
A Column Generation Based Destructive Lower Bound for Resource
Constrained Project Scheduling Problems

J.M. van den Akker

G. Diepen

J.A. Hoogeveen

Department of Information and Computing Sciences, Utrecht University

Technical Report UU-CS-2007-005

www.cs.uu.nl

ISSN: 0924-3275

A Column Generation Based Destructive Lower
Bound for Resource Constrained Project

Scheduling Problems?

J.M. van den Akker, G. Diepen, and J.A. Hoogeveen

Department of Information and Computing Sciences
Utrecht University

P.O. Box 80089, 3508 TB Utrecht, The Netherlands
marjan@cs.uu.nl, diepen@cs.uu.nl, slam@cs.uu.nl

Abstract. In this paper we present a destructive lower bound for a
number of resource constrained project scheduling (RCPS) problems,
which is based on column generation. We first look at the problem with
only one resource. We show how to adapt the procedure by Van den
Akker et al. [1] for the problem of minimizing maximum lateness on a
set of identical, parallel machines such that it can be used to solve these
RCPS problems. We then consider a number of variants of the RCPS
problem with one or more resources and show how these can be solved
by our approach. Because of the close relation between RCPS and the
cumulative constraint in constraint programming, our method can be
used as an efficient filtering algorithm for the cumulative constraint as
well.

1980 Mathematics Subject Classification (Revision 1991): 90B35.
Keywords and Phrases: resource constrained project scheduling, cumu-
lative constraint, linear programming, column generation, generalized
precedence constraints.

1 Introduction

In this paper we consider a number of basic problems from project scheduling;
we refer to the survey paper by Brucker, Drexl, Möhring, Neumann, and Pesch[6]
for an overview of this area. We further refer to Van den Akker, Hoogeveen, and
Van de Velde [2], Baptiste, Le Pape, and Nuijten [3], and Bazaraa, Jarvis, and
Sherali [4] for an overview of the application of column generation in scheduling,
for an overview of the application of constraint programming in scheduling, and
for an overview of linear programming in general, respectively.

The basic resource constrained scheduling problem we are looking at is de-
fined as follows. We are given a set of n jobs, which we denote by J1, . . . , Jn. For
each job Jj we are given its processing time pj , its release date rj , its deadline

? Supported by BSIK grant 03018 (BRICKS: Basic Research in Informatics for Cre-
ating the Knowledge Society)

2 J.M. van den Akker et al.

d̄j , and its resource consumption pattern, which gives the amount of resource
needed during its execution; for the time being, we assume that there is only
one kind of resource. For each job Jj we are asked to find a valid starting time
Sj and completion time Cj = Sj + pj such that job Jj does not start before its
release date (Sj ≥ rj), it is completed by its deadline (Cj ≤ d̄j), and such that
the total resource consumption of the jobs at any time t does not exceed the
amount of resources available at that time. Moreover, between each pair of jobs
Ji and Jj , there can be generalized precedence constraints, which define a lower
bound and/or upper bound on Si − Sj . In case the upper and lower bound are
equal, we say that there is a no-wait constraint between Ji and Jj . The goal is to
minimize either the makespan Cmax or the maximum lateness Lmax = maxj Lj ,
where the lateness Lj of job Jj is defined as the difference between the com-
pletion time Cj and the due date dj , which denotes a target completion time.
In fact, our approach can easily be generalized further to deal with any regular
minimax function.

The resource constrained project scheduling problem has received attention
from both operations research and constraint programming. We only discuss a
few contributions. Brucker and Knust ([7], [8]) have applied column generation
to a number of resource constrained project scheduling problems in which the
goal is to minimize the makespan. Here they first formulate the problem as a
decision problem and then use linear programming to check whether it is possible
to execute all jobs in a feasible preemptive schedule; here the decision variables
refer to the length of a time slice during which a given set of jobs is executed
simultaneously. Cesta, Oddi, and Smith [9] have applied constraint programming
to the makespan problem. The key here is to determine a schedule that is feasible
for all constraints except for the resource consumption. Then resource conflicts
are determined and resolved.

Van den Akker, Hoogeveen, and van Kempen [1] have looked at the special
case of the above model in which the available amount of resources is constant
over time (say m) and each job has a constant resource consumption pattern
of one, that is, at any time during its execution, it consumes one unit of re-
source. This problem is then equivalent to the parallel machine scheduling with
m parallel, identical machines. Van den Akker et al. [1] have presented a column
generation based method to solve it, which yields a lower bound that turned out
to be tight in all their computational experiments. They further gave a method
to find a feasible solution with value equal to the lower bound. We will briefly
discuss their method in Section 2. In Section 3 we will describe how we can
extend their method to solve a number of basic RCPS problems. In Section 4 we
consider two other extensions, concerning change-over times and machine main-
tenance. Finally, we draw some conclusions and present directions for future
research in Section 5.

