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Abstract

A graph G is a support for a hypergraph H = (V,8) if the vertices of G correspond to the vertices
of H such that for each hyperedge S; € S the subgraph of G induced by S; is connected. G
is a planar support if it is a support and planar. Johnson and Pollak [9] proved that it is NP-
complete to decide if a given hypergraph has a planar support. In contrast, there are polynomial
time algorithms to test whether a given hypergraph has a planar support that is a path, cycle, or
tree. In this paper we present an algorithm which tests in polynomial time if a given hypergraph
has a planar support that is a tree where the maximal degree of each vertex is bounded. Our
algorithm is constructive and computes a support if it exists. Furthermore, we prove that it is
already NP-hard to decide if a hypergraph has a 2-outerplanar support.

1 Introduction

A hypergraph H = (V,S) is a generalization of a graph, where V is a set of elements or vertices
and S is a set of non-empty subsets of V', called hyperedges [3]. The set S of hyperedges is a subset
of the powerset of V. Hypergraphs are not as common as graphs, but there are several application
areas were they occur. For example, there is a natural correspondence between hypergraphs and
database schemata in relational databases, with vertices corresponding to attributes and hyperedges
to relations (e.g., see [2]). Further applications include VLSI design [13], computational biology [12],
and social networks [5].

There is no single “standard” method of drawing hypergraphs, comparable to the point-and-arc
drawings for graphs. In this paper we focus on a set of decision problems which are motivated by
subdivision drawings of hypergraphs as proposed by Kaufmann et al. [10]. In a subdivision drawing
each vertex corresponds uniquely to a face of a planar subdivision and, for each hyperedge, the union
of the faces corresponding to the vertices incident to that hyperedge is connected. For example,
vertex-based Venn diagrams [9] and concrete Euler diagrams [7] are both subdivision drawings.

A graph G is a support for a hypergraph H = (V,S)
if the vertices of G correspond to the vertices of H
such that for each hyperedge S; € S the subgraph of
G induced by S; is connected (see Fig. 1). We say that
S; is connected in G. G is a planar support if it is a
support and planar. Intuitively, a planar support is a Figure 1: Tree support for H = (V,S)
subgraph of the dual graph of a subdivision drawing  ith vV = {1,...,9} and S = {(2,3,4,5),
of H. Subdivisions and their dual graphs have been (1,3,4,6,7),(6,7,8,9)}.
studied extensively and there are several methods that
can turn a planar support into a dual subdivision. Hence we focus on finding planar supports for
hypergraphs which can then easily be turned into subdivision drawings.

Johnson and Pollak [9] proved that it is NP-complete to decide if a given hypergraph has a planar
support. In contrast, there are polynomial time algorithms that decide whether a given hypergraph
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2 2 Path, Cycle, and Tree Supports

has a planar support that is either a path, a cycle, or a tree. We discuss these results in some detail
in Section 2. Path or cycle supports naturally lend themselves to the creation of pleasing and easily
readable subdivision drawings which are simple and, in the case of path supports, compact [10].
However, not many hypergraphs admit a path or a cycle support. Tree supports, on the other
hand, can have vertices of arbitrarily high degree and hence may not result in easily interpretable
subdivision drawings. Therefore we consider tree supports of bounded vertex tree. For example, a
binary tree support can be interpreted as the dual graph of a triangulation of a (convex) polygon
and as such can be used to create a simple and compact subdivision drawing where each face of
the subdivision is a triangle. In Section 3 we give an O(kn?) time constructive algorithm based on
a flow formulation that solves the following decision problem: given a hypergraph H together with
degrees d; for each element 7 of the base set, is there a tree support for H such that each vertex ¢
of the tree has degree at most d;? Additionally, in Section 4 we strengthen the result by Johnson
and Pollak by proving that it is even NP-complete to decide if a hypergraph has a 2-outerplanar
support. Our construction also gives a much simpler proof of Johnson and Pollak’s original result.

