
Usage of Generic Programming on Hackage
— Experience report —

Nikolaos Bezirgiannis

Johan Jeuring

Sean Leather

Technical Report UU-CS-2013-014

July 2013

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Usage of Generic Programming on Hackage
— Experience report —

Nikolaos Bezirgiannis1 Johan Jeuring1,2 Sean Leather1
1Department of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The Netherlands

2School of Computer Science, Open University The Netherlands
n.bezirgiannis@students.uu.nl {j.t.jeuring,s.p.leather}@uu.nl

Abstract
Generic programming language constructs, tools and libraries have
been available in Haskell since the first report on the programming
language Haskell. At the beginning of the 1990s generic program-
ming techniques could be used via the deriving construct, and
since then numerous generic programming libraries and tools have
been developed. At the time of writing, the categories ‘generic’ and
‘generics’ on Hackage, the online repository of Haskell software,
contain 53 packages. Although not all of these are generic program-
ming libraries or tools, there are many approaches to generic pro-
gramming to choose from. This brief paper discusses an analysis of
the usage of generic programming language constructs, tools, and
libraries. We analyse how often which language constructs, tools,
and libraries are used on Hackage, how often class instances are de-
rived generically or written manually, and for some libraries, how
often the functions that appear in these libraries are used.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Functional Programming

General Terms Languages, Measurement, Survey

Keywords Generic Programming, Haskell, Deriving Mechanism,
Hackage

1. Introduction
Datatype-generic programming, often abbreviated to generic pro-
gramming, is defining functions that depend on the structure, or
shape, of datatypes. Generic programming language constructs,
tools and libraries have been available in Haskell since the first
published report on the programming language Haskell [7] via
the deriving construct. In the early phase of generic program-
ming, generic programming was available via extra language con-
structs [5, 8, 14], or preprocessing tools [17, 20, 24]. Later, generic
programming libraries [1, 3, 12, 13, 18, 23] were introduced, in
many variants.

The different approaches to generic programming have been
previously compared [6, 22]. Applications of generic programming

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WGP ’13, September 28, 2013, Boston, MA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2389-5/13/09. . . $15.00.
http://dx.doi.org/10.1145/2502488.2502494

have been given in quite a few papers [4, 10, 15]. However, none of
these papers contains an empirical study of the actual usage of the
various approaches. Information about usage of generic program-
ming techniques might be useful to determine the interest in the dif-
ferent libraries, to focus updates of functionality of libraries, to test
backwards compatibility of libraries, and to find out where applica-
tions of generic programming may have been missed, for example
because a library contains a hand-written instance of a particular
class such as Functor , where using a derived instance would have
been preferable.

Hackage is the de-facto online repository of open-source Haskell
programs and libraries. At the time we performed our latest analy-
sis, on Sunday, June 2, 12:06:57 UTC, 2013 it contained 5207 pack-
ages. To analyse the usage of generic programming techniques, we
analyse the packages in the Hackage database. Hackage is by far
the most important platform to distribute Haskell software, and an
analysis of code on Hackage gives a good idea about how program-
ming techniques are used in practice.

In this paper we analyse the complete Hackage repository to
gather statistics about:

• how much the original deriving language construct is used.
The deriving construct has been around since the start of
Haskell, and we expect it to be used frequently.

• how much the DrIFT [24] and derive [17] preprocessing tools
are used.

• the number of packages that depend on some generic program-
ming tool or library to compile their sources. The outcome indi-
cates how much a generic programming tool or library is used.

• which functions from the Scrap Your Boilerplate (SYB) [13]
and Uniplate [18] libraries are used in packages that import
these libraries.

The rest of this paper is organised as follows. In the next section
we introduce the characteristics of the deriving, derive, SYB, and
uniplate tools and libraries, which we analyse in more detail later.
This section partially reveals the methodology of the analysis,
which is described more extensively in Section 3. This section
describes the design and implementation of the analysis package.
Section 4 presents the results of analysing Hackage using our
package for the two deriving techniques (deriving and derive),
and for the usage of the generic programming libraries. Section 5
discusses related work, and Section 6 discusses potential future
research and concludes.

