
Complexity Results for the Spanning Tree
Congestion Problem

Yota Otachi

Hans L. Bodlaender

Erik Jan van Leeuwen

Technical Report UU-CS-2010-007
March 2010

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

Complexity Results for
the Spanning Tree Congestion Problem

Yota Otachi∗ Hans L. Bodlaender† Erik Jan van Leeuwen‡

Abstract

We study the problem of determining thespanning tree congestionof a graph. We present
some sharp contrasts in the complexity of this problem. First, we show that for every fixedk
andd the problem to determine whether a given graph has spanning tree congestion at mostk
can be solved in linear time for graphs of degree at mostd. In contrast, if we allow only one
vertex of unbounded degree, the problem immediately becomes NP-complete for any fixed
k ≥ 10. For very small values ofk however, the problem becomes polynomially solvable. We
also show that it is NP-hard to approximate the spanning treecongestion within a factor better
than 11/10. On planar graphs, we prove the problem is NP-hard in general, but solvable in
linear time for fixedk.

1 Introduction

Spanning tree congestion is a relatively new graph parameter, which was formally defined by Os-
trovskii [21] in 2004. Prior to Ostrovskii [21], Simonson [25] studied the same parameter under
a different name to approximate the cutwidth of outerplanar graphs. Although several graph the-
oretical results have been presented [6, 16, 17, 18, 20, 22] after Ostrovskii [21], so far, no results
on the complexity of the problem were known. In this paper, wepresent the first such results. The
parameter is defined as follows. LetG be a graph andT a spanning tree ofG. Thedetourfor an
edge{u, v} ∈ E(G) is the uniqueu–v path inT. We define thecongestionof e ∈ E(T), denoted by
cngG,T(e), as the number of detours that containe. Thecongestion of G in T, denoted bycngG(T),
is the maximum congestion over all edges inT. Thespanning tree congestionof G, denoted by
stc(G), is the minimum congestion over all spanning trees ofG. We denote by STC the problem of
determining whether a given graph has spanning tree congestion at most givenk. If k is fixed, we
denote the problem byk-STC.

∗Department of Computer Science, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan. JSPS
Research Fellow.otachi@comp.cs.gunma-u.ac.jp
†Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, The

Netherlands.hansb@cs.uu.nl
‡Department of Informatics, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway.

E.J.van.Leeuwen@ii.uib.no

1

The name of the parameter comes from the following analogy [6]: Edges ofG are roads, and
edges ofT are those roads which are cleaned from snow after snowstorms. For an edgeh ∈ E(T),
it is natural to define the congestion ofh as the number of detours passing throughh. Clearly, the
congestion of the busiest roads should be minimized. Thetree spanner problem[5] is a variant of
the problem, which minimize the dilation, that is, the length of the longest detours. Several pairs of
congestion and dilation problems are known [23]. The most famous pair is the cutwidth problem
and the bandwidth problem.

The rest of the paper is organized as follows. Section 2 provides some definitions and basic
facts. In Section 3, we study the problem for planar graphs, and show that STC for planar graphs
is NP-complete, andk-STC for planar graphs is solvable in linear time. In Section4, we show that
k-STC can be solved in linear time for 1≤ k ≤ 3. In Section 5, we show thatk-STC can be solved
in linear time also for graphs of bounded degree. In Section 6, we show thatk-STC is NP-complete
for edge weighted graphs ifk ≥ 10. Using the result of Section 6, we show in Section 7 that for
k ≥ 10, k-STC is NP-complete for simple unweighted graphs with only one vertex of unbounded
degree. In the last section, we conclude the paper and show the approximation hardness of the
spanning tree congestion.

2 Preliminaries

We extend the notion of spanning tree congestion to edge weighted graphs, by defining the con-
gestion of an edge as the sum of the weights of edges whose detours pass through the edge. We
denote byw(F) the sum of weights of edges inF for an edge setF ⊆ E(G).

Let G be a connected graph. ForS ⊆ V(G), we denote byG[S] the subgraph induced byS.
For an edgee ∈ E(G), we denote byG − e the graph obtained by the deletion ofe from G. For
A, B ⊆ V(G), we defineEG(A, B) = {u, v ∈ E(G) | u ∈ A, v ∈ B}. For S ⊆ V(G), we define the
boundary edgesof S, denoted byθG(S), asθG(S) = EG(S,V(G) \ S). Using this notation, we can
redefinecngG,T(e) ascngG,T(e) = |θG(Ae)|, whereAe is the vertex set of one of the two components
of T − e. From this redefinition through boundary edges, we can see that c-cut treesdefined by
Fekete and Kremer [11] and spanning trees of congestion at mostc are equivalent.

For an edgee in a treeT, we say thate separatesA andB if A ⊆ Ae andB ⊆ Be, whereAe and
Be are the vertex sets of the two components ofT − e. Clearly, if T is a spanning tree ofG and
e ∈ E(T) separatesA andB, thencngG,T(e) ≥ |E(A, B)| (if G is weighted,cngG,T(e) ≥ w(E(A, B))).
If eseparatesA andB, we also say thate divides A∪ B into A andB.

From the definition of the spanning tree congestion, the following proposition holds.

Proposition 2.1. The spanning tree congestion of G equals the maximum spanning tree congestion
of its biconnected components.

Ostrovskii [21] showed the following lower bound on the spanning tree congestion of graphs.

Lemma 2.2 ([21]). Let G be a graph, u, v ∈ V(G). If G has k edge disjoint u–v paths, then
stc(G) ≥ k.

