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Abstract

A natural time-dependent similarity measure for two trajectories is their average distance
at corresponding times. We give algorithms for computing the most similar subtrajecto-
ries under this measure, assuming the two trajectories are given as two polygonal, possibly
self-intersecting lines with time stamps. For the case when a minimum duration of the sub-
trajectories is specified and the subtrajectories must start at corresponding times, we give a
linear-time algorithm. The algorithm is based on a result of independent interest: We present
a linear-time algorithm to find, for a piece-wise monotone function, an interval of at least a
given length that has minimum average value. In the case that the subtrajectories may start
at non-corresponding times, it appears difficult to give exact algorithms, even if the duration
of the subtrajectories is fixed. For this case, we give (1 + ε)-approximation algorithms, for
both fixed duration and when only a minimum duration is specified.

1 Introduction

Trajectory analysis With the widespread usage of mobile location-aware devices, huge amounts
of trajectory data are captured every day. It becomes more and more interesting to analyze the
trajectories of moving objects such as people, animals, vehicles, and natural phenomena, e.g.,
hurricanes. A key operation for analyzing trajectories is determining their similarity. This can be
used for prediction, clustering, and further analysis tasks. Prediction of trajectories is often based
on similar older trajectories, which are retrieved from a database.

Clustering, i.e., grouping objects by similarity, is an important task in spatio-temporal data
mining. For trajectories an important analysis task is detecting movement patterns. Patterns that
have been considered include flocks, convoys, commuting, migration, and many others [12].

∗A preliminary version of this paper appeared at ACM GIS ’09. This research has been partially supported by
the Netherlands Organisation for Scientific Research (NWO) under FOCUS/BRICKS grant no. 642.065.503 and
project no. 639.022.707 and by the German Research Foundation (DFG) under grant no. BU 2419/1-1.
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If we ignore the time component of a trajectory, it is simply a polygonal line that may self-
intersect and have duplicate vertices. Similarity and distance measures for polygonal lines have
been developed many years ago, motivated by line simplification and shape matching. Such
measures include the areal displacement, the Hausdorff distance, and the Fréchet distance. Since
these measures are shape-dependent only and do not consider temporal aspects such as speed,
they are not suitable for trajectory analysis. For example, when analyzing hurricane trajectories,
we must distinguish between hurricanes that go fast and those that go slow, even if they follow
exactly the same route. Figure 1 shows two trajectories τ1 and τ2 that have the same shape and a
similar location, but the speed development of the two trajectories is very different: trajectory τ1
is fast at first, and then slows down, whereas this is reversed for trajectory τ2. We require from a
similarity measure that it reflects the difference of these two trajectories.

As remarked, an important analysis type for a collection of trajectories is clustering [16, 19].
Figure 2 shows a set of six trajectories whose clusters we may want to determine. Two clusters are
easily visible, but it is not directly clear if the dashed trajectory, τ3, fits better with {τ1, τ2} or with
{τ4, τ5, τ6}. Based on shape and distance similarity, it fits slightly better in the first group, but
if we consider time-dependent similarity like the average distance at corresponding times (defined
formally later), it fits better in the second group, basically because the speeds are more similar.

Trajectories can also be seen as time series data or sequences of locations, and can thus be
handled by techniques from time series analysis and sequence comparison. In particular, several
trajectory similarity measures based on such techniques have been developed. In contrast to the
measure considered in this paper, these measures do not directly use the Euclidean distance or do
not require corresponding times.

Subtrajectory Similarity Often the similarity of parts of two trajectories is more important
than the similarity of the whole trajectories. This was observed before by Lee et al. [17], who
motivate that subtrajectory similarity may be more appropriate for clustering purposes than sim-
ilarity of complete trajectories. For instance, we may want to know whether two entities were
traveling together for some time, but not necessarily for the whole route. Also, the starting time
of a trajectory may be somewhat arbitrary (a hurricane builds up speed, it does not start out of
nowhere), or its initial behavior may be atypical for the subsequent trajectory. Tourists may take
very similar walking routes through a city, but they will start at different hotels. Similarly, hur-
ricanes may start to follow certain routes only later in their lifetime. Such similarity information
can be important for the prediction of the subsequent route, and we therefore require a similarity
measure on subtrajectories instead of whole trajectories. To make sure that the similarity occurs
during a sufficiently long period, we will require a minimum duration.

Furthermore, we want to be able to find similar subtrajectories that may begin at different
starting times in the input trajectories. For this, we allow a shift to obtain the proper time
correspondence. In Figure 3 we need to allow a time shift to be able to find the similarity of the
middle part of τ1 and the last part of τ2; assuming the locations are recorded every half hour, the
time shift would be roughly 2 years, 2 days, 2 hours and 45 minutes.

Related research This paper presents algorithms to find the most similar subtrajectories of
two trajectories with or without a time shift, using the average distance over the subtrajectories
at corresponding times. This similarity measure has been considered previously [9, 15, 19, 20],
however, the results in this paper extend and improve all of these previous approaches. Sinha and

t1 t2 t3 t4

t5

τ1

τ2

t1 t2
t3

t4 t5

Figure 1: Trajectories with similar shape but different speeds at corresponding times.
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Figure 2: Clustering six trajectories in two groups.

Mark [20] give algorithms only for discrete trajectories. Nanni and Pedreschi [19] give algorithms
for the continuous case, but they assume that the trajectories start at the same moment in time,
and they do not deal with subtrajectory similarity. Van Kreveld and Luo [15] give algorithms
for the continuous case, allowing for subtrajectory similarity and time shifts. In this paper, we
substantially improve their algorithms, from quadratic to linear-time for subtrajectory similarity
without time shift and from a heuristic to a guaranteed approximation for subtrajectory similarity
with time shift. Frentzos et al. [9] also recently considered this similarity measure. However,
instead of computing it exactly, they approximate the integral using the trapezoid rule.