Column generation for RCPS 3

2 Reviewing the basic method

In this section, we briefly review the column generation approach presented in [1]
for the problem of minimizing Lmax on a set of m parallel, identical machines.
Here each job needs exactly one machine during its processing. Furthermore,
there are release dates, deadlines, and generalized precedence constraints. The
minimization problem is turned into a feasibility problem by putting an upper
bound L on Lmax; this is equivalent to adding deadlines d̄j ← dj + L (j =
1, . . . , n). Since a feasible schedule corresponds to a collection of at most m
feasible, single-machine schedules containing all n jobs, the decision problem can
be reformulated as: is it possible to partition the jobs in at most m subsets such
that for each subset we can find a feasible single-machine schedule? Finally, the
latter decision problem is solved by answering the question: what is the minimum
number of feasible single-machine schedules that are needed to accommodate all
jobs?

The problem of minimizing the required number of feasible single-machine
schedules can be formulated as an integer linear programming problem as follows.
We call a subset of jobs that allow a feasible single-machine schedule with respect
to the release dates and deadlines a machine schedule. Let S be the set contain-
ing all machine schedules. We introduce binary variables xs (s = 1, . . . , |S|) that
take value 1 if machine schedule s is selected and 0 otherwise. For each machine
schedule s we encode whether job Jj is included (then ajs = 1) or not (ajs = 0),
and we encode the starting times Sjs of the jobs with ajs = 1 (j = 1, . . . , n).
Since two jobs that are connected through a precedence constraint do not have
to be executed by the same machine, the generalized precedence constraints are
not included in the feasibility of the machine schedules, and we include a con-
straint in the integer linear programming formulation for each of the generalized
precedence constraints. We define A1 as the arc set containing all pairs (i, j)
such there exists a precedence constraint of the form Sj − Si ≥ qij ; similarly,
we define A2 and A3 as the arc sets that contain an arc for each pair (i, j), for
which Sj − Si ≤ qij and Sj − Si = qij , respectively. Note that the intersection
of A1 and A2 does not have to be empty. We denote the union of A1, A2, and
A3 by the multiset A. This leads to the following integer linear programming
formulation

min
∑
s∈S

xs

subject to ∑
s∈S

ajsxs = 1, for each j = 1, . . . , n, (1)∑
s∈S

Sjsxs −
∑
s∈S

Sisxs ≥ qij for each (i, j) ∈ A1; (2)∑
s∈S

Sjsxs −
∑
s∈S

Sisxs ≤ qij for each (i, j) ∈ A2; (3)∑
s∈S

Sjsxs −
∑
s∈S

Sisxs = qij for each (i, j) ∈ A3; (4)

4 J.M. van den Akker et al.

xs ∈ {0, 1}, for each s ∈ S.

We relax the integrality constraints to xs ≥ 0; the upper bound xs ≤ 1 follows
from the other constraints. The LP-relaxation is solved by applying column
generation. To start, we give each job its own machine. Given the outcome
of the current LP, we find dual multipliers λj for Constraints 1 and δij for the
Constraints 2-4 in which jobs Ji and Jj are involved. The reduced cost of machine
schedule s is then equal to

c′s = 1−
n∑

j=1

ajsλj −
n∑

j=1

 ∑
h∈Precj

δhjSjs −
∑

k∈Sucj

δjkSjs

 ,

where Precj and Sucj are defined as the sets containing all predecessors and
successors of job Jj in A, respectively. The pricing problem is then to find a
machine schedule with minimum reduced cost. Since solving the LP-relaxation
by column generation only renders us a lower bound when the column generation
procedure has finished, we compute an intermediate lower bound as

∑
s∈S

xs ≥

 n∑
j=1

λj +
∑

(j,k)∈A

δjkqjk

 /(1− c∗),

where c∗ denotes the outcome value of the pricing problem.
Since the pricing problem isNP-hard to solve, we do not solve it to optimality

in each iteration. We apply a two-phase Simulated Annealing procedure to find
a good solution. In the first phase, we decide which jobs are included in the
machine schedule and in which order. In the second step, we find the optimal
starting times of the included jobs. After that, we change the choices made in
phase 1, etc. We mostly use the local search procedure to find good solutions
to the pricing problem, but after 50 iterations, or when we cannot find any
improving column, we turn to a time-indexed linear programming formulation
of the pricing problem. Here we use binary variables xjt to indicate whether
job Jj starts at time t or not; the corresponding cost coefficients cjt are easily
determined. The ILP-formulation (ignoring the constant) then becomes

min
n∑

j=1

d̄j−pj∑
t=rj

cjtxjt

subject to
d̄j−pj∑
t=rj

xjt ≤ 1 ∀j = 1, . . . , n; (5)

n∑
j=1

t∑
s=t−pj+1

xjs ≤ 1 ∀t = 0, . . . , T − 1; (6)

xjt ∈ {0, 1} ∀j = 1, . . . , n;∀t = rj , . . . , d̄j − pj .