2

Let G be a graph. We say that a graphH is obtained fromG by anedge subdivisionif V(H) =
V(G) ∪ {w} andE(H) = E(G) \ {{u, v}} ∪ {{u,w}, {w, v}} for some edge{u, v} ∈ E(G) and a new
vertexw. We say thatH is asubdivisionof G if H can be obtained fromG by a finite sequence of
edge subdivisions. IfH is a subdivision of a subgraph ofG, thenH is a topological minorof G.

The concept of treewidth was introduced by Robertson and Seymour in their project of Graph
Minor Theory (see [24] for example). Atree decompositionof a graphG is a pair (X,T), whereT
is a tree andX = {Xi | i ∈ V(T)} is a collection of subsets ofV(G) such that

•
⋃

i∈V(T) Xi = V(G),

• for each edge{u, v} ∈ E(G), there is anode i∈ V(T) such thatu, v ∈ Xi, and

• for eachv ∈ V(G), the set of nodes{i | v ∈ Xi} forms a subtree ofT.

The elements inX are calledbags. Thewidthof a tree decomposition (X,T) equals maxi∈V(T) |Xi | −

1. Thetreewidthof G, denoted bytw(G), is the minimum width over all tree decompositions ofG.

3 Spanning tree congestion of planar graphs

Ostrovskii [22] has asked whether STC can be solved in polynomial time for planar graphs. By
combining a number of known results, we answer this questionnegatively (assumingP , NP),
and show thatk-STC can be solved in linear time for planar graphs. Our results follow easily from
some known results for the tree spanner problem. LetG be a graph andT a spanning tree ofG.
If distT(u, v) ≤ k for any {u, v} ∈ E(G), thenT is a tree k-spanner[5]. We denote bytsp(G) the
minimum numberk such thatG has a treek-spanner. For planar graphs, the following results are
known.

Lemma 3.1 ([11]). It is NP-complete to decide tsp(G) ≤ k for planar graphs G and integers k.

Lemma 3.2 ([10]). For every fixed k, tsp(G) ≤ k can be decided in linear time for planar graphs
G.

A dual graph G∗ of a planar graphG is a graph that has the vertex setF (G), the faces of a
certain embedding ofG, and in which two verticesf , f ′ ∈ F (G) are adjacent inG∗ if and only if
the two facesf and f ′ have a common edge inG. It is known that a graphG is planar if and only
if G is a dual graph of a planar graph (see e.g. [9]). Since a cut inG corresponds to a cycle inG∗,
the following relation holds.

Lemma 3.3 ([11]). For any planar graph G, stc(G) = tsp(G∗) + 1.

A planar embedding of a planar graph can be constructed in linear time by an algorithm pro-
posed by Hopcroft and Tarjan [15]. From a planar embedding ofa planar graphG, we can easily
construct geometrically a dual graphG∗ (see e.g. [19]). Thus, from Lemma 3.3, we can have the
conclusions of this section.

Theorem 3.4. It is NP-complete to decide stc(G) ≤ k for planar graphs G and integers k.

Theorem 3.5. For every fixed k, stc(G) ≤ k can be decided in linear time for planar graphs G.

3

4 Linear time solvability of k-STC for 1 ≤ k ≤ 3

In this section, we show thatk-STC can be solved in linear time for 1≤ k ≤ 3. First, we give
characterizations for graphs of spanning tree congestion one and two.

Theorem 4.1. For a connected graph G, stc(G) = 1 if and only if G is a tree.

Proof. If G be a tree, then clearlystc(G) = 1. AssumeG has a cycleC. Then, for any two vertices
in C, G has two edge disjoint paths between them. Thus, by Lemma 2.2,G cannot have any
cycle. �

A graphG is acactus graphif no two cycles inG have a common edge.

Theorem 4.2. For a connected graph G, stc(G) = 2 if and only if G is not a tree but a cactus
graph.

Proof. Clearly, every biconnected component of a cactus graphG is either a cycle or a single edge,
and thus,G has spanning tree congestion at most two. It is easy to verifythat a biconnected graph
G has no vertex pairu, v such thatG contains three edge disjointu–v paths if and only ifG is either
a cycle or a single edge. Thus, from Proposition 2.1 and Lemma2.2, the theorem holds. �

Obviously, the recognition of trees and cactus graphs can bedone in linear time, by using
standard depth first search techniques (see e.g. [7]). Fork = 3, we need the following lemma.

Lemma 4.3. For a graph G, if stc(G) ≤ 3, then G is planar.

Proof. Supposestc(G) ≤ 3 andG is not planar. From Kuratowski’s Theorem (see e.g. [9]),G
has eitherK5 or K3,3 as a topological minor. IfG hasK5 as a topological minor, then clearly
G contains two vertices such thatG has at least four edge disjoint paths between them. From
Lemma 2.2, we havestc(G) ≥ 4, which is a contradiction. Thus,G containsK3,3 as a topological
minor. Let G′ be this topological minor, andX = {x1, x2, x3},Y = {y1, y2, y3} ⊂ V(G′) be the
two sets corresponding to the two color classes ofK3,3. By Lemma 7.2 edge subdivisions do not
change the spanning tree congestion. Thus,stc(G′) = stc(K3,3). Moreover, by Hruska’s result that
showsstc(Km,n) = m+ n− 2 [16], we can concludestc(G′) = 4. Now we need the following two
propositions.

