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Abstract
We present an approach to the generation of generic functions from
user-provided specifications. The specifications consist of the type
of a generic function, examples of instances that it should “match”
when specialized, and properties that the generic function should
satisfy. We use the type-based function generator Djinn to generate
terms for specializations of the generic function types on the type
indices of generic functions. Then we use QuickCheck to prune the
generated terms by testing against properties, and by testing spe-
cialized candidate functions against the provided examples. Using
this approach we have been able to generate generic equality, map,
and zip functions, for example.

Categories and Subject DescriptorsD.1.m [Programming Tech-
niques]: Generic Programming; I.2.2 [Artificial Intelligence]: Au-
tomatic Programming

General Terms Design, Experimentation

Keywords Generic programming, program synthesis, automated
testing, generalized algebraic data types

1. Introduction
How do we introduce a datatype-generic function? Usually we do
the following:

Here is the instance of the function on the data typeList,
and here is the instance of the generic function on some kind
of Tree. The pattern in these definitions should be clear. It
follows that this is the type of the generic function, and the
different lines in the definition of the generic function are
as follows. This is the correct generic function, because if
I instantiate it on the typesList andTree, I get functions
with the same semantics as the functions I gave when I
introduced the function.

Examples of this approach have been given by Hinze [8] for gen-
eralized folds, Gibbons [7] for accumulations, Backhouse et al. [4]
for maps, and by many other authors introducing new generic func-
tions. This approach has worked well, and both readers and students
are usually convinced by the argument. However, it raises the ques-
tion if there is any choice when we define a generic function after
giving two or more examples on specific data types. Can we infer
a generic function from examples? In general the answer to this
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question will be negative. Even the weaker problem of finding the
type of the generic function that generalizes from the types of the
examples does not have a unique solution [16]. The story doesn’t
end here, though. First, combining a desired type of a generic func-
tion with example instances might lead to fewer, and maybe even
unique, solutions. And even though there might not be a unique so-
lution that unifies example instances on particular data types, we
might want to have a look at the different possibilities, and pick our
favorite candidate from the set of all solutions. We want togenerate
all generic functions of a given type that are equal to example in-
stances when specialized. Furthermore, we might even add proper-
ties to be satisfied by the desired generic function to further reduce
the amount of possible solutions.

Why would we want to generate generic functions from exam-
ples?

• First, an algorithm that generates generic functions from exam-
ples (and possibly types and properties) is a convenient way to
specifygeneric functions.

• Second, it offers (novice) users help when writing a generic
function.

• Third, it formalizes the informal procedure with which we
started this paper.

Recently there has been growing interest in the automatic gen-
eration of functions from user-provided specifications [14, 15, 2],
mainly consisting of a type and a set of input-output examples.
However, the function generation research above is not directly
applicable to the generation of generic functions due to their dif-
ferent nature: the approach of Koopman and Plasmeijer [15] does
not seem to be able to generate higher-order functions, which is
essential for generating generic functions, while Djinn [2] and
Katayama’s MagicHaskeller [14] generate polymorphic functions
but not generic functions.

In this paper, we propose a procedure for the generation of
generic functions in Generic Haskell [18]. Generic Haskell is an
extension of Haskell that supports the definition of datatype-generic
functions.

Generic functions are generated from a user-provided specifica-
tion consisting of the type of a generic function, examples of in-
stances, and properties that the generic function should satisfy. The
generation procedure proceeds as follows:

• The cases comprising a generic function are generated from
the specialized generic-function type. In this paper we use the
Djinn tool [2] for the type-based generation.

• The generated terms are pruned by testing each term against
properties it should satisfy. We use the QuickCheck library [5]
for testing.

• The set of candidate generic functions is constructed by taking
the cross-product of the generated function cases.



• This set is pruned by testing each candidate against examples
instances. In this phase, candidate functions are instantiated
using the specialization algorithm of Generic Haskell [11, 18,
16].

This paper is organized as follows. Section 2 introduces type-
indexed and generic functions and briefly shows how Generic
Haskell generates code for generic functions. Section 3 shows how
a generic programmer typically writes a generic function in Generic
Haskell. Section 4 presents the central ideas of this paper: how do
we generate a generic function given its type, example instances,
and properties it should satisfy. It introduces type-based function
generation and shows how Djinn is used to generate generic func-
tions from types. Section 5 explains the design choices we made for
our tool and briefly explains its implementation. Section 6 reports
the results of our research. Section 7 describes related work, future
work, and concludes.

2. Generic functions in Generic Haskell
In this section we introduce type-indexed functions by means of
an example and we explain how type-indexed functions become
generic in Generic Haskell.

Type-indexed functions
A type-indexed function takes an explicit type argument, and can
have behavior that depends on this type argument. For example,
suppose the unit typeUnit, sum type+, and product type× are
defined as follows:

data Unit = Unit
data a + b = Inl a | Inr b
data a× b = a× b.

