
Treewidth Computations I.

Upper Bounds

Hans L. Bodlaender

Arie M. C. A. Koster

Technical Report UU-CS-2008-032

September 2008

Department of Information and Computing Sciences

Utrecht University, Utrecht, The Netherlands

www.cs.uu.nl

ISSN: 0924-3275

Department of Information and Computing Sciences

Utrecht University

P.O. Box 80.089

3508 TB Utrecht

The Netherlands

Treewidth Computations I. Upper Bounds∗

Hans L. Bodlaender† Arie M. C. A. Koster‡

Abstract

For more and more applications, it is important to be able to compute the
treewidth of a given graph and to find tree decompositions of small width reasonably
fast.

This paper gives an overview of several upper bound heuristics that have been
proposed and tested for the problem of determining the treewidth of a graph and
finding tree decompositions. Each of the heuristics produces tree decompositions
whose width is not necessarily optimal, but experiments show that many of these
come often close to the exact treewidth.

1 Introduction

The notions of treewidth and tree decomposition have gained their attractiveness partly
because many graph and network problems that are intractable (e.g., NP-hard) on arbitrary
graphs become more efficiently solvable (e.g., with a linear time algorithm) when the
treewidth of the input graphs is bounded by a constant. Such algorithms have been found
for many combinatorial problems (see e.g., [3, 6, 46, 60, 63]), and also have been employed
for problems from computational biology (see e.g., [64, 65]), constraint satisfaction (see
e.g., [25, 36, 46]), and probabilistic networks (see [49]).

Many of the linear or polynomial time algorithms for problems on graphs with small
treewidth have the following form. First, a tree decomposition of the graph with small
width is found. Then, this tree decomposition is used in a dynamic programming algorithm
to solve the original problem. In case of a theoretical investigation where we are not
interested in the constant factor hidden in the O-notation, one can use for the first step

∗The research was partly carried out during a visit by the second author to Utrecht University with
support from the project Treewidth and Combinatorial Optimization with a grant from the Netherlands
Organization for Scientific Research NWO.

†Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB
Utrecht, the Netherlands. E-mail: hansb@cs.uu.nl

‡University of Warwick, Centre for Discrete Mathematics and its Applications (DIMAP), Coventry
CV4 7AL, United Kingdom. E-mail: Arie.Koster@wbs.ac.uk
Keywords: Treewidth, Upper bounds, Heuristics, Approximation Algorithms, Graph algorithms
Mathematics Subject Classification (2000): 05C85, 68Q25, 68R10

1

the algorithm from [15]: for each fixed k, there is a linear time algorithm that either tells
that the treewidth of a given input graph G is larger than k, or finds a tree decomposition
of width at most k. In practice however, the algorithm from [15] is not useful due to the
huge constant factor. This was also shown by Röhrig [55] in a experimental evaluation
of the algorithm of [15]. Thus, there is a need for practical algorithms that find tree
decompositions of given graphs of small width.

We aim to address this issue in a series of three overview papers, reviewing the develop-
ments of the last decade and complementing some minor results. In this first paper of the
series, we look at upper bound heuristics and approximation algorithms, i.e., algorithms,
that given a graph G, find a tree decomposition of G whose width is possibly not optimal,
but hopefully close to optimal. The paper is accompanied by a website for experiments
with some of the algorithms presented [44].

In later papers in this series, we plan to address algorithms that give lower bounds to
the treewidth of input graphs [19], exact algorithms, and preprocessing methods [20].

This paper is organised as follows. In Section 2, we give several of the necessary
definitions, and some useful graph theoretic results. In particular, we look at some different
characterisations of treewidth, which will be of use for different types of heuristics. One
such characterisation is with help of elimination orderings, and heuristics based on this
notion are discussed in Section 3. Most other heuristics for treewidth appear to be relying
in some way on the notion of separator. These are discussed in Section 4. Sometimes,
when we have found a tree decomposition, it can be improved with help by finding a
minimal triangulation inside the triangulation corresponding to the tree decomposition;
see Section 5. We report on an experimental study to evaluate some of the heuristics in
Section 6. Some final conclusions are given in Section 7.

2 Preliminaries

In this section, we give some definitions and some useful graph theoretic results.
All graphs we consider in this paper are undirected and simple, i.e., without parallel

edges or self-loops. A graph is denoted G = (V, E) with V the set of vertices and E the set
of edges. Unless stated otherwise, n = |V | denotes the number of vertices in the considered
graph. The degree of a vertex v ∈ V in graph G is denoted dG(v) or d(v) if the graph is
clear from the context.

The set of neighbours of v in graph G = (V, E) is denoted by NG(v) = {w ∈ V | {v, w} ∈
E}. The set of neighbours of v and v itself is denoted NG[v] = NG(v) ∪ {v}.

We assume the reader to be familiar with notions like cycle, clique, maximal clique,
connected component. The subgraph of G = (V, E) induced by vertex set W ⊆ V is
denoted by G[W] = (W, {{v, w} ∈ E | v, w ∈ W}).

A set of vertices S ⊆ V is a separator (or separating vertex set) in a graph G = (V, E) if
G[V −S] has more than one connected component. A minimum separator is a separator of
minimum size. A separator S in G = (V, E) is an s-t-separator for vertices s, t ∈ V , if s and
t belong to different connected components of G[V − S]. An s-t-separator S is a minimal

2

s-t-separator, if it does not contain another s-t-separator as a proper subset. A separator
S is a minimal separator, if there are s, t ∈ V , such that S is a minimal s-t-separator. A
separator S is an inclusion minimal separator, if it does not contain another separator S ′

in G as a proper subset.
The notions of treewidth and tree decomposition were introduced by Robertson and

Seymour [53] in their work on graph minors.

Definition 1 A tree decomposition of a graph G = (V, E) is a pair ({Xi | i ∈ I}, T =
(I, F)), with {Xi | i ∈ I} a family of subsets of V and T a tree, such that

•
⋃

i∈I Xi = V ,

• for all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, and

• for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} forms a connected subtree of T .

The width of tree decomposition ({Xi | i ∈ I}, T = (I, F)) is maxi∈I |Xi|−1. The treewidth
of a graph G, tw(G), is the minimum width among all tree decompositions of G.

The third condition of tree decomposition can be replaced by the following equivalent
condition:

• For all i0, i1, i2 ∈ I: if i1 is on the path from i0 to i2 in T , then Xi0 ∩ Xi2 ⊆ Xi1 .

An example of a graph with a tree decomposition is given in Figure 1.

a b c

d
e f

g

h

a a a
d e e

e

b
b
cf f

g

h

Figure 1: A graph with a tree decomposition

We start with a simple lemma, which is a restatement of the Helly properties for subtrees
of a tree, see [23].

Lemma 2 (See [23]) Let W ⊆ V be a clique in G = (V, E), and ({Xi | i ∈ I}, T =
(I, F)) be a tree decomposition of G. Then there is an i ∈ I with W ⊆ Xi.

There are several equivalent definitions to the notion of treewidth, some proposed
slightly earlier, e.g., the notion of partial k-tree (see [3]). An overview of several such
notions can be found in [16]. One alternative characterisation is by the use of elimination
orderings. On this notion, some heuristics are based. We introduce the characterisation
with help with equivalent characterisations of triangulated graphs, also known as chordal
graphs.

3

Definition 3 (i). A graph G = (V, E) is triangulated, if every cycle in G with length
at least four has a chord, i.e., an edge connecting two non-successive vertices in the
cycle.

(ii). An elimination ordering of a graph G = (V, E) is a bijection f : V → {1, 2, . . . , n}.
An elimination ordering f is perfect, if for all v ∈ V , the set of its higher numbered
neighbours {w | {v, w} ∈ E ∧ f(w) > f(v)} forms a clique.

(iii). A graph G = (V, E) is the intersection graph of subtrees of a tree, if and only if there
is a tree T = (I, F), and for each v ∈ V a subtree of T , Tv = (Iv, Fv), such that for
all v, w ∈ V , v 6= w, we have that {v, w} ∈ E, if and only if Tv and Tw have at least
one vertex in common, i.e., Iv ∩ Iw 6= ∅.

It is known for over thirty years that triangulated graphs can be alternatively charac-
terised by perfect elimination orderings or as intersection graphs of subtrees of a tree, see
[32, 56] or [35, Chapter 4].