Proposition 4.4. Let H be a connected graph and H′ a connected subgraph of H. If a spanning
tree S of H has a spanning tree S′ of H′ as a subgraph, then cngH(S) ≥ cngH′(S

′).

Proof. Let e ∈ E(S′) ⊆ E(S). Assumee dividesV(H) into A andB, andV(H′) into A′ andB′.
Clearly,A′ ⊆ A andB′ ⊆ B. Thus,cngH,S(e) = |E(A, B)| ≥ |E(A′, B′)| = cngH′,S′(e). �

Proposition 4.5. Let H be a connected graph, S a spanning tree of H, and A, B ⊂ V(H). If H
has p edge disjoint paths P1, . . . ,Pp between A and B, and e∈ E(S) separates A and B, then
cngH,S(e) ≥ p. Moreover, if e does not belong any Pi, then cngH,S(e) ≥ p+ 1.

4

Proof. For eachPi, there exists at least one edgeei such that the detour ofei in S passes through
the edgee. Since the pathsP1, . . . ,Pp are edge disjoint,cngH,S(e) ≥ p. Sincee itself is the detour
for e, cngH,S(e) ≥ p+ 1 if e < {ei | 1 ≤ i ≤ p}. �

We will show thatcngG,T(e) > 3 for any spanning treeT of G. If T has a spanning tree ofG′ as
a subgraph, then from Proposition 4.4cngG(T) ≥ 4. This implies thatT contains a pathP between
two vertices ofX ∪ Y such thatP contains an edgee not in E(G′). Edgee dividesX ∪ Y into two
nonempty setsA andB. It is easy to see that for any nonempty partition (A, B) of X∪Y, there exist
at least three edge disjoint paths betweenA andB. Thus,cngG,T(e) ≥ 4 from Proposition 4.5. �

From Theorem 3.5 and Lemma 4.3, 3-STC can be solved in linear time, with the linear time
algorithm for recognizing planar graphs [15]. This proves the following theorem.

Theorem 4.6. For 1 ≤ k ≤ 3, k-STC can be solved in linear time.

5 Linear time solvability of k-STC for graphs of bounded de-
gree

In this section, we show thatk-STC can be solved in linear time for graphs of bounded degree. To
this end, we use Courcelle’s theorem and a connection between the spanning tree congestion and
the treewidth. Courcelle [8] showed that every problem expressible in MS2 can be solved in linear
time for graphs of bounded treewidth, where MS2 is a graph logic in the monadic second-order
logic (see also [14]). In MS2, we are allowed to use the incident relation inc, the membership
relation∈, and variables over vertices, edges, vertex sets, and edge sets.

Theorem 5.1. For graphs of bounded treewidth, k-STC can be solved in linear time.

Proof. We show thatk-STC is expressible in MS2. Let G = (V,E) and |G|2 := 〈V,E, inc〉. For a
vertexv ∈ V and an edgee ∈ E, inc(v, e) if and only if e hasv as an endpoint. ForF ⊆ E(G), we
denote byG〈F〉 the subgraph induced byF, that is,E(G〈F〉) = F andV(G〈F〉) =

⋃
{u,v}∈F{u, v}.

We first define the following basic expressions:

Deg1(v1,E1) := (∃e1 ∈ E1)(∀e2 ∈ E1)(e1 = e2 ⇐⇒ inc(v1, e2)),

Part(V1,V2,V3) := V2 , ∅ ∧ V3 , ∅ ∧ (V2 ∪ V3 = V1) ∧ (V2 ∩ V3 = ∅),

Adj(v1, v2,E1) := v1 , v2 ∧ (∃e1 ∈ E1)(inc(v1, e) ∧ inc(v2, e)),

E1 = Ind(V1) := (∀e1)(e1 ∈ E1 ⇐⇒ (∃v1, v2 ∈ V1)(v1 , v2 ∧ inc(v1, e1) ∧ inc(v2, e1))),

E1 = IncE(v1) := (∀e1)(e1 ∈ E1 ⇐⇒ inc(v1, e1)),

V1 = IncV(E1) := (∀v1)(v1 ∈ V1 ⇐⇒ (∃e1 ∈ E1)(inc(v1, e1))).

It is easy to see that Deg1(v1,E1) if and only if v1 has only one neighbor inG〈E1〉, Part(V1,V2,V3)
if and only if (V1,V2) forms a partition ofV3, Adj(v1, v2,E1) if and only if an edge{v1, v2} is in E1,
E1 = Ind(V1) if and only if E1 is the edge set ofG[V1], E1 = IncE(v1) if and only if E1 is the set of
edges betweenv1 and its neighbors, andV1 = IncV(E1) if and only if V1 is the vertex set ofG〈E1〉.

5

Using the above basic expressions, we define some expressions related to connectivity of
graphs.

Conn(E1) := (∀V2,V3)(Part(IncV(E1),V2,V3) =⇒ (∃v2 ∈ V2, v3 ∈ V3)(Adj(v2, v3,E1))),

BiConn(E1) := (∃v1, v2, v3 ∈ IncV(E1))(vi , vj)(1 ≤ i < j ≤ 3)∧ (∀v4)(Conn(E1 \ IncE(v4))).

Clearly, Conn(E1) if and only if G〈E1〉 is connected, and BiConn(E1) if and only if G〈E1〉 is
biconnected. Using these expressions, we can define the following expressions.