Column generation for RCPS 5

Here T denotes the latest point in time at which at least two jobs can be executed.
Constraint 5 decrees that each job can be chosen at most once, and Constraint 6
states that at most one job should be executed at any time.

Since we need to find out whether there exists a solution using at most m
machines, we stop as soon as the outcome of the LP-relaxation has hit m. If the
outcome of the current LP is bigger than m, and we cannot find an improving
column, then we can compute the outcome value of the pricing problem that
we need such that the intermediate lower bound equals m. We can then ask the
ILP-solver whether there exists a solution to the pricing problem with that value
or less. If it does not exist, then we have proven that m is not achievable, and
we are done; if we can find it, then this is an improving column that we add, etc.
In this way, we do not have to solve the time-indexed formulation to optimality.

Finally, when we have found the smallest upper bound L on Lmax that cannot
be proven impossible, then we try to construct a feasible schedule with Lmax

equal to L. We formulate the problem of finding an optimal schedule as a time-
indexed ILP as follows. Again, xjt is used to indicate whether job Jj starts at
time t or not.

min LMAX

subject to
d̄j−pj∑
t=rj

xjt = 1, for each j = 1, . . . , n;

n∑
j=1

t′∑
t=t′−pj+1

xjt′ ≤ m, for each t′ = 0, . . . , T − 1;

d̄j−pj∑
t=rj

txjt + pj − dj ≤ LMAX, for each j = 1, . . . , n;

d̄j−pj∑
t=rj

txjt −
d̄i−pi∑
t=ri

txit ≥ qij , for each (i, j) ∈ A1;

d̄j−pj∑
t=rj

txjt −
d̄i−pi∑
t=ri

txit ≤ qij , for each (i, j) ∈ A2;

d̄j−pj∑
t=rj

txjt −
d̄i−pi∑
t=ri

txit = qij , for each (i, j) ∈ A3;

xjt ∈ {0, 1}, for each j = 1, . . . , n and each t = 0, . . . , T − 1.

Solving this ILP from scratch only works for small instances. But when we insert
our knowledge of the lower bound by adding the constraint LMAX = L, then
our ILP-solver CPLEX finds a feasible solution rather quickly, if it exists. So far
(and we have run a lot of experiments), we have not found an instance in which
the optimum solution is not equal to the lower bound.

In the remainder of this section, we summarize the computational experi-
ments by Van den Akker et al.[1]. Note that in these experiments, we did not

6 J.M. van den Akker et al.

include any no-wait precedence constraints. In our experiments we compare our
hybrid algorithm, i.e. column generation and then for the identified lower bound
L solving the time-indexed ILP with LMAX = L, to the approach of letting
CPLEX solve the time-indexed ILP formulation without knowing the value of
the lower bound; from now on, we will refer to this as the ignorant ILP. We
have applied both algorithms on 6 scenarios; for each scenario we ran ten test
instances. The scenarios are described in Table 1. The results of the experiments