Notation and Definitions. Our input is a hypergraph H = (V,S) with n vertices and k hyper-
edges. The total size of the input is N := ). |S;|. We interpret H as a set system S = {S1,..., Sk}
on a base set V= {1,...,n} of n elements. Two elements h and j of V are equivalent with respect
to S if every set S; € S contains either none or both of h and j. To simplify the discussion we
assume that no two elements of V are equivalent. We also assume that each element of the base
set occurs in at least one set (hence N > n) and that the elements within each set are sorted. The
vertices of a planar support GG correspond to the elements of V. We often directly identify a vertex
with “its” element and use the same name to refer to both. Furthermore, for each hypergraph
H = (V,8) we consider a graph G(H) on V. Two elements v and v of V' are connected by an edge
in G(H) if there is a hyperedge S; € S that contains both u and v. We define the connected compo-
nents of H as the connected components of G(H). Finally, a graph G is k-outerplanar if for k = 1,
G is outerplanar and for k£ > 1, G has a planar embedding such that if all vertices on the exterior
face are deleted, the connected components of the remaining graph are all (k — 1)-outerplanar.

2 Path, Cycle, and Tree Supports

In this section we summarize previous work on path, cycle and tree supports. For all three classes
of graphs one can decide whether a given hypergraph has such a support in linear time.

Path support. Korach and Stern [11] observed that the decision problem for path supports is
equivalent to finding a permutation 7 of {1,...,n} such that, for every set S;, the elements of S;
are consecutive in 7. This problem in turn is directly related to the consecutive ones property: a
matrix of zeroes and ones is said to have the consecutive ones property if there is a permutation
of its columns such that the ones in each row appear consecutively. Let M be a matrix with n
columns and m rows such that entry (4,5) is 1 if j € S;, and 0 otherwise. H has a path support
if and only if M has the consecutive ones property (see Fig. 2). There are algorithms [4, 8] that
can test the consecutive ones property and produce a corresponding permutation in O(m +n +r)
time, where m x n is the size of M, and r is the number of ones in M. Hence a path support for a
given hypergraph can be found in O(N) time.

123456 413625

101101\ {1,3,4,6} 111100\ 4 1 3 6 2 5
010011 | {2,5,6} —— 000111 | -coooeeeeee-
111001 | {1,2,3,6} 011110 T
011001/ {2,3,6} 001110/ -

Figure 2: Finding a path support via the consecutive ones property.
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Cycle support. Finding a cycle support for a hypergraph H can be reduced to finding a path
support for an auxiliary hypergraph H’. For a cycle support, a set S; is connected if and only if
its complement S¢ is connected. For some j € V, let H' be the hypergraph obtained by replacing
the sets S; for which j € S; with S¢. As no set of H’' contains j, H has a cycle support if and only
if H has a path support. By choosing j as the element that occurs in the minimum number of
sets, one can reduce the problem of finding a cycle support for H to finding a path support for a
hypergraph H' of size O(N). This can be found in O(N) time as described above. Finding a cycle
support is also directly related to testing matrices for the circular ones property [16].

Tree support. Johnson and Pollak [9] argued that one can efficiently decide whether a hypergraph
has a tree support by considering its dual. The dual of a hypergraph H = (V,S) is the hypergraph
H*, such that each hyperedge of H corresponds to a vertex of H*, and each vertex v € V of H
corresponds to a hyperedge of H* that contains all hyperedges of H (vertices of H*) that contain
v. The dual of a hypergraph with a tree support is an acyclic hypergraph [2], and acyclicity can
be tested in linear time [15].

Korach and Stern [11] considered the following generalization of finding a tree support: assume
that for a hypergraph H a real weight is given for every pair of different numbers in the vertex set
V, i.e., for each potential edge in the tree. They showed that the tree support with minimum total
edge weight (if it exists), can be found in polynomial time.