Theorem 4 Let G = (V, E) be a graph. The following are equivalent.

(i). G is triangulated.

(ii). G has a perfect elimination ordering.

(iii). G is the intersection graph of subtrees of a tree.

(iv). There is a tree decomposition ({Xi | i ∈ I}, T = (I, F) of G, such that for each i ∈ I,
Xi is a clique in G.

Proof: For equivalence of (i), (ii), and (iii), see [32, 56] or [35, Chapter 4].
(iii) → (iv): Suppose we have intersection model tree T = (I, F) with for all v ∈ V ,

subtree Tv with for all v, w ∈ V , v 6= w, {v, w} ∈ E ⇔ Iv ∩ Iw 6= ∅. Now one can easily
verify that ({Xi | i ∈ I}, T = (I, F)) with Xi = {v ∈ V | i ∈ Iv} is a tree decomposition
of G, and for all i ∈ I, Xi is a clique.

(iv) → (iii): Let ({Xi | i ∈ I}, T = (I, F)) be a tree decomposition of G with for each
i ∈ I, Xi is a clique in G. Let for all v ∈ V , Iv = {i ∈ I | v ∈ Xi}. By the definition of
tree decomposition Iv induces a subtree of T , which we call Tv. Now, the collection of Tv’s
form the intersection model. 2

Definition 5 A graph H = (VH , EH) is a triangulation of a graph G = (VG, EG), if H
is a triangulated graph that is obtained by adding zero or more edges to G (VG = VH ,
EG ⊆ EH). A triangulation H = (V, EH) is a minimal triangulation of G = (V, EG) if
there is no triangulation of G that is a proper subgraph of H, i.e., if there is no set of edges
F such that (V, F) is a triangulation of G with F ⊆ EH , F 6= EH .

4

The equivalent notions for triangulated graphs can now be translated to equivalent
notions for treewidth.

We first give a mechanism that adds edges to a graph to make it triangulated, using an
elimination ordering. Consider Algorithm 1. Fill-in(G,π) yields a graph H . One can easily
observe that π is a perfect elimination ordering of H ; in fact, we added the minimum set
of edges to G such that π is a perfect elimination ordering of π. Call H the fill-in graph of
G with respect to elimination ordering π. As the fill-in graph H has a perfect elimination
ordering, it is a triangulation of G.

Algorithm 1 Fill-in(Graph G, Elimination Ordering π)

H = G;
for i = 1 to n do

Let v = π−1(i) be the ith vertex in ordering π.
for each pair of neighbours w, x of v with w 6= x, π(w) > π(v), π(x) > π(v) do

if w and x not adjacent in H then
add {w, x} to H .

end if
end for

end for
return H

We now come to the following well known alternative characterisations of the notion of
treewidth.

Theorem 6 Let G = (V, E) be a graph, and let k ≤ n be a non-negative integer. The
following are equivalent.

(i). G has treewidth at most k.

(ii). G has a triangulation H such that the maximum size of a clique in H is at most
k + 1.

(iii). There is an elimination ordering π, such that the maximum size of a clique of the
fill-in graph of G with respect to π is at most k + 1.

(iv). There is an elimination ordering π, such that no vertex v ∈ V has more than k
neighbours with a higher number in π in the fill-in graph of G with respect to π.

Proof: (i) ⇒ (ii): Suppose ({Xi | i ∈ I}, T = (I, F)) is a tree decomposition of G of
width at most k. Let H = (V, EH) be the graph with EH = {{v, w} | v, w ∈ V, v 6= w,
∃i ∈ I : v, w ∈ Xi}. By the second property of tree decompositions, G is a subgraph of
H . By construction, each set Xi is a clique in H . So, by Theorem 4, H is triangulated.
From Lemma 2, we see that the maximum size of a clique in H is at most k + 1.

(ii) → (iii): This follows when we set π to be the perfect elimination ordering of H .

5

(iii) → (i): Let H be the fill-in graph of G with respect to π. By Theorem 4, there is a
tree decomposition ({Xi | i ∈ I}, T = (I, F)) of H such that each set Xi is a clique in H .
So, by assumption, the width of this tree decomposition is at most k; as G is a subgraph
of H , this is also a tree decomposition of G.

(iii) → (iv): Observe that the set consisting of a vertex v and the higher numbered
neighbours of v in the fill-in graph form a clique in the fill-in graph.

(iv) → (iii): Suppose no vertex v ∈ V has more than k neighbours with a higher number
in π in the fill-in graph H of G with respect to π. Let W be a clique in H , and let x be
the vertex in W with the smallest number in π. As all vertices in W − {x} are higher
numbered neighbours of x in H , |W − {x}| ≤ k. 2

Besides algorithms that construct tree decompositions directly, several construct order-
ings π as in Theorem 6(iv). Such algorithms will be discussed in Section 3.

3 Using elimination orderings

In this section, we look to heuristics for treewidth that are based upon building an elimi-
nation ordering. These are based on the equivalence given in Theorem 6, in particular, the
characterisation of treewidth by the maximum number of higher numbered neighbours in
a fill-in graph of an elimination ordering.

3.1 Tree decomposition construction

We see that Theorem 6 implies that each permutation of the vertices of a graph gives us
a heuristic upper bound for the treewidth of the graph: given such elimination ordering
π, we can build the fill-in graph with respect to π, and from that the corresponding tree
decomposition. Thus, each algorithm that builds permutations of the vertices of a graph
can be seen as an upper bound heuristic for treewidth. In this section, we discuss a number
of such algorithms that have been used for this purpose, but first we briefly show how we
can construct the corresponding tree decomposition directly, given an elimination ordering.

Definition 7 Let G = (V, E) be a graph, and v ∈ V be a vertex. Eliminating v is the
operation, that adds an edge between each pair of non-adjacent neighbours of v, and then
removes v.

In Algorithm 2, we give a recursive procedure that builds a tree decomposition from a
permutation. It is not hard to turn this into an efficient iterative procedure. The following
result shows correctness of the algorithm.

Lemma 8 Let G = (V, E) be a graph, and π be an elimination ordering of G. Let H =
(V, EH) be the fill-in graph of G with respect to G. Suppose V = {v1, . . . , vn}, and for all
vi ∈ V , π(vi) = i. Algorithm 2 outputs, when given G and vertex ordering (v1, v2, . . . , vn),
a tree decomposition ({Xv | v ∈ V }, T = (V, F)), such that

6

(i). For all vi ∈ V , Xvi
is the set of vi and all higher numbered neighbours of vi in H,

i.e., Xvi
= {vi} ∪ {vj | j > i ∧ {vi, vj} ∈ EH}.

(ii). The width of the tree decomposition is one smaller than the maximum clique size of
H.

Proof: First we note that the fill-in graph H of G with respect to G can be constructed as
follows: take the graph G′, obtained by eliminating v1; let π′ be the elimination ordering
of G′, obtained from π by removing v1; recursively, build the fill-in graph H ′ of G′ with
respect to π′, and then add v1 and its incident edges to H ′.

The result can be obtained by induction to n. The case n = 1 is trivial. Otherwise, as
NG(v) is a clique in G′, Lemma 2 guarantees that there is an w ∈ V ′ with NG(v1) ⊆ Xw.
We can take w = vj, j the lowest numbered neighbour of v1. As NG(v1) is a clique in G′,
all vertices in NG(v1) − {vj} are neighbours of vj in G′, and hence, by induction, we have
that NG(v1) ⊆ Xvj

.
We indeed have a tree decomposition of H and of G. Induction shows that for all

{vα, vβ} ∈ EH with α > 1, β > 1, there is a bag containing both vα and vβ. By construction,
v1 and each vertex vα with {v1, vα} ∈ EH belongs to bag Xv1

. Induction shows that for
all w ∈ V − NG[v], Iw = {i ∈ V | w ∈ Xi} forms a connected subtree of the tree T . For
w ∈ NG(v), Iw consists of a subtree of T ′ that contains vj and of the new bag v1, which
is adjacent in T to vj ; thus this again forms a connected subtree of T . Finally, v1 belongs
only to bag Xv1

, and hence Iv1
forms a connected subtree of T of only one vertex.

