
A Note on Exact Algorithms for
Vertex Ordering Problems on Graphs

Hans L. Bodlaender

Fedor V. Fomin

Arie M.C.A. Koster

Dieter Kratsch

Dimitrios M. Thilikos

Technical Report UU-CS-2009-023

November 2009

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht
The Netherlands

A Note on Exact Algorithms for
Vertex Ordering Problems on Graphs∗

Hans L. Bodlaender† Fedor V. Fomin‡ Arie M.C.A. Koster§

Dieter Kratsch¶ Dimitrios M. Thilikos‖

Abstract

In this note, we give a proof that several vertex ordering problems can be solved
in O∗(2n) time and O∗(2n) space, or in O∗(4n) time and polynomial space. The
algorithms generalize algorithms for the Travelling Salesman Problem by Held
and Karp [12] and Gurevich and Shelah [11]. We survey a number of vertex ordering
problems to which the results apply.

1 Introduction

In this note, we look at exact algorithms with ‘moderately exponential time’ for graph
problems. We show that with relatively simple adaptations of the existing algorithms for
the Travelling Salesman Problem, a large collection of vertex ordering problems can
be solved in O∗(2n) time and O∗(2n) space or in O∗(4n) time and polynomial space. (Here,
the O∗-notation suppresses factors that are polynomial in n.) The algorithms that use
O∗(2n) time and O∗(2n) space employ dynamic programming and have the same structure
as the classical algorithm for TSP by Held and Karp [12]. The algorithms with O∗(4n)

∗This research was partially supported by the project Treewidth and Combinatorial Optimization with
a grant from the Netherlands Organization for Scientific Research NWO and by the Research Council of
Norway and by the DFG research group ”Algorithms, Structure, Randomness” (Grant number GR 883/9-
3, GR 883/9-4). The last author was supported by the project “Kapodistrias” (AΠ 02839/28.07.2008)
of the National and Kapodistrian University of Athens (project code: 70/4/8757). Parts of this paper
appeared earlier in the conclusions section of [2].

†Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. hansb@cs.uu.nl

‡Department of Informatics, University of Bergen, N-5020 Bergen, Norway. fomin@ii.uib.no
§Lehrstuhl II für Mathematik, RWTH Aachen University, Wüllnerstr. zwischen 5 und 7, D-52062

Aachen, Germany. koster@math2.rwth-aachen.de
¶LITA, Université de Metz, F-507045 Metz Cedex 01, France. kratsch@sciences.univ-metz.fr
‖Department of Mathematics, National and Kapodistrian University of Athens, Panepistimioupolis,

GR-15784, Athens, Greece. sedthilk@math.uoa.gr.

1

time and polynomial space are of a recursive nature and follow a technique first used for
TSP by Gurevich and Shelah [11].

This paper is organized as follows. In Section 2, we give some preliminary definitions. A
general theorem that gives for all problems of a specific form an algorithm of the Held-Karp
type is given and proved in Section 3. A similar theorem with proof for Gurevich-Shelah
type algorithms (i.e., with polynomial space) is given in Section 4. Then, in Section 5,
we discuss a number of well known vertex ordering problems on graphs to which these
theorems can be applied. A few final remarks are made in Section 6.

2 Definitions

We assume the reader to be familiar with standard notions from graph theory. Throughout
this paper, n = |V | denotes the number of vertices of graph G = (V, E). For a graph
G = (V, E) and a set of vertices W ⊆ V , the subgraph of G induced by W is the graph
G[W] = (W, {{v, w} ∈ E | v, w ∈ W}).

A linear ordering of a graph G = (V, E) is a bijection π : V → {1, 2, . . . , |V |}. For a
linear ordering π and v ∈ V , we denote by π<,v the set of vertices that appear before v in
the ordering: π<,v = {w ∈ V | π(w) < π(v)}. Likewise, we define π≤,v, π>,v, and π≥,v.

Let Π(S) be the set of all permutations of a set S. So, Π(V) is the set of all linear
orderings of G, and let for disjoint sets S and R, Π(S, R) be the set of all permutations of
S ∪R which start with a permutation of S and end with a permutation of R.

A graph G = (V, E) is chordal, if every cycle in G of length at least four has a chord,
i.e., there is an edge connecting two non-consecutive vertices in the cycle. A triangulation
of a graph G = (V, E) is a graph H = (V, F) that contains G as subgraph (F ⊆ E) and is
chordal.

