e.g., [2]. Hudak [21] was the first to propose the idea of embedded domain
specific langage (EDSL), and he also discusses some of the essential ingredients:
instrumentation, partial evaluation and modular, monadic interpreters. Swier-
stra [30] adds that DSLs should inherit the host language type system, which
then needs to be stored in the abstract syntax trees that represent the embedded
programs. To this end, the type system concept of Generalized Algebraic Data
Type (GADT) was added to the Haskell language.

The Ph.D thesis of Bastiaan Heeren [17] contains a comprehensive overview
of the field of type error diagnosis for functional languages up to 2004. Most of
these papers discuss type error diagnosis for the polymorphic lambda-calculus,
and do not discuss domain specific error diagnosis (except [19]).

As to languages beyond the typed lambda calculus, we are aware of the
following: Rahli, Wells and Kammaredine scale the work on type error slicing
up to a full-sized language, ML [27]; this work also shows that scaling up an
idea from a core calculus to a full-fledged language is by no means trivial. There
are few other attempts that go beyond the polymorphic lambda-calculus [1]. In
[18], we considered type error diagnosis for Haskell’s type classes, which are a
means for specifying ad-hoc overloading, and form an instance of the theory of
qualified types [23]. Some of these directives were developed independently by
Wazny et al. [11], and are part of the Chameleon interactive type debugger.
Furthermore, in his Ph.D thesis, Wazny also considers algebraic data types and
explicit annotations. The work on Helium also accounts for these particular type
system concepts [17].

Besides the work of the PI [19], there is little work on domain aware type
error diagnosis. JavaCop [24] is a system that allows type system fragments to

be plugged into the Java type system, so that various kinds of properties can
be checked at compile-time. Like [19] it is declarative, but since it uses data-
flow support and Java does not support closures (yet), the technical differences
are quite large. JavaCop provides a test harness to simplify the testing of the
pluggable type systems. In our work this is unnecessary, because we can auto-
matically prove the intrinsic type system is not changed. Our work, however,
does not allow the type system to be changed at all, and JavaCop purposefully
does. The pluggable type syntax has facilities to inform programmers when a
program fails to compile.

5 Context and perspective

This project will be carried out within the Software Technology group at Uni-
versiteit Utrecht, which has a long history of building compiler oriented tools [7].
Work progresses on tools such as the UHC [4], many of which were built using
locally developed tools that will all surely play a role in this project [29].

The influence of functional languages should not be underestimated. For ex-
ample, parametric polymorphism and closures have both found their way into
mainstream languages, and other functional languages such as OCaML, Scala,
and F# are on the rise outside academic circles. This project allows us to exper-
iment with many advanced type system concepts in the relatively clean context
of Haskell that moreover can boast an active user community. Hackage will allow
us to disseminate our work, and provides many examples of EDSL for treatment.

The project does not yet account for the complicating issue of subtyping; we
save that for future proposals. We also do not expect to address Template Haskell
in this project, at the very least saving that particularly complex extension for
last. We have looked into controlling type error diagnosis for Generic Java [6, 5],
but have not yet looked into the issue of specialized type rules in this setting.
Indeed, we are more likely to set our sight on Scala [26] and Timber [25] for such
an endeavour.

6 Project execution

Figure 2 gives an indication what we should address within this project. At the
very least: rank-n types, GADTSs, multi-parameter type classes, functional de-
pendencies, type families, and existential quantification. However, each concept
can be addressed up to various levels (I, IT or III). Although it may not be the
most effective to reconsider concepts at various stages of the research, we believe
it is essential that all the important aspects are addressed up to level I as soon as
possible, if possible up to level II. Having reached these levels will at least allow
users to experiment soon with the technology. We can then selectively provide
level III support for a growing range of concepts.

The order in which we shall address the extensions is also influenced by how
complicated we believe the concept to be. For example, because we know how
to deal with type classes [18], the step to multi-parameter type classes does

not seem very hard. Then it also make sense to address similar extensions, e.g.,
overlapping instances and functional dependencies, sooner rather than later.

Improving the engineering of specialized type rules will be addressed as the
need arises. Considering how to extend further extensions, e.g., monad com-
prehrensions, is lowest on our list, but may, for example, be considered in a
master thesis project, as is the development of heuristics for improving type
error diagnosis, generally.

One issue that remains is “customer involvement”. We welcome any contri-
bution to our project of the following kind;

— examples of EDSLs that are in particular need of our treatment

— concrete feature requests from EDSL developers

— examples of programs beyond Haskell 98 that show that GHC type error
diagnosis can be improved.

7 Conclusion

We have outlined a project that we plan to execute at the Software Technology
group at Utrecht University to improve the state of the art in domain specific
type error diagnosis, in particular for Haskell. We have shown what form this
diagnosis takes when restricted to Haskell 98, and motivated an urgent need to
go beyond that to modern-day Haskell. This paper is in a way also a call out to
the field, to contribute type incorrect programs, and to point us to interesting,
suitable EDSLs in Haskell for undergoing our treatment. In particular, we would
like to come into contact with the developers of such EDSLs.

References

1. L. Damas and R. Milner. Principal type-schemes for functional programs. In
Conference Record of the Ninth Annual ACM Symposium on Principles of Pro-
gramming Languages, Albuquerque, New Mezico, January 1982, pages 207-212.
ACM Press, 1982.

2. A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: An annotated
bibliography. ACM SIGPLAN Notices, 35(6):26-36, June 2000.

