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Abstract

We study the problem of determining tepanning tree congestiasf a graph. We present
some sharp contrasts in the complexity of this problem.tfRive show that for every fixel
andd the problem to determine whether a given graph has spanm@egbngestion at mokt
can be solved in linear time for graphs of degree at ndodh contrast, if we allow only one
vertex of unbounded degree, the problem immediately besddiecomplete for any fixed
k > 10. For very small values d&f however, the problem becomes polynomially solvable. We
also show that it is NP-hard to approximate the spanningdoegestion within a factor better
than 1%10. On planar graphs, we prove the problem is NP-hard in génleut solvable in
linear time for fixedk.

1 Introduction

Spanning tree congestion is a relatively new graph paraimetech was formally defined by Os-
trovskii [21] in 2004. Prior to Ostrovskii [21], SimonsongPstudied the same parameter under
a different name to approximate the cutwidth of outerplanar grapiithough several graph the-
oretical results have been presented [6, 16, 17, 18, 20,f&#]@strovskii [21], so far, no results
on the complexity of the problem were known. In this paperpnesent the first such results. The
parameter is defined as follows. L@tbe a graph and a spanning tree db. Thedetourfor an
edgef{u, v} € E(G) is the uniquasv path inT. We define theongestiorof e € E(T), denoted by
cng; 1(€), as the number of detours that contairThecongestion of G in Tdenoted byng;(T),

is the maximum congestion over all edgeslin The spanning tree congestiasf G, denoted by
stqG), is the minimum congestion over all spanning tree&o¥We denote by STC the problem of
determining whether a given graph has spanning tree cangestmost giverk. If k is fixed, we
denote the problem b-STC.
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The name of the parameter comes from the following analoyjyfges ofG are roads, and
edges ofT are those roads which are cleaned from snow after snowstdtonan edgd € E(T),
it is natural to define the congestiontofs the number of detours passing throbgiClearly, the
congestion of the busiest roads should be minimized.ti@gespanner problerfb] is a variant of
the problem, which minimize the dilation, that is, the ldngt the longest detours. Several pairs of
congestion and dilation problems are known [23]. The masioias pair is the cutwidth problem
and the bandwidth problem.

The rest of the paper is organized as follows. Section 2 des/some definitions and basic
facts. In Section 3, we study the problem for planar graphd,show that STC for planar graphs
is NP-complete, ank-STC for planar graphs is solvable in linear time. In Secdlpwe show that
k-STC can be solved in linear time ford k < 3. In Section 5, we show th&STC can be solved
in linear time also for graphs of bounded degree. In SectjaveGshow thak-STC is NP-complete
for edge weighted graphskf > 10. Using the result of Section 6, we show in Section 7 that for
k > 10,k-STC is NP-complete for simple unweighted graphs with omlg gertex of unbounded
degree. In the last section, we conclude the paper and shoapgproximation hardness of the
spanning tree congestion.

2 Preiminaries

We extend the notion of spanning tree congestion to edgehtegicgraphs, by defining the con-
gestion of an edge as the sum of the weights of edges whosersigtass through the edge. We
denote byw(F) the sum of weights of edges i for an edge sef C E(G).

Let G be a connected graph. F&rc V(G), we denote by5[S] the subgraph induced .
For an edgee € E(G), we denote byG — e the graph obtained by the deletion®from G. For
A, B C V(G), we defineEg(A,B) = {u,ve E(G) |ue A, v e B}. ForS c V(G), we define the
boundary edgesf S, denoted bys(S), asfs(S) = Ec(S, V(G) \ S). Using this notation, we can
redefinecng; +(€) ascng; 1(€) = |6c(Ae)l, WhereAg is the vertex set of one of the two components
of T — e. From this redefinition through boundary edges, we can satectbut treesdefined by
Fekete and Kremer [11] and spanning trees of congestion sttaaoe equivalent.

For an edgein a treeT, we say thae separate& andB if A C A andB C B, whereA. and
B are the vertex sets of the two component3of e. Clearly, if T is a spanning tree d& and
e € E(T) separate# andB, thencng; +(€) > |[E(A, B)| (if G is weightedcng; 1(€) > W(E(A, B))).
If e separate#\ andB, we also say that divides AU B into A andB.

From the definition of the spanning tree congestion, thevalg proposition holds.

Proposition 2.1. The spanning tree congestion of G equals the maximum sgatragicongestion
of its biconnected components.