It is not hard to see that the two stated conditions hold. For instance, each clique W
is a subset of the bag of the lowest numbered vertex in W . So, we have shown the result
with induction. 2

Algorithm 2 PermutationToTreeDecomposition(Graph G = (V, E), Ver-
texList (v1, v2, . . . , vn))

if n = 1 then
Return a tree decomposition with one bag Xv1

= {v1}.
end if
Compute the graph G′ = (V ′, E ′) obtained from G by eliminating v1.
Call PermutationToTreeDecomposition(G′, (v2, v3, . . . , vn)) recursively, and let
({Xw | w ∈ V ′}, T ′ = (V ′, F ′)) be the returned tree decomposition.
Let vj be the lowest numbered neighbour of v1, i.e., j = min{i | {v1, vi} ∈ E}.
Construct a bag Xv1

= NG[v1].
return ({Xv | v ∈ V }, T = (V, F)) with F = F ′ ∪ {v1, vj}

The discussion above gives us a simple general format of several treewidth heuristics.
First, use some algorithm to build an ordering of the vertices of the graph, and then convert
it to a tree decomposition of it by Algorithm 2. The width is the maximum number of
higher numbered neighbours of a vertex in the corresponding fill-in graph.

7

3.2 Triangulation recognition heuristics

There are several vertex ordering algorithms that have been used for this purpose. Some
of these are based upon algorithms that give a perfect elimination ordering when the input
graph is a triangulated graph, and were originally proposed as algorithms to recognise
triangulated graphs. One of these is the Maximum Cardinality Search algorithm by Tarjan
and Yannakakis [59]. In the Maximum Cardinality Search algorithm, a vertex ordering is
build from right to left. An arbitrary vertex is chosen as vn, and then, at each step, the
next vertex chosen must be one which is adjacent to an as large as possible number of
already chosen vertices. In our experiments, we call this algorithm MCS-P. A variant of
this algorithm, MCS-M, has been proposed by Berry et al. [9, 8]. The MCS-M algorithm
guarantees that the fill-in graph H respective to the ordering obtained by the MCS-M
algorithm is a minimal triangulation. Another algorithm to recognise triangulated graphs
is the Lexicographic Breadth First Search algorithm by Rose et al. [56]. This algorithm also
comes in two flavours: LEX-P and LEX-M; LEX-P is faster, whereas LEX-M guarantees
again that the corresponding triangulation is minimal. Further generalizations of these
algorithms have been considered by Berry et al. [13]. See also [62].

For the recognition of triangulated graphs, the result is independent of first chosen
vertex vn. For computing good tree decompositions the result heavily depends on this
vertex and so it is straightforward to run these algorithms with all potential start vertices
once at the cost of increasing the complexity by a factor O(n).

3.3 Greedy triangulation algorithms

Other heuristics for treewidth build the ordering together with adding fill-in edges. Al-
gorithm 3 shows the general scheme to build elimination orderings greedily. For each
different criterion X, we have a different treewidth heuristic. We only give the code to
build the ordering; the corresponding fill-in graphs and tree decompositions can be made
as in Algorithms 1 and 2.

Algorithm 3 GreedyX(Graph G = (V, E))

H = G;
for i = 1 to n do

Choose a vertex v from H according to criterion X.
Let v be the ith vertex in ordering π.
Let H be the graph, obtained by eliminating v from H (make the neighbourhood of v
a clique and then remove v.)

end for
return ordering π

Using different criteria X gives us different algorithms to build elimination orderings,
and hence different heuristics for treewidth. A very simple criterion, and one that performs

8

often quite well in practice is to select a vertex of smallest degree in H , the GreedyDe-
gree heuristic. Slightly slower, but with on average slightly better bounds in practice is
the GreedyFillIn heuristic (see Section 6 and [45]). In this case, we choose a vertex
that causes the smallest number of fill-in edges, i.e., a vertex that has the smallest number
of pairs of non-adjacent neighbours. GreedyDegree is motivated by the fact that we
create a bag of size the degree of the chosen vertex plus one, GreedyFillIn by a wish
not to create many new edges, as these may cause other vertices to have high degree when
eliminated.

GreedyDegree and GreedyFillIn are very simple heuristics, that appear to per-
form very well for many instances obtained from existing applications. For our computa-
tional evaluation in Section 6, we propose in Table 1 a few alternative greedy approaches
that we have considered (here φH(v) denotes the fill-in by elimination v in H whereas δH(v)
denotes the degree of v in H).

algorithm selection of next vertex

GreedyDegree v = arg minu δH(u)
GreedyFillIn v = arg minu φH(u)
GreedyDegree+FillIn v = arg minu δH(u) + φH(u)
GreedySparsestSubgraph v = arg minu φH(u) − δH(u)
GreedyFillInDegree v = arg minu δH(u) + 1

n2 φH(u)
GreedyDegreeFillIn v = arg minu φH(u) + 1

n
δH(u)

Table 1: Greedy algorithms for constructing an elimination ordering

Recently, new criteria have been proposed and investigated for the selection of vertices.
The new treewidth heuristics thus obtained give in some cases improvements upon the
existing heuristics.

One such criterion was proposed by Clautiaux et al. [26, 27]. Here, we compute for each
vertex v first a lower bound on the treewidth of the graph obtained from H by eliminating
v. The vertex is chosen which has the smallest value for the sum of twice this lower bound
plus the degree in H .

Inspired by results on preprocessing graphs for treewidth computations, Bachoore and
Bodlaender [4] investigated several other selection criteria. To describe these, we need a
few new notions.

Definition 9 A vertex v ∈ V is simplicial in graph G = (V, E), if its set of neighbours
NG(v) is a clique in G. A vertex v ∈ V is almost simplicial, if it has a neighbour w, such
that the set of neighbours except w, NG(v) − {w} is a clique in G.

If v is simplicial in G = (V, E), then there exists an elimination ordering of G that
starts with v and gives the optimal treewidth, i.e., for which the maximum clique size of
its fill-in graph equals the treewidth of G. Thus, if v is simplicial, it seems a good choice
to select v as the first vertex of the elimination ordering. Such an elimination ordering also
exists, when v is almost simplicial and the degree of v is at most the treewidth of G [21].

9

Now, if we have a lower bound low on the treewidth of G, then we can start the ordering
with an almost simplicial vertex v whose degree is at most low.

The Enhanced MinimumFillIn algorithm of [4] uses a lower bound low on the treewidth
of the input graph G, and works with the following selection criterion: if there is a simplicial
vertex, or an almost simplicial vertex of degree at most low, then that vertex is chosen,
otherwise a vertex with smallest fill-in (as in the GreedyFillIn heuristic) is chosen. The
other heuristics from [4] also start with selecting simplicial or low-degree almost simplicial
vertices, but then use more complicated selection criteria, based upon the degree, fill-in,
the minimum number of edges that must be added to make the vertex almost simplicial,
and/or the ratio of some of these parameters.

3.4 Local search and genetic algorithms

Local search methods, like simulated annealing or tabu search, appear to give for many
optimisation problems heuristics that give solutions close to optimal, but that use much
time. A few studies have been carried out to use local search methods for solving treewidth
or a related problem.

In particular, we discuss here the tabu search algorithm for treewidth by Clautiaux et
al. [27]. We do not give full details here. The main idea of tabu search is the following:
we start with an initial solution to the problem, and then step from this solution to a
‘neighbouring’ solution, i.e., one that is obtained from the first solution by performing
a small change. Usually, one steps to the neighbouring solution with smallest cost. This
process is repeated for some time, and the best solution found is reported. In order to avoid
cycling among a small set of solutions, tabu search keeps a list of the last α encountered
solutions during the search, and we forbid the algorithm to step to a solution that is already
on the list.

In [27], Clautiaux et al. show how the tabu search paradigm can be successfully applied
for approximating treewidth. The set of solutions is the set of elimination orderings of G,
similar as for the heuristics discussed earlier in this section. While we want to optimise the
corresponding width (the maximum number of higher numbered neighbours of a vertex in
the fill-in graph of the elimination ordering), it is not wise to use this number as cost for
the tabu search, as many neighbouring solutions will have the same width, and hence, the
search is not well directed towards improvements. So, a more complicated cost function is
used. For an elimination ordering π, its cost is

wπ · n2 +
∑

v∈V

|N+

π (v)|2

where wπ is the treewidth corresponding to π, and N+
π (v) is the set of higher numbered

neighbours of v in the fill-in graph corresponding to π. In this way, orderings that give tree
decompositions with few large bags are preferred above orderings with the same width but
with more large bags.