Forest(E1) := (∀V1 ⊆ IncV(E1))(¬BiConn(Ind(V1) ∩ E1)),

Tree(E1) := Forest(E1) ∧ Conn(E1),

Path(v1, v2,E1) := Tree(E1) ∧ (∀v3 ∈ IncV(E1))(Deg1(v3,E1) ⇐⇒ v3 = v1 ∨ v3 = v2).

The meanings are clear: Forest(E1) if and only if G〈E1〉 is a forest, Tree(E1) if and only if G〈E1〉

is a tree, and Path(v1, v2,E1) if and only if G〈E1〉 is a v1–v2 path. Then, defining the expression
SpnTree(E1) that meansG〈E1〉 is a spanning tree ofG is an easy task.

SpnTree(E1) := Tree(E1) ∧ (∀v)(v ∈ IncV(E1)).

It is also easy to define the expression Detour(e1,E1) such that Detour(e1,E1) if and only if G〈E1〉

forms a detour fore1:

Detour(e1,E1) := (∃v1, v2)(v1 , v2 ∧ inc(v1, e1) ∧ inc(v2, e1) ∧ Path(v1, v2,E1)).

The following expression Congk(e0,E0) means thate0 is contained in at mostk detours inG〈E0〉.
(Note thate0 itself is a detour containinge0.)

Congk(e0,E0) := ¬(∃e1, . . . , ek)((ei < E0)(1 ≤ i ≤ k) ∧ ei , ej(1 ≤ i < j ≤ k)

∧ (∃Ei)(e0 ∈ Ei ∧ Ei ⊆ E0 ∧ Detour(ei ,Ei))(1 ≤ i ≤ k)).

Obviously,stc(G) ≤ k if and only if G |= (∃E0)(SpnTree(E0) ∧ (∀e0 ∈ E0)(Congk(e0,E0))). �

We can show that the treewidth of a graph of bounded degree is linear in its spanning tree
congestion.

Lemma 5.2. For any connected graph G, tw(G) ≤ max{stc(G),∆(G)(stc(G) − 1)/2}. Moreover,
this bound is tight.

Proof. Let k = stc(G) andd = ∆(G). Let T be a spanning tree ofG such thatcngG(T) = k.
Let T′ be obtained fromT by subdividing each edge. We use a tree decomposition withT′ as

tree. To each node ofT′, we associate the following bag. If the node is a vertexv ∈ V(G), then put
v in the bag. If the node is an edge{v,w} ∈ E(G) (i.e., the node is obtained by the subdivision of
{v,w}), putv andw in the bag. Then, for every edge{v,w} < E(T) select (arbitrarily) one endpoint,
sayv, and addv to all bags on the path from the bag ofv till the bag ofw except the bag ofw. This
is easily seen to be a tree decomposition.

6

Now, the size of a bag that corresponds to a subdivided edge{v,w} from T is at mostk + 1:
two for thev andw, and then at mostk − 1 other edges that count for the congestion of the edge
give each one vertex. Consider now a vertexv. Each edge not onT whose detour usesv as
intermediate vertex counts for the congestion of two of the edges incident tov in the spanning tree.
For each incident edge ofv, there are at mostk− 1 edges not on the spanning tree that count for its
congestion. So, there are at mostd(k − 1)/2 such edges. Thus, the size of a bag that corresponds
to a vertex is at mostd(k− 1)/2+ 1; one vertex for each edge, and then one forv itself.

Observe that this bound is tight on cycles, which have degree, spanning tree congestion, and
treewidth all equal to two. Furthermore, any upper bound must depend at least linearly on the
spanning tree congestion. It is known thatn×n grids have bounded maximum degree, treewidthn,
and spanning tree congestionn [16, 6]. Finally, any upper bound must also depend at least linearly
on the maximum degree. Grohe and Marx [13] show that a graph family based on expanders exists
in which each member has degree at most three and treewidth linear in the number of vertices of
the graph.

Proposition 5.3. Let G be a graph and let G′ be obtained from G by adding a vertex v adjacent to
each vertex of G. Then tw(G) ≤ tw(G′) ≤ tw(G) + 1 and stc(G′) ≤ ∆(G) + 1.

Proof. By addingv to each bag of a tree decomposition,tw(G′) ≤ tw(G) + 1. As G is a minor
of G′, tw(G) ≤ tw(G′). A spanning tree isomorphic toK1,|V(G)| with v at its center has congestion
∆(G) + 1. �

Using the above proposition and the family of Grohe and Marx,we obtain a family of graphs
with treewidth and maximum degree linear in the number of vertices of the graph and spanning
tree congestion at most four. These facts give strong evidence for the tightness of our bound. �

The upper bound improves on an earlier bound by Kozawa, Otachi, and Yamazaki [17]. Com-
bining the above facts, we can obtain the main result of this section.

Theorem 5.4. For graphs of bounded degree, k-STC can be solved in linear time.

Proof. Let G be a graph of bounded degree and∆(G) = d. Sincek andd are constants, we can
check whethertw(G) ≤ max{k, d(k − 1)/2} in linear time by Bodlaender’s algorithm [2]. If the
output of the algorithm is “no,” thenstc(G) > k from Lemma 5.2. Otherwise,G has bounded
treewidth. Hence, from Theorem 5.1, we can determine whether stc(G) ≤ k in linear time. �

6 Weighted k-STC is NP-complete for k ≥ 10

In this section, we prove the following hardness result.

Theorem 6.1. For any fixed k≥ 10, k-STC is NP-complete for edge weighted graphs.