We use infix type constructors+ and× and an infix value construc-
tor × to ease the presentation. The type-indexed functionequals
computes the equality of two values. We define the functionequals
on booleans, the unit type, sums, and products as follows in Generic
Haskell:

equals{|Bool|} n1 n2 = equalsBool n1 n2

equals{|Unit|} Unit Unit = True
equals{|α + β|} (Inl x ) (Inl y) = equals{|α|} x y
equals{|α + β|} (Inr x ) (Inr y) = equals{|β|} x y
equals{|α + β|} = False
equals{|α× β|} (x1 × y1) (x2 × y2) = equals{|α|} x1 x2

∧ equals{|β|} y1 y2,

whereequalsBool is the standard equality function on booleans. The
type signature ofequals is as follows:

equals{|a :: ∗|} :: (equals{|a|})⇒ a→ a→ Bool.

The context(equals{|a|}) ⇒ in this signature says thatequals has
a dependency[17] on equals. A type-indexed functionf depends
on another type-indexed functiong if g is used on a type argument
(a dependency variable) α in the definition off . The occurrences
of α andβ in the definition ofequals are dependency variables.

Generic functions
A type-indexed function such asequals does not only work on
the types that appear as its type indices. To see whyequals is in
fact genericand works on arbitrary data types, we give a mapping
from data types to view types such as units, sums, and products.
It suffices to define a function on view types in order to obtain a
function that can be applied to values of arbitrary data types. If
there is no specific case for a type in the definition of a generic
function, generic behavior is derived automatically by the compiler
by exploiting the structural representation.

For example, the definition of the functionequals that is gener-
ically derived for lists coincides with the following specific defini-
tion:

equals{|[α ]|} [ ] [ ] = True
equals{|[α ]|} (x : xs) (y : ys) = equals{|α|} x y ∧

equals{|[α ]|} xs ys.

To obtain this instance, the compiler needs to know the structural
representation of lists, and how to convert between lists and their
structural representation. We will describe these components in the
remainder of this section.

Structure types
The structural representation (or structure type) of types is ex-
pressed in terms of units, sums, products, and base types such as
integers, characters, etc. For example, for the list and tree data types
defined by

data [a] = [ ] | a : [a]
data Tree a b = Tip a | Node (Tree a b) b (Tree a b),

we obtain the following structural representations:

type [a]◦ = Unit + a× List a
type Tree◦ a b = a + Tree a b× b× Tree a b,

where we assume that× binds stronger than+ and both type
constructors associate to the right. Note that the representation of a
recursive type is not recursive, and refers to the recursive type itself:
the representation of a type in Generic Haskell only represents the
structure of the top level of the type.

Embedding-projection pairs
If two types are isomorphic, a witness of the isomorphism, also
called an embedding-projection pair, can be stored as a pair of
functions converting back and forth:

data EP a b = Ep{from :: a→ b, to :: b→ a}.
A type T and its structural representation typeT◦ are isomorphic,
witnessed by a valueconvT :: EP T T◦. For example, for lists
we have thatconv [ ] = Ep from [ ] to[ ], wherefrom [ ] andto[ ] are
defined by:

from [ ] :: ∀a . [a]→ [a]◦

from [ ] [ ] = Inl Unit

from [ ] (x : xs) = Inr (x × xs)

to[ ] :: ∀a . [a]◦ → [a]
to[ ] (Inl Unit) = [ ]
to[ ] (Inr (x × xs)) = x : xs.

The definitions of such embedding-projection pairs are automati-
cally generated by the Generic Haskell compiler for all data types
that appear in a program.

Tying the knot
Using structural representation types and embedding-projection
pairs, a call to a generic function on a data typeT is reduced to a
call on typeT◦. For example, for equality we obtain a function of
typea◦ → a◦ → Bool. To convert this function back to a function
of type a → a → Bool we use the functionbimap [9]. Hence,
if the generic function is defined for view types such asUnit, +,
and×, we do not need cases for specific data types such asList
or Tree anymore. For primitive types such asInt, Float, IO or→,
no structure type is available. Therefore, for a generic function to
work on these types, specific cases are necessary.

3. Writing a generic function
This section describes the steps a generic programmer may follow
to arrive at the definition of a generic function.