Number pj rj dj n m # prec

0 U[1,20] U[0,60] U[50,80] 40 4 20

1 U[1,20] U[0,40] U[30,60] 70 5 35

2 U[1,20] U[0,40] U[60,80] 100 9 40

3 U[1,20] U[0,60] U[80,110] 180 10 60

4 U[1,20] U[0,60] U[40,80] 60 5 30

5 U[1,20] U[0,60] U[50,80] 30 3 15

Table 1. Test scenarios

are summarized in Table 2. The results of the hybrid algorithm are denoted in
the row starting with Hi, where i denotes the number of the scenario; the results
of applying CPLEX (Version 9.0) to the ignorant ILP formulation appear in the
row starting with Ci. The algorithms were encoded in Java and the experiments
were run on a Pentium 4, 3 Ghz PC with 1 GB memory. For each instance we
let each algorithm run for at most 30 minutes. We keep track of the number of
times out of 10 that an optimum was found (‘# success’), and we report the
average and maximum amount of time in seconds needed for the successful runs
(‘Avg t’ and ‘Max t’). For the hybrid algorithm, we have gathered some more
information. By (‘#LB=OPT’) we denote the number of times that we could
prove that the lower bound equalled the optimum. Next, we report the average
and maximum time needed to find the lower bound for the successful runs (‘Avg
t LB’ and ‘Max t LB’). Finally, by (‘Avg #ILP’ and ‘Max #ILP’), we denote the
number of times that we solved the ILP formulation of the pricing problem; this
was conducted after each series of 50 runs of the local search algorithm, since
we wanted to find out whether the intermediate lower bound could decide the
problem already, and whenever the local search algorithm could not find an im-
proving column. Our results clearly show that our hybrid algorithm outperforms
the method of letting CPLEX solve the ignorant ILP by far. For all instances
we managed to solve, the derived lower bound was equal to the optimal value.
There are some instances for which we could not check whether optimum and
lower bound coincided, for we could not solve them within 30 minutes. This
may be due to a gap between the lower bound and the optimum. However, we
were never able to show that the lower bound differed from the optimum for
any instance. Altogether we may draw the conclusion that our lower bound is
extremely strong. If we compare solving the ignorant ILP with the second part
of the hybrid algorithm, then we see that specifying the optimum makes a lot
of difference. Most likely the preprocessing steps performed by CPLEX play an
important role in this. Therefore, we may expect the technique of constraint

Column generation for RCPS 7

Avg t Max t #LB=OPT Avg t Max t Avg Max
success LB LB #ILP #ILP

H0 10 30 62 10 26 60 8 43

C0 8 145 1005

H1 10 191 336 10 107 156 16 45

C1 0 - -

H2 9 183 302 9 117 217 16 68

C2 0 - -

H3 9 1033 1579 9 534 640 45 78

C3 0 - -

H4 10 54 173 10 42 153 16 92

C4 8 74 466

H5 9 26 77 9 24 75 13 76

C5 10 57 195

Table 2. Results of comparing CPLEX and the hybrid algorithm

satisfaction to work very well to find a solution of value L if such a solution
exists.

3 The RCPS problem

3.1 One resource

Unit resource consumption
We first look at the case that the resource consumption pattern is constantly
equal to 1 for each job Jj , but the available amount of nonrenewable resources
is not constant over time. We capture this situation in the general framework of
[1] by issuing dummy jobs, which ‘eat up’ the missing resources. This is achieved
in the following way. We define the number of machines m to be equal to the
maximum amount of resource available at any time. Now we determine the
amount of resource that is missing over time with respect to m; this will yield
a figure with a number of piles of blocks on top of each other, where the higher
you come, the smaller the block is. For each block, we introduce a dummy job
with the following characteristics: it has processing time equal to the length of
the block; release date equal to the left time point of the block; and deadline
equal to the right time point of the block. In the example of Figure 1, we have
a pile with three blocks, which lead to the three jobs called D1, D2, D3. The
release dates and deadlines of these jobs are ri and d̄i; the processing times are
equal to d̄i−ri (i = 1, . . . , 3). We further assume that each dummy job has a due
date that is unrestrictively large to prevent any interference with the Lmax value.
Note that the choice of dummy jobs is not unique. We can, for example, mingle
the dummy jobs D1 and D2 to obtain D′

1 and D′
2 by swapping the deadlines

and adjusting the processing times: a solution with these two dummy jobs can
be translated into a solution with the two original dummy jobs by applying a
‘cross-over’ operation of the two involved machine schedules at time d̄2. Similarly,
dummy jobs can be split. Anyway, it is easily seen that each feasible solution

8 J.M. van den Akker et al.

for this instance that uses no more than m machines corresponds to a feasible
solution for the RCPS with equal objective value.

D1

D2

D3

r1 r2 r3 d̄3 d̄2 d̄1

Fig. 1. Example of the dummy jobs

Arbitrary integral resource consumption
We now assume that the resource consumption pattern is constant for each job,
but it can be any arbitrary integral value greater than or equal to 1. Suppose that
Jj is some job that needs a constant amount of k ≥ 2 units of resource during
its execution. We capture this situation in the general framework by replacing
job Jj by job J ′j and k − 1 additional dummy jobs. Here J ′j is identical to Jj ,
except for its resource consumption, which we put equal to one. Furthermore,
each dummy job has processing time equal to pj , but it has no release date and
deadline, and it is independent of all other jobs, except for J ′j : we force that all
these dummy jobs and J ′j are started at the same time by means of a no-wait
constraint. It is easily seen that solving the resulting instance with unit resource
consumption is equivalent to solving the original instance.

If the resource consumption of job Jj is not constant over time, but can
attains arbitrary integral values, then we replace Jj by a set of new jobs with
a constant resource consumption pattern equal to 1, and we glue these together
by no-wait constraints, such that their joint resource consumption pattern is
equivalent to that of the original job Jj .