Next we discuss related trajectory similarity measures. Trajcevski et al. [21] use the maximum
instead of the average distance at corresponding times as similarity measure. They give algorithms
for optimal matching under rotations and translations. They do not consider time shifts and
subtrajectory similarity.

A related dissimilarity measure, inspired by time series analysis, is considered by Yanagiswa
et al. [24]. They use the Euclidean distance of the trajectories as n-dimensional vectors. That is,
at each time stamp they use the squared Euclidean distance. By squaring the distances, the effect
of outliers is strengthened, which is typically not desirable for trajectories, in particular if they
contain noise.

Several further methods from time series analysis have been applied or adapted for computing
trajectory similarity. Dynamic time warping (DTW) [14] has been used for trajectory similarity.
Furthermore, trajectory similarity measures have been developed based on longest common sub-
sequences (LCSS) [22], dynamic time warping (DTW) [23], and edit distance [8]. These measures
all differ in nature to the average distance at corresponding times. DTW, edit distance, and LCSS
do not require to match points at corresponding times, but allow a more flexible matching. The
trajectory similarity measure based on LCSS [22] introduces a bound on the time shift. Instead
of directly using Euclidean distance between points, in this measure [22] as well as the measure
based on edit distance [8], distances are quantized to 0 or 1 by thresholding the Euclidean distance.
DTW can be used with Euclidean distance between points [14] or difference in turning angle [23].

A geometric distance measure to find similar subtrajectories is considered by Buchin et al. [4].
They give algorithms for subtrajectory similarity with time shift under the Fréchet distance, which
does not require an exact time correspondence. In fact, in the discrete case, this measure coin-
cides with DTW under the Euclidean distance. A different solution to partial similarity under the
Fréchet distance is given by Buchin et al. [5]. The Fréchet distance as similarity measure for tra-
jectories has been further developed by Buchin et al. [3]. They show how to incorporate additional

τ1

τ2

9/21/2001,
9.30am

9/23/2003,
11am

11.30am
2.15pm

Figure 3: The middle part of trajectory τ1 is similar to the last part of trajectory τ2.

3



constraints, for instance on the time correspondence, direction, or speed of the trajectories.
Lee et al. [17] have given a method for subtrajectory clustering using similarity of line segments

derived from the trajectories. The similarity measure used for the line segments is geometric only,
and does not take the temporal component into account. Hence, their clustering method may be
more appropriate for polygonal shapes than for trajectories.

Problem statement Let τ1(.), τ2(.) be parameterizations of two trajectories over time. The
dissimilarity, or distance, between the part of τ1 starting at time ts and the part of τ2 starting at
time ts + tshift , both with the same duration T > 0, is defined as [15]:

∫ ts+T

ts
d( τ1(t) , τ2(t+ tshift ) ) dt

T

where d(., .) is the Euclidean distance between τ1(.) and τ2(.). This is the average distance at
corresponding times, where the time correspondence is determined by tshift . We are interested in
the combination of T , ts, and tshift that gives the smallest dissimilarity.

There are four variants of the subtrajectory similarity problem using the average distance at
corresponding times as dissimilarity measure. The duration of the time interval, T , may be speci-
fied beforehand, or it may be of any length bounded from below by a minimum Tmin. Furthermore,
the starting times of the subtrajectories may be specified to be the same or not (depending on
the application). If they are the same, then tshift = 0 and it can be omitted from the dissimilarity
measure. If the starting times need not be the same, we will say that we allow a time shift, and
tshift is one of the unknowns over which we optimize.

Results of this paper Without time shift and with a fixed duration, a simple algorithm finds
the most similar subtrajectories of τ1 and τ2 in O(n) time, where n is the number of vertices in
each of the trajectories. Only ts is unknown in this version of the problem. Without time shift
but with a non-fixed duration, this extends to an O(n2) time algorithm [15]. Here, both ts and T
are unknown, and T ≥ Tmin for a given value of Tmin is required. In this paper we improve the
quadratic-time algorithm substantially by presenting an optimal, linear-time algorithm.

For subtrajectory similarity with an unknown time shift, an algorithm that computes the
exact solution to the most similar subtrajectory problem is unlikely to exist, and in [15] heuristic
algorithms were therefore given. These algorithms did not have any quality guarantees. In this
paper we show that quality guarantees on the approximation are possible, and give (1 + ε)-
approximation algorithms for both the fixed-duration and non-fixed duration case. This means
that if the optimal solution has a dissimilarity of D, then our algorithm will find a solution where
the dissimilarity is no more than (1 + ε) · D. Here, ε is a fixed positive constant that must be
specified beforehand. We can for instance specify that the average distance of the approximate
solution is at most 5% higher than the best possible average distance. The running time of our
algorithms is O(n4/ε) if the duration of the subtrajectories is fixed, and O(n4/ε2) if the duration
is not fixed, but bounded from below. If the observation times t1, t2, t3, . . . are regularly spaced
on each of the trajectories, then our time bounds are improved by a linear factor to O(n3/ε) and
O(n3/ε2), respectively.

Overview In the next section we give some observations on the most similar subtrajectory and
approximations of it. In Section 3 we give a linear-time algorithm for subtrajectory similarity of
non-fixed duration without time shift. It is based on a more general geometric algorithm that
computes an interval of minimum average value of a piecewise monotone function of a least some
length. In Section 4 we present and analyze (1 + ε)-approximation algorithms for subtrajectory
similarity with time shift.
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Figure 4: Subtrajectory similarity with non-fixed duration.

δ
Tmin

Tmin

2Tmin − δ

Figure 5: Worst-case bound between fixed and non-fixed duration.