Suppose that we want to construct the definition of a generic
equality function. The first step is to write down examples of
specific instances to understand the general pattern of equality.
Consider, for example, equality for lists and trees.

equals [ Int ] :: [Int]→ [Int ]→ Bool
equals [ Int ] [ ] [ ] = True

equals [ Int ] (x : xs) (y : ys) = equals Int x y ∧
equals [ Int ] xs ys

equalsTree :: (a→ a→ Bool)→
(b→ b→ Bool)→
Tree a b→ Tree a b→ Bool

equalsTree equalsa equalsb (Tip x ) (Tip y)
= equalsa x y

equalsTree equalsa equalsb (Node x1 y1 z1)
(Node x2 y2 z2)

= equalsTree x1 x2

∧ equalsb y1 y2

∧ equalsTree z1 z2,

whereequals Int is an equality function on integers. The data type
Tree takes two type arguments, and therefore the equality function
onTree takes two functions as argument: the equality functions on
the argument types. The types of these two examples are subsumed
by the type of the generic equality function:

equals{|a :: ∗|} :: (equals{|a|})⇒ a→ a→ Bool.

It is obvious that this type is a generalization of the type of
equals [ Int ]. In order to see that it is a generalization of the type
of equalsTree we have to instantiate this type on the data typeTree.
SinceTree :: ∗ → ∗ → ∗, and becauseequals has a dependency
on itself, the kind-indexed definition of type specialization [16] re-
turns a type taking two arguments: for each argument kind the type
of equality on a new type variable, herea andb, and the result type
is the equality type onTree a b.

These definitions suggest that, in general, two values are equal
if their constructors are the same and if equality holds for every pair
of corresponding constructor fields. It is natural to use this insight
to write the definition of generic equality in Generic Haskell, taking
into account the way that data types are represented by structural
representations. For instance, the data type[ ] is represented in
Generic Haskell by the structural representationtype [a]◦ =
Unit+ a× [a]. Sums represent choice between constructors, so we
encode the fact that equality only holds for matching constructors
as follows:

equals{|α + β|} (Inl x ) (Inl y) = equals{|α|} x y
equals{|α + β|} (Inr x ) (Inr y) = equals{|β|} x y
equals{|α + β|} = False.

If the values match the same alternative, the recursive call toequals
compares the remaining structure, namely the constructor fields or
the remaining constructor choices.

As products represent the fields of a constructor, we compute the
equality of the constructor fields by comparing the corresponding
components of the two products:

equals{|α× β|} (x1 × y1) (x2 × y2) = equals{|α|} x1 x2

∧ equals{|β|} y1 y2.

The remaining case for the unit data type handles constructors with
no fields and is trivial:

equals{|Unit|} Unit Unit = True.

We emphasize that types play a prominent rôle in the definition of
equality on sums and products. In both cases the arms do not have
specific information about the components of sums and products.

Therefore, the only possibility is to test for equality by recursively
calling the generic equality function on the component types.

We summarize the informal procedure by which we obtain
the generic equality function. First, we look at some instances
of equality to gain insight into the general pattern of equality.
Second, we obtain the type of the generic function that subsumes
the types of the examples. Third, we write the definition taking into
account the structure type encoding of data types and using the type
information available in each case.

4. Generating generic functions
This section outlines our approach to generating generic functions,
which is inspired by the informal procedure for writing generic
functions described in the previous section.

To generate a generic function, a user specifies the type of the
desired generic function, a set of instances for the desired function,
and the properties that the function should satisfy. For example,
the user might provide the type signature for generic equality given
in the previous section, the instancesequals [ Int ] andequalsTree of
equality, and properties such as for example

∀x . equals{|t|} x x
∀x y . equals{|t|} x y =⇒ equals{|t|} y x
∀x y z . equals{|t|} x y ∧ equals{|t|} y z =⇒

equals{|t|} x z .

Our tool generates a set of generic functions, all of which have the
specified type or a more general type. Furthermore, the instances of
the generic functions on the types of the provided instances agree
with the example instances on a number of test cases, and satisfy
the specified properties on a number of test cases.

A generic function consists of a number of arms for type in-
dices required by generic functions. Most generic functions in the
Generic Haskell library have cases for base types such asInt, Float,
Char, andDouble, the sum type+, the product type×, Unit, the
typesCon, andLabel for representing constructors and record la-
bels, respectively, and sometimes also→, IO, etc. Not all of these
cases are required: in principle, providing cases for+,×, andUnit
is sufficient if no base types are used in the data types on which a
generic function is used. TheCon andLabel cases are generated by
the Generic Haskell compiler if a user does not specify these cases.

For the purposes of this paper we will assume that the generated
generic functions have arms for the typesBool (as a very simple
representative of base types),+, ×, andUnit. In the final version
of our tool we will generate more arms.

Since types play a prominent rôle in the definition of generic
functions, types drive the generation of our functions. Our tool
instantiates the type of the generic function on each of the required
type indices. Then it uses Djinn to generate functions of the correct
type for each of the type indices. It prunes the set of terms obtained
by testing that the specified properties are satisfied by the terms
for the arms generated by Djinn. The cross product of the lists of
functions thus obtained gives a list of arms of generic functions.

Finally, the definitions of generic functions thus obtained are
pruned by testing them against the instances provided by the user.
The generic functions are specialized on the types of these in-
stances and each of the specializations is tested for equality against
the instances.