Clearly, the problem belongs to NP. To show NP-completeness, we present a reduction from
(3, B2)-SAT. The problem (3, B2)-SAT is a restricted versionof the 3-SAT problem, which is a
well-known NP-complete problem [12]. An instance (U,C) of (3, B2)-SAT consists of a setU

7

of n distinct Boolean variables and a collectionC of m clauses such that each clause has exactly
three literals, and each literal occurs exactly twice. Berman, Karpinski, and Scott [1] showed the
NP-completeness of (3, B2)-SAT. In their construction of a hard instance of (3, B2)-SAT, every
clause has exactly three variables, that is, there is no clause like (u, u, ∗), (ū, ū, ∗), or (u, ū, ∗). Thus,
in what follows, we assume that instances of (3, B2)-SAT satisfy this condition as well.

The constructions in our proof are inspired by the proof of Cai and Corneil [5] for the NP-
completeness of the Weighted Tree Spanners problem. Letk ≥ 10 be a fixed integer. For an
arbitrary instance (U,C) of (3, B2)-SAT, we construct an edge weighted graphGC such thatC is
satisfiable if and only ifstc(GC) ≤ k. Let a = ⌈k/2⌉ + 1 andb = ⌊k/2⌋ − 3. Each edge inGC has
a weight which will be eithera, b, or 1. For example, ifk = 10, then the weight of an edge is six,
two, or one. Clearly, the following proposition holds.

Proposition 6.2. For k ≥ 10, a+ b+ 2 = k, 2b+ 6 ≤ k, 2a > k, 6b > k, and4b+ 4 > k.

From an instance (U,C) of (3, B2)-SAT, the graphGC is constructed as follows (see Figure 1):

1. Take a vertexx, literal vertices ui andūi for each variableui ∈ U, andclause vertices ci for
each clauseci ∈ C.

2. Connectx to all literal vertices byliteral edgesof weightb.

3. For each variableui ∈ U, create a path of length two betweenui andūi such that edges in the
path, which are calledbridge edges, have weighta and the center vertex of the path is a new
vertexyi.

4. For each clauseci = {lp, lq, lr} ∈ C, connect the clause vertexci to the literal verticeslp, lq,
andlr by clause edgesof unit weight.

Clearly, the above construction can be done in polynomial time.

x

ui ūi

yi

b b

a a

(a) Variable

ci = {up, ūq, ūr}

up ūq ūr

1 1 1

(b) Clause

x

c1 = {u1, ū2, u3} c2 = {u1, u2, ū3}

ū2
y2y1

ū1u1 u2 u3 ū3
y3

c3 = {ū1, ū2, u3} c4 = {ū1, u2, ū3}

(c) GC with C = {{u1, ū2, u3}, {u1, u2, ū3}, {ū1, ū2, u3}, {ū1, u2, ū3}}.

Figure 1: Gadgets, and a constructed graph.

Now, we show the following useful properties of a spanning tree ofGC with small congestion.

Lemma 6.3. Let T be a spanning tree of GC. If cngGC
(T) ≤ k, then

8

1. All bridge edges are contained in T;

2. Each clause vertex is a leaf of T ;

3. For each variable, exactly one of its two literal edges is contained in T.

Proof of the first property.Sinceyi has degree two, at least one of{ui, yi} and{ūi , yi} must be inT.
If {ūi, yi} is not in T, thencngGC,T({ui, yi}) = w(θ({yi})) = 2a > k. The other case is almost the
same. �

Proof of the second property.AssumeT has the first property. By way of contradiction, suppose
some clause vertexci = {lp, lq, lr} has degree larger than one inT. Let up, uq, ur be the variables
corresponding to the literalslp, lq, lr , respectively. We divide the proof into two cases depending
on the degree ofci in T. Recall that all bridge edges are inT from the first property.

Case 1:degT(ci) = 3. The three neighbors ofci in T are lp, lq, and lr . Let e be the unique
literal edge in the uniqueci–x path inT. Then,e separates{x} and {up, ūp, uq, ūq, ur , ūr}. Thus,
cngGC,T(e) ≥ w(E({x}, {up, ūp, uq, ūq, ur , ūr})) = 6b > k.

Case 2:degT(ci) = 2. Without loss of generality, we assume that the two neighbors of ci in T
arelp andlq. Then, at most one of the literal edges ofup anduq can be inT. From the above case,
we can assume that no clause vertex has degree three inT.

First, assume that none of the literal edges ofup and uq are in T. Let e = {x, ls} be the
unique literal edge in the uniqueci–x path inT. Then, ls < {up, ūp, uq, ūq}, ande separates{x}
and{up, ūp, uq, ūq, us, ūs}. Thus,cngGC,T(e) ≥ 6b > k.