2. Characteristics of generic programming
approaches

This section discusses some characteristic aspects of generic pro-
gramming approaches, in particular the aspects that are relevant for
performing our usage analysis. We will not attempt to give a com-
plete overview of generic programming language constructs, tools,
and libraries, which can be found elsewhere [6, 9].

2.1 deriving

The deriving construct has been part of Haskell since its start.
The Haskell 98 language report [21] states that instances for the
classes Eq , Ord , Enum , Bounded , Show , and Read can be de-
rived automatically. deriving can be used on both data and
newtype declarations, as in the examples below:

data DT 1 a = DT 1 a deriving (Show)

newtype DT 2 a = DT 2 {getDT 2 :: a } deriving (Eq)

In the latest versions of GHC also instances of Data , Typeable ,
Functor , Foldable , Traversable , and, more recently, Generic
classes can be derived automatically. The deriving construct can
also be used on datatype-like GADTs, i.e. GADTs that do not make
use of GADT-specific concepts. Since the implementation of the
deriving construct looks at the structure of datatypes, it involves
a form of generic programming.

A programmer can choose to construct a hand-written class
instance if the standard behavior of a derived class-method is not
desired. For example, we might want an equality on lists that only
compares top-level constructors, as in

instance Eq [a] where
[] ≡ [] = True
(x : xs) ≡ (y : ys) = True

≡ = False

GHC supports an alternative way to derive a class instance, using
the StandaloneDeriving extension. Using StandaloneDeriving, a
programmer can derive the instance of a class for a datatype at
another place in the program than the datatype itself, for example:

deriving instance (Read a)⇒ Read (DT 1 a)

StandaloneDeriving is useful if we want to use a different class
context than the one derived by deriving, or if we want to derive
an instance for a datatype in another module, which we cannot or
do not want to adapt.

Another extension of GHC related to the deriving construct,
is GeneralizedNewtypeDeriving. When enabled, a newtype dec-
laration inherits some or all instances of the contained datatype,
with the exception of Show , Read , Data and Typeable instances,
which follow the normal deriving scheme.

newtype DT 3 a = DT 3 {getDT 3 :: Maybe a }
deriving (Monad)

GeneralizedNewtypeDeriving involves no generic programming, it
only steers inheriting instances.

2.2 DrIFT
The DrIFT tool is used to automatically derive functions or class
instances for Haskell data types. It is a preprocessor to Haskell 98
source files. A user annotates code with comments such as:

data DT 4 a = DT 4 a deriving Show
{-! derive Ord , Read ! -}

{-! for DT 4 derive : Eq , NFData ! -}
for inline and standalone deriving, respectively. DrIFT supports the
derivation of instances of a number of standard classes. Although

not impossible, adding rules specifying how other class instances or
functions are derived is hard. DrIFT has an extra “global” directive:

{-! global : Enum ! -}
which is used to derive instances for every datatype defined in the
module.

2.3 derive
The derive library and preprocessing tool [17] is a relatively recent
successor to DrIFT. Using derive is very similar to using DrIFT:

data DT 5 a = DT 5 a deriving (Show {-! Read ! -})

{-! deriving instance Eq DT 5 ! -}
Using derive it is easier to extend the set of derivable type classes
and functions using custom derivations.

When using derive as a library instead of a preprocessing tool,
we can leverage Template Haskell and define derivations as fol-
lows:

data DT 6 a = DT 6 a
$ (derive [makeEq ,makeBinary] ’’ DT 6)

The drawback of this approach is that it is less portable, since only
GHC offers support for Template Haskell.

2.4 SYB
SYB [13] is a generic programming library that has been around
for a decade now. To use SYBs transformations and queries on
a particular datatype, the datatype needs to have instances of the
classes Data and Typeable .