Ostrovskii [21] showed the following lower bound on the spiaug tree congestion of graphs.

Lemma 2.2 ([21]). Let G be a graph, w € V(G). If G has k edge disjoint u—v paths, then
stqG) > k.



Let G be a graph. We say that a gradhs obtained frontc by anedge subdivisioif V(H) =
V(G) U {w} andE(H) = E(G) \ {{u,V}} U {{u,w}, {w, v}} for some edgé€u, v} € E(G) and a new
vertexw. We say thaH is asubdivisionof G if H can be obtained fror® by a finite sequence of
edge subdivisions. Il is a subdivision of a subgraph & thenH is atopological minorof G.

The concept of treewidth was introduced by Robertson andh8ayin their project of Graph
Minor Theory (see [24] for example). tkkee decompositionf a graphG is a pair X, T), whereT
isatree andX = {X; | i € V(T)} is a collection of subsets &(G) such that

* Uievm Xi = V(G),
o for each edgé¢u, v} € E(G), there is anode i€ V(T) such thau, v € X;, and
e for eachv € V(G), the set of nodef§ | v € X;} forms a subtree of .

The elements iX are calledbags Thewidthof a tree decompositiorX{, T) equals maxyty [Xi| -
1. Thetreewidthof G, denoted byw(G), is the minimum width over all tree decomposition<f

3 Spanning tree congestion of planar graphs

Ostrovskii [22] has asked whether STC can be solved in pohyabtime for planar graphs. By
combining a number of known results, we answer this questegatively (assuming # NP),

and show thak-STC can be solved in linear time for planar graphs. Our tegallow easily from
some known results for the tree spanner problem.Géke a graph and a spanning tree d&.

If distr(u,v) < k for any{u,v} € E(G), thenT is atree k-spannef5]. We denote bysp(G) the
minimum numbek such thaG has a tre&k-spanner. For planar graphs, the following results are
known.

Lemma 3.1 ([11]). Itis NP-complete to decide t&p) < k for planar graphs G and integers k.

Lemma 3.2 ([10]). For every fixed k, tqi®) < k can be decided in linear time for planar graphs
G.

A dual graph G of a planar graplt is a graph that has the vertex $€(G), the faces of a
certain embedding d&, and in which two vertices, f’ € #(G) are adjacent its* if and only if
the two facest and f” have a common edge @. It is known that a grapk is planar if and only
if Gis a dual graph of a planar graph (see e.g. [9]). Since a d@taorresponds to a cycle @,
the following relation holds.

Lemma 3.3 ([11]). For any planar graph G, st(&) = tsp(G*) + 1.

A planar embedding of a planar graph can be constructed @éalitime by an algorithm pro-
posed by Hopcroft and Tarjan [15]. From a planar embeddirg mfnar graplé, we can easily
construct geometrically a dual gra@i (see e.g. [19]). Thus, from Lemma 3.3, we can have the
conclusions of this section.

Theorem 3.4. Itis NP-complete to decide @) < k for planar graphs G and integers k.

Theorem 3.5. For every fixed k, s{6G) < k can be decided in linear time for planar graphs G.
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4 Linear timesolvability of K-STCfor 1 <k <3

In this section, we show th&STC can be solved in linear time ford k < 3. First, we give
characterizations for graphs of spanning tree congestierand two.

Theorem 4.1. For a connected graph G, gt6) = 1if and only if G is a tree.

Proof. If G be a tree, then clearlstdG) = 1. AssumeG has a cyclé€C. Then, for any two vertices
in C, G has two edge disjoint paths between them. Thus, by Lemma@@nnot have any
cycle. m|

A graphG is acactus graphf no two cycles inG have a common edge.

Theorem 4.2. For a connected graph G, «t8) = 2 if and only if G is not a tree but a cactus
graph.

Proof. Clearly, every biconnected component of a cactus géaheither a cycle or a single edge,
and thusG has spanning tree congestion at most two. It is easy to wdfya biconnected graph
G has no vertex pai, v such thatG contains three edge disjointv paths if and only ifG is either
a cycle or a single edge. Thus, from Proposition 2.1 and Le@ahe theorem holds. O

Obviously, the recognition of trees and cactus graphs caddoe in linear time, by using
standard depth first search techniques (see e.qg. [7]k Ed, we need the following lemma.

Lemma4.3. For a graph G, if st¢G) < 3, then G is planar.