A simplified variant of the neighbourhood structure from [27] is the following: let two
elimination orderings be neighbours if one can be obtained from the other by moving

10

one vertex to a different position in the ordering. In this way, each solution has Θ(n2)
neighbours.

Clautiaux et al. use less neighbours per vertex in their neighbourhood structure. First,
let us observe that certain changes of the elimination ordering do not change the corre-
sponding triangulations (hence width).

Lemma 10 (Clautiaux et al. [27]) Let π, π′ be two elimination orderings of G = (V, E),
where π′ is obtained from π by reversing the order of two successive vertices v, w. Let H
be the fill-in graph with respect to π, and H ′ be the fill-in graph with respect to π′. If v and
w are not adjacent in H, then H = H ′.

Using the lemma and induction, we see that when we take a permutation ordering π,
and move a vertex v to a different position in π, such that there are no neighbours to v
in π between the original and new position of v, then the fill-in graph does not change.
As equal fill-in graphs correspond to basically the same tree decompositions, moves in the
search where the fill-in graph does not change are highly undesirable. In [27], a vertex is
moved to the position just after its first higher numbered neighbour in the fill-in graph,
or to the position just before the last lower numbered neighbour in the fill-in graph. In
this way, each solution / elimination ordering has at most 2n neighbouring solutions (each
vertex can moved to at most two positions). See [27] for further details.

Kjærulff [40] has applied simulated annealing to solve a problem related to treewidth:
a different cost measure obtained from the use of tree decomposition for the inference
problem for probabilistic networks is used here. Larrañaha et al. [48] have used genetic
algorithms for treewidth. Both Kjærulff [40] and Larrañaha et al. [48] use the elimination
ordering representation, and two orderings neighbouring each other if they can be obtained
with small changes like the moving of a vertex or exchange of two vertices; in [48], also a
mechanism is used to make a cross-over between two elimination orderings.

3.5 Turning exact methods into heuristics

Several exact algorithms for computing the treewidth can be turned into a heuristic al-
gorithm — one that does not necessarily give the exact answers, but uses less time. One
such example is a branch and bound algorithm. Gogate and Dechter [34] give a branch and
bound algorithm to compute the treewidth. An early halt of the algorithm (e.g., after some
fixed amount of time has passed) gives an approximate solution. Dynamic programming
algorithms also can be turned into a heuristic by dropping some elements from tables. This
procedure has been suggested and evaluated in [17]. We plan to report on these and other
exact approaches in [20].

4 Using Separators

In this section, we look at a number of heuristics that build a tree decomposition by finding
a number of separators in the graph. There is a group of heuristics that follow the same

11

strategy, which we term ‘splitting into components’; these are discussed in Section 4.1.
Two other heuristics that use separators are discussed in Sections 4.2 and 4.3.

4.1 The Splitting Into Components Strategy

Several heuristics for treewidth use the same global strategy. We give a general description
of the main scheme, but will not go into details for most of the separate heuristics.

The main idea is as follows: the graph is split with help of a separator; recursively, we
find a tree decomposition for each part of the graph, and then these tree decompositions
are ’glued’ together. The heuristics of this type have a general advantage above e.g., those
based on elimination orderings: they come with guarantees on the treewidth obtained
by the heuristic. They also have disadvantages: they are significantly more complex,
significantly slower, and often give bounds that are higher than those of simpler algorithms.

Each of [2, 1, 5, 24, 18, 29, 42, 47, 52] contains a heuristic of this type. See also [41,
Chapter 10.5]. The method can be traced back to an algorithm by Robertson and Seymour
in [54]. This algorithm either decides that the branchwidth is larger than k, or finds a branch
decomposition of width at most 3k; the algorithm uses time quadratic in n but exponential
in k. Branchwidth and treewidth are closely related, and a branch decomposition can
be easily converted to a tree decomposition. The algorithm given below is basically the
algorithm from [54], but stated in terms of treewidth and tree decompositions instead of
branchwidth and branch decompositions.

Let S ⊂ V be a separator of G = (V, E). Without loss of generality, we partition
V − S in vertex sets A and B such that S is a a-b-separator for all a ∈ A, b ∈ B. We
say that S separates A from B in G. For proofs of results similar to Lemma 11, see e.g.,
[18, 33, 42, 50, 53].

Lemma 11 Let G = (V, E) be a graph of treewidth at most k, and let W ⊆ V be a set
of vertices. There is a partition of V into three sets S, A, B, such that |S| ≤ k + 1,
|A ∩ W | ≤ 2

3
|W |, |B ∩ W | ≤ 2

3
|W |, and S separates A from B.

Suppose FindBalancedPartition is a procedure, that given a graph G = (V, E)
and a set W ⊆ V , either gives a partition of V into three sets S, A, B, fulfilling the
conditions of Lemma 11, represented by the 4-tuple (true, S, A, B), or determines that
such a partition does not exist, represented by (false, -,-,-). There is an implementation of
FindBalancedPartition that takes O(3|W | · k · (n + m)) time: we try each of the 3|W |

possibilities to distribute the vertices of W over S, A, and B; for each such possibilities
we test if there is a separator of size k − |S ∩ W | that separates the set of vertices A ∩ W
from the set of vertices B ∩ W in the graph G[V − (S ∩ W)]; this test can be done in
O(k(n + m)) time with flow techniques (see e.g., [31]).

Using this procedure FindBalancedPartition, Algorithm 4 describes the general
scheme of this type of treewidth heuristic. It returns a tree decomposition of G with a
specific bag identified as root node. Figure 2 illustrates the construction of the algorithm.
The step where we added a vertex from V −W to S in case (A = ∅ or B = ∅) and S ⊆ W
is needed to prevent the possibility of a not terminating recursive program.

12

Tree decomposition
of G[S ∪ A]

S ∪ (W ∩ A)

Tree decomposition
of G[S ∪ B]

S ∪ (W ∩ B)

S ∪ W

x

Figure 2: The construction of Algorithm 4.

Theorem 12 (i). Let G = (V, E) be a graph with treewidth at most k, and suppose
|W | ≤ 3k+3. The procedure BuildTreeDecomposition(G,W) outputs a tree de-
composition of G of width at most 4k+3, such that a root bag of the tree decomposition
contains all vertices in W .

(ii). If procedure BuildTreeDecomposition(G,W) outputs that the treewidth is larger
than k, then the treewidth of G is at least k + 1.

Proof: (i) First note that the algorithm terminates: either the graph in the first argument
of a recursive call has fewer vertices, or it has the same number of vertices but the number
of vertices not belonging to the set of the second argument has decreased.

Now, to proof the result, we use induction to the depth of the recursion. If we return
a tree decomposition with one bag, the result clearly holds.

Suppose W 6= V . We have that |W ∩A| ≤ 2

3
|W | ≤ 2k + 2. So, |S ∪ (W ∩A)| ≤ 3k + 3,

and similarly, |S ∪ (W ∩ B)| ≤ 3k + 3. With induction, we have that the recursive calls
yield tree decompositions of G[S ∪ A] and G[S ∪ B] of width at most 4k + 3, whose root
bags contain respectively the vertices in S ∪ (W ∩A) and S ∪ (W ∩B). We can now verify
that the algorithm indeed outputs a tree decomposition of G of width at most 4k+3 whose
root bag contains W . It is easy to observe that each vertex in V belongs to at least one
bag.

Consider an edge {v, w} ∈ E. By the assumption on partitions, we have that v, w ∈
S ∪ A or v, w ∈ S ∪ B. In the former case, {v, w} is an edge in G[S ∪ A], and hence there
is a bag in the tree decomposition of G[S ∪ A] containing both v and w; the latter case is
similar.