4.1 Djinn

In this paper we use Djinn for the type-based generation of terms.
This tool implements a decision procedure for intuitionistic propo-
sitional calculus due to Dyckhoff [6], and, effectively exploit-
ing the Curry-Howard correspondence, uses it to solve the type-
inhabitation problem for the simply-typed lambda calculus.



To an end user, Djinn looks like the interactive environment of
the Glasgow Haskell Compiler. A user can request the generation
of a term by writing an identifier followed by a question mark and
the type to be inhabited:

Djinn> id ? a -> a
id :: a -> a
id x1 = x1
Djinn> const ? a -> b -> a
const :: a -> b -> a
const x1 _ = x1

More complex queries can involve functional arguments to define,
for example, the composition of functions, currying and uncurry-
ing:

Djinn> o ? (b -> c) -> (a -> b) -> a -> c
o :: (b -> c) -> (a -> b) -> a -> c
o x1 x2 x3 = x1 (x2 x3)
Djinn> curry ? ((a, b) -> c) -> a -> b -> c
curry :: ((a, b) -> c) -> a -> b -> c
curry x1 c3 c4 = x1 (c3, c4)
Djinn> uncurry ? (a -> b -> c) -> (a, b) -> c
uncurry :: (a -> b -> c) -> (a, b) -> c
uncurry x1 (v3, v4) = x1 v3 v4.

At any point the user can introduce new symbols in the environment
by giving a data type declaration.

Djinn> data Maybe a = Nothing | Just a
Djinn> maybe ? b -> (a -> b) -> Maybe a -> b
maybe :: b -> (a -> b) -> Maybe a -> b
maybe x1 x2 x3 =

case x3 of
Nothing -> x1
Just v6 -> x2 v6

So far we have seen only unique inhabitants of a specific given type.
But this need not be the case:

Djinn> choose ? a -> a -> a
choose :: a -> a -> a
choose _ x2 = x2
-- or
choose x1 _ = x1.

Djinn can generate a number of terms for a type, but this does
not mean that all possible terms are generated. We will discuss
limitations of Djinn in a later subsection.

4.2 Type-based term generation

Given an environmentΓ and a typet, a type-based term-generation
tool such as Djinn generates a set of termsE , such that every term
e in E has typet: Γ ` e :: t. The size of this set is potentially
infinite, thus tools that generate such definitions restrict either the
maximal size of such a set or the maximal size of generated terms.

Using a type-based term-generation tool, we can exploit the
fact that we possess the signature of a generic function to generate
definitions for the different view types. As an example, we show
various well-typed terms for the sum case of the generic equality
function. The instance type is obtained by specializing the generic
type signature. Due to the dependency ofequals on equals, the
instance type has functional arguments for computing the equality
of the sum components:

equals{|α + β|} :: ∀a b . (a→ a→ Bool)→
(b→ b→ Bool)→
(a + b)→ (a + b)→ Bool.

There are infinitely many well-typed terms that have this type; we
show a few of them:

λf g x y → True

λf g x y → False

λf g s1 s2 → case s1 of
Inl x → case s2 of

Inl y → f x y
Inr y → False

Inr x → case s2 of
Inl y → False
Inr y → g x y

λf g s1 s2 → case s1 of
Inl x → case s2 of

Inl y → False
Inr y → g y y

Inr x → case s2 of
Inl y → f y y
Inr y → True.

Interestingly, the more generic the type of a (generic) function, the
fewer terms are generated by a type-based term-generation tool. As
an example, there exist more terms of typea → a than of type
a→ b.

For instance, consider the generic map functionmap with sig-
nature

gmap{|a, b :: ∗|} :: (gmap{|a, b|})⇒ a→ b.

From the generic signature we generate the following type for the
data type+

gmap{|α + β|} :: ∀a b c d . (a→ c)→
(b→ d)→
a + b→ c + d.

Djinn generates the following term:

gmap+ f g s = case s of
Inl x → Inl (f x )
Inr x → Inr (g x ).

Of course this is not the only term of this type: we can insert an arbi-
trary number of functions that have no effect on the type, such as for
example the identity function, or sum swapping functions. Djinn
does not generate such terms containing ‘useless’ occurrences of
the identity or swapping functions. The smallest term is the term
we expect. The same holds for the map term on the product type.

4.3 Limitations of Djinn

Recursive data types
In Section 4.1 we have shown that Djinn can also generate func-
tions for types involving user-defined data types such asMaybe a.
However, Djinn does not support recursive data types such as lists
or trees. While this restricts the family of functions that can be gen-
erated, this is not a big problem for our approach, since none of our
view types is recursive. Of course, the generated generic functions
can be specialized on a recursive data type without problem using
the specialization algorithm of Generic Haskell. If our set of view
types would include one or more recursive data types, which would
be the case if we would use the view types for the fixed-point view
on data types [12], which includes the data typeFix, this would be
a problem. Furthermore, this Djinn restriction also rules out gener-
ating generic functions with recursive types in their signatures. For
example, since functionenum returns alist of values:

enum{|a :: ∗|} :: (enum{|a|})⇒ [a],

we cannot use Djinn to generate it.