2 Preliminary observations

In our problem statements, we require a minimum duration Tmin of the two subtrajectories. If we
would not have this requirement, the most similar subtrajectories would always have duration 0:
the single moment where the two trajectories were closest. This suggests that shorter trajectories
have a larger similarity than longer trajectories. It appears that this intuition is only true in part,
which we explain next.

Figure 4 shows that allowing a longer duration than Tmin can give more similar subtrajectories.
Assume that no time shift is allowed. If the duration T is fixed to be three units, then [t2, t5]
gives the lowest average distance value, namely 8/3. If the duration may be longer, then [t7, t11]
gives the lower average distance of 5/2. Extending the interval even more to start just before t7
and end just after t11 gives an even lower average distance value. The example also shows that
the optimal time interval need not have its endpoints at vertices of the trajectories.

For a fixed minimum duration Tmin, the highest similarity is always attained by a pair subtra-
jectories of duration between Tmin and 2Tmin. This can be seen as follows. Any pair of subtrajec-
tories of longer duration can be split into two pairs of half the duration (which are still at least
Tmin long). The pair with the lower dissimilarity must have a lower dissimilarity than the pair of
full subtrajectories (although it may be the same). Repeating the argument will lead to a pair of
subtrajectories of duration between Tmin and 2Tmin whose dissimilarity is at most that of a pair
with duration larger than 2Tmin.

We also observe that if the interval with lowest dissimilarity has duration T ′, with Tmin ≤
T ′ ≤ 2Tmin, then the dissimilarity for any subinterval of length Tmin is at most by a factor T ′/Tmin

larger. Thus, the dissimilarity for fixed duration Tmin is at most a factor 2 larger than for non-fixed
duration with lower bound Tmin. The factor 2 can be realized in the limit, as demonstrated in
Figure 5: The total duration is 2Tmin − δ and the distance between the trajectories is 0 except
for a duration of δ in the middle (for illustration purposes the trajectories are shown with a
small vertical offset). In this example, fixed and non-fixed duration similarity differ by a factor of
(2Tmin− δ)/Tmin which is 2− δ for Tmin = 1. If we let δ approach 0, the factor 2 is realized in the
limit.

3 Exact algorithm for subtrajectories without time shift

In this section we consider computing the most similar subtrajectories without a time shift. If the
duration is fixed, a simple linear-time algorithm is to sweep a “time window” over the distance
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tpre tend

f̄(tpre, tend)

topt

f

f̄(topt, tend)

Tmin

Figure 6: Averages of f over [tpre, tend] and [topt, tend].

function and maintain its average. For non-fixed duration, we also sweep over the distance function,
but now we maintain a data structure storing more information about swept intervals. For two
single line segments of the input trajectories, the distance function is hyperbolic in t. Over the
whole trajectories, it is piecewise hyperbolic. On each piece it has no local maxima and possibly
one local minimum interior to the interval. By splitting intervals at such minima, the distance
function is a piecewise monotone function.

In fact, we will solve a more abstract version of the problem: Given a piecewise monotone
function f and a value Tmin, find a subinterval I of the domain of f of length at least Tmin, such
that the average value of f over I is minimized. For this problem, we give an algorithm with a
running time linear in the number of monotone pieces of f .

The discrete version of this problem occurs in biological sequences alignment, where one usually
wants to maximize: Given a sequence of real numbers and a lower bound L, find a consecutive
subsequence of length at least L that has maximum average. This problem is called the maximum
density segment problem. Several linear-time algorithms have been given for this problem [2, 7,
10, 18]. Conceptually our algorithm is similar to the algorithm by Bernholt et al. [2], since both
are based on convex hulls. But the convex hulls computed are completely different. Our algorithm
uses a sweep similar to the algorithms in [7, 10, 18], however, our non-discrete version is more
general and considerably more complex, due to allowing any start and end point of the interval
and any piecewise monotone function.

3.1 Concept

We first illustrate the idea of the algorithm. We solve the problem by a sweep over the domain
of f . At any time tend we include at least a window of the minimum length Tmin to the left of
tend. Additionally it may lower the average to include a part even further to the left. To decide
efficiently how much of this part to include, we decompose and store this part in a data structure.

Let tend be the end of some time interval; we are interested in a minimum average value of f
over an interval of length at least Tmin that ends at tend. Let tpre = tend−Tmin be the last moment
where the interval can start. But we may want to start the interval earlier, to lower the average
value of f over the chosen interval (see Figure 6). We need a careful analysis of the situation before
tpre to decide what the optimal starting time is for an interval that ends at tend. We will store
this situation in a data structure that will be updated when tend and tpre move simultaneously
further in time. There will be events when tend or tpre pass a break point of the function f , but
there will also be events if the situation before tpre changes in a structural way.

For any interval I = [t′, t′′] we define f̄(t′, t′′) as

f̄(I) := f̄(t′, t′′) =

∫ t′′

t′ f(t)dt

t′′ − t′
.

If t′ = t′′, we let f̄(t′, t′′) = f̄(t′, t′) := f(t′). We also define f̄(t′) := f̄(t′, tend), which is well-defined
if tend is fixed.

For description purposes, we fix tend and therefore tpre for the moment. Then interval [tpre, tend]

6



Tmin

k

k − j
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ai

Figure 7: Geometric interpretation of the algorithm.

gives an average of

f̄(tpre) = f̄(tpre, tend) =

∫ tend
tpre

f(t)dt

tend − tpre
.

It is clear that if the function value of f is smaller than f̄(tpre) just before tpre, then extending
the interval to a starting time before tpre will give a lower average f̄(.). But even if the function
value of f just before tpre is greater than f̄(tpre), then extending the interval to a starting time
(sufficiently far) before tpre may still give a lower average. In Figure 6 we observe that the optimal
starting time topt ≤ tpre, given tend as the end, is such that f̄(topt) = f(topt), or topt = tpre.