Proof. SupposestqG) < 3 andG is not planar. From Kuratowski's Theorem (see e.g. [&),
has eitherKs or K33 as a topological minor. 15 hasKs as a topological minor, then clearly

G contains two vertices such th@t has at least four edge disjoint paths between them. From
Lemma 2.2, we havetdG) > 4, which is a contradiction. Thu&§ containsk;; as a topological
minor. LetG’ be this topological minor, an&X = {X3, X2, X3}, Y = {V1,¥2,¥3} € V(G’) be the
two sets corresponding to the two color classe&gf. By Lemma 7.2 edge subdivisions do not
change the spanning tree congestion. TEt%G’) = stqKs3). Moreover, by Hruska’s result that
showsstdKmn) = m+ n— 2 [16], we can concludstdG’) = 4. Now we need the following two
propositions.

Proposition 4.4. Let H be a connected graph and H connected subgraph of H. If a spanning
tree S of H has a spanning treé & H’ as a subgraph, then cpg¢S) > cng, (S).

Proof. Lete € E(S") € E(S). Assumee dividesV(H) into A andB, andV(H’) into A’ andB".
Clearly, A’ € AandB’ ¢ B. Thus,cng, s(€) = |E(A, B)| > |[E(A’, B')| = cng,, s (€). O

Proposition 4.5. Let H be a connected graph, S a spanning tree of H, ajd A V(H). If H
has p edge disjoint paths;P.., P, between A and B, and e E(S) separates A and B, then
cng,s(€) > p. Moreover, if e does not belong any, then cng s(e) > p + 1.



Proof. For eachP;, there exists at least one edgesuch that the detour & in S passes through
the edgee. Since the pathB;,..., P, are edge disjointtng, s(€) > p. Sincee itself is the detour
fore cng,s(e) > p+1life¢{e|1<i<p). m|

We will show thatcng; 1 (€) > 3 for any spanning tre€ of G. If T has a spanning tree & as
a subgraph, then from Proposition £dg;(T) > 4. This implies thaT contains a patk between
two vertices ofX U Y such thatP contains an edgenot in E(G’). Edgee dividesX U Y into two
nonempty seté andB. It is easy to see that for any nonempty partitidnB) of XUY, there exist
at least three edge disjoint paths betwéesndB. Thus,cng; +(€) > 4 from Proposition 4.5. O

From Theorem 3.5 and Lemma 4.3, 3-STC can be solved in lineay, wvith the linear time
algorithm for recognizing planar graphs [15]. This proves tollowing theorem.

Theorem 4.6. For 1 < k < 3, k-STC can be solved in linear time.

5 Linear time solvability of k-STC for graphs of bounded de-
gree

In this section, we show th&STC can be solved in linear time for graphs of bounded dediee
this end, we use Courcelle’s theorem and a connection battheespanning tree congestion and
the treewidth. Courcelle [8] showed that every problem egpible in M$ can be solved in linear
time for graphs of bounded treewidth, where MS a graph logic in the monadic second-order
logic (see also [14]). In M§ we are allowed to use the incident relation inc, the mentiers
relatione, and variables over vertices, edges, vertex sets, and etfge s

Theorem 5.1. For graphs of bounded treewidth, k-STC can be solved in litigee.

Proof. We show thak-STC is expressible in MS Let G = (V,E) and|G|, := (V, E,inc). For a

vertexv € V and an edge € E, inc(v, ) if and only if e hasv as an endpoint. Fdf C E(G), we

denote byG(F) the subgraph induced By, that is,E(G(F)) = F andV(G(F)) = Uuyeriu, V}.
We first define the following basic expressions:

Degl{y, E;) := (e, € BEy)(Vez € Eg)(61 = & & inc(vy, &),

PartWs, Vo, Va) i= Vo # 0 A Vs £ 0 A (Vo U Vs = Vi) A (Vo1 Vs = 0),

Adj(v, Vo, Eq) := 1 # Vo A (Fey € Ef)(inc(vy, €) A Inc(vy, €)),
E1 = Ind(V1) := (Ve)(e1 € E1 & (Ivy,V2 € Vi)(V1 # V2 AINC(vy, €1) A INC(V2, €1))),
E1 = Ince(v1) := (Yer)(e1 € E1 > inc(vy, &),

Vi =Incy(Ey) i= (YWi)(v1 € Vi & (Je; € Eg)(inc(vy, &1))).