Next, assume that one of the literal edges ofup anduq, saye, is in T (see Figure 2). Let us
consider the clause vertices adjacent to at least one of the literal verticesup, ūp, uq, andūq in GC. If
a clause vertexcz (, ci) is adjacent to two vertices in{up, ūp, uq, ūq} in T, thenT has a cycle. Hence,
if cz , ci has degree two inT, and one of the two neighbors ofcz is in {up, ūp, uq, ūq}, then another
neighbor, sayls, is not in {up, ūp, uq, ūq}. In such a case,e separates{x} and{up, ūp, uq, ūq, us, ūs},
and thus,cngGC,T(e) ≥ 6b > k (see Figure 2(a)). Therefore, every clause vertex (except for ci) that
has at least one of{up, ūp, uq, ūq} as a neighbor inT is a leaf ofT. Let C1 be the set of such leaf
clauses. Since every clause has exactly three variables, each c ∈ C1 has at most two neighbors in
{up, ūp, uq, ūq} in GC. Hence,cngGC,T(e) = w(θ({up, ūp, uq, ūq} ∪ {ci} ∪ C1)) ≥ 4b + |C1| + 1 (see
Figure 2(b)). SincecngGC

(T) ≤ k < 4b + 4, we can conclude that|C1| ≤ 2. It is easy to see that
cngGC,T(e) ≥ 4b+ 5 > k if |C1| ≤ 2 (see Figure 3). �

Proof of the third property.AssumeT has the first and the second properties. SinceT is a tree and
contains all bridge edges, at most one of{x, ui} and{x, ūi} can be inT for eachui ∈ U. Suppose
T contains none of them. Since any clause vertex is a leaf ofT, there is no path betweenui and
x. �

The next two lemmas show thatC is satisfiable if and only ifstc(GC) ≤ k, thus proving Theo-
rem 6.1.

Lemma 6.4. If stc(GC) ≤ k then C is satisfiable.

9

x

ci = {lp, lq, lr}

lp

lq

b

b
b b

b

b

ls

(a) Another clause vertex of degree two.

x

b b

lq

b b

lp

ci ...C1

1

cng
G,T

({x, lp}) ≥ 4b + |C1| + 1

1 1 1

(b) No other clause vertex of
degree two.

Figure 2: A clause vertexci of degree two.

Proof. Let T be a spanning tree ofGC such thatcngGC
(T) ≤ k. From Lemma 6.3, (1)T contains

all bridge edges, (2)T contains exactly one literal edge for each variable, and (3)every clause
vertex is a leaf ofT. From the second property, we can define a truth assignmentξT by setting
ξT(ui) = true if {x, ui} ∈ E(T) andξT(ui) = false if {x, ūi} ∈ E(T). We show thatξT satisfiesC.
It suffices to show that for everycj ∈ C, the unique neighborl i of cj is adjacent tox. If l i is not
adjacent tox, thencngGC,T({l i, yi}) ≥ a+ b+ 3 > k (see Figure 4). This contradictscngGC

(T) ≤ k.
�

Lemma 6.5. If C is satisfiable then stc(GC) ≤ k.

Proof. Let ξ be a satisfying truth assignment forC. We say that a literal vertexl i is atrue vertexif
l i becomestrue by the assignmentξ. We construct a spanning treeT of GC as follows:

1. Take all bridge edges.

2. Take all literal edges incident to true vertices.

3. For each clause, take an arbitrary clause edge incident with a true vertex.

Clearly,T is a spanning tree ofGC. We show thatcngGC
(T) ≤ k.

Let ui ∈ U. Without loss of generality, we assume that{x, ui} ∈ E(T). ThenT contains edges
{x, ui} and{ui, yi}, {ūi, yi}. From the construction ofT, T may contain any clause edge incident with
ui, but cannot contain any clause edge incident with ¯ui. See Figure 5. Clearly, the edge{ui, yi}

and {ūi, yi} have the same congestion, andcngGC,T({ūi, yi}) = w(θ({ūi})) = a + b + 2 = k. If a
clause edge incident withui is contained inT, then the edge has congestion 3≤ k. Obviously,
cngGC,T({x, ui}) = w(θ({ui , ūi} ∪ NT(ui) \ {x})) ≤ 2b+ 6 ≤ k (see Figure 5). �

10

x

b b b b

lp

ci

1

lq

1 1 1 1 1 1

(a) |C1| = 0.

x

b b

lq

b b

lp

ci

1

C1

1 1 1 1 1

(b) |C1| = 1.

x

b b

lq

b b

lp

ci C1

1 1 1 1 1

(c) |C1| = 2.

Figure 3: The cases of|C1| ≤ 2.

yi

x

b

a

cj

x

li l̄i

yi

b

a

cj

11

1

1 1 1 1

li l̄i

Figure 4: Unsatisfied clauses.

7 Unweighted k-STC is NP-complete for k ≥ 10

Extending the result in the previous section, we prove the main theorem of the paper, that is,
NP-completeness ofk-STC for unweighted graphs. We need the following two lemmas.

Lemma 7.1. An edge e of weight w∈ Z+ can be replaced by w parallel edges of unit weight
without changing the spanning tree congestion.

Proof. Let G be an edge weighted graph, ande = {u, v} ∈ E(G) be an edge of integral weight
w ≥ 2. We denote byG′ the graph obtained fromG by the deletion ofe and the addition ofw
parallel edgese1, . . . , ew of unit weight betweenu andv. Clearly, any spanning tree ofG′ contains
at most one ofe1, . . . , ew. Without loss of generality, we assume for any spanning treeT′ of G′,
T′ may contain onlye1 from {e1, . . . , ew}. By this assumption, we have a bijective correspondence
between the spanning trees ofG and the spanning trees ofG′; we simply identifyeande1.