Finite number of terms
In order to ensure termination for every query, Djinn implements a



sequent calculus that does not have a contraction rule. This design
allows Djinn to answer the type-inhabitation problem in finite time.
The price to be paid is that not all terms inhabiting a type are
generated. Indeed, if a type is inhabited at all, only finitely many
terms can be generated by the algorithm implemented in Djinn. For
instance, the type below corresponds to Church numerals.

Djinn> num ? (a -> a) -> a -> a
num :: (a -> a) -> a -> a
num x1 = x1
-- or
num x1 x2 = x1 x2
-- or
num _ x2 = x2

While the set of Church numerals is infinite, Djinn only generates
the terms corresponding to zero and one. For this reason, we have
refrained from trying to generate theInt cases of generic functions.

4.4 Generalizing the type of a generic function

The set of terms generated by Djinn for an argument type may be
very large. The size of this set is the limiting factor in our approach
to generating generic functions. We apply two steps in our approach
to restrain the size of the set of generated terms. The first step we
apply is using the observation made in the previous subsection: the
more generic the type of a function, the fewer terms are generated.
It is easy to see why this is the case for the following example.
Given ana it is easy to construct ana by means of the identity
function, so asked for constructing a term of typea → a, Djinn
returns one term: the identity function. It is impossible to construct
a value of typeb out of a valuea, so the set of values of typea→ b
returned by Djinn is empty. Generalizing a type where occurrences
of the same variable are replaced by different variables leads to
fewer terms generated by Djinn, since there are fewer input terms
to choose from for the output.

Before we let Djinn generate terms for the types obtained by
instantiating the generic type on the view types, we first generalize
the type of the generic function. For example, while the signature
we gave in Section 2 for equality is

equals{|a :: ∗|} :: (equals{|a|})⇒ a→ a→ Bool,

we replace it now by the more general

equals{|a, b :: ∗|} :: (equals{|a, b|})⇒ a→ b→ Bool,

that is, we replace occurrences of the same variable in the type by
different variables. Now, the type for the+ case of equality is

equals{|α + β|} :: ∀a b c d . (a→ c→ Bool)→
(b→ d→ Bool)→
(a + b)→ (c + d)→ Bool.

When we feed this type to Djinn, it generates a non-empty, and
much smaller set of terms then for the original type ofequals{|α +
β|}.

Generalizing the type of a generic function has the added ad-
vantage that the function becomes more flexible. For example, the
generalized equality can also compare list of characters with list
of integers (presumably representing entries in the ASCII table) by
supplying the functionord . This type of generalization is very com-
mon in generic programming, for example, the type ofpequal in
PolyLib [13], the library of PolyP, is(a → b → Bool) → d a →
d b→ Bool.

The type of a generic function can always safely be generalized:
the generic function obtained from the code generated by Djinn
with a more general type is always correct when typed with a less
general type.

We leave the generalization step to the user of our tool. How-
ever, automating this step is very simple, so we might add the op-
tion to a future version of our tool.

4.5 Pruning generated terms by property

The second step in decreasing the number of terms generated by
Djinn is to prune the set of terms obtained from Djinn by means of
the properties specified for a generic function.

For example, we want the equality function to be reflexive, sym-
metric, and transitive. Since it is in general impossible to automat-
ically proveproperties of functions, we willtest these properties
instead. So for each of the four type indices, the functions gener-
ated by Djinn are tested whether or not they satisfy the instance of
the properties of equality on the type. For the symmetry property
on theBool type we test the following property:

∀x y . equals{|Bool|} x y equals{|Bool|} y x .

This is a simple instance of the general symmetry property for
equality. For the sum type, which has kind∗ → ∗ → ∗, the instance
of the property is a bit more involved:

∀eqa x y . eqa x y eqa y x =⇒
∀eqb v w . eqb v w eqb w v =⇒
∀s t . equals{|a + b|} eqa eqb s t

equals{|a + b|} eqa eqb t s,

where the dependency ofequals{|a + b|} onequals has been made
explicit.

As it happens, the four equality functions on the sum type
generated by Djinn given in Section 4.2 satisfy the above property.
A generated term that does not satisfy it is:

λx y z → case z of
Inl v → λs → case s of

Inl m → x v m
Inr → False

Inr w → λt → case t of
Inl → True
Inr n → y w n.

Just as with types of type-indexed functions, properties on type-
indexed functions depend on the kind of the type arguments [9].
It suffices to specify the property on types of kind∗, such as the
property forequals{|Bool|} above; the properties for types with
higher-order kinds can then automatically be generated.