If tend is fixed, then only the value of f̄(tpre) determines where topt is. The time topt is
monotonically decreasing in the value of f̄(tpre): if the average of f over [tpre, tend] were larger, we
may go further back with topt, but never forward.

3.2 Geometric interpretation

Although we give the algorithm using a non-geometric representation, conceptually it can be seen
as a convex hull construction. Consider the graph of the integral F (t) :=

∫ t

t1
f(s)ds. The average

f̄(t′, t′′) corresponds to the slope of the secant from (t′, F (t′)) to (t′′, F (t′′)). Thus, we are looking
for the secant with the smallest slope. In this context, the algorithm presented here corresponds
to a convex hull construction by a sweep.

Figure 7 illustrates the geometric interpretation in the discrete setting, i.e., for a sequence.
Assume we have a sequence a1, . . . , an. The discrete analogue of the integral F (t) is the partial

sum A(k) :=
∑k

i=1 ai. We are looking for the pair of numbers j, k between 1 and n with k ≥ j+Tmin

minimizing A(k)−A(j)
k−j , thus, minimizing the slope of the line through (j, A(j)) and (k,A(k)). In

the figure, we consider k = 8 and are looking for the optimal j ≤ 5. The properties we will use
(in the continuous setting) are:

• The point (j, A(j)) must be on the convex hull of (1, A(1)) . . . (k−Tmin, A(k−Tmin)), other-
wise the point on the convex hull left to it would have been better. In Figure 7, for instance,
j = 2 is a better choice than j = 3.

• For a given k, if j is optimal for k then the line through (j, A(j)) and (k,A(k)) is tangent
to the convex hull, i.e., the line does not cross the interior of the convex hull. Otherwise
there would be a point above the line which is better. For instance, if we choose any j �= 2
in the figure, we can decrease the slope of the line by rotating the line around (8, A(8)) until
it goes through (2, A(2)).

• If a point j0 was optimal for a k0 then for all k > k0 we do not have to consider points to
the left of j0. The reason for this is that any line that is tangent to a vertex of the convex
hull left to j0 would have a larger slope. For instance, in the figure any line that is tangent
to the convex hull at (1, A(1)) would have a larger slope than the line through (2, A(2)) and
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(8, A(8)). As a consequence, during the sweep the optimal left endpoint only moves to the
right (or remains where it is). Thus, we only need to maintain the convex hull to the right
of the current value j.

In the following we will describe the algorithm directly in terms of f̄(t′, t′′).

3.3 Assumptions on f

In our algorithm we assume that the following operations can be performed in constant time:

1. Evaluate the integral of f over a monotone piece.

2. Solve equations of the form F (a, s) = bs + c, where F (a, s) =
∫ s

a
f(t)dt and a, s lie on the

same monotone piece of f .

3. Find an interval of minimum average value, if the monotone pieces for the left and the right
endpoint of the interval are given and the integral of f for the intervals in between has been
evaluated.

These assumptions are reasonable for the distance function of two trajectories. For the first and
second assumption this is obvious. We discuss the third assumption below. For simplicity, we will
also assume that f is continuous. We can extend our method to handle non-continuous functions,
but the description of the algorithm becomes more cumbersome.

In general, how difficult is it to fulfill the third assumption? Assume the union of the intervals
in between is [t0, t

′
0], and let D := t′0 − t0. We assume that the integral of f has been already

evaluated over [t0, t
′
0], thus, we know the average value C of f over this interval. Let f1 and f2

correspond to f on the monotone piece to the left and the monotone piece to the right, more
specifically, f1(t) := f(t0 − t) and f2(t) := f(t− t′0). We need to minimize

∫ t1
0

f1(t)dt+ C +
∫ t2
0

f2(t)dt

t1 +D + t2
.

In a minimum the partial derivatives are zero. Transforming this gives

f1(t1) = f2(t2) =

∫ t1
0

f1(t)dt + C +
∫ t2
0

f2(t)dt

t1 +D + t2
.

We can now transform f1(t1) = f2(t2) to t2 = s(t1) and then solve

f1(t1) =

∫ t1
0

f1(t)dt+ C +
∫ s(t1)

0
f2(t)dt

t1 +D + s(t1)
.

If f1 and f2 are linear functions, then the above equation is quadratic. If f1 and f2 are
hyperbolic, as in our application, we get closed-form expressions for the integrals resulting in a
constant-size equation. Thus it is reasonable to assume that we can minimize the distance function
for two trajectories in fixed start and end intervals.

3.4 Data structure

Let f be a piecewise monotone function with break points t1, . . . , tn, i.e., f is monotone in between
each pair ti and ti+1 for 1 ≤ i < n. At all times our data structure consists of the interval
I0 = [tpre, tend] and a set of intervals I1, . . . , Im(tpre), where Ii = [si, si−1], for i = 1, . . . ,m(tpre),
m(tpre) ≥ 0, and sm(tpre) < sm(tpre)−1 < . . . < s1 < s0 = tpre, cf. Figure 8. To avoid cluttered
notation we let m := m(tpre), but we keep in mind that the number of intervals depends on tpre,
and changes throughout the algorithm. To define s1, . . . , sm and m, we first define a function l(s)

8
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tpre tend

f

(a) distance function

Tmin

s1s2· · ·
f̄(I1)

f̄(s1)
f̄(tpre)

fI2

tends0 = tpre

(b) data structure

Figure 8: Data structure maintained during the sweep for non-fixed duration.

which, intuitively, tells us how far to the left we can always extend an interval if we extend it at
least a fraction to the left of s, and still lower the average f̄ . We define l on the domain of f by

l(s) := min(s′ ≤ s | ∀ 0 ≤ t ≤ s : f̄(s′, s) ≤ f̄(t, s) )

Note that if for no s′ < s we have f̄(s′, s) < f(s), then l(s) = s. This can only happen if f is a
decreasing function at s (on its left side).