Consider a vertex v ∈ V . Consider the set of bags containing v, Iv. If v ∈ V − (S ∪
A ∪ W) then v only appears in bags in the tree decomposition of G[V − B], and thus
Iv forms a subtree. Similarly when v ∈ V − (S ∪ B ∪ W). The remaining case is that

13

Algorithm 4 BuildTreeDecomposition(Graph G = (V, E), VertexSet W)

if W = V then
return A tree decomposition with one bag containing all vertices

end if
(t, S, A, B) = FindBalancedPartition(G = (V, E), W)
if t ≡ false then

return Reject: treewidth is larger than k
end if
if (A = ∅ or B = ∅) and S ⊆ W then

Add a vertex from V − W to S
end if
Run BuildTreeDecomposition(G[S ∪ A], S ∪ (W ∩ A))
Run BuildTreeDecomposition(G[S ∪ B], S ∪ (W ∩ B))
if at least one of these runs rejects then

return Reject: treewidth is larger than k
end if
Take the disjoint union of the two recursively obtained tree decompositions
Add a new bag x containing the vertices in S ∪ W
Make x adjacent to the root nodes of the two recursively obtained tree decompositions
return The just computed tree decomposition of G with x as root

v ∈ (S ∪ A ∪ W) ∩ (S ∪ B ∪ W) = S ∪ W . v either belongs to no bags in the tree
decomposition of G[S ∪A] or a connected set of bags that includes the root bag; similar, it
belongs to either no bags in the tree decomposition of G[S ∪B] or a connected set of bags
that includes the root bag; and it belongs to bag x. Thus, these bags form a connected
subtree.

We have now verified that the algorithm outputs a tree decomposition of G. Clearly,
the root bag contains W . The maximum size of a bag is at most 4k+4, by the assumptions
on the widths of the recursively obtained tree decompositions and the fact that |S ∪W | ≤
4k + 4.

(ii) If the algorithm outputs that the treewidth is more than k, then the graph at hand
has treewidth more than k by Lemma 11. As each recursive call works with an induced
subgraph, and the treewidth cannot increase by taking induced subgraphs, the treewidth
of the original input graph G is also larger than k. 2

Several variations and improvements on the method are possible. E.g., instead of
working with separators that partition into two parts, one can also work with separators
which partition into more parts, often guaranteeing that each part contains at most half of
the vertices of W (and thus getting better treewidth bounds). Thus, different algorithms
can vary in quality of obtained approximations and running times. For some algorithms
in this vein, see e.g., [2, 1, 5].

14

4.2 The Minimum Separating Vertex Sets Heuristic

The Minimum Separating Vertex Sets (MSVS) heuristic of Koster [43] (see also [46]) refines
a tree decomposition by replacing one bag with multiple smaller bags with the help of
minimum separators, also called minimum separating vertex sets, hence the name of this
heuristic. In its original version, it starts with a trivial tree decomposition (i.e., a tree
decomposition with one bag Xi = V) but the general scheme can be applied to any tree
decomposition, is described in Algorithm 5, and illustrated in Figure 3.

Algorithm 5 RefineTreeDecomposition(Graph G = (V, E), TreeDecomposi-
tion ({Xi, i ∈ I}, T = (I, F)))

while ∃i ∈ I such that |Xi| maximal and G[Xi] does not induce a clique do
Construct graph Hi with vertex set Xi and edge set {{v, w} ∈ Xi × Xi|{v, w} ∈
E ∨ ∃j 6= i : v, w ∈ Xj}
Compute minimum separator S ⊂ Xi in Hi; let W1, . . . , Wr define the r connected
components of Hi[Xi − S]
Set I ′ = I − {i} ∪ {i0, . . . , ir}
Set X ′

j = Xj for all j 6= i, X ′
i0

= S, X ′
iq

= Wq ∪ S for q = 1, . . . , r
Set F ′ = F − {{i, j}|j ∈ NT (i)} ∪ {{i0, iq}|q = 1, . . . , r} ∪ {{j, iqj

}|j ∈ NT (i)} where
qj ∈ {1, . . . , r} such that Xi ∩ Xj ⊆ Wqj

∪ S
end while
return Tree decomposition ({X ′

j, j ∈ I ′}, T ′ = (I ′, F ′))

Xi

Xj1 Xj2

Xj3 Xj4

Xj1 Xj2

Xj3 Xj4

S

S ∪ W1
S ∪ W2

S ∪ W3 S ∪ W4

Figure 3: A refinement step in the MSVS heuristic

Unless all Xi induce complete graphs, the tree decomposition can be refined to one
with smaller width; this process is repeated until the nodes of maximum cardinality in the
tree decomposition cannot be refined anymore. The refinement step consists of splitting a
bag Xi into a number of bags, each of smaller cardinality.

15

Suppose we have a tree decomposition ({Xi | i ∈ I}, T = (I, F)) of G = (V, E) and
we want to refine bag Xi, i ∈ I. This is done by first building an auxiliary graph Hi,
next finding a minimum separator S in Hi, and finally adapting the tree decomposition as
dictated by S, as described below.

Hi is a graph with vertex set Xi. For each pair of vertices v, w ∈ Xi, v 6= w, we take
an edge {v, w} in Hi, if and only if v and w are adjacent in G or there is a node j 6= i with
v, w ∈ Xj.

The second step is finding a minimum separator in Hi. Finding a minimum separator
in a graph with n vertices, m edges, can be done in O(max{k3 · m, k · n · m}) time, with
k the size of the minimum separator with help of network flow techniques, see e.g., [31,
Section 6.2]. If Hi would be a clique, then we cannot refine i and therefore this case is not
considered.

Now, if we have separator S in Hi, we can refine Xi as follows. The graph Hi[Xi − S]
has at least two connected components, say these connected components have vertex sets
W1, . . . , Wr. The refinement of Xi takes place as follows. Each node j 6= i is kept, setting
X ′

j = Xj. i is replaced by r + 1 nodes i0, . . . , ir, with X ′
i0

= S, and for 1 ≤ q ≤ r,
X ′

iq
= S ∪ Wq. In the new tree T ′, we keep all edges between nodes 6= i. Then we make i0

adjacent to each iq, 1 ≤ q ≤ r. Each neighbour j of i is made adjacent to one of the nodes
iq, in the following way. Consider Yj = Xi∩Xj. Note that Yj is a clique in Hi. Thus, there
cannot be two different connected components of Hi[Xi − S] that both contain vertices
of Yj, and hence there must be a qj , 1 ≤ qj ≤ r, such that Yj ⊆ Wqj

∪ S. Make node
j adjacent to node iqj

in T . Let (T ′ = (I ′, F ′), {X ′
j : j ∈ I ′}) be the resulting structure,

which is a tree decomposition by the following lemma.

Lemma 13 Let (T ′ = (I ′, F ′), {X ′
j : j ∈ I ′}) be obtained from applying a refinement step

to node i ∈ I in a tree decomposition (T = (I, F), {Xj : j ∈ I}) of graph G = (V, E). Then
(T ′ = (I ′, F ′), {X ′

j : j ∈ I ′}) is a tree decomposition of G.

Proof: It is trivial that the first of the three conditions of tree decomposition is fulfilled.
Consider an edge {v, w} ∈ E. There is a node j ∈ I with v, w ∈ Xj . If j 6= i, then
v, w ∈ X ′

j also after the refinement step. Otherwise, {v, w} is an edge in Hi. If v, w ∈ S,
then v, w ∈ X ′

i0
. If v ∈ Wq, 1 ≤ q ≤ r, then w ∈ S ∪ Wq, so v, w ∈ X ′

iq
; similarly when

w ∈ Wq. We have now verified the second requirement of tree decompositions.
Consider a vertex v ∈ V , and the sets of nodes Iv = {j ∈ I : v ∈ Xj}, I ′

v = {j ∈
I ′ : v ∈ X ′

j}. If v 6∈ Xi, then I ′
v = Iv, hence I ′

v is connected in T ′. If v ∈ S, then
I ′
v = Iv − {i} ∪ {i0, . . . , ir}, and one easily sees that the connectedness of I ′

v follows from
the connectedness of Iv. If v ∈ Wq, 1 ≤ q ≤ r, then for every neighbour j of i with
v ∈ Xj, we have that j is adjacent to iq in T ′. As I ′

v = Iv − {i} ∪ {iq}, connectedness of
I ′
v again follows. We can now conclude that ({X ′

j : j ∈ I ′}, T ′ = (I ′, F ′)) is indeed a tree
decomposition of G. 2

Note that each of X ′
i0
, . . . , X ′

ir
is of smaller cardinality than Xi. A refinement step is

illustrated in Figure 3. If Hi is a complete graph, then it has no separating vertex set. If
Hi is not complete, then it has: when v and w are not adjacent in Hi, then Xi−{v, w} is a

16

separating vertex set of Hi. Thus, as long as there is a node i ∈ I in the tree decomposition
of maximum cardinality with Hi not a complete graph, the refinement step can be applied.
When no refinements are possible, the MSVS heuristic stops.