For example, if we want to prefix all variables with a string in
an abstract syntax tree of type AST

data AST = Var String
| Lam Var AST
| App AST AST

by means of the function prefixV defined by

prefixV :: String → AST → AST
prefixV s (Var v) = Var (s ++ v)
prefixV s x = x

we use the SYB functions everywhere and mkT to define a generic
transformation:

prefix :: String → AST → AST
prefix s = everywhere (mkT (prefixV s))

If we want to count the number of variables that occur in an AST -
value using the function nrOfVars , which returns 1 for a variable
and 0 for anything else, we use the functions everything and mkQ
to obtain a generic query:

vars :: AST → Int
vars = everything (+) (0 ‘mkQ ‘ nrOfVars)

In our analysis we want to find out how often such functions are
used in the modules on Hackage.

2.5 Uniplate
Uniplate [18] is a generic programming library similar to SYB, but
simpler, often faster, and less powerful. Here are the definitions of
the SYB examples in Uniplate:

prefix ′ :: String → AST → AST
prefix ′ s = transform (prefixV s)

vars :: AST → Int
vars t = sum [1 | Var ← universe t]

where instead of everywhere we use the Uniplate function trans-
form, and instead of everything , we use the function universe .

3. Methodology
We analyse the Hackage library to find out how much the deriving
language construct is used, which classes are derived, how much
DrIFT and derive are used, how often generic programming li-
braries are used, and finally, how often generic functions from
some generic programming libraries are used.

We have developed gpah1 (generic programming analysis of
Hackage) to perform the analysis. gpah analyses the entire Hackage
database in a single run. In the first step of the run, it collects
data from the package descriptions (Section 3.1), and in the second
step we parse the modules of the packages and determine the
properties we are interested in (Section 3.2). Section 3.3 evaluates
the methodology we use.

In our analysis we only focus on determining the usage of
generic programming language constructs, tools, libraries and func-
tions. However, the same approach could be used to analyse Hack-
age software for other patterns.

3.1 Analysing packages
Hackage requires that all software uploaded to its database is pack-
aged using the Cabal system [11], an automatic build tool for
Haskell libraries and applications. Each package contains a Ca-
bal package description file, containing information about how the
package is built, what its dependencies are, and information about
authors, license, etc.

gpah parses Cabal files using Cabal’s own parser. From the
parsed output it obtains the name of the package, the locations
of its source modules, any executables that it creates, the options
passed to the C-preprocessor (cpp), and its generic programming
dependencies.

3.2 Analysing modules
Since a significant portion of the packages on Hackage makes
use of preprocessor directives in its code, gpah runs the modules
obtained from the locations described in the Cabal file through cpp
using a custom-made shell script, prior to parsing.

gpah parses the resulting modules using haskell-src-exts, a
Haskell parser that can handle Haskell syntax and many of its ex-
tensions. Apart from the Haskell parser in GHC, haskell-src-exts is
probably the most complete Haskell parser, which cannot only deal
with Haskell itself, but also with GADTs and Template Haskell, for
example.

gpah analyses the parsed modules for specific occurrences of
syntactic constructs such as deriving, multi-line comments to
analyse usage of derive and DrIFT, and particular generic func-
tions.

3.3 Evaluation
This section evaluates our method and the corresponding software
gpah for analysing the usage of generic programming on Hackage.

gpah is written in Haskell. Since it needs to traverse values of
the rather large abstract syntax tree datatype for Haskell, it makes
extensive use of SYB, for example to find occurrences of generic
functions in modules, and Uniplate, to remove a lot of boilerplate
in the deriving analysis. The multi-line comments are further
analyzed using a basic parser developed using the uu-parsinglib
parser combinatory library. Analyzing every comment of the Hack-
age repository is rather costly, and a full analysis of Hackage takes
several hours to complete on modern hardware. Moving the Hack-
age snapshot archive to a temporary file storage facility such as

1 See: http://hackage.haskell.org/package/gpah

tmpfs on many Unix systems, speeds up the execution of succes-
sive runs of the analysis, since the entire codebase of Hackage is
cached. Parallelizing the analysis will also help here.

After applying the cpp preprocessing, gpah parses 41027 of the
46580 Haskell source modules from Hackage, which corresponds
to about 88% of the complete repository. gpah cannot parse the
remaining 12% (5553 modules) for the following reasons:

• since we do not take in-module cpp options into account, pre-
processing failed for 1685 modules (3.6%).

• the haskell-src-exts library does not parse all Haskell extensions
used by the Hackage packages.