It is easy to see that Degi(E;) if and only if v; has only one neighbor i6(E,), Part{/;, V,, V3)
if and only if (V1, V,) forms a partition oV, Adj(v1, Vo, E;) if and only if an edgédvy, v»} isin E;,
E; = Ind(V,) if and only if E; is the edge set d&[V,], E; = Incg(vy) if and only if E; is the set of
edges betweew and its neighbors, and, = Incy(E,) if and only if V; is the vertex set 0&(E;).
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Using the above basic expressions, we define some expresstated to connectivity of
graphs.

ConnE,) := (YVa2, Va)(Part(Ing/(E1), V2, Va) = (A2 € Va, v3 € V3)(Adj(V2, V3, E1))),
BiConn(E) = (Avy, Vo, V3 € Incy(Eq))(vi # V))(L < i < | < 3) A (YVa)(ConnEy \ INCe(Va))).

Clearly, ConnE,) if and only if G(E;) is connected, and BiConE() if and only if G(E;) is
biconnected. Using these expressions, we can define tloavioly expressions.

ForestE;) := (YVi1 C Incy(E;))(=BiConn(Ind{/;) N Ey)),
TreeE,) := Forestg;) A ConnEy),
Path{, V2, Eq) := TreeE) A (Yvs € Incy(E1))(Deglis, El)) & vs=Vvi VVvz=W).

The meanings are clear: Fordsf] if and only if G(E,) is a forest, Tredf,) if and only if G(E;)
is a tree, and Pati, v,, E;) if and only if G(E;) is av;—V, path. Then, defining the expression
SpnTreek,;) that mean$s(E;) is a spanning tree @ is an easy task.

SpnTreek,) ;= TreeE,) A (YV)(v € Incy(E,)).

It is also easy to define the expression Deteyi;) such that Detougy, E,) if and only if G(E;)
forms a detour foey:

Detourgy, E;) := (Avy, Vo)(V1 # Vo ANc(vy, €1) A Inc(vy, €1) A Pathi, vo, Ej)).

The following expression Copfe, Eg) means thag, is contained in at modkt detours inG(Ey).
(Note thate, itself is a detour containing.)

Cong(e, Eg) 1= ~(Fer,....,e)((& ¢ Eg)(l<i<kKre#g(l<i<j<k
A (AE;)(e € Ej A Ej € Eg A Detourg, Ej))(1 <i <K)).

Obviously,stqG) < kif and only if G  (JEq)(SpnTreeky) A (Y&, € Eg)(Cong ey, Eo))). O

We can show that the treewidth of a graph of bounded degraeadarlin its spanning tree
congestion.

Lemma 5.2. For any connected graph G, () < maxXstqG), A(G)(stdG) — 1)/2}. Moreover,
this bound is tight.

Proof. Let k = stqG) andd = A(G). Let T be a spanning tree @ such thatng;(T) = k.

Let T’ be obtained fronT by subdividing each edge. We use a tree decompositionWits
tree. To each node df', we associate the following bag. If the node is a vertexV(G), then put
vin the bag. If the node is an ed@ew} € E(G) (i.e., the node is obtained by the subdivision of
{v,w}), putvandw in the bag. Then, for every edge w} ¢ E(T) select (arbitrarily) one endpoint,
sayv, and adds to all bags on the path from the bag\adiill the bag ofw except the bag ofv. This
is easily seen to be a tree decomposition.



Now, the size of a bag that corresponds to a subdivided édgé from T is at mostk + 1:
two for thev andw, and then at most — 1 other edges that count for the congestion of the edge
give each one vertex. Consider now a vertexEach edge not oif whose detour useg as
intermediate vertex counts for the congestion of two of tthges incident te in the spanning tree.
For each incident edge of there are at most— 1 edges not on the spanning tree that count for its
congestion. So, there are at mdgk — 1)/2 such edges. Thus, the size of a bag that corresponds
to a vertex is at most(k — 1)/2 + 1; one vertex for each edge, and then one/fiiself.

Observe that this bound is tight on cycles, which have degg&nning tree congestion, and
treewidth all equal to two. Furthermore, any upper boundtnaepend at least linearly on the
spanning tree congestion. Itis known thatn grids have bounded maximum degree, treewrgth
and spanning tree congestinfiL6, 6]. Finally, any upper bound must also depend at leasalily
on the maximum degree. Grohe and Marx [13] show that a graphyfdased on expanders exists
in which each member has degree at most three and treewidtér lin the number of vertices of
the graph.