3 Bounded-Degree Tree Supports

We describe an algorithm that solves the following decision problem: given a hypergraph H = (V,S)

together with degrees d; for each element i of the base set V, is there a tree support for H such

that each vertex ¢ of the tree has degree at most d;? Our algorithm is constructive and computes

a support if it exists. To simplify the discussion we assume that V € S. This enforces that any

support is connected and does not influence the outcome of the decision problem.

To construct a bounded-degree tree support we need to know our

choices when connecting vertices. Consider the sets S; = {1,2,3} | T 4\ /1

and Sy = {2,3,4}, all tree supports are shown in Fig. 3. Each 39 9 9

support has an edge connecting 2 to 3, but 1 and 4 can be connected | ‘

to either 2 or 3. So it appears that the intersection {2,3} of S; and 3 9 3 3

Se must be connected in any tree support. Korach and Stern proved | ‘ / \

this observation in [11], for completeness we include a short proof. 4 1 4 1
Figure 3: All tree supports.

Observation 1 The intersection AN B of two sets A, B € S must
be connected in every tree support.

Proof. Since ANB is always connected if it contains zero or one elements, we assume that |ANB| >
2. Let T be a tree support for H. So A and B are both connected in T'. Let x € ANB and y € ANB.
Since A is connected in T, there is a path in T from x to y using only vertices from A. Also there
is a path in T from x to y using only vertices from B. Since paths in trees are unique it follows all
vertices on the path from x to y are in AN B. So AN B is connected in 7. O

Let &* denote the set of all possible sets that can be obtained by intersecting any number of sets
from S. Clearly &* is closed under intersection and S C S§*. Observation 1 implies that H has a
(bounded-degree) tree support if and only if H* = (V,8*) does. We now define the intersection
structure I as follows. Z is a directed acyclic graph whose vertices are the sets in §*. 7 has a
directed edge (51, S2) if and only if S; C Sy and for no set S3 € S*, we have S; C S3 C Sy. That is,
edges are directed from smaller to larger sets and represent direct containment—Z does not contain
transitive edges (see Fig. 4 (left)).
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Figure 4: The intersection structure for {{1,2,3,4},{2,3,4,5},{4,5,6,7},{2,3,4,7}} (with the
demands next to the sets) and the corresponding connectivity structure.

The minimum number of edges of any support of a hypergraph H can be deduced directly from
its intersection structure. Let B and Aj,..., A} be vertices of Z such that (4;,B), 1 < j < h,
are incoming edges of B in 7 and there are no further incoming edges of B. We call the sets A;
the children of B, and B is a parent of each A;. Let us assume that the sets A; are connected in
a support G of H and that G has the fewest edges among all supports with that property. Let
¢ be the number of connected components implied by the sets A;, i.e., the number of connected
components of the hypergraph (B,{A;,...,A}). To connect B we need to add at least ¢ — 1
additional edges to G—the demand of B (see Fig. 4 (left)). The sum of the demands of all sets in
S* is the total demand.

Lemma 1 The total demand of the sets in 8* equals the minimum number of edges required for
any support of H.

Proof. By definition, the demand of a set B is the number of edges required to connect B, given
that its children in Z are connected. It remains to argue that no edge of a support G can simul-
taneously connect two sets B and B’. Assume that |B’| < |B|. The statement is obviously true if
BN B ={. If B C B then B’ is part of a single connected component of B and hence no edge
that is used to connect B connects two elements of B’. Finally, if BN B’ = A # (), then, because
S* is closed under intersection, A must be a vertex of Z as well. If an edge e of G is used to connect
simultaneously both B and B’, then e must connect two elements of A. But then e counts towards
the demand of A. O

Recall that we assume that the base set V is an element of S. Then, by Lemma 1, a hypergraph
H has a tree support if and only if the total demand equals n — 1. Z also indicates between which
vertices the edges of a support should be. Consider the example in Fig. 4. The set {4,5,6,7} has
a demand of 1. Since the connected components are {4,5,7} and {6}, the support must contain an
edge between 6 and either 4, 5 or 7.