We can now use the approach of [1] to find the lower bound. Furthermore, we
can use the time-indexed formulation of [1] to look for a schedule with value equal
to the lower bound. Since the dummy jobs that replace an original job Jj are
glued together by no-wait constraints, and since the time-indexed formulation
uses variables xjt indicating whether job Jj starts at time t, we can restrict
ourselves to the original jobs (with their varying resource consumption patterns)
in the time-indexed formulation. Obviously, we must then adjust Constraints 6
to deal with the consumption patterns.

Note the close connection between the above RCPS problem and the cu-
mulative constraint (see the on line Global Constraint Catalog by Beldiceanu
and Demassey [5]. The cumulative constraint decrees that we should find for a
given set of jobs starting times, which obey the release dates and deadlines, such
that the total resource consumption should never exceed the available amount
of resource. To filter this constraint, we must check whether a feasible sched-
ule exists for the above resource constraint project scheduling problem without
initial precedence constraints.

Column generation for RCPS 9

3.2 Multiple resources

We assume in this subsection that there are only two resources involved, but each
model can be easily generalized to deal with any number of resources. We first
transform it to an instance in which each job consumes only one resource during
its execution: this is easy to achieve by replacing a job that needs both resources
with two copies that only need one of the individual resources but are identical
otherwise. These copies are then tied together by no-wait constraints such that
they start at the same time. Next, we use the transformations described above to
achieve that each job uses exactly one amount of resource (either resource 1 or
2) at any time during its execution. We now have transformed the problem into
a parallel machine scheduling problem in which there are two different sets of
identical machines; we assume that there are m1 (m2) machines corresponding
to resource 1 (2).

We apply the same solution strategy as Van den Akker et al. [1] We divide
the jobs and the machines into two groups, where jobs are only assigned to
machines of the right group, which is easily incorporated in the pricing problem.
We again minimize the total number of machines that is used, but we add the
constraint that we use at least m1 (m2) machines of group 1 (2): if we then find
a solution using no more than m1 + m2 machines, then we know that we do not
use too much of resources 1 and 2 separately. Note that we could have added
constraints decreeing that we use no more than m1 (m2) machines of group 1
(2) instead, but then we run into problems when we look for a feasible solution
of the LP-relaxation to start with. Finally, we add some ‘empty’ columns, such
that these two constraints can always be met.

As an illustration, we work things out for the case in which there are two re-
sources, and each job Jj has a constant resource consumption pattern, requiring
either 0 or 1 unit of resource 1 and 2. We assume for the ease of exposition that
initially there are no precedence constraints. We denote the set of jobs requiring
resource 1 only by R1; similarly, we use R2 to denote the jobs requiring resource
2 only. We denote the set of jobs that need both resources by R1,2; these jobs
will be split into two operations. These two operations need only one resource
and are connected by a no-wait constraint. We use S and V to denote the set of
machine schedules for resources 1 and 2, and we use xs and yv as binary decision
variables. Moreover, we use ajs and bjv to indicate whether job Jj is included in
machine schedules s and v for resource 1 and 2, respectively. This leads to the
following ILP-formulation, where with a little abuse of notation, a job Jj ∈ R1,2

in fact consists of its two operations.

min
∑
s∈S

xs +
∑
v∈V

yv

subject to ∑
s∈S

ajsxs = 1, for each j ∈ R1 ∪R12 (7)∑
v∈V

bjvyv = 1, for each j ∈ R2 ∪R12 (8)

10 J.M. van den Akker et al.

∑
s∈S

Sjsxs −
∑
v∈V

Sjvyv = 0, for each j ∈ R1,2 (9)∑
s∈S

xs ≥ m1 (10)∑
v∈V

yv ≥ m2 (11)

xs, yv ∈ {0, 1}, for each s ∈ S and v ∈ V.

When we solve the LP-relaxation by column generation, we find that the reduced
cost of a schedule s ∈ S is equal to

c′s = 1− λ0 −
∑

j∈R1∪R12

ajsλj −
∑

j∈R1,2

δjSjs;

here λ0 is the dual multiplier corresponding to Constraint 10, λj (j ∈ R1) are
the dual multipliers corresponding to the Constraints 7, and δj (j ∈ R1,2) are
the dual multipliers corresponding to the Constraints 10. The reduced cost of
machine schedule v ∈ V is computed in an equivalent way. It is readily verified
that the pricing problem is similar to the one of [1], which implies that the local
search procedure and time-indexed formulation to solve it can still be applied.
Furthermore, we can compute an intermediate lower bound as follows. Let c∗1
denote the optimal value of the pricing problem for resource 1. If we fill in c′s ≥ c∗1
in the formula of the reduced cost, then we find that

1 ≥ c∗1 + λ0 +
∑

j∈R1∪R12

ajsλj +
∑

j∈R1,2

δjSjs.