We can now define the interval endpoints si, 1 ≤ i ≤ m, by

si :=

⎧⎪⎨
⎪⎩

l(si−1) if l(si−1) < si−1

max( {tj < si−1 | 1 ≤ j ≤ n }
∪ {s′ < si−1 | l(s′) < s′ } ) else.

Thus, if l(si−1) = si−1, then we set si either to the next break point tj of f left of si−1, or to the
largest s′ < si−1 such that l(s′) < s′. If si = l(si−1), then f must be decreasing just left of si.

There are two types of intervals in I1, . . . , Im: those where si = l(si−1) and those where
si < l(si−1). We will call the first type of intervals complete and the other type decreasing. These
intervals have the following properties:

1. If Ii is complete and i > 1, then f(si−1) = f(si) = f̄(Ii).

2. If Ii is complete, then for all s′ ∈ (si, si−1) we have f̄(si) < f̄(s′).

3. If Ii is complete and i ≥ 1, then Ii+1 is decreasing.

4. f̄(Ii) < f̄(Ij) if and only if i < j.

Note that the first property does not hold for I1 because it is not preceded by a decreasing interval.
The last property states that the average gets higher to the left. Any complete interval contains
a break point of f , and consecutive decreasing intervals are separated by a break point of f .
Together with the third property, this implies m = O(n).

The integer m, representing the last interval to the left that we need to consider, depends on
the average value of f over intervals in the data structure. We do not need to consider intervals at
the left end of our data structure if their (partial) inclusion would increase the average. It follows
that the last interval Im is a decreasing interval. Also, we do not need intervals further to the left
if their inclusion would result in an average value that is larger than a previously found average
value. Hence, we have:

f(sm) ≥ min
t′+Tmin ≤ t≤ tend

f̄(t′, t) ≥ f(sm−1) .

Our data structure maintains the sequence of break points tend, s0, s1, . . . , sm and for each,
the piece of f that contains it, and the sequence F (I0), . . . , F (Im), where F (Ii) =

∫ si
si−1

f(t)dt.

The sequences can simply be stored in a list or an array. During the algorithm, we only change
information at the ends of the sequences. We also maintain F (Im−1 ∪ · · · ∪ I1).
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3.5 Algorithm

To find the interval with minimum average value, we scan with the interval [tpre, tend] from start to
end along the domain of f , maintaining the information just described. Most of this information
only changes at certain discrete event points that we handle during the scan. The positions of
tend, s0, and possibly s1 change continuously, but we will use the maintained information and their
notation as it was valid at the last event. We use t′end, s

′
0, s

′
1, I

′
0, etc., to denote the corresponding

values that are valid at the next event, and t̃ = t̃end, t̃pre = s̃0, s̃1, Ĩ0, etc., to denote the values in
between events tend and t′end.

In between two consecutive event points tend ≤ t̃ ≤ t′end, we need to minimize f̄(t, t̃) over the
choices of t and t̃ with t ≤ t̃−Tmin, knowing on which pieces of f the interval endpoints t and t̃ lie.
To minimize f̄(t, t̃), we find the expressions for F (t, s̃m−1) = F (t, sm−1) and F (Ĩm−1 ∪ · · · ∪ Ĩ0) =
F (Im−1 ∪ · · · ∪ I3 ∪ Ĩ2 ∪ Ĩ1 ∪ Ĩ0) in the unknowns t and t̃, and minimize. Since t ∈ Im, and Im
is a decreasing interval, we have one piece of f over Im. Hence, the expression for F (t, sm−1) is
easy to obtain in constant time. Also, we maintained F (Im−1 ∪ · · · ∪ I1) and all F (Ii) at tend,
and t̃ does not pass any vertex of f before the next event. So we can determine the expression
F (Ĩm−1∪· · ·∪ Ĩ0) in constant time as well (if m = 0, we simply take the expression f̄(t̃−Tmin, t̃)).
By the third assumption, we can minimize such expressions in constant time. Summarizing, we
can find the optimal interval between two consecutive events in constant time.

It remains to describe how we update the data structure in constant time. Instead of precom-
puting all event points, we will compute them dynamically.

3.5.1 Event points

Recall that tend denotes the time of the previous event and t′end denotes the time of the next event.
We have four types of events.

1. (break) Ĩ0 moves to the next break point of f , that is, either s′0 = ti or t
′
end = ti for 1 ≤ i ≤ n.

If s′0 = ti and I1 is decreasing, then we create a new interval I ′1 starting at s′0, which may
be decreasing or complete.

2. (merge) I1 is complete, and f̄(Ĩ1) increases until Ĩ2 disappears. If I3 is decreasing, then
I ′1 = [s2, s

′
0]; otherwise, I

′
1 = [s3, s

′
0] (two adjacent complete intervals merge).

3. (create) I1 is complete, f̄(Ĩ1) increases and f(s̃0) decreases until f̄(Ĩ1) = f(s̃0). We create
a new decreasing interval I ′1 starting at s′0.

4. (discard) The leftmost interval becomes irrelevant because its average value is too large,
that is, f̄(sm−1) ≥ mint≤t′

end
−Tmin

f̄(t, t′end). Then we discard Im. If Im−1 is complete, we
discard it as well.

Note that instead of stopping at an event of type 4, we can also check if it has happened at the
next event of type 1, 2, or 3, and process it first.