Proposition 5.3. Let G be a graph and let Goe obtained from G by adding a vertex v adjacent to
each vertex of G. Then {B) < tw(G’) < tw(G) + 1 and st¢G’) < A(G) + 1.

Proof. By addingv to each bag of a tree decompositiaw(G’) < tw(G) + 1. AsG is a minor
of G, tw(G) < tw(G’). A spanning tree isomorphic t; ) with v at its center has congestion
A(G) + 1. O

Using the above proposition and the family of Grohe and Mase obtain a family of graphs
with treewidth and maximum degree linear in the number ofives of the graph and spanning
tree congestion at most four. These facts give strong ecaléor the tightness of our bound. o

The upper bound improves on an earlier bound by Kozawa, Qtactl Yamazaki [17]. Com-
bining the above facts, we can obtain the main result of #asign.

Theorem 5.4. For graphs of bounded degree, k-STC can be solved in lingse.ti

Proof. Let G be a graph of bounded degree ab@G) = d. Sincek andd are constants, we can
check whethetw(G) < maxk,d(k — 1)/2} in linear time by Bodlaender’s algorithm [2]. If the
output of the algorithm is “no,” thestqG) > k from Lemma 5.2. Otherwis&; has bounded
treewidth. Hence, from Theorem 5.1, we can determine wheti@) < k in linear time. m|

6 Weighted k-STC is NP-completefor k > 10

In this section, we prove the following hardness result.
Theorem 6.1. For any fixed k> 10, k-STC is NP-complete for edge weighted graphs.

Clearly, the problem belongs to NP. To show NP-completengegpresent a reduction from
(3, B2)-SAT. The problem (3, B2)-SAT is a restricted versairthe 3-SAT problem, which is a
well-known NP-complete problem [12]. An instandd, C) of (3, B2)-SAT consists of a séi



of n distinct Boolean variables and a collectiGnof m clauses such that each clause has exactly
three literals, and each literal occurs exactly twice. BamyKarpinski, and Scott [1] showed the
NP-completeness of (3, B2)-SAT. In their construction ofaachinstance of (3, B2)-SAT, every
clause has exactly three variables, that is, there is nselbke (, u, =), (u, u, %), or (u, u, *). Thus,

in what follows, we assume that instances of (3, B2)-SATsathis condition as well.

The constructions in our proof are inspired by the proof of && Corneil [5] for the NP-
completeness of the Weighted Tree Spanners problem.k et10 be a fixed integer. For an
arbitrary instancel, C) of (3, B2)-SAT, we construct an edge weighted gr&ghsuch thaC is
satisfiable if and only ibtdG¢) < k. Leta = [k/2] + 1 andb = |k/2] — 3. Each edge B¢ has
a weight which will be eithes, b, or 1. For example, ik = 10, then the weight of an edge is six,
two, or one. Clearly, the following proposition holds.

Proposition 6.2. Fork > 10,a+ b+ 2=Kk,2b+ 6 <k, 2a > k,6b > k, and4b + 4 > k.
From an instancdl, C) of (3, B2)-SAT, the grapl®¢ is constructed as follows (see Figure 1):
1. Take a vertex, literal vertices y andu; for each variable; € U, andclause vertices;dor
each clause; € C.

2. Connecix to all literal vertices byliteral edgesof weightb.

3. For each variablg, € U, create a path of length two betwegrandu; such that edges in the
path, which are calletiridge edgeshave weight and the center vertex of the path is a new
vertexy.

4. For each clause = {l,, 14,1/} € C, connect the clause vertexto the literal vertices,, I,
andl, by clause edgesf unit weight.

Clearly, the above construction can be done in polynonmagti

O~ ~O
ci =A{up g, ur} ey = {uy, ug,uz} o= {ur,ug,uz} 3= {ur, ug,uz} ey = {ug, ug, ug}

(a) Variable (b) Clause (c) Gc with C = {{uy, Uz, Us}, {ug, Uz, Uz}, {U1, Uz, Us}, {Ug, Uz, Us}}.

Figure 1: Gadgets, and a constructed graph.

Now, we show the following useful properties of a spannimg tofGc with small congestion.

Lemma6.3. Let T be a spanning tree ofGlIf cngs (T) < k, then



1. All bridge edges are contained in T;
2. Each clause vertex is a leaf of T;
3. For each variable, exactly one of its two literal edgesaatained in T.