Let T be a spanning tree ofG, and T′ the corresponding spanning tree ofG′. Let PT =

{(Af , Bf) | f ∈ E(T)} andPT′ = {(Af , Bf) | f ∈ E(T′)} denote the set of the partitions ofV(G)

11

x

ui ūi

yi

b b

a a

1 111

x

ui ūi

yi

b b

a a

1 11

11

x

ui ūi

yi

b b

a a

1 1

1111

Figure 5: A spanning tree of congestion at mostk.

defined by edges inT and T′, respectively. It is not difficult to see thatPT = PT′. From the
definition, cngG(T) = max(A,B)∈PT w(EG(A, B)) andcngG′(T

′) = max(A,B)∈PT′
w(EG′(A, B)). If e is

not betweenA andB, thenw(EG(A, B)) = w(EG′(A, B)). Otherwise,EG(A, B) \ {e} = EG′(A, B) \
{e1, . . . , ew}, and thus,

w(EG(A, B)) = w(EG(A, B) \ {e}) + w(e) = w(EG(A, B) \ {e}) + w

= w(EG′(A, B) \ {e1, . . . , ew}) + |{e1, . . . , ew}| = w(EG′(A, B)).

Therefore,cngG(T) = cngG′(T
′), and hence,stc(G) = stc(G′). �

Lemma 7.2. Edge subdivisions do not change the spanning tree congestion of unweighted graphs.

Proof. Let G be a graph without edge weights, ande = {u, v} ∈ E(G). We denote byG′ the graph
obtained fromG by the deletion ofe, and the additions of a vertexw and two edgee1 = {u,w} and
e2 = {w, v}. Clearly, any spanning tree ofG′ contains at least one ofe1 ande2. Without loss of
generality, we assume for any spanning treeT′ of G′, e2 ∈ E(T′). By this assumption, we have a
bijective correspondence between the spanning trees ofG and the spanning trees ofG′; we identify
eande1, and ignoree2.

If stc(G) = 1, thenG is a tree. Clearly,G′ is also tree. This impliesstc(G) = stc(G′) = 1. Now
assume thatstc(G) ≥ 2. Let T be a spanning tree ofG, andT′ the corresponding spanning tree
of G′. Clearly, if e1 ∈ E(T′) thencngG′,T′(e1) = cngG′,T′(e2); otherwisecngG′,T′(e2) = |θ({w})| =
2 ≤ stc(G) ≤ cngG(T). It is easy to see thatcngG,T(e) = cngG′,T′(e1) if e ∈ E(T), andcngG,T(f) =
cngG′,T′(f) for any E(T) \ {e} = E(T′) \ {e1, e2}. Therefore,cngG(T) = cngG′(T

′), and hence,
stc(G) = stc(G′). �

Combining the above two lemmas, we can conclude that an edge{u, v} of weight w can be
replace byw internally disjointu–v paths of length two that consist of unweighted edges, without
changing the spanning tree congestion. It is easy to see thatthis replacement can be done inO(w)
time. Thus, we have the following corollary.

Corollary 7.3. Let G be an edge weighted graph such that the weight of every edge of G is a
positive integer, and the maximum weight of the edges is w. Then G can be transformed into
unweighted simple graph G′ in O(w · |E(G)|) time, such that stc(G) = stc(G′).

12

Now, we prove the main theorem of the paper.

Theorem 7.4. For any fixed k≥ 10, k-STC is NP-complete for simple unweighted graphs that have
only one vertex of unbounded degree.

Proof. Let (U,C) be an instance of (3, B2)-SAT, andGC the corresponding graph constructed in
the previous section. From Corollary 7.3, we can construct asimple unweighted graphG′C in
polynomial time such thatstc(G′C) = stc(GC). Clearly,stc(G′C) ≤ k if and only if C is satisfiable.

We show that the vertices other thanx have bounded degree. The new vertices added by
subdivisions have degree two. Clause vertices have degree three inGC. Since clause vertices are
only incident to unit weight edges, they have degree three inG′C. Since everyyi is incident to two
bridge edges of weighta = ⌈k/2⌉+ 1, yi has degree 2a ≤ k+ 3 in G′C. Literal vertexl i is incident to
two clause edges, one bridge edge, and one literal edge that have weight one,a, andb = ⌊k/2⌋ − 3,
respectively. Thus,degG′C

(l i) = a+ b + 2 = k. Hence, the maximum degree ofG′C is bounded by
k+ 3, which is a constant. �

8 Concluding remarks

We have proved that for fixedk, the problem of determining whether the spanning tree conges-
tion of a given graph is at mostk is solvable in linear time for planar graphs, graphs of bounded
treewidth, and graphs of bounded degree. We also show that the problem can be solved in linear
time for any graph if 1≤ k ≤ 3. On the other hand, we show that if the input graph has one
vertex of unbounded degree, then the problem becomes NP-complete fork ≥ 10. The complexity
of k-STC remains open for 4≤ k ≤ 9.

Since the problem is hard in general, an approximation algorithm with good approximation
ratio is required. We say that a polynomial time algorithm for spanning tree congestion is ac1-
approximation algorithm for positive numberc1 if there is a positive integerc2 such that for any
input graphG, the outputk of the algorithm satisfiesk ≤ c1 · stc(G) + c2. Using NP-hardness of
10-STC, the following constant lower bound on the approximation ratio can be shown.

Theorem 8.1. There is no polynomial time c1-approximation algorithm for the spanning tree con-
gestion of simple unweighted graphs such that c1 < 11/10, unless P= NP.

Proof. Suppose there is a polynomial timec1-approximation algorithmA for the spanning tree
congestion of simple unweighted graphs withc1 < 11/10. Letc2 be the constant additive ofA,
that is, the outputA(G) of A for any graphG satisfiesA(G) ≤ c1 · stc(G) + c2. Let t be the smallest
positive integer that satisfies (11/10− c1) · t > c2.