3 Exact Algorithms with Exponential Space

In this section, we show that a large collection of vertex ordering problems on graphs
can be solved in O∗(2n) time and O∗(2n) space. The technique exploited here is dynamic
programming in the style of the Held-Karp algorithms for the Travelling Salesman
Problem [12].

Theorem 1 Let f be a polynomial time computable function, mapping each 3-tuple, con-
sisting of a graph G = (V, E), a vertex set S ⊆ V , and a vertex v ∈ V to an integer. Then
we can compute in O∗(2n) time and O∗(2n) space the following values for a given graph
G = (V, E):

min
π∈Π(V)

max
v∈V

f(G, π<,v, v)

or
min

π∈Π(V)

∑
v∈V

f(G, π<,v, v).

2

Note that values f(G, S, v) do not depend on the ordering of S. The proof of the
theorem follows the arguments of Held and Karp in [12] and an algorithm of this type for
Treewidth from [3].

Let f be as in the statement of Theorem 1. We first give the algorithm that uses O∗(2n)
time and space to compute minπ∈Π(V) maxv∈V f(G, π<,v, v). Define

AG(S) = min
π∈Π(S)

max
v∈S

f(G, π<,v, v).

We set AG(∅) = −∞. Note that AG(V) is the value to compute.

Lemma 2 Let G = (V, E) be a graph, and S ⊆ V . If S 6= ∅, then

AG(S) = min
w∈S

max{f(G, S, w), AG(S − {w})}

Proof: Suppose AG(S) = maxv∈S f(G, π<,v, v) for π ∈ Π(S), then let w be the vertex on
the last position of π. Now

AG(S) = max
v∈S

f(G, π<,v, v)

= max{f(G, π<w,w, w), max
v∈S−{w}

f(G, π<,v, v)}

= max{f(G, S, w), AG(S − {w})}

This shows that
AG(S) ≤ min

w∈S
max{f(G, S, w), AG(S − {w})}

Suppose max{f(G, S, w), AG(S − {w})} is minimal for w ∈ S, and

AG(S − {w}) = max
v∈S−{w}

f(G, π′
<,v, v)

for a permutation π′ ∈ Π(S − {w}). Let π be the permutation in Π(S), that starts with
π′ and ends with w. Now,

AG(S) ≥ max
v∈S

f(G, π<,v, v)

= max{f(G, π<,w, w), max
v∈S−{w}

f(G, π<,v, v)}

= max{f(G, S, w), max
v∈S−{w}

f(G, π′
<,v, v)}

= max{f(G, S, w), AG(S − {w})}

This shows that
AG(S) ≥ min

w∈S
max{f(G, S, w), AG(S − {w})}

and thus completes the proof of this lemma. ut

3

Algorithm 1 Dynamic-Programming-Algorithm(Graph G = (V, E))

Set A(∅) = −∞.
for i = 1 to n do

for all vertex sets S ⊂ V with |S| = i do
Set A(S) = minw∈S max{f(G, S, w), A(S − {w})}

end for
end for
return A(V)

Lemma 2 directly gives us a method to compute AG(V) by dynamic programming:
we compute all values AG(S) in order of increasing number of elements in S, using the
formulas given by Lemma 2. We then output AG(V). Each single value can be computed
in polynomial time; we need to store and compute 2n values, thus the running time and
the space are O∗(2n). See Algorithm 1.

The computation of minπ∈Π(V)

∑
v∈V f(G, π<,v, v) is similar. We define

BG(S) = min
π∈Π(S)

∑
v∈S

f(G, π<,v, v)

Now, BG(∅) = 0, and, similar to Lemma 2, we have

BG(S) = min
w∈S

f(G, S, w) + BG(S − {w})

The remaining details are similar to the maximization case and left to the reader.
In a practical implementation, several improvements to the scheme of Algorithm 1 can

be made; an algorithmic engineering study for Treewidth has been carried out, see [3].

4 Exact Algorithms with Polynomial Space

In this section, we give a variant of Theorem 1. This variant applies to the same collection
of problems. In contrast with Theorem 1, Theorem 3 uses polynomial space but more (i.e.
O∗(4n)) time. It employs recursion instead of dynamic programming, and has the same
structure as the algorithm for TSP by Gurevich and Shelah [11]. An algorithm of this
type for Treewidth appears in [3].