Proof of the first property Sincey; has degree two, at least one{af, y;} and{u;, y;} must be inT.
If {U;,y:} is notinT, thencngs_+({ui, ¥i}) = W(O({y:})) = 2a > k. The other case is almost the
same. O

Proof of the second propertyAssumeT has the first property. By way of contradiction, suppose
some clause vertes; = {lp,lq, |} has degree larger than onen Let uy, Ug, U, be the variables
corresponding to the literals, |4, I;, respectively. We divide the proof into two cases depending
on the degree af; in T. Recall that all bridge edges areTnfrom the first property.

Case 1:deg;(c) = 3. The three neighbors af in T arel,, l4, andl;. Lete be the unique
literal edge in the unique—x path inT. Then,e separate$x} and {u,, Up, Ug, Ug, U, U}. Thus,
cngs. 7(€) = W(E({x}, {up, Up, Ug, Ug, Ur, Ur})) = 6b > k.

Case 2:deg;(c)) = 2. Without loss of generality, we assume that the two neighbbc; in T
arel, andlgq. Then, at most one of the literal edgesugfandu, can be inT. From the above case,
we can assume that no clause vertex has degree thilee in

First, assume that none of the literal edgesupfanduy are inT. Lete = {x |5} be the
unique literal edge in the unique—x path inT. Then,ls ¢ {up, Uy, Ug, Ug}, ande separatesx}
and{up, Up, Ug, Ug, Us, Us}. Thus,cngs_ 1(€) > 6b > k.

Next, assume that one of the literal edgesipbindu,, saye, is in T (see Figure 2). Let us
consider the clause vertices adjacent to at least one aténal erticesup, up, Ug, andug in Ge. If
a clause verteg, (# ¢) is adjacent to two vertices i, Up, Ug, Ug} in T, thenT has a cycle. Hence,
if ¢, # ¢ has degree two ii, and one of the two neighbors ofis in {up, Uy, Ug, Ug}, then another
neighbor, says, is not in{up, Uy, Ug, Ug}. In such a cases separate$x} and{up, Uy, Ug, Ug, Us, Us},
and thusgng;_ 1 (€) > 6b > k (see Figure 2(a)). Therefore, every clause vertex (exaem ) that
has at least one dfi,, up, Ug, Uy} @s a neighbor i is a leaf of T. Let C; be the set of such leaf
clauses. Since every clause has exactly three variablesceaC; has at most two neighbors in
{Up, Up, Ug, Ug} in Gc. Hence,cngs 1(€) = W(O({Up, Up, Ug, Ug} U {Ci} U C1)) > 4b + |Cyf + 1 (see
Figure 2(b)). Sinc&ng; (T) < k < 4b + 4, we can conclude thi,| < 2. Itis easy to see that
cng;. 1(€) > 4b + 5> kif |C4| < 2 (see Figure 3). m|

Proof of the third property AssumeT has the first and the second properties. Sihcga tree and
contains all bridge edges, at most ong\xfu;} and{x, u;} can be inT for eachu; € U. Suppose
T contains none of them. Since any clause vertex is a leaf dfiere is no path between and
X. mi

The next two lemmas show th@tis satisfiable if and only istdG¢) < k, thus proving Theo-
rem6.1.

Lemma 6.4. If sto(Gc) < k then C is satisfiable.



e

CI = {lp, lq, l7}

engg, ({2, lpy) > 4b+[Ch| + 1

(a) Another clause vertex of degree two. (b) No other clause vertex of
degree two.

Figure 2: A clause verteg of degree two.

Proof. Let T be a spanning tree @c such thattng; (T) < k. From Lemma 6.3, (1J contains
all bridge edges, (2] contains exactly one literal edge for each variable, ance{@yy clause
vertex is a leaf off. From the second property, we can define a truth assignéeny setting
& (W) = trueif {x,u} € E(T) andér(u;) = falseif {x,u} € E(T). We show that; satisfiesC.
It suffices to show that for eveny; € C, the unique neighbdr of ¢; is adjacent tox. If |; is not
adjacent tox, thencngs_({li, yi}) = a+ b+ 3 > k (see Figure 4). This contradiateig;_(T) < k.
O

Lemma 6.5. If C is satisfiable then sG¢) < k.