Hence,

∑
s∈S

xs ≥
∑
s∈S

c∗1 + λ0 +
∑

j∈R1∪R12

ajsλj +
∑

j∈R1,2

δjSjs

xs =

(c∗1 + λ0)
∑
s∈S

xs +
∑

j∈R1∪R12

λj

∑
s∈S

[ajsxs] +
∑

j∈R1,2

δj

∑
s∈S

Sjsxs =

(c∗1 + λ0)
∑
s∈S

xs +
∑

j∈R1∪R12

λj +
∑

j∈R1,2

δj

∑
s∈S

Sjsxs.

Similarly, we find that∑
v∈V

yv ≥ (c∗2 + µ0)
∑
v∈V

yv +
∑

j∈R2∪R12

µj −
∑

j∈R1,2

δj

∑
v∈V

Sjsyv;

here µ0 is the dual multiplier corresponding to Constraint 11, µj (j ∈ R1 ∪R12)
is the dual multiplier corresponding to Constraint 8, and c∗2 is the outcome value
of the pricing problem for resource 2. If we add these two inequalities up, then
the terms containing Sjs cancel out, because of Constraints 9. Rearranging the
terms, we find that

(1− c∗1 − λ0)
∑
s∈S

xs + (1− c∗2 − µ0)
∑
v∈V

yv ≥
∑

j∈R1∪R12

λj +
∑

j∈R2∪R12

µj .

Column generation for RCPS 11

If 1 − c∗1 − λ0 = 1 − c∗2 − µ0, then we can divide by this term and find a
lower, provided that 1 − c∗1 − λ0 > 0, which issue we discuss later. Suppose
that 1− c∗1−λ0 > 1− c∗2−µ0; the other case can be dealt with in the same way.
Then we add to this inequality (c∗2 − c∗1 + µ0 − λ0) times inequality 11, and we
find the intermediate lower bound∑

s∈S

xs +
∑
v∈V

yv ≥
((c∗2 − c∗1 + µ0 − λ0)m2 +

∑
j∈R1∪R12

λj +
∑

j∈R2∪R12
µj

(1− c∗1 − λ0)
.

What is left to show is that (1− c∗1 − λ0) > 0. We know that c∗1 ≤ 0, since any
column that is used in the current LP solution has zero reduced cost. Moreover,
if both λ0 and µ0 are positive, then both constraints are binding, which implies
that we have found a solution with value m1 + m2, which means that we can
stop. Hence, at least one of λ0 and µ0 is zero, which implies that the maximum
of 1− c∗1 − λ0 and 1− c∗2 − µ0 is positive.

Finally, we look at the problem of finding a feasible solution with this value.
It is easily verified that the time-indexed formulation of [1] to find a feasible so-
lution can be used, but we must split the m machines into two sets representing
the m1 and m2 units of resources 1 and 2, respectively.

Machine scheduling with operators
A special case of the above is the situation in which each job needs an operator
to start it up, which takes 1 time unit per job. Hence, we should not start more
jobs at any moment than there are operators available. We can model the op-
erators as a second resource, but alternatively we can add the starting times to
the machine schedules and force the restriction on the number of operators by
adding constraints. Here, we work out the second option, which has the addi-
tional advantage that we can model a varying number of available operators. We
again assume without loss of generality that there are no additional precedence
constraints. We use ost to indicate whether a job starts at time t in machine
schedule s; we use Opt to denote the number of operators available at time t.
We then arrive at the ILP-formulation:

min
∑
s∈S

xs

subject to ∑
s∈S

ajsxs = 1, for each j = 1, . . . , n∑
s∈S

ostxs ≤ Opt, for all t = 0, . . . , T − 1 (12)

xs ∈ {0, 1}, for each s ∈ S,

where T denotes a given time horizon. The reduced cost of a machine schedule
s is then equal to

c′s = 1−
n∑

j=1

ajsλj −
T∑

t=0

ostπt,

12 J.M. van den Akker et al.

where πt denotes the dual variable corresponding to Constraints 12. The corre-
sponding pricing problem can be minimized using the local search procedure and
the time-indexed formulation of [1]. Furthermore, since πt ≤ 0 (t = 0, . . . , T), it
is readily determined that n∑

j=1

λj +
T∑

t=0

πtOpt

 /(1− c∗)

is an intermediate lower bound on the outcome of the LP-relaxation.
Finally, we can use the time-indexed formulation of [1] to find a solution with

value equal to the lower bound, but we have to add constraints to ensure that
the required number of operators is no more than the available number at any
time

n∑
j=1

xjt ≤ Opt, for all t = 0, . . . , T − 1.