Theorem 3 Let f be a polynomial time computable function, mapping each 3-tuple, con-
sisting of a graph G = (V, E), a vertex set S ⊆ V , and a vertex v ∈ V to an integer. Then
we can compute in O∗(4n) time and polynomial space the following values for a given graph
G = (V, E):

min
π∈Π(V)

max
v∈V

f(G, π<,v, v)

or
min

π∈Π(V)

∑
v∈V

f(G, π<,v, v)

4

Again, we concentrate on the computation of minπ∈Π(V) maxv∈V f(G, π<,v, v), and leave
the variant where we take instead the sum to the reader.

Define, for a graph G = (V, E), sets of vertices L, S ⊆ V , L ∩ S = ∅, S 6= ∅:

CG(L, S) = min
π∈Π(L,S)

max
v∈S

f(G, π<,v, v)

Note that we want to compute the value CG(∅, V).

Lemma 4 Let G = (V, E) be a graph, and S ⊆ V , L ⊆ V , L ∩ S = ∅.

1. If S = {x}, then CG(S) = f(G, L, x).

2. Suppose |S| ≥ 2 and 1 ≤ k < |S|. Then

CG(L, S) = min
S′⊆S,|S′|=k

max{CG(L, S ′), CG(L ∪ S ′, S − S ′)}

Proof: If S = {x}, then each π ∈ Π(L, S) first has the vertices in L in some ordering and
then x. So π<,x = L, and hence maxv∈S f(G, π<,v, v) = f(G, L, x). Part (1) now directly
follows.

Suppose now that |S| ≥ 2. Consider S ′ ⊆ S with S ′ 6= ∅. Let π′ ∈ Π(L, S ′) fulfill

CG(L, S ′) = max
v∈S′

f(G, π′
<,v, v)

and let π′′ ∈ Π(L ∪ S ′, S − S ′) fulfill

CG(L ∪ S ′, S − S ′) = max
v∈S−S′

f(G, π′
<,v, v)

By definition, π′ and π′′ exist. Define now vertex ordering π ∈ Π(L, S) as follows: first we
start with the vertices in L ∪ S ′ in the same order as they appear in π′, and then take the
vertices in S − S ′ in the same order as they appear in π′′. I.e., we first have the vertices
in L, then the vertices in S ′, and then the vertices in S − S ′. For v ∈ S ′, L ⊆ π<,v = π′

<,v,
and for v ∈ S − S ′, L ∪ S ′ ⊆ π<,v = π′′

<,v.
Now

CG(L, S) ≤ max
v∈S

f(G, π<,v, v)

= max{max
v∈S′

f(G, π′
<,v, v), max

v∈S−S′
f(G, π′′

<,v, v)}

= max{CG(L, S ′), CG(L ∪ S ′, S − S ′)}

As this holds for each S ′ ⊆ S with S ′ 6= ∅, we have

CG(L, S) ≤ min
S′⊆S,|S′|=k

max{CG(L, S ′), CG(L ∪ S ′, S − S ′)}

5

For the other direction, let π ∈ Π(L, S) fulfill

CG(L, S) = max
v∈S

f(G, π<,v, v)

Let S ′ be the set consisting of the k elements in S with minimum index in π, i.e., |S ′| = k
and all elements in S ′ appear before all elements in S − S ′ in π. We have that π ∈
Π(L ∪ S ′, S − S ′). Let π′ ∈ Π(L, S ′) be obtained from π by restricting π to L ∪ S ′. Now

CG(L, S) = max
v∈S

f(G, π<,v, v)

= max{max
v∈S′

f(G, π<,v, v), max
v∈S−S′

f(G, π<,v, v)}

= max{max
v∈S′

f(G, π′
<,v, v), max

v∈S−S′
f(G, π<,v, v)}

≤ max{CG(L, S ′), CG(L ∪ S ′, S − S ′)}

This shows the result. ut

Our algorithm uses recursion, each time employing Lemma 4 with k = b|S|/2c. The
algorithm is given in pseudo-code in Algorithm 2.