3. A. Dijkstra and S.D. Swierstra et al. The Utrecht Haskell Compiler.
http://wuw.cs.uu.nl/wiki/UHC/WebHome.

4. A. Dijkstra, J. Fokker, and S. D. Swierstra. The architecture of the Utrecht Haskell
Compiler. In Haskell '09: Proceedings of the 2nd ACM SIGPLAN Symposium on
Haskell, pages 93—104, New York, NY, USA, 2009. ACM.

5. N. el Boustani and J. Hage. Corrective hints for type incorrect Generic Java pro-
grams. In J. Gallagher and J. Voigtlander, editors, Proceedings of the ACM SIG-
PLAN 2010 Workshop on Partial Evaluation and Program Manipulation (PEPM
’10), pages 5-14. ACM Press, 2010.

6. N. el Boustani and J. Hage. Improving type error messages for generic java. Higher-
Order and Symbolic Computation, 24(1):3-39, 2012. 10.1007/s10990-011-9070-3.

7. S. D. Swierstra et al. The Software Technology group at Utrecht University.
http://www.cs.uu.nl/groups/ST/twiki/bin/view/Center/.

11.

12.
13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

M. Fowler. Domain-Specific Languages. Addison Wesley, 2011.
GHC Team. The Glasgow Haskell Compiler. http://www.haskell.org/ghc.

. G. Giorgidze, T. Grust, N. Schweinsberg, and J. Weijers. Bringing back monad

comprehensions. In Proceedings of the ACM SIGPLAN Haskell symposium, Tokyo,
Japan, pages 13-22. ACM, 2011.

K. Glynn, P. J. Stuckey, and M. Sulzmann. Type classes and constraint handling
rules. In First Workshop on Rule-Based Constraint Reasoning and Programming,
July 2000.

J. Hage and M. Chakravarty. Private communication, January 2005.

J. Hage and B. Heeren. Heuristics for type error discovery and recovery. In
Z. Horvéth, V. Zsék, and A. Butterfield, editors, Implementation of Functional
Languages — IFL 2006, volume 4449, pages 199 — 216, Heidelberg, 2007. Springer
Verlag.

J. Hage and B. Heeren. Strategies for solving constraints in type and effect sys-
tems. FElectronic Notes in Theoretical Computer Science, 236:163 — 183, 2009.
Proceedings of the 3rd International Workshop on Views On Designing Complex
Architectures (VODCA 2008).

J. Hage, B. Heeren, A. Middelkoop, et al. The Helium compiler.
http://www.cs.uu.nl/wiki/bin/view/Helium/WebHome.

J. Hage and M. Odersky. Private communication, September 2011.

B. Heeren. Top Quality Type Error Messages. PhD thesis, Universiteit Utrecht,
The Netherlands, 2005. http://www.cs.uu.nl/people/bastiaan/phdthesis.

B. Heeren and J. Hage. Type class directives. In Seventh International Sympo-
sium on Practical Aspects of Declarative Languages, pages 253 — 267, Berlin, 2005.
Springer Verlag.

B. Heeren, J. Hage, and S. D. Swierstra. Scripting the type inference process. In
Eighth International Conference on Functional Programming, pages 3 — 13, New
York, 2003. ACM Press.

F. Henglein et al. Hiperfit. Research project, http://hiperfit.dk/.

Paul Hudak. Building domain-specific embedded languages. ACM Comput. Surv.,
28, December 1996.

J. Hughes, M. Sheeran, K. Claessen, and P. Jansson. Raw fp: Pro-
ductivity and performance through resource aware functional programming.
http://wiki.portal.chalmers.se/cse/pmwiki.php/RAWFP/RAWFP.

M. P. Jones. A theory of qualified types. In ESOP’92: Symposium proceedings
on 4th Furopean symposium on programming, pages 287-306, London, UK, 1992.
Springer-Verlag.

S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J. Noble.
JavaCOP: Declarative pluggable types for Java. ACM Trans. Program. Lang. Syst.,
32:4:1-4:37, February 2010.

J. Nordlander, M. Carlsson, A. Gill, P. Lindgren, and B. von Sydow. The Timber
homepage, 2008. http://www.timber-lang.org.

M. Odersky. The Scala homepage, 2008. http://www.scala-lang.org/.

V. Rahli, J. B. Wells, and F. Kamareddine. A constraint system for a SML type
error slicer. Technical Report HW-MACS-TR~0079, Herriot Watt University, Ed-
inburgh, Scotland, Aug 2010.

D. Stewart and D. Coutts. Hackage, Cabal and the Haskell Platform. Presented
at the Haskell Implementors Workshop 2010, Baltimore.

S. D. Swierstra, A. Rodriguez, A. Middelkoop, A. I. Baars, and A. Loeh et al. The
Haskell Utrecht Tools (hut). http://www.cs.uu.nl/wiki/HUT/WebHome.

30.

31.

32.

33.

S.Doaitse Swierstra. Construct your own favorite programming language. Technical
Report UU-CS-2009-029, Dept. of Inf. and Computing Sciences, Utrecht University,
2009.

W. Taha. Plenary talk iii domain-specific languages. In Computer Engineering
Systems, 2008. ICCES 2008. International Conference on, pages xxiii —xxviii, nov.
2008.

D. Vytiniotis, S. Peyton Jones, T. Schrijvers, and M. Sulzmann. Outsidein(x) mod-
ular type inference with local assumptions. Journal of Functional Programming,
21:333 — 412, 2011.

J. Weijers, J. Hage, and S. Holdermans. Security type error diagnosis for higher-
order, polymorphic languages. In Proceedings of the ACM SIGPLAN 2018 work-
shop on Partial evaluation and program manipulation, PEPM 13, pages 3—12, New
York, NY, USA, 2013. ACM.