Proof. Let ¢ be a satisfying truth assignment 18r We say that a literal vertdxis atrue vertexf
li becomedrue by the assignmert We construct a spanning trédeof G¢ as follows:

1. Take all bridge edges.
2. Take all literal edges incident to true vertices.
3. For each clause, take an arbitrary clause edge incidéimtatrue vertex.

Clearly, T is a spanning tree dbc. We show thatng; (T) < k.

Let u; € U. Without loss of generality, we assume thatu;} € E(T). ThenT contains edges
{x, u} and{u, Y}, {u;,y;}. From the construction of, T may contain any clause edge incident with
u;, but cannot contain any clause edge incident wijthSee Figure 5. Clearly, the edde, vy}
and{u;, y;} have the same congestion, a1 ({u, i) = we({ui})) = a+b+2 =k Ifa
clause edge incident witly is contained inT, then the edge has congestiork3k. Obviously,
cngs. T({X ui}) = wO({ui, Ui} U Nr (W) \ {x})) < 2b + 6 < k (see Figure 5). m|
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Figure 3: The cases (€| < 2.

Figure 4: Unsatisfied clauses.

7 Unweighted k-STC is NP-completefor k > 10

Extending the result in the previous section, we prove thenrtteeorem of the paper, that is,
NP-completeness & STC for unweighted graphs. We need the following two lemmas

Lemma 7.1. An edge e of weight v& Z* can be replaced by w parallel edges of unit weight
without changing the spanning tree congestion.

Proof. Let G be an edge weighted graph, aed= {u,v} € E(G) be an edge of integral weight
w > 2. We denote by’ the graph obtained frors by the deletion ok and the addition ofv
parallel edges,, ..., e, of unit weight betweem andv. Clearly, any spanning tree &' contains
at most one oy, ..., e,. Without loss of generality, we assume for any spanning Treef G’,
T’ may contain onlye;, from {ey, ..., e,}. By this assumption, we have a bijective correspondence
between the spanning trees@fand the spanning trees Gf; we simply identifye ande;.

Let T be a spanning tree db, and T’ the corresponding spanning tree @f. Let Py =
{(A:,Bf) | T € E(T)} andPy = {(Af,B¢) | f € E(T’)} denote the set of the partitions ¥{G)

11



Figure 5: A spanning tree of congestion at mist

defined by edges i andT’, respectively. It is not diicult to see thaPr = P1.. From the
definition, cng;(T) = maxag)er; W(Es(A, B)) andcng (T’) = maxagyer,, W(Es (A, B)). If eis
not betweem andB, thenw(Eg(A, B)) = W(Es (A, B)). Otherwise Eg(A, B) \ {€} = Ec/(A, B) \
{e, ..., &y}, and thus,

W(Eg(A, B)) = W(EG(A, B) \ {€}) + w(e) = W(Ec(A, B) \ {e}) +w
= W(Eg (A, B) \ {€1,...,eu}) + [{er, ..., eu}l = W(Es (A, B)).

Thereforecng;(T) = cng; (T’), and hencestdG) = stqG’). O
Lemma 7.2. Edge subdivisions do not change the spanning tree congestinweighted graphs.

Proof. Let G be a graph without edge weights, amé {u, v} € E(G). We denote bys’ the graph
obtained fromG by the deletion o, and the additions of a vertexand two edges; = {u, w} and
e = {w,v}. Clearly, any spanning tree @’ contains at least one & ande,. Without loss of
generality, we assume for any spanning fféef G’, & € E(T’). By this assumption, we have a
bijective correspondence between the spanning tre@saoid the spanning trees Gf; we identify
eande;, and ignores,.

If stdG) = 1, thenG is a tree. Clearly(5’ is also tree. This impliestqG) = stqG’) = 1. Now
assume thastdG) > 2. LetT be a spanning tree @, andT’ the corresponding spanning tree
of G'. Clearly, ife; € E(T’) thencngs 1.(61) = cngs 1.(€2); otherwisecngs, 1.(6) = 10({w})| =
2 < stqG) < cng;(T). Itis easy to see thang; +(€) = cng; 1.(€1) if e € E(T), andeng; +(f) =
cng, 1.(f) for any E(T) \ {e¢} = E(T’) \ {e1,&}. Therefore,cng;(T) = cng; (T’), and hence,
stqG) = stdG’). m|

Combining the above two lemmas, we can conclude that an gdggof weightw can be
replace byw internally disjointu—v paths of length two that consist of unweighted edges, withou
changing the spanning tree congestion. It is easy to se¢éhibaeplacement can be doneQxw)
time. Thus, we have the following corollary.