At the moment the instances of properties on particular types
have to be written by hand; we expect that in the near future we
will add kind-indexed property generation to our tool.

4.6 QuickCheck

We use the QuickCheck library [5] for testing whether or not prop-
erties hold, and for testing equality of example instances provided
by the user and specialized instances obtained from the generated
generic functions. QuickCheck tries to falsify properties specified
by the user. It typically generates 100 random test cases, which are
used to test a property. One of the properties we define is the fol-
lowing:

prop EqFuns specializedFun exampleFun
= λx → specializedFun x exampleFun x .

This property is parametrized with the specialized generic function
and the user-specified example function. It tests the equality of the
two functions for an arbitrary argument. Note that this property ap-
plies to functions of one argument; functions with more arguments
would take additionalx ’s. A property like this, properly instanti-
ated with the example and the generic function, is passed to the



run function in QuickCheck, and QuickCheck then randomly gen-
erates several values ofx to test the validity of the property.

Not all properties are easy to check using QuickCheck. Since
QuickCheck randomly generates values, it is rather unlikely that
it generates equal values if we test on a data type that contains
many values. So the transitivity property of equality, which takes
three random valuesx , y , and,z , and checks thatx andz are equal
wheneverx andy are equal andy andz are equal, is unlikely to
ever check thatx andz are equal. Special measures have to be taken
in such cases, such as for example restricting the type of values to
small types, or to write special generators.

5. Implementation
This section discusses an implementation of our tool, and the de-
sign choices we made to implement it.

As outlined in Section 4, our approach consists of a generation
phase, implemented by Djinn, and a couple of pruning phases. The
terms generated for the type indices of generic functions are pruned
by checking their validity against properties. The set of generic
functions obtained by taking the cross product of the type-indexed
terms, is pruned by checking the equivalence of specializations
with respect to user-provided instances. Since, in general, there is
no algorithm that can prove the validity of a term with respect to a
property or an instance, we turn to type-based automatic testing to
test properties and the equivalence with user-provided examples.

Besides the functionality offered by Djinn, our approach re-
quires specialization and testing. A very straightforward approach
would be to pretty print the terms generated by Djinn to Generic
Haskell source files, compile these files using the Generic Haskell
compiler, and then run the Glasgow Haskell Compiler to produce a
binary that tests and reports which properties pass or fail for which
generated functions. The advantage of this approach is that we can
use the specialization algorithm from Generic Haskell for special-
izing generic functions and signatures, and the automated testing
library QuickCheck. This approach, however, is likely to incur sig-
nificant overhead due to the generation and compilation of code for
everycandidate function. This problem becomes more serious if
we take into account that we may generate and prune thousands of
expressions for a given generic-function signature.

An alternative approach is to write an expression interpreter in-
tegrated with Djinn. We then would have to write specialization
functionality and QuickCheck functionality for this expression lan-
guage. Although the interpreter approach does not suffer from com-
piler overheads, it is a considerable task to implement (subsets
of) the languages and libraries of Generic Haskell, Haskell, and
QuickCheck.

In this paper, we use a more sophisticated variant of the inter-
preter approach. Instead of directly interpreting the terms gener-
ated by Djinn, we first transform terms into well-typed terms. In
this way it becomes possible to implement an efficient interpreter
that does away with the tagging and untagging that an untyped in-
terpreter needs. Generalized algebraic data types [21, 20] (GADTs)
play an essential rôle here. Moreover, since the interpreted values
are Haskell values, it is possible to use the QuickCheck library. In
the rest of this section we describe our typed interpreter and how it
integrates with automated testing using QuickCheck and with the
specialization of generic functions.

5.1 Expressions and types

Although the generation algorithm of Djinn is type based, which
guarantees that generated terms are well-typed expressions, the
type information is not preserved in the terms. So the terms we
obtain from Djinn are untyped. To use these terms in Haskell, we
have to evaluate them into untagged Haskell values. These Haskell

values can then directly be tested against properties and instances
using QuickCheck.

As usual, expressions consist of variables, lambda abstractions,
applications and constants.

data Expr = EVar String
| ELam String Expr
| EApp Expr Expr
| ECon String

As an example, here is how we write theswap function as a value
of typeExpr:

swap = ELam "x"

(EApp (EApp (ECon "(,)")
(EApp (ECon "snd")

(EVar "x"))
(ECon "fst" ‘EApp‘ EVar "x")).