7 contains all necessary information to answer our decision problem, but it can have exponential
complexity even if H has a tree support. Consider the set S of all but one subsets of size n — 1 of
V ={1,...n}. There must be one element j that is contained in each set of S. The star graph
with j as center is a tree support for H = (V,S). However S* is nearly the complete powerset of V'
and exponential in size. Hence we restrict ourselves to the connectivity structure, a limited version
of the intersection structure for which we prove that it still carries all necessary information.

Connectivity structure. We say that sets with zero demand are implied. We remove all sets
with zero demand from S* and call the resulting set S~. The connectivity structure C is built on
S~ in the same manner as the intersection structure on §* (see Fig. 4 (right)). The demand of a
set in C equals its demand in Z. If H has a tree support then S~ contains at most n — 1 sets. One
can easily construct examples where also in this case C has (n?) edges.
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Figure 5: Incremental construction of the connectivity structure.
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Clearly we do not want to compute S~ and the connectivity structure by first constructing S* and
the intersection structure and pruning sets with zero demand. Instead we incrementally compute
a graph that is the connectivity structure if H has a tree support. Let & = {S,...,S;} with
S1 =V ={1,...n}. We incrementally compute the connectivity structures C; (1 < i < k) for the
sets S1,...,S5;. To compute C;11 from C;, we first compute all intersections between the new set
Si+1 and all sets in C;. We then add those intersections which are not implied to the connectivity
structure, starting with the smallest set by inclusion (see Fig. 5). If as a result any previous sets
become implied, then we remove them. If at any point the total demand exceeds n — 1, then we
directly stop and conclude that the hypergraph has no tree support. We argue in the lemmas below
that this approach is indeed correct.

The graph computed by this incremental construction might conceivably be missing sets since
the intersection of a new set with a (removed) implied set might not be implied itself and hence
should have been included. However, we can argue that for hypergraphs with a tree support this
incremental approach indeed computes the correct connectivity structure (Lemma 2). But, if a
hypergraph has no tree support, then the algorithm computes a total demand greater than n — 1.
Equivalently, if the total demand determined by the algorithm is n — 1, then the hypergraph has a
tree support (Lemma 3).

Lemma 2 The incremental approach described above correctly computes the connectivity struc-
ture C if the hypergraph H has a tree support.

Proof. We could use a similar approach to compute the complete intersection structure. So it
remains to argue that removing implied sets in an intermediate stage does not influence the final
result for hypergraphs with a tree support.

Assume that we have removed an implied set S from C;. Hence there must be sets Aq,..., A, in
C; that imply that S is connected. Note that A; C S for all 1 < j < h. Let S’ be a new set that
is added to C;. We have to argue that S’ N S is 1n1p11ed if H has a tree support. In fact we show
that S’ NS is implied by the sets A} = S’ N A;. Assume for contradiction that this is not the case
and hence the sets A’ form at least two connected components in S’ N S. Because S’ NS must be
connected, these Connected components are directly connected by edges in a tree support. However,
because the sets A; imply the connectedness of S, these connected components are also connected
in a different manner in the tree support, introducing a cycle, which contradicts the assumption
that H has a tree support. Since the total demand of a hypergraph with a tree support is n — 1,
the algorithm does not terminate early for such hypergraphs. O

Lemma 3 If the total demand during the incremental construction is n — 1 then H has a tree
support.

Proof. [by induction] S; = {1,...n} has a demand of n — 1 and clearly has a tree support. Now
assume that the sets Si,...,.5; have a tree support 7. In the inductive step we add the set S;11
to C;, that is, we add the non-implied intersections of S;11 with the sets in C; starting with the
smallest by inclusion. Let S be one of these intersections. After S has been added to C;, it has
exactly one parent P. If it had two or more parents then it would be the non-implied intersection
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of at least two sets in C; and as such already be contained in C;. If S had no parent then its demand
would have to be zero for the total demand not to exceed n — 1. Hence S would be implied.