Let (U,C) be an instance of (3, B2)-SAT, andGC the corresponding graph constructed in Sec-
tion 6, wherek = 10. ByG′C, we denote the graph obtained fromGC by setting the edge weight as
wG′C

(e) = t ·wGC(e). Clearly,stc(G′C) = t · stc(GC). Thus, ifC is satisfiable, thenstc(G′C) ≤ 10t; oth-
erwisestc(G′C) ≥ 11t. LetG′′C be the simple unweighted graph obtained fromG′C by Corollary 7.3.
Hence,stc(G′′C) = stc(G′C) = t · stc(GC).

Claim 8.2. A(G′′C) < 11t if and only if stc(GC) ≤ 10.

13

Proof. First, assume thatA(G′′C) < 11t. Thent · stc(GC) = stc(G′′C) ≤ A(G′′C) < 11t. Thus, we have
stc(GC) < 11, which impliesstc(GC) ≤ 10. Next, assume thatstc(GC) ≤ 10. Then

A(G′′C) ≤ c1 · stc(G′′C) + c2 = c1 · t · stc(GC) + c2

= 11/10 · t · stc(GC) − (11/10− c1) · t · stc(GC) + c2.

Sincestc(GC) ≤ 10 and (11/10− c1) · t > c2, we haveA(G′′C) < 11t − c2(stc(GC) − 1) ≤ 11t. �

From the above claim, we can useA as a polynomial time algorithm for (3, B2)-SAT. As (3,
B2)-SAT is NP-hard, such an algorithm cannot exist unless P= NP. �

We also considered the complexity of STC ork-STC on some restricted graph classes. It
is known that the tree spanner problem is NP-hard for chordalgraphs [3] and chordal bipartite
graphs [4]. It would be interesting to determine the complexity of STC ork-STC for these graph
classes.

References

[1] P. Berman, M. Karpinski, A. D. Scott, Approximation hardness of short symmetric instances
of MAX-3SAT, ECCC TR03-049 (2003).

[2] H. L. Bodlaender, A linear-time algorithm for finding tree-decompositions of small treewidth,
SIAM J. Comput. 25 (1996) 1305–1317.

[3] A. Brandstädt, F. F. Dragan, H.-O. Le, V. B. Le, Tree spanners on chordal graphs: complexity
and algorithms, Theoret. Comput. Sci. 310 (2004) 329–354.

[4] A. Brandstädt, F. F. Dragan, H.-O. Le, V. B. Le, R. Uehara, Tree spanners for bipartite graphs
and probe interval graphs, Algorithmica 47 (2007) 27–51.

[5] L. Cai, D. G. Corneil, Tree spanners, SIAM J. Discrete Math. 8 (1995) 359–387.

[6] A. Castejón, M. I. Ostrovskii, Minimum congestion spanning trees of grids and discrete
toruses, Discuss. Math. Graph Theory 29 (2009) 511–519.

[7] T. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to Algorithms, 3rd ed., MIT
Press, 2009.

[8] B. Courcelle, The monadic second-order logic of graphs III: Tree-decompositions, minor and
complexity issues, Theor. Inform. Appl. 26 (1992) 257–286.

[9] R. Diestel, Graph Theory, 3rd ed., Springer-Verlag, 2005.

[10] F. F. Dragan, F. V. Fomin, P. A. Golovach, Spanners in sparse graphs, in: ICALP 2008, vol.
5125 of Lecture Notes in Comput. Sci., pp. 597–608, Springer-Verlag, 2008.

14

[11] S. P. Fekete, J. Kremer, Tree spanners in planar graphs,Discrete Appl. Math. 108 (2001)
85–103.

[12] M. Garey, D. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

[13] M. Grohe, D. Marx, On tree width, bramble size, and expansion, J. Combin. Theory Ser. B
99 (2009) 218–228.

[14] P. Hliněný, S. Oum, D. Seese, G. Gottlob, Width parameters beyond tree-width and their
applications, Comput. J. 51 (2008) 326–362.

[15] J. Hopcroft, R. Tarjan, Efficient planarity testing, J. ACM 21 (1974) 549–568.

[16] S. W. Hruska, On tree congestion of graphs, Discrete Math. 308 (2008) 1801–1809.

[17] K. Kozawa, Y. Otachi, K. Yamazaki, On spanning tree congestion of graphs, Discrete Math.
309 (2009) 4215–4224.

[18] H.-F. Law, Spanning tree congestion of the hypercube, Discrete Math. 309 (2009) 6644–6648.

[19] E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Rinehart and Winston,
1976.

[20] C. Löwenstein, D. Rautenbach, F. Regen, On spanning tree congestion, Discrete Math. 309
(2009) 4653–4655.

[21] M. I. Ostrovskii, Minimal congestion trees, Discrete Math. 285 (2004) 219–226.

[22] M. I. Ostrovskii, Minimum congestion spanning trees inplanar graphs, Discrete Math. 310
(2010) 1204–1209.

[23] A. Raspaud, O. Sýkora, I. Vrťo, Congestion and dilation, similarities and differences: A sur-
vey, in: 7th International Colloquium on Structural Information and Communication Com-
plexity, SIROCCO, pp. 269–280, Carleton Scientific, 2000.

[24] N. Robertson, P. D. Seymour, Graph minors. X. Obstructions to tree-decomposition, J. Com-
bin. Theory Ser. B 52 (1991) 153–190.

[25] S. Simonson, A variation on the min cut linear arrangement problem, Math. Syst. Theory 20
(1987) 235–252.

15