• some Hackage packages contain errors and cannot be parsed.
• some Hackage packages contain source files that are not needed

to build the package, but which the developers left in the source
tree. Some of these files do not parse. Only by performing
import chasing we could detect that we can omit these files from
our analysis. However, there are arguments for including these
files in the analysis as well, after all, although some of them
clearly contain garbage, these are Haskell modules on Hackage.

Instead of parsing using haskell-src-exts we could adapt the
parser of GHC to collect specific information about the components
we are interested in, such as deriving declarations or calls to
generic functions, as in the analysis of overlapping instances in
Hackage from Morris [19]. Instead of running gpah, we could then
just run cabal-install on all packages on Hackage. This approach
might be more complete and appropriate for our purposes, since
the GHC parser and type checker are the most elaborate and well-
tested parsing and typing utilities. We have decided to not take this
approach for the following reasons:

• adapting and instrumenting the parser and output of GHC is
considerably more work than using Cabal’s parser and the
parser from haskell-src-exts.

• even when using cabal-install and GHC, we would not be able
to parse all Hackage packages, since different packages require
different versions of the tools. These problems might be par-
tially resolved if we would adapt all GHC versions from the
last couple of years, and would install the different versions of
cabal-install and the libraries used by Hackage packages, but
we envisage that this would require a serious time investment.

• the information we want to collect for our analysis is mainly
based on syntax, and there is no added benefit of checking
semantic properties of packages.

• right now a full analysis using gpah takes several hours. We
expect building all Hackage packages will take days, if not
more, to complete.

4. Results
This section presents the results of performing our analysis: run-
ning gpah on the Hackage repository. Section 4.1 shows the usage
of the deriving construct. Section 4.2 presents the usage results
for the preprocessing tools DrIFT and derive. Section 4.3 shows
how often the various generic programming libraries are used, and
Section 4.4 shows how often some generic functions from the Uni-
plate and SYB libraries are used. The last section shows some high-
lights from the differences between the analyses performed in 2012
and 2013.

4.1 Usage analysis of deriving
The parsable modules on Hackage contain 49218 data and
newtype definitions, of which 644 are GADTs, 80 type family
instances, and 10 data family instances.

28707 data and newtype declarations (58%) contain a
deriving clause. Using these deriving statements, a total of
68149 instances of classes are derived, on average 2.37 class in-
stances per datatype that contains a deriving clause.

We exclude the 7497 newtype declarations from our results.
Due to the nature of newtypes, deriving a class instance on a
newtype does not require a significant amount of generic program-
ming: newtype deriving does use (some) generic programming
techniques when deriving instances for Read , Show , Typeable ,
or Data , but not when deriving instances of Eq , Ord , Enum
and Bounded . Using GeneralizedNewtypeDeriving code is inher-
ited from the argument type, and no generic programming tech-
niques are used. We do not include the 1185 standalone deriving
declarations, because finding out whether a standalone derivation
refers to a datatype or a newtype is rather hard, and for the rea-
sons mentioned above, we do not want to include newtype de-
riving in our results. Thus we arrive at 41721 datatype definitions,
25012 of those with a deriving clause, and 55796 classes derived,
respectively. Since we possibly excluded cases in which generic
programming techniques are used, these numbers are conservative
estimates.

21562(38.6%)Show

13532(24.3%)Eq

6930(12.4%)Typeable

5388(9.6%)Ord

3569(6.4%)Read

2490(4.4%)Data

1036(1.8%)Enum

530(1%)Bounded

262(0.5%)Functor

226(0.4%)Generic

91(0.2%)Foldable

91(0.2%)Ix

89(0.2%)Traversable

Figure 1. Derived class instances using deriving

Figure 1 shows which classes are derived using deriving
clauses, with in between parentheses the percentage of total num-
ber of derived instances. Show and Eq are by far the most popular
derived classes. The GHC-specific derivable classes Typeable and
Data appear above the Haskell language report specified classes
Bounded and Enum . Apparently quite a few Haskell program-
mers rely on the language extension−XDeriveDataTypeable , for
example.