Types are either variables, constants, or the application of a type to
a type.

data Type = TVar String
| TCon String
| TApp Type Type

We do not extend the syntax of expressions to cover generic func-
tions as well, but instead represent generic functions by labeled
records that contain the arms for the different type indicesBool,
Unit,×, and+ for generic functions.

data GenDefinition =
GenDefinition{bool :: Expr

, unit :: Expr
, prod :: Expr
, sum :: Expr
}

A signature of a generic function consists of a name, a list of
generic type variables (before type generalization the equality func-
tion has one generic type variable,gmap has two), and a type.

data GenSignature =
GenSignature{genName :: String

, genVars :: [String ]
, genType :: Type
}

We assume generic functions depend on themselves and not on
other generic functions. The first assumption does not restrict the
domain: very few generic functions are not self dependent [16], and
dependencies do not have to be used. The second assumption does
restrict the applicability of the tool. However, allowing dependen-
cies on other generic functions is not difficult.

A generic function can be specialized on a type. We have func-
tions for specializing generic signatures and functions:

specGenSignature :: GenSignature→
Type→ Type

specGenDefinition :: GenSignature→
GenDefinition→
Type→ Expr.

The definitions of these functions are based upon the standard
specialization algorithms for Generic Haskell, which have been
described in several places [10, 11, 16], and are therefore omitted
from this paper.



5.2 Typing untyped terms

To turn Djinn-generated terms into untagged Haskell values we first
have to type them. This section briefly explains how we type the
untyped terms generated by Djinn. Our approach is reminiscent of
the dynamic typing solution given by Baars and Swierstra [3] for
a similar problem. The main difference is that we use De Bruijn
indices for variables, making it impossible to fail when looking up
a variable.

Typed terms are defined as a GADT to enforce the constraints
that make terms well-typed.

data Zero
data Succ a

data Lookup :: ∗ → ∗ → ∗ → ∗ where
ZL :: Lookup Zero (a, env) a
SL :: Lookup i env a→ Lookup (Succ i) (x, env) a

data TExpr :: ∗ → ∗ → ∗ where
TApp :: TExpr env (a→ b)→

TExpr env a→
TExpr env b

TVar :: Lookup i env a→ TExpr env a
TLambda :: TExpr (a, env) b→ TExpr env (a→ b)

evaluate :: TExpr () a→ a

This presentation is heavily inspired by the representation of typed
terms in dependently typed programming languages [19]. The
TExpr data type represents a valid typing judgement that follows
the structure of a typed term. The first argument is the environment
under which the judgement holds and the second argument is the
type assigned by the judgement to the term. Variables are repre-
sented using De Bruijn indices. TheTVar constructor selects a
type in the environment using the data typeLookup. If a type ex-
pression has an empty environment we can obtain the represented
type by means of the functionevaluate.

The functiontypeInfer recovers the type information for a term
generated by Djinn.

typeInfer :: Expr→ Maybe Typed

data Typed :: ∗ where
Typed :: TExpr () a→ Rep a→ Typed

data Rep :: ∗ → ∗ where
RU :: Rep ()
RBool :: Rep Bool
RProd :: Rep a→ Rep b→ Rep (a, b)
RSum :: Rep a→ Rep b→ Rep (Either a b)
RArr :: Rep a→ Rep b→ Rep (a→ b)

If function typeInfer manages to infer a type, it returns a value
of typeTyped. A Typed value contains an existentially quantified
type and its representation. It is possible to recover this type by
analyzing the type-representation witness. Since the type of the
expression is existential, it is sometimes necessary to compare it
with another type representation to obtain a type-equality proof:

unify :: Rep a→ Rep b→ Maybe (TEq a b)

data TEq :: ∗ → ∗ → ∗ where
TEq :: TEq a a.

We omit the definitions ofevaluate, unify and typeInfer . The
interested reader can find the ideas behind these definitions in the
literature [3, 21, 20].

5.3 Term generation

The generation function has the following, simple, type:

generate :: Type→ [Expr ].

Our implementation ofgenerate uses Djinn, but we could have
used any of the approaches described in [14, 15].

Type-based generation yields a set of functions for each of the
type indices that make up a generic function. Hence, to obtain the
generic function we combine all generated terms in a cross product,
using a list comprehension.

generateGenDefinition :: GenSignature→
[GenDefinition ]

generateGenDefinition sig =
[GenDefinition {bool = boolDef

, unit = unitDef
, prod = prodDef
, sum = sumDef
}

| boolDef ← boolTerms
, unitDef ← unitTerms
, prodDef ← prodTerms
, sumDef ← sumTerms
]
where

boolTerms = genTypeCase tBool
unitTerms = genTypeCase tUnit
prodTerms = genTypeCase tProd
sumTerms = genTypeCase tSum
genTypeCase = generate . specGenSignature sig ,

where tBool , tUnit , tProd , and tSum are values of typeType
representing the typesBool, Unit,×, and+, respectively.

Since Djinn sometimes generates many terms, it is important to
first prune the terms generated bygenTypeCase by property. The
implementation of pruning is discussed in the following sections.

Note that if the generator returns many terms for the type in-
dices, huge structures are built here. The cross-product function is
the bottleneck of our approach.