Algorithm 2 Recursive(Graph G, vertex set L, vertex set S)

if |S|=1 then
Suppose S = {v}.
return f(G, L, v)

end if
Set opt = ∞.
for all vertex sets S ′ ⊆ S, |S ′| = b|S|/2c do

Compute v1 = Recursive(G, L, S ′);
Compute v2 = Recursive(G, L ∪ S ′, S − S ′);
Set opt = min {opt, max {v1, v2}};

end for
return opt

Correctness of Algorithm 2 follows directly from Lemma 4. The running time can be
estimated as follows. Let T (k) be the number of recursive calls made when Recursive is
called with the third argument S with |S| = k. Clearly, T (1) = 1. If k > 1, then for each
of the

(
k

bk/2c

)
subsets of S of size bk/2c, we have a recursive call with third parameter of

size b|S|/2c and a recursive call with third parameter of size d|S|/2e; and thus we use per
subset S ′ two calls at this level of the recursion, and T (bk/2c) + T (dk/2e) calls deeper in
the recursion tree. So

T (k) ≤
(

k

bk/2c

)
(T (bk/2c) + T (dk/2e) + 2)

It follows that T (k) < 4k. As the time per recursive call is bounded by a polynomial in
n, the total time is bounded by O∗(4n). In most cases, the dynamic programming algorithm

6

from Section 3 is more practical than the recursive algorithm, as already the enumeration
over all subsets of size n/2 is very time consuming, except for very small values of n, but
for such values, the space requirements for the O∗(2n) algorithm can be expected to be
small enough for modern computers.

5 Linear Ordering Problems

There are several problems to which Theorems 1 and 3 can be applied. Several of these will
be discussed below. A good overview paper, discussion several linear ordering problems is
[5]. Relations between treewidth, pathwidth, and other parameters can be found in [1].

5.1 Treewidth

Treewidth is a well studied graph parameter. While treewidth is usually defined in terms
of tree decompositions, it also has a characterization as a vertex ordering problem (see e.g.,
[1, 4]. Using this characterization, in [3] explicit proofs of algorithms as in Theorems 1
and 3 are given for Treewidth. Several improvements on these algorithms were made:
using balanced separators and potential maximal cliques, a polynomial space algorithm
using O((2.9512n) time was given in [3]. This was improved further with a clever method
to list and count the number of potential maximal cliques to O(2.6151n) time by Fomin
and Villanger [8]. Several papers give improved algorithms for Treewidth, if we allow
exponential space. An algorithm with O(1.9601n) time was given in 2004 by Fomin et
al. [6]. This was improved further in [16, 7, 8, 9]; the best running time is given by a recent
paper by Fomin and Villanger, who solve Treewidth in O(1.7347n) time.

5.2 Minimum Fill-in

A problem, related to treewidth, is the Minimum Fill-In problem. Exact algorithms
with exponential space for Minimum Fill-In were obtained by Fomin et al. [6], and later
improved [16, 7, 8, 9]; the currently fastest algorithm uses O(1.7347n) time and space [9].
These algorithms use the same techniques as for Treewidth. The Minimum Fill-In
problem has important applications in Gaussian elimination.

The minimum fill-in of a graph G = (V, E) is the minimum over all triangulations
H = (V, EH) of G of |EH −E|, i.e., the minimum number of edges that, when added to G,
make G chordal.

For a graph G = (V, E), a linear ordering of its vertices π ∈ Π(V), and a vertex v ∈ V ,
let

Rπ(v) = |{w ∈ V | π(w) > π(v) ∧ there is a path from v to w in G[π≤,v ∪ {w}]}|

The following proposition can be shown in the same way as a similar result for
Treewidth in [3].

7

Proposition 5 Let G = (V, E) be a graph, and k a non-negative integer. The minimum
fill-in of G is at most k if and only if there is a linear ordering π of G, such that∑

v∈V

Rπ(v) ≤ k + |E|

While for Treewidth there are polynomial space algorithms that are faster than the
O∗(4n) bound implied by Theorem 3, this remains open for Minimum Fill-In.

5.3 Pathwidth

The pathwidth of a graph is usually defined in terms of path decompositions, but it has
several equivalent characterizations, see e.g., [1] for an overview. Kinnersley [13] showed
that pathwidth can be defined as a vertex ordering problem. We use this characterization
to obtain the exact algorithms.

Definition 6 The vertex separation number of a linear ordering π of G = (V, E) is

max
v∈V

|{w ∈ V | ∃x ∈ V : {w, x} ∈ E ∧ π(w) < π(v) ≤ π(x)}|

The vertex separation number of a graph G is the minimum vertex separation number over
all linear orderings of G.

Theorem 7 (Kinnersley [13]) The vertex separation number of a graph equals its path-
width.