The relatively new Generic class [16] is derived 226 times. The
classes Data , Typeable , and Generic, which are mainly used to
define or use generic functions, are derived or hand-written 10192
times, which accounts for 15% of the total hand-written and derived
instances. This shows that generic programming is used quite a lot
on Hackage.

Perhaps even more interesting is Figure 2, in which we spec-
ify the number of hand-written instance declarations of classes that

could have been derived automatically, with in parentheses the per-
centage of the total number of hand-written instances. Again, Show
tops the list, for understandable reasons. We were surprised by the
large number of hand-written instance declarations for Functor .
An instance of Functor usually follows a standard, generic, pat-
tern, and implementing an instance using generic programming
techniques guarantees that the required laws hold for the func-
tor instance. We had a look at almost 70 hand-written instances
of Functor . We expect that more than 90% of the hand-written
Functor instances we inspected could be automatically derived,
but since about half of the modules did not compile anymore with
the latest version of GHC, we could not check this. There is a wide
variety of reasons for not using automatic derivation of Functor :

• some datatypes make use of existential quantification or GADT
features.

• the code predates the automatic Functor derivation feature of
GHC.

• fmap is implemented using functionality from Traversable .
• the Functor instance uses special features such as INLINE

pragma’s or lazy pattern matching.
• the code does not use the standard Functor class, but defines

another Functor class.
• the programmer does not want to depend on the language ex-

tension -XDeriveFunctor. Indeed, few of the packages that do
not automatically derive Functor make use of other language
extensions.

We also had a brief look at the modules that derive Data and
Typeable , but contain some hand-written instances for Data and
Typeable . Most of the hand-written instances could be explained
by the fact that the datatypes on which they are used do not expose
the underlying structure of a datatype. For example, a Vector may
contain several fields with metadata, and a single field containing an
Array with the vector elements. When folding over this datatype,
we want to fold just the array of elements.

4991(43%)Show

2040(17.5%)Functor

1405(12.1%)Eq

917(7.9%)Ord

598(5.2%)Read

408(3.5%)Foldable

293(2.5%)Traversable

254(2.2%)Enum

250(2.2%)Typeable

183(1.6%)Data

114(1%)Bounded

113(1%)Generic

30(0.3%)Ix

Figure 2. Hand-written class instances of derivable classes

4.2 Usage analysis of preprocessing tools
No library on Hackage specifies in its Cabal file that it depends
on DrIFT. However, since DrIFT is an external preprocessing tool
using annotations in comments, this does not imply that DrIFT
is not used. Indeed, parsing comments to find DrIFT annotations
reveals that DrIFT derives an instance of Binary 47 times, and
Monoid 9 times. We only found a single occurrence of the global
directive of DrIFT, which possibly justifies the absence of global in
the more recent but similar derive preprocessing tool.

45 Hackage packages depend on derive. Figure 3 shows how
many class instances are derived using derive. derive has mainly
been used to derive Binary .

175Binary

100NFData

20Foldable

12Functor

9Traversable

6Serialize

2Arbitrary

2Monoid

2Read

1LazySet

1Ord

0 200

Figure 3. Derived class instances using derive

This figure does not show the number of user-defined deriva-
tions. We found 25 user-defined derivations, which have been used
233 times on datatypes to derive class instances or instances of
generic functions.

Surprisingly, just one package uses the derive preprocessing
syntax. The other packages use Template Haskell for the deriva-
tions. Using derive with Template Haskell leads to code that does
not rely on external preprocessor tools, which makes compiling
easier. If a developer wants to use another compiler than GHC,
probably an external preprocessing tool is preferable.

4.3 Usage analysis of generic programming libraries
The Hackage categories “Generic” and “Generics” contain 53
packages. Some of these are not generic programming tools or li-
braries, and are omitted from our analysis. For the remaining list of
libraries and tools, together with derive, syb-with-class, and DrIFT-
cabalized, which do not appear in these categories, we calculate the
reverse dependencies. A reverse dependency of a library is a pack-
age that imports the library. The results are shown in Figure 4. We
do not include the packages without any reverse dependencies.