3.5.2 Computing the event points

The event points of type 1 are the break points of f , and they are known beforehand. We cannot
precompute the event points of types 2, 3, and 4, but we can compute the next such event point if
it is before the next type 1 event. We do this as follows. Let tend be the most recent event point,
and let s0, s1, . . . be the interval endpoints with respect to tend. Let t′end be the next event point
of type 1. An event point t̃ of type 2 occurs for tend < t̃ < t′end if f(s2) = f̄(s2, t̃ − Tmin). To
detect this, we observe

f̄(s2, t̃− Tmin) =
F (s2, s1) + F (s1, s0) + F (s0, t̃− Tmin)

t̃− Tmin − s2

and make an expression in t̃. This takes constant time using the values F (I2), F (I1), and F (I0).
Then we find t̃ by setting it equal to f(s2), which is possible by the second assumption. Similarly,
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we detect an event of type 3 by solving f(t̃− Tmin) = f̄(s2, t̃− Tmin). An event point t̃ of type 4
occurs for tend < t̃ < t′end if f̄(sm−1, t̃) = f(sm−1). To detect this we solve

f̄(sm−1, t̃) =
F (sm−1, tend) + F (tend, t̃)

t̃− sm−1

= f(sm−1),

which we can compute in constant time as well.

3.5.3 Updating the data structure

At all types of event points we update the interval endpoints tend, s0, and s1 in constant time.
At an event of type 2 we discard s1 and possibly s2. At an event of type 4 we discard Im and
sm, and if Im−1 is complete, we discard it and sm−1 as well. In all cases we update F (I0), F (I1),
F (I2), and F (Im−1 ∪ · · · ∪ I1), and the pieces of f that contain tend, s0, s1, and sm. Each of these
updates takes only constant time.

3.5.4 Correctness

The optimal solution is the minimal value f̄(t, t̃) for t ≤ t̃ − Tmin. Assume [t, t̃ ] is an optimal
interval with the following properties: (i) t̃ is minimal if t is given, and (ii) t is maximal if t̃ is
given. Let tend < t̃ < t′end be the event points just before and after of t̃. We need to prove that
t ∈ Im.

Suppose t < sm. Then t lies in a previously discarded interval. Let t′′ be the right endpoint
of this interval before it was discarded. Since the interval was discarded, there are t̂start, t̂end with
t̂start ≤ t̂end − Tmin and t̂end ≤ t̃ such that f̄(t, t′′) ≥ f̄(t̂start, t̂end). Because of optimality of [t, t̃ ],
f̄(t, t′′) ≥ f̄(t, t̃). Therefore, discarding the interval from t to t′′ will not increase the average. This
contradicts the maximality of t.

Next, suppose si < t ≤ si−1 for some i ≤ m− 1. But then adding the interval from si to t to
the interval [t, t̃ ] would decrease the average because Im was not discarded, which contradicts the
optimality of [t, t̃ ].

3.5.5 Run-time

The run-time is linear in the number of events because the cost per event point is constant. The
number of type 1 event points is 2n. At an event of type 2, two or three intervals are merged into
one. At an event of type 3, one decreasing interval is created as I ′1, but this can only happen if
I1 was complete. At an event of type 4 one or two intervals are removed. After a type 3 event,
we cannot have a type 2 or 3 event next. Hence, the number of event points of type 2, 3, and 4 is
bounded by the total number of intervals created and is therefore at most linear in n.

Theorem 1. Given Tmin > 0 and a piecewise monotone function f consisting of n monotone
pieces, an interval of the domain of f of length at least Tmin over which f has minimum average
value can be computed in O(n) time.

The result on monotone functions immediately implies the desired result on subtrajectory
similarity without time shift.

Corollary 1. Given Tmin > 0 and two polygonal chains with O(n) vertices each that represent tra-
jectories, the most similar subtrajectories corresponding to the same time interval and of duration
at least Tmin can be computed in O(n) time.

4 Approximation algorithms for subtrajectories with time

shift

We next direct our attention to the case of similarity with time shifts. In this case an exact solution
requires the optimization of functions that have linear description size and whose optimization
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cannot be assumed to be possible exactly in reasonable models of computation [15] (see also
Section 4.2). Therefore we aim for approximation algorithms.

We consider two versions of the problem: fixed-duration time intervals, and non-fixed duration
time intervals where a minimum duration is specified. We obtain different running times in the
cases where the observation times (vertices) are regularly-spaced in time and the cases where they
are not.

In this section we begin by showing that we can replace the Euclidean distance function by a
polygonal convex distance function without much loss in the average distance. Then we discuss
the two-dimensional solution space for a fixed-duration time interval. These ideas together lead to
polynomial-time (1 + ε)-approximation algorithms for the fixed-duration case. Recall that ε is a
parameter that must be set beforehand, and determines the quality of the approximation as well
as the efficiency of the algorithm.

Then we present a simple technique to reduce the non-fixed duration problem to a number
of instances of the fixed-duration problem, and obtain (1 + ε)-approximation algorithms for the
non-fixed duration case as well.

4.1 Using polygonal convex distance functions

The Euclidean distance between two points p and q can be seen as the scaling factor needed for a
unit circle centered at p to have q lie on it. The L∞-distance between two points is defined similarly,
but with an axis-aligned square of side length 2 instead of a unit circle. A well-known idea to
obtain (1 + ε)-approximation algorithms for geometric problems using Euclidean distance is to

replace the distance function d by a polygonal convex distance function d̂ defined by a regular 2k-
gon of diameter 2. We will choose k = 	c/√ε� for a suitable constant c. This guarantees that the
Euclidean distance between two points is (1 + ε)-approximated by the polygonal convex distance
function. We immediately observe that our similarity measure, which is an average distance, will
also be (1 + ε)-approximated if we use d̂ instead of d.

Consider two line segments from two trajectories. We can parameterize each by a uniform
parametrization of the unit interval. The function d̂ that maps two positions, one on each segment,
to their distance has as its domain [0, 1]× [0, 1].

Lemma 1. Over its domain, d̂ is piecewise linear with O(1/
√
ε) pieces.