4.3 Completing Minimal Separators

We can look at the MSVS heuristic in a different way, and arrive at a heuristic that builds
a minimal triangulation of a graph by adding edges to vertices in minimal separators.

Consider again the MSVS heuristic, and the triangulation H of G obtained by mak-
ing each set Xi in the final tree decomposition a clique. Consider a tree decomposition
({Xi | i ∈ I}, T = (I, F)) that is used in an intermediate step during the algorithm. For
some pairs of vertices v, w ∈ V , we can deduce that they must form an edge in H , namely
when {v, w} is already an edge in G, or if there are at least two bags Xi, Xj, with v, w ∈ Xi

and v, w ∈ Xj. Say G′ is the graph, formed by these edges, i.e., {v, w} is an edge in G′,
if it is an edge in G, or there are at least two bags that contain both v and w. In one
refinement step, we precisely add those edges to G′ that turn S into a clique. Following
terminology of [24], let completing a vertex set S in a graph G be the operation that turns
S into a clique, i.e., for each pair of vertices v, w, v 6= w in S, we add an edge from v to
w to G, unless v and w were already adjacent.

Thus, in the MSVS heuristic, we repeatedly build a graph Hi, and then complement
a minimum size separator in Hi. In [24], a heuristic is described that works slightly
differently: we now complement a minimal or minimum size separator in G′.

Algorithm 6 MinimalTriangulation(Graph G = (V, E))

G′ = G;
while G′ is not a triangulated graph do

Choose a minimal separator S in G′ that is not a clique.
Let G′ be the graph, obtained by completing S in G′.

end while
return G′

In Algorithm 6 we see the main scheme of Bouchitté et al. [24]. In a refinement, we
always choose a set S of minimum size that is not a clique. In [24], it is discussed how the
algorithm can be carried out, and implemented to run in O(n5.5) time. In [24], it is shown
that this algorithm approximates the treewidth within a multiplicative factor of 8a, where
a is the asteroidal number of G. No experimental evaluation of this algorithm is known to
us.

The similarity between the MinimalTriangulation heuristic and the MSVS heuristic can
be stressed further by observing that each separator in the graph Hi as built by the MSVS
heuristic is also a separator in G′.

17

5 Postprocessing

For several treewidth heuristics, it is the case that the triangulation that corresponds to
the tree decomposition (compare Theorem 6) is not always a minimal triangulation. In
that case, it may be useful to apply a postprocessing step, using a subroutine that solves
the triangulation minimisation problem.

In the triangulation minimisation problem, we are given a graph G = (V, E) and a
triangulation H = (V, F) of G, and we look for a minimal triangulation G′ = (V, E ′)
of G, with the property that G′ is a subgraph of H , i.e., G′ is a triangulated graph and
E ⊆ E ′ ⊆ F . There are several algorithms known that solve the triangulation minimisation
problem in O(nm) time. In our experiments, we used the algorithm of Blair et al. [14].
Other algorithms that solve this problem can be found in [7, 10, 28, 39]. See also [11, 12, 51],
and the overview paper by Heggernes [37]. Recently, Heggernes et al. [38] found a faster
algorithm for the triangulation minimisation problem.

Using triangulation minimisation, we can do the following: we run some heuristic that
produces tree decompositions. The tree decomposition is converted to a triangulation H
of the input graph G. Given G and H , we find a minimal triangulation G′ of G that
is a subgraph of H using an algorithm for the triangulation minimisation problem. This
minimal triangulation is converted back to a tree decomposition of G.

This postprocessing step can never increase the treewidth, but will for some instances
decrease it.

6 Computational Evaluation

In this section, we present a computational evaluation of a selection of the algorithms
presented. We in particular focus on the variants of GreedyX as those turn out to
provide the best value for money (i.e., time). First, we discuss the experimental setup, and
the next the results.

6.1 Experimental setup

All algorithms that have been evaluated have been implemented in C++ with use of the
Boost Graph Library [58].

For most of the presented algorithms, computational studies have been presented in
the corresponding publications. Typically the algorithms have been tested on a number of
graphs originating from a variety of applications. In addition, sometimes graphs with a well-
known combinatorial structure like the Petersen graph have been considered. Although we
strongly agree that the performance of the upper bound algorithms on graphs originating
from applications is of utmost importance, we follow another approach in the paper. For
most graphs from applications it is difficult to determine the optimal width, and so the
quality of the algorithms is masked by this fact.

18

To evaluate a selection of the upper bound algorithms on their scientific merits, we
adapted the procedure proposed by Shoikhet and Geiger [57] and test the algorithms on
randomly generated partial-k-trees. A k-tree is a triangulated graph with the property
that there exists a perfect elimination ordering π with |N+

π (v)| = min{k, n − π(v)} for all
v ∈ V (note that n − π(v) is the degree of the last k vertices in the ordering). Thus, a
k-tree has exactly k(k − 1)/2 + k(n − k) = kn − k(k + 1)/2 edges. A partial-k-tree G is a
graph for which there exist a k-tree supergraph. Hence, the treewidth of a partial-k-tree
is at most k. If we in addition can guarantee that the treewidth of a randomly generated
partial-k-tree is at least k, the treewidth equals k and we have a good basis to compare
upper bound algorithms.

Randomly generated partial-k-trees are characterised by three parameters: the number
of vertices n, the value k, and the number of edges missing to be a k-tree as percentage p
of the number of k-tree edges. All combinations of n ∈ {100, 200, 500, 1000}, k ∈ {10, 20}
and p ∈ {30, 40, 50} have been considered. For every choice (n, k, p) of the parameters, we
generate 50 instances by first constructing a k-tree and then removing randomly p% of the
edges (hence, the total number of graphs is 1200).

To assure that the treewidth of a randomly generated partial-k-tree is at least k,
we apply the maximum minimum degree heuristic for the contraction degeneracy lower
bound [22]. For the above parameter choices, this lower bound matches k without excep-
tion.

6.2 Comparison of greedy algorithms

In Table 1 on page 9, a number of algorithms to construct an elimination ordering greedily
have been presented. Experiments revealed that the GreedySparsestSubgraph is not
competitive. The idea to find the sparsest subgraph might be attractive on first sight
but implies that we have a preference to select vertices of high degree as long as the fill-
in is relatively low for those. The degree however will determine the width of the tree
decomposition in the end and thus high degree vertices are not a good choice in this
respect. Therefore, we leave this algorithm out of our further discussion.

For the variants GreedyFillInDegree and GreedyDegreeFillIn (of respectively
GreedyDegree and GreedyFillIn) where a second criterion is used as tie breaker, the
differences with the algorithms without tie breaker turn out to marginal (slightly better in
most, but not all cases). Therefore we focus on the algorithms without tie breaker in the
sequel.

Figure 4 shows the average width obtained with the algorithms GreedyFillIn, Greedy-
Degree, and GreedyDegree+FillIn for the different parameter settings. In addition,
the results of the postprocessing step for two of the algorithms are shown. The postprocess-
ing step did not have any effect on the results of the GreedyDegree algorithm. In fact,
the width could not be improved for a single instance (the number of fill-in edges could be
reduced in a few cases and hence the orderings are not providing minimal triangulations
in general). The distribution of the width is shown in Figure 5(a).

The figures show that GreedyFillIn is outperformed by GreedyDegree, but that

19

(a) k = 10 (b) k = 20

Figure 4: Performance of greedy algorithms: average width obtained for samples of 50
randomly generated partial k graphs (treewidth equals k in all cases). The size of the graphs
in number of vertices and edges is given on the x-axis; the average width on the y-axis.
GFI = GreedyFillIn, GD = GreedyDegree, GD+FI = GreedyDegree+FillIn,
+TM = Triangulation minimisation algorithm applied on result of greedy algorithm.

(a) distribution of width values (b) normalised width vs. normalised time

Figure 5: Performance of greedy algorithms. Figure (a) shows the distribution of the width
relative to the optimal value (OPT). Figure (b) shows the performance of the algorithms
in relation to the computation time. Both times and widths are normalised according to
minimum achieved value (not the optimal width). See Figure 4 for explanation of algorithm
acronyms.

20

after triangulation minimization, the better results are achieved by GreedyFillIn. The
combination of GreedyFillIn and GreedyDegree in GreedyDegree+FillInturns
out to be competitive and for k = 20 slightly better than GreedyDegree. Adding trian-
gulation minimization to this algorithm results in results that are similar to GreedyFillIn
with triangulation minimization.