In total, there are 313 reverse dependencies, appearing in 278
different packages. 113 (41%) of these create at least one ex-
ecutable. This number may be a better indication of the actual
generic programming usage, since in this way, we are excluding
reverse dependencies introduced by generic programming libraries
built on top of other generic programming libraries.

SYB (44%), derive, and Uniplate together account for the ma-
jority of the reverse package dependencies. Part of an explanation
might be that SYB, together with the possibility to derive Data
and Typeable , has been directly available in GHC for many years.
Some of the other libraries are fairly recent.

139syb

45derive

43uniplate

24ListLike

9syb-with-class

8regular

7generic-deriving

5instant-generics

5multirec

5pointless-haskell

4listlike-instances

2GenericPretty

2HsTools

2geniplate

2multiplate

2pointless-lenses

1RepLib

1Strafunski-StrategyLib

1algebraic-classes

1alloy

1multiplate-simplified

1pointless-rewrite

1syz

1unbound

1xformat

0 150

Figure 4. Reverse dependencies of generic programming libraries

4.4 Usage analysis of generic functions
We take a closer look at SYB and Uniplate, two of the three most
widely-used generic programming libraries. We collect information
about functions exported by SYB and Uniplate. We found 382 oc-
currences of generic transformations functions such as mkT (SYB,
104), everywhere (SYB, 93), and transform (Uniplate, 82), and
251 occurrences of generic query functions such as gmapQ (SYB,
73), everything (SYB, 59), and universeBi (Uniplate, 58).

Finally, based on the activity log file of Hackage, we present
the number of new packages uploaded to Hackage using SYB
or Uniplate, and the number of updates of packages on Hackage
using SYB or Uniplate in Figure 5. The increasing number of
new packages and package updates using SYB and Uniplate shows
that either developers are using generic programming techniques
more, or that more developers are aware of generic programming
techniques.

4.5 What happened last year?
The results described in this section were obtained from an analysis
performed on Sunday, June 2, 12:06:57 UTC 2013. We performed
the same analysis more than a year ago on Wed May 16 08:44:48
UTC 2012. This section highlights the differences between the
situation then and now.

• Instances of the class Functor are derived 262 times up from
151 (74% up).

• The number of derived instances of Foldable and Traversable
increases almost 60%.

• The number of derived instances of Data , Typeable and
Generic goes up from 7379 to 9646. In particular, Generic
goes up from 33 to 226 (585%).

• The number of packages depending on at least one generic
programming library goes from 217 to 278.

Figure 5. New and updates to libraries using SYB or Uniplate

5. Related Work
To our knowledge, our analysis is the first to study and compare
usage of generic programming techniques in Haskell software in
a real-world setting on Hackage. Rodriguez et al [22] compare
practical aspects of generic programming libraries, but usage is not
one of these.

The software on Hackage has been analysed before, for example
by Morris [19], influenced by Coutts [2], for the purpose of deter-
mining the usage of overlapping instances. As explained in Sec-
tion 3.3, our methodology differs significantly from the one used
by Morris and Coutts.

Information about the reverse dependencies of generic program-
ming libraries on Hackage can also be obtained via the website
http://packdeps.haskellers.com/reverse.

6. Conclusion & Future Work
We have analysed Hackage with respect to the usage of generic
programming language construct, tools, libraries and functions.
The results show that generic programming techniques are widely
used, in particular Haskell’s deriving construct. The huge number
of derived instances of Data , Typeable and Generic show that
users not only derive instances of the standard Haskell classes,
but also use other generic programming components. Comparing
with the same analysis performed one year ago, the most striking
difference is the 585% increase in usage of deriving Generic.

By inspecting some of the hand-written instances of the Functor
class, we found that quite a few of the hand-written instances of
Functor can be derived automatically. We want to manually ex-
amine the hand-written instance declarations that could have been
derived automatically for other classes too. This is a substantial
amount of work, but might give some insight in why developers
do not use the deriving mechanism, give ideas about new generic
functions based on the patterns in the hand-written instances, or
give ideas to add ‘warnings’ to a tool like hlint, telling program-
mers that it might be possible to replace a hand-written instance of
a class by a derived instance.

Our methodology for analysing Hackage can also be used to
analyse Hackage with respect to other aspects than generic pro-
gramming.