We thus see that the Vertex Separation Number has the shape for which we can
apply Theorems 1 and 3. Very recently, Suchan and Villanger [15] obtained a faster exact
algorithm for Pathwidth, i.e., using O(1.9657n) time and exponential space. It is open
if this can be used for a faster algorithm with polynomial space.

5.4 Minimum Interval Graph Completion

Another problem, related to Pathwidth, which can be solved with Theorems 1 and 3
is the Minimum Interval Graph Completion problem. The Minimum Interval
Graph Completion problem is the following: given a graph G = (V, E), what is the
minimum size of a set of edges, that, when added to G, yield an interval graph. The
problem is known to be equivalent to the Sum Cut problem and the Profile problem,
see for example [5]. In the Sum Cut problem, we look for a linear ordering π which
minimizes ∑

v∈V

|{w ∈ V | ∃x ∈ V : {w, x} ∈ E ∧ π(w) < π(v) ≤ π(x)}|

8

5.5 Cutwidth and Variants

The cutwidth of a linear ordering π of a graph G = (V, E) is

max
v∈V

|{w, x} ∈ E ∧ π(w) ≤ π(v) < π(x)}|

The modified cutwidth of a linear ordering π of a graph G = (V, E) is

max
v∈V

|{w, x} ∈ E ∧ π(w) < π(v) < π(x)}|

The cutwidth (modified cutwidth) of a graph is the minimum cutwidth (modified cutwidth)
of a linear ordering of it. The parameters have variants for directed acyclic graphs. The
cutwidth (modified cutwidth) of a directed acyclic graph G = (V, A) is the minimum
cutwidth (modified cutwidth) of a topological ordering of G; the latter are defined similar
to the undirected counterparts. By setting f(G, S, v) to a very high value when there is an
arc (v, w) ∈ A with w ∈ S, we can force that the minimum is taken at a topological sort,
and thus fit the problem into the form of Theorems 1 and 3.

5.6 Optimal Linear Arrangement

The Optimal Linear Arrangement problem, of which the decision variant was proved
NP-complete in [10], asks, given a graph G = (V, E), for the minimum over all linear
orderings π of

∑
{v,w}∈E |π(v) − π(w)|. The following simple lemma shows that we can

write the problem again in the form where we can apply Theorems 1 and 3.

Lemma 8 For each graph G = (V, E), and for each linear ordering π of G,∑
{v,w}∈E

|π(v)− π(w)| =
∑
v∈V

|{{x, y} ∈ E | π(x) ≤ π(v) < π(w)}|

The directed variant, where we look for topological orderings π of G = (V, A) with∑
(v,w)∈A(f(w)− f(v)) can be handled in a similar way.

5.7 Directed Feedback Arc Set

The Directed Feedback Arc Set is the following: given a directed graph G = (V, A),
find a set of arcs F ⊆ A with |F | as small as possible, such that (V, A− F) is acyclic, i.e.,
each cycle in G contains at least one arc in F . It is a variant of the well known Feedback
Vertex Set and Directed Feedback Vertex Set problems (which look for a set of
vertices that break all cycles). (The problem to find in an undirected graph a minimum
size set of edges that breaks all cycles is trivial; its weighted variant is a reformulation
of the polynomial time solvable Minimum Spanning Tree problem. The (Directed)
Feedback Vertex Set problems are trivially solvable in O∗(2n) time with linear space,
and thus we have to focus only to Directed Feedback Arc Set.) One can also look

9

to a weighted variant: each arc has a weight, and we look for a set of arcs that break all
cycles of minimum total weight.

The following lemma shows that we can formulate (Weighted) Directed Feedback
Arc Set in a shape such that Theorems 1 and 3 can be applied. Recall that a graph is
acyclic, if and only if it has a topological ordering.

Lemma 9 Let G = (V, A) be a directed graph, and let w : A → N be a function that
assigns each arc a non-negative integer weight. Let K ∈ N be an integer. There exists a
set of arcs F ⊆ A with (V, A − F) acyclic and

∑
a∈F w(a) ≤ K, if and only if there is a

linear ordering π of G, such that
∑

(x,y)∈A, π(x)>π(y) w((x, y)) ≤ K.

5.8 Summary

The following result summarizes the discussion in the paragraphs above.