Lemma 1 follows from Lemma 2, in which the line segments are extended to lines uniformly
parameterized over R. For two segments, the domain referred to in Lemma 1 is a parallelogram-
shaped part of the domain for lines (which is R2).

Lemma 2. Given two lines parametrized over R with constant speed. Let d̂ be a polygonal convex
distance using a regular 2k-gon for these lines defined over the (t, tshift )-plane. The function d̂ is
piece-wise linear. Its domain is subdivided by k lines meeting in a common point. Inside each of
the resulting 2k cells, d̂ is linear.

Proof. Let τ1 and τ2 be parameterizations of the two lines and let p be the intersection point of
the lines. Assume that τ1(0) = p = τ2(t0) (otherwise re-parametrize). The analytic description of

d̂(t, tshift ) depends on the slope of the line through τ1(t) and τ2(t+ tshift ). It suffices to show, that
for a fixed slope the set of points (t, tshift ) that induce this slope or its negative is a line through
(0, t0).

To show this, we formulate τ1 and τ2 as

τ1(t) = p+ λ1tv1

τ2(t) = p+ λ2(t− t0)v2

where λ1, λ2 are suitable constants and v1, v2 suitable unit vectors.
Now assume (t, tshift ) and (t′, t′shift ) induce the same slope. Then by the second intercept

theorem
λ1t

λ1t′
=

λ2(t+ tshift − t0)

λ2(t′ + t′shift − t0
)

12



R

T̄

R

T̄

t

tshift

t

tshift

t

tshift

Figure 9: Partition of the domain R of the (t, tshift )-plane by regularly and irregularly spaced time
observations (left and middle). The placement space, where (t, tshift ) represents subtrajectories
starting at τ1(t) and τ2(t+ tshift ) of duration T̄ (right).

which implies
tshift − t0

t
=

t′shift − t0

t′
.

This further implies that the line through (0, t0) and (t, tshift ) and the line through (0, t0) and
(t′, t′shift ) have equal slope and are thus equal (since they also share the point (0, t0)).

The 2k vertices of the 2k-gon result in k lines through (0, t0) which yield 2k cells. Within

each cell the distance function d̂ is determined by the same side of the 2k-gon and is therefore
linear.

4.2 Analyzing the placement space

The distance between two points τ1(t) and τ2(t+ tshift ) depends on the two arguments t and tshift .
We therefore consider the (t, tshift )-plane. A parallelogram-shaped subregion R of this plane (the

domain of d and d̂) corresponds to all pairs of locations, one on each of the trajectories. We view

d and d̂ as bivariate functions over R, determined by the arguments t and tshift . An interval I of
duration T̄ corresponds to a horizontal line segment of length T̄ , and if the interval I lies in R,
it corresponds to two subtrajectories of duration T̄ of the two trajectories τ1 and τ2. The image
of I under d is a curve in 3-space in a vertical plane, and the average area under this curve (in
the vertical plane) is exactly the average distance of the two subtrajectories of duration T̄ . For
the Euclidean distance d, the curve is a piecewise hyperbolic curve, and for the polygonal convex
distance function d̂, the curve is piecewise linear (polygonal).

Since the trajectories τ1 and τ2 consist of line segments, the region R in the (t, tshift )-plane is
partitioned into a quadratic number of parallelograms, representing when τ1(t) and τ2(t + tshift )
lie on the same line segments of τ1 and τ2, see Figure 9. The parallelograms are formed by n
vertical lines and n lines with slope −1. If the observations are regularly spaced in time, then
all parallelograms are of the same size. Let us call two (horizontal) line segments combinatorially
distinct in R if they intersect a different subset of parallelograms.

Since we are interested in horizontal line segments of length T̄ , we can use the partitioning
of R and the value of T̄ to define a placement space. Let the left endpoint of a horizontal line
segment of length T̄ be its reference point. The Minkowski sum of the parallelogram grid and the
horizontal segment gives the placement space where each cell corresponds to a combinatorially
distinct placement. The Minkowski sum is formed by placing a copy of every vertical line and
slope −1 line a distance T̄ to the left, and by converting every vertex of the parallelogram grid
into a horizontal line segment that extends T̄ to the left, see Figure 9 (right). The placement
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space is defined by O(n2) horizontal line segments of length T̄ and O(n) vertical lines and lines of
slope −1.

Lemma 3. There are O(n2) combinatorially distinct placements of a fixed-length horizontal line
segment in R if the observations are regularly spaced, and O(n3) otherwise.

Proof. Assuming regularly spaced observations, consider the subdivision of R into parallelograms.
If we fix the parallelogram containing the left endpoint of the line segment, then there are at most
six combinatorially distinct line segments possible. The quadratic bound follows immediately.

To prove the cubic bound, consider the placement space and observe that any of the O(n2)
horizontal segments defining it contains at most O(n) intersections. It follows that the placement
space has O(n3) intersection points. By Euler’s formula, its complexity is cubic as well.

Now, to find the optimal solution, we would need to minimize d for each of the O(n2) com-
binatorially distinct placements. However, a description of the function d for one placement does
not have constant size in this case. The number of terms of the description is linear in the number
of cells crossed, and all terms involve square roots. In the standard models of computation, such
functions cannot be minimized. Thus, we cannot compute an exact solution of the minimum
distance subtrajectory problem with time shift. Therefore we approximate the function d by d̂.

Since we will use the domain R with respect to the polygonal convex distance function d̂, each
parallelogram is further subdivided by O(k) = O(1/

√
ε) wedges that we get from the supporting

lines of two fixed line segments of the trajectories corresponding to that parallelogram. We call two
(horizontal) line segments apx-combinatorially distinct in R if they intersect a different subset of

cells obtained from the parallelograms subdivided according to the wedges for d̂. The subdivision
of the parallelograms leads to a more complex placement space.