Besides the quality of the results, also the computation times play an important role
by selecting the best algorithm. Figure 5(b) shows a scatter plot of the normalised average
width values and the normalised average computation times. The normalization is done
individually for every triple (n, k, p) with respect to the smallest computation time and
the best average width. The plot shows that GreedyDegree is the clear winner in
computation time.

6.3 Triangulation recognition heuristics

One might think that the triangulation recognition heuristics like Maximum Cardinality
Search (MCS/MCS-M) and Lexicographic Breadth First Search (LEX-P/LEX-M) should
perform better than the greedy algorithms as they incorporate more graph theoretical
knowledge. The truth is quite contrary. Both for graphs of practical applications and the
randomly generated partial-k-trees, the results for the adapted recognition heuristics are
not even close to those of the greedy algorithms, regardless the starting vertex selected.
To illustrate this, we performed two experiments.

First, we took one of the randomly generated partial-k-trees with n = 100 vertices,
k = 10 and p = 30. For this graph, we ran the algorithms MCS, MCS-M, LEX-P, and
LEX-M for all possible start vertices. Figure 6 shows the resulting widths for the four
algorithms, displayed against the degree of the start vertex. It is clear from Figure 6

Figure 6: Resulting width of the triangulation recognition heuristics compared to degree
of the start vertex

21

that the best choice is the MCS algorithm. But even with this algorithm the best width
obtained is 15, whereas the GFI found the optimal width of 10 for this instance. Although
MCS-M and LEX-M found an elimination ordering with width 16, the overall performance
of the algorithms was significantly worse than MCS (the best width by LEX-P was 29).
Remarkable, the highest reported width is achieved by minimal triangulation variants. For
both MCS-M and LEX-M there exists a start vertex resulting in a minimal triangulation
of width 78.

The above results are not due to an unfortunate choice of the partial-k-tree as a second
experiment showed. For all randomly generated partial-k-trees with n = 100 and k = 10
used in the previous subsection, we ran MCS. The results are reported in Table 2 and
clearly show that MCS is outperformed by GFI in all cases.

n = 100, k = 10 GFI GFI+TM MCS MCS+TM MCS-M

p = 50 10.62 10.10 16.64 11.84 27.52
p = 40 10.56 10.10 16.08 11.78 26.38
p = 30 10.76 10.16 14.72 11.32 22.30

Table 2: Average width by GFI, MCS, and MCS-M, with and without triangulation min-
imization

Since MCS does not provide a minimal triangulation, the procedure of Section 5 can be
applied on the best elimination ordering generated. The average width after triangulation
minimisation is also reported in Table 2 together with the result for MCS-M which include
the triangulation minimization. The results show that (i) triangulation minimization sig-
nificantly reduces the width of the MCS-generated elimination orderings, (ii) MCS-M is
outperformed by this procedure, (iii) the width is still not competitive with the width
obtained via GFI, with or without triangulation minimization.

To understand better why the triangulation recognition heuristics perform so badly for
relatively small graphs, we have set up a final experiment. We first randomly generate a
k-tree with n = 100 and k = 10. Next, we randomly remove edges in steps of 1% until
10% of the edges have been removed. For each of the 11 graphs generated this way, we
count how many start vertices result in a certain width. The results are show in Table 3.

Since the MCS algorithm can start with any vertex for triangulated graphs, it is not
a surprise that the optimal width is found in all cases if no edges are removed. However,
as soon as 2% of the edges are removed, none of the start vertices results in the optimal
width. GFI, in contrast, still finds the optimal width after removal of 10% edges.

7 Conclusions

In this paper, we discussed several upper bound heuristics for treewidth. Each of the
heuristics finds for a given graph G = (V, E) a tree decomposition of G.

Experiments show that in many cases, the heuristics perform reasonably well, i.e.,
give tree decompositions whose width comes close to (and sometimes equals) the exact

22

edges removed (%) 0 1 2 3 4 5 6 7 8 9 10
width

10 100 100
11 70
12 30 97 28
13 3 44 53 91 74 79 69 42
14 28 47 9 26 21 24 8
15 7 46
16 4

Table 3: Histograms of returned widths by MCS after removal of a percentage of the edges
of a 10-tree using all possible 100 start vertices

treewidth. Some of the well performing heuristics are very fast. Thus, one can conclude
that for many practical purposes, there are good methods to find tree decompositions with
small treewidth.

Which of the heuristics is actually the best depends on the application. Our experi-
ments show that different heuristics have different sets of instances on which they perform
particularly well, see [61].

In many cases, the algorithms that run on the tree decompositions have a running time
that is exponential in the width. Depending on the precise running times of this algorithm,
and the number of times the same tree decomposition is used for different computations,
it can make sense to spend more time on finding a good tree decomposition, e.g., to use a
slower algorithm that computes the treewidth exactly. An overview of such algorithms is
planned [20].

Many theoretical studies on treewidth give algorithms that start with the linear time
algorithm for finding tree decompositions of width at most k for fixed k from [15]. While
this often gives the theoretically best asymptotic bound, this is not what one would do
in practice: in a real life setting, one would instead use one of the heuristics discussed
in this paper, or run a few of the heuristics and take the best solution found. For this
purpose, we are developing an interactive website [44], that allows to experiment with a
number of the discussed algorithms on graphs of your choice. The algorithms take as input
a graph in the standardised DIMACS format [30] and outputs the width found as well as
the corresponding elimination ordering.

References

[1] E. Amir. Approximation algorithms for treewidth. Algorithmica, published online
2008.

[2] E. Amir. Efficient approximation for triangulation of minimum treewidth. In Pro-
ceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 7–15,

23

2001.

[3] S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems re-
stricted to partial k-trees. Disc. Appl. Math., 23:11–24, 1989.

[4] E. H. Bachoore and H. L. Bodlaender. New upper bound heuristics for treewidth. In
S. E. Nikoletseas, editor, Proceedings of the 4th International Workshop on Experi-
mental and Efficient Algorithms WEA 2005, pages 217–227. Springer Verlag, Lecture
Notes in Computer Science, vol. 3503, 2005.

[5] A. Becker and D. Geiger. A sufficiently fast algorithm for finding close to optimal
clique trees. Artificial Intelligence, 125:3–17, 2001.

[6] M. W. Bern, E. L. Lawler, and A. L. Wong. Linear time computation of optimal
subgraphs of decomposable graphs. J. Algorithms, 8:216–235, 1987.

[7] A. Berry. A wide-range efficient algorithm for minimal triangulation. In SODA’99:
ACM-SIAM Symposium on Discrete Algorithms, pages 860–861, 1999.

[8] A. Berry, J. Blair, P. Heggernes, and B. Peyton. Maximum cardinality search for
computing minimal triangulations of graphs. Algorithmica, 39:287–298, 2004.

[9] A. Berry, J. R. S. Blair, and P. Heggernes. Maximum cardinality search for computing
minimal triangulations. In L. Kuc̆era, editor, Proceedings 28th Int. Workshop on
Graph Theoretic Concepts in Computer Science, WG’02, pages 1–12. Springer Verlag,
Lecture Notes in Computer Science, vol. 2573, 2002.

[10] A. Berry, J.-P. Bordat, P. Heggernes, G. Simonet, and Y. Villanger. A wide-range
algorithm for minimal triangulation from an arbitrary ordering. J. Algorithms, 58:33–
66, 2006.

[11] A. Berry, P. Heggernes, and G. Simonet. The minimum degree heuristic and the
minimal triangulation process. In Proceedings 29th Int. Workshop on Graph Theoretic
Concepts in Computer Science, WG’03, pages 58–70. Springer Verlag, Lecture Notes
in Computer Science, vol. 2880, 2003.

[12] A. Berry, P. Heggernes, and Y. Villanger. A vertex incremental approach for main-
taining chordality. Disc. Math., 306:318–336, 2006.

[13] A. Berry, R. Krueger, and G. Simonet. Ultimate generalizations of LexBFS and
LEX M. In Proceedings 31st International Workshop on Graph-Theoretic Concepts in
Computer Science WG’05, pages 199–213. Springer Verlag, Lecture Notes in Computer
Science, vol. 3787, 2005.

[14] J. R. S. Blair, P. Heggernes, and J. Telle. A practical algorithm for making filled
graphs minimal. Theor. Comp. Sc., 250:125–141, 2001.