3.3 Computational experiments

We tested our hybrid algorithm for the case with one type of resource, unit re-
source consumption, and variable resource availability over time. We consider
the instances from Table 1. Besides the basic scenario with full resource avail-
ability, we consider two scenarios for each instance. In the first scenario, there
is one pile of dummy jobs (reflecting the resource unavailability) where the pile
is located around half of the estimated makespan of the schedule. In the sec-
ond scenario there are two shorter piles around one third and two third of the
estimated makespan, respectively. In both scenarios the maximum amount of
unavailable resources is about dm

2 e. The first scenario is denoted by Hi-T1 and
the second by Hi-T2. Besides the data from Table 2, we report on the increase
of the lateness because of resource unavailability (Avg incL and Max incL, both
in percentages). Again, the maximal running time is 30 minutes. The results are
given in Table 3. Our computational results indicate that the resource unavail-
ability increases the running time of the algorithm but that in most cases the
algorithm is still able to solve the problem within 30 minutes. For the largest
instances (of type 3), we were able to compute the lower bound but could not
complete the ILP within 30 minutes. In most cases the scenario with one pile
is more difficult than the one with two piles. Finally, most cases were solved
and moreover, for all these cases the lower bound equals the optimum, which
emphasizes the strength of our lower bound.

4 Other extensions

4.1 Set-up times and change-over times

So far, we have assumed that as soon as a machine has finished a job, it can start
the next one. In many applications, however, there can be a mandatory delay,

Column generation for RCPS 13

Avg t Max t #LB Avg t Max t Avg Max Avg Max
success =OPT LB LB #ILP #ILP incL incL

H0 10 30 62 10 27 60 8 43

H0-T1 9 41 81 9 35 72 20 94 42 69

H0-T2 10 39 71 10 32 62 19 79 27 54

H1 10 191 336 10 108 156 16 45

H1-T1 9 166 207 9 83 119 13 38 37 45

H1-T2 10 437 1238 10 190 926 15 30 42 52

H2 9 183 302 9 117 217 16 68

H2-T1 9 297 497 9 137 383 14 20 87 107

H2-T2 10 340 582 10 112 158 11 16 125 155

H3 9 1033 1579 9 534 640 45 78

H3-T1 6 1393 1736 6 578 730 55 75 29 33

H3-T2 9 1288 1473 9 642 927 52 88 35 40

H4 10 54 173 10 42 153 16 92

H4-T1 9 76 121 9 56 103 29 91 13 28

H4-T2 9 84 165 9 60 139 34 97 18 37

H5 9 26 77 9 24 76 13 76

H5-T1 9 61 139 9 47 135 17 46 112 179

H5-T2 10 77 214 10 59 205 10 31 144 258

Table 3. Results of the hybrid algorithm with resource unavailability

which is called a set-up time or a change-over time. A set-up time just depends
on the job that is to be started; the change-over time depends on both the job
that is to be started and the job that has just been completed. Here we assume
that the change-over times obey the triangle inequality.

We first deal with the set-up times, since this is fundamentally easier than
the case with change-over times. The basic idea is to add the set-up time to the
processing time; we then consider the first part of processing the job as setting
it up. We must then update the release date by subtracting the set-up time
from it, which might lead to a negative release date. We may further have to
update the right-hand-sides of the generalized precedence constraints, but this
is simply a matter of administration. An optimal solution for the problem with
set-up times is then readily obtained from the optimal solution for the adjusted
instance without set-up times.

Sequence-dependent change-over times are much harder. We incorporate this
type of constraint in the column generation: we look for single machine schedules
that obey the release dates, deadlines, and the change-over times. This implies
that the ILP formulation remains the same; we only must add another constraint
to the pricing problem. It is easily dealt with in the local search procedure
that Van den Akker et al. use to solve the pricing problem approximately, but
it cannot be incorporated in the time-indexed formulation to solve the pricing
problem. If we want to solve the pricing problem then, we might use branch-and-
bound. Moreover, we cannot use the time-indexed formulation of [1] to find an
optimal solution. Very recently, Pereira Lopes and Valério de Carvalho [10] have

14 J.M. van den Akker et al.

presented a branch-and-price algorithm for this problem, but with an additive
objective function.