Corollary 7.3. Let G be an edge weighted graph such that the weight of evagy efiG is a
positive integer, and the maximum weight of the edges is wen Th can be transformed into
unweighted simple graph’@ O(w - |[E(G)|) time, such that s{6G) = stqG).
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Now, we prove the main theorem of the paper.

Theorem 7.4. For any fixed k> 10, k-STC is NP-complete for simple unweighted graphs tha hav
only one vertex of unbounded degree.

Proof. Let (U, C) be an instance of (3, B2)-SAT, ati&k the corresponding graph constructed in
the previous section. From Corollary 7.3, we can construsingple unweighted grapi; in
polynomial time such thattdG;.) = stqGc). Clearly,stqGg) < kif and only if C is satisfiable.

We show that the vertices other thanhave bounded degree. The new vertices added by
subdivisions have degree two. Clause vertices have dejgree inG¢. Since clause vertices are
only incident to unit weight edges, they have degree thrég.inSince every; is incident to two
bridge edges of weighat = [k/2] + 1, y; has degree@< k+ 3 in G¢.. Literal vertexl; is incident to
two clause edges, one bridge edge, and one literal edgeatatteight onea, andb = | k/2] — 3,
respectively. Thusx;legyc(li) = a+ b+ 2 =k Hence, the maximum degree @f is bounded by
k + 3, which is a constant. O

8 Concludingremarks

We have proved that for fixek, the problem of determining whether the spanning tree cenge
tion of a given graph is at mo&tis solvable in linear time for planar graphs, graphs of baehd
treewidth, and graphs of bounded degree. We also show thgdrdblem can be solved in linear
time for any graph if 1< k < 3. On the other hand, we show that if the input graph has one
vertex of unbounded degree, then the problem becomes Npietariork > 10. The complexity

of k-STC remains open for4 k < 9.

Since the problem is hard in general, an approximation élgorwith good approximation
ratio is required. We say that a polynomial time algorithm $panning tree congestion isca
approximation algorithm for positive numbey if there is a positive integes, such that for any
input graphG, the outputk of the algorithm satisfiek < c; - stdG) + c,. Using NP-hardness of
10-STC, the following constant lower bound on the approxiameratio can be shown.

Theorem 8.1. There is no polynomial time-@pproximation algorithm for the spanning tree con-
gestion of simple unweighted graphs such that d1/10, unless P= NP.

Proof. Suppose there is a polynomial tineg-approximation algorithmA for the spanning tree
congestion of simple unweighted graphs with< 11/10. Letc, be the constant additive &,
that is, the outpul\(G) of A for any graphG satisfiesA(G) < c; - stqG) + c,. Lett be the smallest
positive integer that satisfies (1110 - ¢,) - t > C,.

Let (U, C) be an instance of (3, B2)-SAT, at the corresponding graph constructed in Sec-
tion 6, wherek = 10. By G[,, we denote the graph obtained fr@Ba by setting the edge weight as
W (€) = t-Wg(€). Clearly,staGg) = t-stqGc). Thus, ifC is satisfiable, thestdG;,) < 10t; oth-
erwisestdGg) > 11t. Let G{ be the simple unweighted graph obtained frémby Corollary 7.3.
Hence stqG{) = stdGy) =t - stqGc).

Claim 8.2. A(GY) < 11t if and only if st¢G¢) < 10.

13



Proof. First, assume thak(G{) < 11t. Thent - stqGc¢) = stqG{) < A(G{) < 11t. Thus, we have
stqGc) < 11, which impliesstqG¢) < 10. Next, assume thatqG¢) < 10. Then

A(GE) <c1-staGg) +C; =¢; - t-stdGe) + ¢,
=11/10-t-stqGc) — (11/10—¢) - t - st Gc) + Co.
SincestqGc) < 10 and (1¥10-¢;) - t > ¢, we haveA(GY) < 11t — ¢(stqGc) - 1) < 11t. m|

From the above claim, we can u8eas a polynomial time algorithm for (3, B2)-SAT. As (3,
B2)-SAT is NP-hard, such an algorithm cannot exist unlessNP. ]

We also considered the complexity of STCIGETC on some restricted graph classes. It
is known that the tree spanner problem is NP-hard for chagdabhs [3] and chordal bipartite
graphs [4]. It would be interesting to determine the compyeaf STC ork-STC for these graph
classes.
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