Lemma 4. There are O(n3/ε) apx-combinatorially distinct placements of a fixed-length horizontal
line segment in R if the observations are regularly spaced.

Proof. We analyze the placement space again and observe that it is an arrangement formed by
O(n2/

√
ε) horizontal line segments of length T̄ , O(n2/

√
ε) line segments of length at most

√
5

times the observation interval time (the maximum length of any line segment in a parallelogram),
and O(n) vertical lines and lines of slope −1.

In any horizontal strip of unit height, there are O(n/
√
ε) line segments, so the placement

space in that strip has complexity O(n2/ε). Since R can be covered by O(n) of such strips, the
complexity of the placement space is O(n3/ε).

Lemma 5. There are O(n4/ε) apx-combinatorially distinct placements of a fixed-length horizontal
line segment in R if the observations are not regularly spaced.

Proof. The placement space is formed by O(n2/
√
ε) line segments as in the proof of Lemma 4,

but we do not have the length property nor the strip properties. An arrangement of O(n2/
√
ε)

line segments has complexity O(n4/ε).

4.3 Algorithms for the fixed-duration case

We can now solve the subtrajectory similarity problem with time shift for fixed-duration time
intervals as follows. We first compute the placement space, which is standard by arrangement
computation [13]. Then we determine for one cell the function that gives the area below a hor-

izontal interval of length T̄ , expressed in t and tshift . This function is quadratic, because d̂ is a
piecewise linear function. Now we can fill in this function for all cells by traversing the placement
space and updating the function. Crossing one edge in the placement space leads to an update
that can be done in constant time; it can be derived from the edge we cross. In each cell, we
minimize the quadratic function and determine the overall minimum. Its coordinates t and tshift
define the starting times of the approximately most similar subtrajectories of duration T̄ . All
steps run in time linear in the complexity of the placement space.
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Theorem 2. Let ε > 0 be any fixed constant. The fixed-duration most similar subtrajectory
problem with time shift of two trajectories consisting of n line segments can be approximated within
a factor 1 + ε in O(n4/ε) time. If the observation intervals are regularly spaced, the running time
is O(n3/ε).

4.4 Reducing non-fixed duration to fixed duration

Suppose that we have an algorithm that solves or approximates the fixed duration problem. We
can use it to obtain an approximation for the non-fixed duration version. Recall that there exists
an optimal interval of duration less than twice as much as the minimum duration Tmin that was
specified, because longer intervals can be halved, and one of the halves has an average distance
that is no larger.

We will run the fixed-duration algorithm with durations Tmin, (1 + ε
2 ) · Tmin, (1 + ε) · Tmin,

(1+ 3ε
2 ) ·Tmin, . . ., up to a duration that is nearly 2 ·Tmin (within ε

2 ·Tmin), and report the solution
with the smallest average distance. We claim that if the fixed-duration algorithm is exact, this
gives a (1 + ε)-approximation of the optimum using O(1/ε) runs of the fixed-duration algorithm.

Let I∗ be the interval with duration T ∗ that gives the optimum, and let T̃ be the longest
duration less or equal to T ∗ that we used in our algorithm. Then 0 ≤ T ∗ − T̃ ≤ ε

2Tmin. The area

Ã below the horizontal line segment of length T̃ is at most the area A∗ below the line segment
corresponding to I∗. So for the average distance of the approximate solution assuming ε ≤ 1 we
have:

Ã

T̃
≤ A∗

T ∗ − ε
2Tmin

≤ A∗

T ∗ − ε
2T

∗ ≤ (1 + ε)
A∗

T ∗ .

Now we combine the approximation of the fixed-duration algorithm and the reduction of the
non-fixed duration problem to the fixed duration problem. Let a fixed 0 < ε ≤ 1 be given. We use
ε/3 in both approximations and obtain an overall approximation with a factor

(
1 + ε

3

) (
1 + ε

3

) ≤
1 + 2ε

3 + ε2

9 ≤ 1 + ε .

Theorem 3. Let ε > 0 be any fixed constant. The most similar subtrajectory problem with time
shift and duration at least Tmin of two trajectories consisting of n line segments can be approximated
within a factor 1+ε in O(n4/ε2) time. If the observation intervals are regularly spaced, the running
time is O(n3/ε2).

5 Conclusion

In this paper, we considered finding similar subtrajectories using a distance measure that is defined
as the average Euclidean distance at corresponding times. For equal starting times, we gave a
linear-time algorithm, and for not necessarily equal starting times, we gave (1+ ε)-approximation
algorithms. The latter are not very efficient, and it is an open problem whether more efficient
solutions exist. This may be possible in general, or under realistic input assumptions. It may also
be that the algorithms are more efficient in practice than the worst-case running time suggests.
One can expect this to be the case when the subtrajectories to be computed are short with respect
to the whole trajectory, as this reduces the complexity of the placement space. Another way to
cope with the relative inefficiency of some of our algorithms is by trajectory simplification [1, 6, 11]
as a preprocessing step, to reduce the trajectories to no more than a few thousand vertices each.
It would be interesting, to experimentally test the efficiency of our algorithms.

Our algorithms can of course be used for multiple trajectories by testing two trajectories at a
time. For large sets of trajectories with many vertices, this may become too inefficient in practice.
It is of significant interest to develop algorithms and data structures that avoid testing all pairs
of trajectories, but can still find two subtrajectories of two trajectories that are most similar.

Another direction for future research is to determine for various types of trajectory data
whether our similarity measure is appropriate for clustering purposes. It may well be that the
geometric and time-dependent similarity, as studied in this paper, must be combined with more
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factors to obtain good clustering results for specific applications. Hence, it is of significant interest
to develop distance measures that take further attributes of the trajectories into account, where
the selection of these attributes depend on the application.
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