4.2 Machine unavailability and planned maintenance

Machine unavailabilities are similar to varying resource availabilities, but they
are more restrictive, since we put a label on a machine with its unavailability
pattern instead of aggregating the capacities of all machines. One way to tackle
this problem is to label the machines and determine for each one a separate set
of machine schedules, from which we must select one. An alternative and quicker
way is to add dummy jobs to the instance which correspond to unavailabilities.
In a correct solution, we will have for each unavailability pattern that a feasible
machine schedule will be selected that contains the dummy jobs corresponding
to this unavailability pattern, which gives us a schedule for the corresponding
machine. In case of a planned maintenance, we know that the machine is being
repaired for a given time, but we do not know when this time period starts: we
then give the dummy job a release date and deadline corresponding to the earliest
start time and the latest completion time of the repair. The only difficulty left
is to ensure that a given set of dummy jobs corresponding to the unavailabilities
and repairs of a given machine all end up in the same, selected machine schedule.
Just like in the previous subsection, we put these constraints in the pricing
problem. These additional constraints to a machine schedule are easily being
dealt with in the local search procedure. When we want to solve the pricing
problem to optimality, we can use the time-indexed formulation, but we must
add a constraint for each pair of jobs that must be executed on the same machine
or on different machines: if Ji and Jj are to be executed on the same machine,
then we add the constraint

d̄i−pi∑
t=ri

xit =
d̄j−pj∑
t=rj

xjt;

if Ji and Jj must go on different machines, then we require

d̄i−pi∑
t=ri

xit +
d̄j−pj∑
t=rj

xjt ≤ 1.

Note that we do not have to solve a pricing problem for each machine separately.
Since each job has to be executed, there will be one machine ‘executing’ the set
of dummy jobs that we introduced to mimic the unavailability pattern of this
machine. Unfortunately, after having determined the lower bound, we cannot
straightaway use the time-indexed formulation of [1] to look for a solution with
equal value, since we must force the set of dummy jobs representing the machine
unavailability pattern on one machine that does not execute any other dummy
job. We can use a similar formulation in which we distinguish between the ma-
chines by using variables xijt indicating that job Jj starts at time t on machine
i, but this will blow up the model tremendously, since we cannot aggregate the
machines and require that at most m are used then anymore.

Column generation for RCPS 15

5 Conclusions and future research

We have described how the framework by Van den Akker et al. [1] can be used
to solve a number of basic resource project scheduling problems. We further
have shown how to incorporate change-over times and machine maintenance.
Except for the case with change-over times, we can use the same tool kit as
in [1] to compute the lower bound. This lower bound always coincided with
the optimum in the computational experiments conducted in [1], and we found
the same phenomenon in our experiments for the case of the strongly related
problem with a varying amount of resources available. We are working on more
elaborate computational experiments including other cases. When it comes to
finding a solution with value equal to the lower bound, we can in many cases
use the time-indexed formulation of [1] in which we specify the wanted optimum
beforehand. Van den Akker et al. conjectured that this is presumably due to the
preprocessing step within CPLEX, which suggest that the technique of constraint
programming should be able to find such a solution more quickly, or show that it
does not exist. Constraint programming seems to be the most eminent candidate
to look for a solution with value equal to the lower bound for the problems with
machine unavailabilities and change-over times. This is one of the directions that
we work on.

References

1. J.M. van den Akker, J.A. Hoogeveen, and J.W. van Kempen (2006). Parallel
machine scheduling through column generation: minimax objective functions (ex-
tended abstract). Y. Azar and T. Erlebach (Eds.) ESA 2006. LNCS 4168, Springer,
648–659.

2. J.M. van den Akker, J.A. Hoogeveen, and S.L. Van de Velde (2005). Ap-
plying column generation to machine scheduling. G. Desaulniers, J. Desrosiers, and
M.M. Solomon (eds.). Column Generation, Springer, 303–330.

3. P. Baptiste, C. Le Pape, and W. Nuijten (2001). Constraint-based schedul-
ing: Applying constraint programming to scheduling problems. Kluwer Academic
Publishers, Dordrecht, The Netherlands.

4. M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali (1990). Linear Programming
and Network Flows, Wiley, New York.

5. N. Beldiceanu and S. Demassey (2007). Global Constraint Catalog
www.emn.fr/x-info/sdemasse/gccat/index.html

6. P. Brucker, A. Drexl, R. Möhring, K. Neumann, and E. Pesch (1999).
resource-constrained project scheduling: Notation, classification, models, and
methods. European Journal of Operational Research 112, 3–41.

7. P. Brucker and S. Knust (2000). A linear programming and constraint
propagation-based lower bound for the RCPSP. European Journal of Operational
Research 127, 355–362.

8. P. Brucker and S. Knust (2003). Lower bounds for resource-constrained project
scheduling problems. European Journal of Operational Research 149, 302–313.

9. A. Cesta, A. Oddi, and S.F. Smith (2002). A constraint-based method for
project scheduling with time windows. Journal of Heuristics 8, 109–136.

10. M.J. Pereira Lopes and J.M. Valério de Carvalho (2007). A branch-and-
price algorithm for scheduling parallel machines with sequence dependent setup
times. European Journal of Operational Research 176, 1508–1527.