24

[15] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[16] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comp. Sc., 209:1–45, 1998.

[17] H. L. Bodlaender, F. V. Fomin, A. M. C. A. Koster, D. Kratsch, and D. M. Thilikos.
On exact algorithms for treewidth. In Y. Azar and T. Erlebach, editors, Proceedings
14th Annual European Symposium on Algorithms, ESA 2006, pages 672–683. Springer
Verlag, Lecture Notes in Computer Science, vol. 4168, 2006.

[18] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating
treewidth, pathwidth, frontsize, and minimum elimination tree height. J. Algorithms,
18:238–255, 1995.

[19] H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations II. Lower bounds.
Paper in preparation, 2008.

[20] H. L. Bodlaender and A. M. C. A. Koster. Treewidth computations III. Exact algo-
rithms and preprocessing. Paper in preparation, 2008.

[21] H. L. Bodlaender, A. M. C. A. Koster, and F. v. d. Eijkhof. Pre-processing rules for
triangulation of probabilistic networks. Computational Intelligence, 21(3):286–305,
2005.

[22] H. L. Bodlaender, A. M. C. A. Koster, and T. Wolle. Contraction and treewidth lower
bounds. J. Graph Algorithms and Applications, 10:5–49, 2006.

[23] H. L. Bodlaender and R. H. Möhring. The pathwidth and treewidth of cographs.
SIAM J. Disc. Math., 6:181–188, 1993.

[24] V. Bouchitté, D. Kratsch, H. Müller, and I. Todinca. On treewidth approximations.
Disc. Appl. Math., 136:183–196, 2004.

[25] H. Chen. Quantified constraint satisfaction and bounded treewidth. In R. L. de
Mántaras and L. Saitta, editors, Proceedings of the 16th Eureopean Conference on
Artificial Intelligence, ECAI’2004, pages 161–165, 2004.

[26] F. Clautiaux, J. Carlier, A. Moukrim, and S. Négre. New lower and upper bounds
for graph treewidth. In J. D. P. Rolim, editor, Proceedings International Workshop
on Experimental and Efficient Algorithms, WEA 2003, pages 70–80. Springer Verlag,
Lecture Notes in Computer Science, vol. 2647, 2003.

[27] F. Clautiaux, A. Moukrim, S. Négre, and J. Carlier. Heuristic and meta-heuristic
methods for computing graph treewidth. RAIRO Operations Research, 38:13–26, 2004.

25

[28] E. Dahlhaus. Minimal elimination ordering inside a given chordal graph. In Proceed-
ings 23rd International Workshop on Graph-Theoretic Concepts in Computer Science
WG’97, pages 132–143. Springer Verlag, Lecture Notes in Computer Science, vol.
1335, 1997.

[29] R. Diestel, T. R. Jensen, K. Y. Gorbunov, and C. Thomassen. Highly connected sets
and the excluded grid theorem. J. Comb. Theory Series B, 75:61–73, 1999.

[30] The second DIMACS implementation challenge: NP-Hard Prob-
lems: Maximum Clique, Graph Coloring, and Satisfiability. See
http://dimacs.rutgers.edu/Challenges/, 1992–1993.

[31] S. Even. Graph Algorithms. Pitman, London, 1979.

[32] F. Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
J. Comb. Theory Series B, 16:47–56, 1974.

[33] J. R. Gilbert, D. J. Rose, and A. Edenbrandt. A separator theorem for chordal graphs.
SIAM J. Alg. Disc. Meth., 5:306–313, 1984.

[34] V. Gogate and R. Dechter. A complete anytime algorithm for treewidth. In Proceedings
of the 20th Annual Conference on Uncertainty in Artificial Intelligence UAI-04, pages
201–208, Arlington, Virginia, USA, 2004. AUAI Press.

[35] M. C. Golumbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press,
New York, 1980.

[36] G. Gottlob, N. Leone, and F. Scarcello. A comparison of structural csp decomposition
methods. Acta Informatica, 124:243–282, 2000.

[37] P. Heggernes. Minimal triangulations of graphs: A survey. Disc. Math., 306:297–317,
2006.

[38] P. Heggernes, J. A. Telle, and Y. Villanger. Computing minimal triangulations in
time O(nα log n) = o(n2.376). SIAM J. Disc. Math., 19:900–913, 2005.

[39] P. Heggernes and Y. Villanger. Efficient implementation of a minimal triangulation
algorithm. In R. Möhring and R. Raman, editors, Proceedings of the 10th Annual Eu-
ropean Symposium on Algorithms, ESA’2002, pages 550–561. Springer Verlag, Lecture
Notes in Computer Science, vol. 2461, 2002.

[40] U. Kjærulff. Optimal decomposition of probabilistic networks by simulated annealing.
Statistics and Computing, 2:2–17, 1992.

[41] J. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, Boston, 2005.

[42] T. Kloks. Treewidth. Computations and Approximations. Lecture Notes in Computer
Science, Vol. 842. Springer-Verlag, Berlin, 1994.

26

[43] A. M. C. A. Koster. Frequency Assignment - Models and Algorithms. PhD thesis,
Univ. Maastricht, Maastricht, The Netherlands, 1999.

[44] A. M. C. A. Koster. Treewidth optimization interface. In preparation, 2008.

[45] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Com-
putational experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors,
Electronic Notes in Discrete Mathematics, volume 8, pages 54–57. Elsevier Science
Publishers, 2001.

[46] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40(3):170–180, 2002.

[47] J. Lagergren. Efficient parallel algorithms for graphs of bounded tree-width. J. Algo-
rithms, 20:20–44, 1996.

[48] P. Larrañaga, C. M. H. Kuijpers, M. Poza, and R. H. Murga. Decomposing Bayesian
networks: triangulation of the moral graph with genetic algorithms. Statistics and
Computing (UK), 7(1):19–34, 1997.

[49] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on
graphical structures and their application to expert systems. The Journal of the
Royal Statistical Society. Series B (Methodological), 50:157–224, 1988.

[50] J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J. Matrix
Analysis and Applications, 11:134–172, 1990.

[51] B. W. Peyton. Minimal orderings revisited. SIAM J. Matrix Anal. Appl., 23:271–294,
2001.

[52] B. Reed. Finding approximate separators and computing tree-width quickly. In Pro-
ceedings of the 24th Annual Symposium on Theory of Computing, pages 221–228, New
York, 1992. ACM Press.

[53] N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width.
J. Algorithms, 7:309–322, 1986.

[54] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem.
J. Comb. Theory Series B, 63:65–110, 1995.

[55] H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-
Institut für Informatik, Saarbrücken, Germany, 1998.

[56] D. J. Rose, R. E. Tarjan, and G. S. Lueker. Algorithmic aspects of vertex elimination
on graphs. SIAM J. Comput., 5:266–283, 1976.

27

[57] K. Shoikhet and D. Geiger. A practical algorithm for finding optimal triangulations.
In Proc. National Conference on Artificial Intelligence (AAAI ’97), pages 185–190.
Morgan Kaufmann, 1997.

[58] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley Professional, 2001. Software available on
http://www.boost.org.

[59] R. E. Tarjan and M. Yannakakis. Simple linear time algorithms to test chordiality of
graphs, test acyclicity of graphs, and selectively reduce acyclic hypergraphs. SIAM J.
Comput., 13:566–579, 1984.

[60] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on
partial k-trees. SIAM J. Disc. Math., 10:529 – 550, 1997.

[61] Treewidthlib. http://www.cs.uu.nl/people/hansb/treewidthlib, 2004–

[62] Y. Villanger. Lex M versus MCS-M. Disc. Math., 306:393–400, 2006.

[63] T. V. Wimer, S. T. Hedetniemi, and R. Laskar. A methodology for constructing linear
graph algorithms. Congressus Numerantium, 50:43–60, 1985.

[64] J. Zhao, D. Che, and L. Cai. Comparative pathway annotation with protein-DNA
interaction and operon information via graph tree decomposition. In Proceedings of
Pacific Symposium on Biocomputing (PSB 2007), volume 12, pages 496–507, 2007.

[65] J. Zhao, R. L. Malmberg, and L. Cai. Rapid ab initio prediction of RNA pseudoknots
via graph tree decomposition. Journal of Mathematical Biology, 56(1–2):145–159,
2008.

28