Theorem 10 Each of the following problems: Treewidth, Minimum Fill-In, Path-
width, Sum Cut, Minimum Interval Graph Completion, Cutwidth, Directed
Cutwidth, Modified Cutwidth, Directed Modified Cutwidth, Optimal Lin-
ear Arrangement, Directed Optimal Linear Arrangement and Directed
Feedback Arc Set

1. can be solved in O∗(2n) time and O∗(2n) space.

2. can be solved in O∗(4n) time and polynomial space.

In each case, the O∗(2n) algorithm resembles the classic Held-Karp algorithm for TSP
[12], and the O∗(4n) its variant by Gurevich and Shelah [11]. Note that for Treewidth,
Minimum Fill-In and Pathwidth faster algorithms with exponential space are known
[9, 15], and for Treewidth a faster algorithm with polynomial space is known [6, 7].

6 Concluding Remarks

This note discusses simple exponential time algorithms for a collection of vertex layout
problems. Recently, Koivisto and Parviainen [14] have exploited the ideas further, and
show that a tradeoff between time and space can be made, i.e., they give a range of
algorithms, running in O(cn) time and O(sn) space, for various values of c and s.

Computational experiments in [3] show that the O∗(2n) time algorithm for Treewidth
is practical for small graphs, especially when one applies a few optimizations to the algo-
rithm. A similar algorithm engineering study for other problems that we listed in Section 5
would be very interesting.

10

References

[1] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

[2] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos.
On exact algorithms for treewidth. Technical Report UU-CS-2006-032, Department of
Information and Computing Sciences, Utrecht University, Utrecht, the Netherlands,
2006.

[3] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos.
On exact algorithms for treewidth. In Y. Azar and T. Erlebach, editors, Proceedings
of the 14th Annual European Symposium on Algorithms, ESA 2006, pages 672–683.
Springer Verlag, Lecture Notes in Computer Science, vol. 4168, 2006.

[4] F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Operations Research, 38:13–26, 2004.

[5] J. Dı́az, J. Petit, and M. Serna. A survey of graph layout problems. ACM Computing
Surveys, 34:313–356, 2002.

[6] F. V. Fomin, D. Kratsch, and I. Todinca. Exact (exponential) algorithms for treewidth
and minimum fill-in. In J. Dı́az, J. Karhumäki, A. Lepistö, and D. Sanella, editors,
Proceedings of the 31st International Colloquium on Automata, Languages and Pro-
gramming, ICALP 2004, pages 568–580. Springer Verlag, Lecture Notes in Computer
Science, vol. 3142, 2004.

[7] F. V. Fomin, D. Kratsch, I. Todinca, and Y. Villanger. Exact algorithms for treewidth
and minimum fill-in. SIAM J. Comput., 38:1058–1079, 2008.

[8] F. V. Fomin and Y. Villanger. Treewidth computation and extremal combinatorics.
In L. Aceto, I. Damg̊ard, L. A. Goldberg, M. M. Halldórsson, A. Ingólfsdóttir, and
I. Walukuewics, editors, Proceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, ICALP 2008, Part I, pages 210–221. Springer
Verlag, Lecture Notes in Computer Science, vol. 5125, 2008.

[9] F. V. Fomin and Y. Villanger. Finding induced subgraphs via minimal triangulations.
Report, published on http://arxiv.org/abs/0909.5278, 2009.

[10] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theor. Comp. Sc., 1:237–267, 1976.

[11] Y. Gurevich and S. Shelah. Expected computation time for Hamiltonian path problem.
SIAM J. Comput., 16:486–502, 1987.

[12] M. Held and R. Karp. A dynamic programming approach to sequencing problems. J.
SIAM, 10:196–210, 1962.

11

[13] N. G. Kinnersley. The vertex separation number of a graph equals its path width.
Information Processing Letters, 42:345–350, 1992.

[14] M. Koivisto and P. Parviainen. A space-time tradeoff for permutation problems. To
appear in Proceedings SODA 2010, 2010.

[15] K. Suchan and Y. Villanger. Computing pathwidth faster than 2n. To appear in
Proceedings IWPEC 2009, 2009.

[16] Y. Villanger. Improved exponential-time algorithms for treewidth and minimum fill-in.
In J. R. Correa, A. Hevia, and M. A. Kiwi, editors, Proceedings of the 7th Latin Amer-
ican Symposium on Theoretical Informatics, LATIN 2006, pages 800–811. Springer
Verlag, Lecture Notes in Computer Science, vol. 3887, 2006.

12