We would like to repeat this analysis on a yearly basis.

Acknowledgements
We thank the anonymous referees for their comments on a previous
version of this paper.

References
[1] J. Cheney and R. Hinze. A lightweight implementation of generics

and dynamics. In Haskell’02, pages 90–104, 2002.
[2] D. Coutts. Solving the diamond dependency problem. http://www.

well-typed.com/blog/12, 2008.
[3] R. Hinze. Generics for the masses. In ICFP’04, pages 236–243, 2004.
[4] R. Hinze and J. Jeuring. Generic haskell: Applications. In Generic

Programming, volume 2793 of LNCS, pages 57–96, 2003.
[5] R. Hinze and S. Peyton Jones. Derivable type classes. In Proceedings

of the Fourth Haskell Workshop, 2000.
[6] R. Hinze, J. Jeuring, and A. Löh. Comparing approaches to generic

programming in haskell. In Summer School on Datatype-generic
programming, LNCS, pages 72–149, 2007.

[7] P. Hudak, S. Peyton Jones, P. Wadler, B. Boutel, J. Fairbairn, J. Fasel,
M. M. Guzmán, K. Hammond, J. Hughes, T. Johnsson, D. Kieburtz,
R. Nikhil, W. Partain, and J. Peterson. Report on the programming
language haskell: a non-strict, purely functional language version 1.2.
SIGPLAN Notices, 27(5):1–164, 1992.

[8] P. Jansson and J. Jeuring. PolyP — a polytypic programming language
extension. In POPL’97, pages 470–482, 1997.

[9] J. Jeuring, S. Leather, J. P. Magalhães, and A. R. Yakushev. Libraries
for generic programming in Haskell. In Advanced Functional Pro-
gramming, volume 5832 of LNCS, pages 165–229, 2008.

[10] J. Jeuring, J. P. Magalhães, and B. Heeren. Generic programming for
domain reasoners. In TFP ’09, pages 113–128, 2009.

[11] I. Jones, S. Peyton Jones, S. Marlow, M. Wallace, and R. Patterson.
The Haskell Cabal, a common architecture for building applications
and libraries, 2005.

[12] O. Kiselyov. Smash your boilerplate without class and Typeable.
http://article.gmane.org/gmane.comp.lang.haskell.
general/14086, 2006.

[13] R. Lämmel and S. Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In ICFP ’03, 2003.

[14] A. Löh, J. Jeuring, T. van Noort, A. Rodriguez, D. Clarke, R. Hinze,
and J. de Wit. The Generic Haskell users guide, Version 1.80 - Emerald
release. Technical Report UU-CS-2008-011, Utrecht University, 2008.

[15] J. P. Magalhães and W. B. de Haas. Functional modelling of musical
harmony: an experience report. In ICFP ’11, pages 156–162, 2011.

[16] J. P. Magalhães, A. Dijkstra, J. Jeuring, and A. Löh. A generic deriving
mechanism for Haskell. Haskell ’10, pages 37–48, 2010.

[17] N. Mitchell. Deriving a relationship from a single example. In AAIP
’10, volume 5812 of LNCS, 2010.

[18] N. Mitchell and C. Runciman. Uniform boilerplate and list processing.
In Haskell ’07, pages 49–60, 2007.

[19] J. G. Morris. Experience report: using Hackage to inform language
design. In Haskell ’10, pages 61–66, 2010.

[20] U. Norell and P. Jansson. Prototyping generic programming in tem-
plate haskell. In MPC ’04, volume 3125 of LNCS, pages 314–333,
2004.

[21] S. Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

[22] A. Rodriguez, J. Jeuring, P. Jansson, A. Gerdes, O. Kiselyov, and
B. C. d. S. Oliveira. Comparing libraries for generic programming
in Haskell. In Haskell ’08, pages 111–122, 2008.

[23] S. Weirich. RepLib: a library for derivable type classes. In Haskell
’06, pages 1–12, 2006.

[24] N. Winstanley and J. Meacham. DrIFT user guide, 2006. http:
//repetae.net/~john/computer/haskell/DrIFT/.