Let P be the parent of S and let Ay, ..., Ay be the children of P before adding S. Assume that
(P,{A1,...,Ap}) had ¢ connected components before S was added and that S connects x of these
components into one connected component. Then the demand of P becomes ¢ — x. Since the total
demand remains n — 1, the demand of S becomes x — 1. Since all children of S are former children
of P none of the demand of S can be subsumed by its children. Let Bi,..., B, be the connected
components of (P,{A1,...,Ap}) that were connected by S. We change the tree support T as
follows. Disconnect the connected components of P in T'. Let B} =SNBjforl <j<ax Al B;
are connected in 7', because these intersections have already been added. Now use the x — 1 edges
covering the demand of S to connect the B; into a tree. Finally we connect S with the remaining
connected components of (P,{A1,...,Ax}), using the ¢ — x edges covering the demand of P. By
construction the new tree still connects all sets of C;, all intersections already added, and S. O

Lemma 3 directly implies that if H does not have a tree support then the total demand necessarily
exceeds n — 1 at some point during the construction.

Flow formulation. Using the connectivity structure C we can formulate our decision problem
as a flow problem. To simplify matters we add some additional sets to C. Let S be a vertex of
C and let Aj,..., A, be children of S such that A;,..., A, form a (maximal) single connected
component C' of S. We say that C is a connection set (or c-set for short) and add C to C in
between Aq,..., A, and S. By construction all c-sets have zero demand. We also add all singleton
sets. The resulting graph C* is called the augmented connectivity structure. Every set in C* is either
a singleton set, a c-set, or a normal set. Normal sets now have the property that all their children
are disjoint, hence the demand of a normal set is the number of its children minus one. Let cg
be the number of connected components of a set S in C. The number of c-sets we add to C* is
ke <> ges < (n—1)+> g(cs —1) =2n—2. So C* has O(n) vertices as well.

We construct a flow network F from C* as follows. We add a source and connect it to the
singletons with edges whose capacities are the maximal degree of each element; the edge from
the source to {i} has capacity d;. The capacities of the remaining edges are unbounded. Every
incoming edge of a normal set requires at least one unit of flow, so we have a lower bound for the
flow on these edges. The source produces 2n — 2 units of flow which is consumed by the normal
sets, each normal set consumes twice its demand (see Fig. 6 (left)). Intuitively the units of flow
correspond to the degrees of the vertices in the tree support. Consider a normal set S and its
children Aq,...,Ap. Since these children are disjoint in C* we need at least one unit of flow from
each A; to connect S. Also, S has to consume exactly 2h — 2 units of flow.

7 dy
CIDIADIEDIADIAED,

@234[2 @567 123400 “@567[D
123456 7[0 123456 7[0

Figure 6: The original (left) and the new (right) flow network. Thick edges denote a lower bound
on the flow. In the flow networks the production/consumption (left)
or the capacity to the sink (right) is shown instead of the demand.



EN|

On Planar Supports for Hypergraphs

Observation 2 (Tamura and Tamura [14]) For a given degree sequence (d1, ... ,dy) with d; >
1 for all i, a tree exists whose vertices have precisely these degrees if and only if Z?:l dj = 2h — 2.

Lemma 4 Every tree support T that respects the degree bounds corresponds to a feasible flow F'.

Proof. As argued in the proof of Lemma 1 each edge e = {u,v} of T can be mapped uniquely to
a normal set S of C*. Let Ay,..., Ay be the children of S. We have u € A; and v € A; for some
i # j, 1 <i,j5 < h. We choose an arbitrary path from the source to S through {u} and A; and
add a unit of flow to every edge on this path. We do the same for {v} and A;. Repeating this
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