5.4 Testing properties of functions

To prune the set of candidate functions, we test generated terms
against user-provided properties, and specializations of generated
generic functions against user-provided example instances. We use
QuickCheck for testing, so we have to construct QuickCheck prop-
erties for pruning.

data Prop = ∀a b . Testable b⇒ Prop (Rep a) (a→ b)

A property consists of a representation of the typea, and a function
that takes a value of typea and returns a value which, when tested
with QuickCheck, determines whether or not the original value of
typea is valid. In general, a property takes the form of a function
that applies the value to be checked to test cases generated by
QuickCheck. The type of the property (b) is an instance of the
type classTestable to enable the automatic generation of test cases.
As an example, consider the reflexivity property for the equality
function on booleans and products of booleans:

reflEqBool , reflEqProdBool :: Prop
reflEqBool = reflEq RBool
reflEqProdBool = reflEq (RProd RBool RBool)

reflEq :: (Testable (a→ Bool))⇒ Rep a→ Prop
reflEq r = Prop (sigEq r) (λf x → f x x True)

sigEq :: Rep a→ Rep (a→ a→ Bool)
sigEq t = t ‘RArr ‘ (t ‘RArr ‘ RBool).

The function that represents the reflexivity property, applied to
equality on booleans, can be tested with QuickCheck because its
type,[Bool ]→ Bool, is an instance of type classTestable.



The testing function tests an untyped expression against a user-
specified property:

testProp :: Prop→ Expr→ Bool.

This function converts an expression to a Haskell value (Sec-
tion 5.2) and, using QuickCheck, tests its validity with respect
to the property. For example, the set of terms for booleans in the
cross product is pruned as follows:

boolTerms = filter (testProp reflEqBool)
(genTypeCase tBool).

For type constructors the situation is a bit different. As explained
in Section 4.5, a property for sums or products takes properties
for its dependencies as argument. As a pragmatic solution we let
the property depend on the first term for booleans that satisfies the
property.

prodTerms = filter pruneProd (genTypeCase tProd)

pruneProd e = testProp reflEqProdBool (appDep e)

appDep e = e ‘EApp‘ dep ‘EApp‘ dep

dep = head boolTerms

Note that the arms of the generic function are pruned using prop-
ertiesbeforethey are combined in the cross product. As a result,
many unnecessary combinations that would otherwise be produced
are no longer considered.

5.5 Pruning by example

Pruning by example compares the specialization of a candidate
generic function on a data type for which we also have an example
instance. For example, we might have equality on lists of integers
as an example instance. If a counterexample, i.e. an argument
for which the two functions return different results, is found, the
candidate generic-function definition is discarded.

Each example contains a type index and a property that tests the
function with an example:

data Example = Example Type Prop.

The type index requests a specialization of the generic function to
be compared against the example function.

Here are some typical examples for the generic equality func-
tion:

[Example tBool
(Prop (sigEq RBool)

(λf x y → f x y (x y)))
,Example (tProd tBool tBool)

(Prop (sigEq (RProd RBool RBool))
(λf x y → f x y (x y)))

].

Given a generic signature, a generic function and an example we
can determine the equivalence of the specialization of the generic
function and the example by means of testing:

testGenDefinition ::
GenSignature→ [Example]→ GenDefinition→ Bool

testGenDefinition genSig examples genDef =
and (map check examples)
where check (Example tindex prop) =

testProp prop (specGenDefinition
genSig
genDef
tyindex ).

The implementation of pruning for a list of generic functions in-
volves filtering the list usingtestGenDefinition as predicate, just

as for properties. Pruning by example, as the name suggests, prunes
away the generic functions that are not extensionally equal to all the
examples provided by the user.

pruneByExamples :: GenSignature→
[Example]→
[GenDefinition ]→
[GenDefinition ]

pruneByExamples genSig examples
= filter (testGenDefinition genSig examples)

5.6 Termination of testing

In our approach we test terms generated by Djinn against pro-
perties, and we test specialized generic functions against provided
examples. If such a test does not terminate, neither will our tool.

Testing terms generated by Djinn is not a problem, since Djinn
only generates non-recursive functions, and termination is guaran-
teed.

Specializations generated for recursive types are recursive
functions themselves, so here there is a possibility that a non-
terminating specialization is generated, and that a test for such a
function might not terminate.

Our tool does terminate for the subclass of generic func-
tions consisting of so-called consuming (equals) and transform-
ing (gmap, zipWith) generic functions. This subclass of generic
functions is terminating because the recursive calls in the product
and sum cases use the self-dependency functions, which can only
take a component of the original product or sum as argument. So
equals{|α + β|} can only be defined in terms ofequals{|α|} and
equals{|β|}. This ensures that at every recursive call the type argu-
ment becomes smaller until a base case is reached (Unit or Bool)
and the function terminates. Generating producing generic func-
tions such asempty andenum [16] may result in non-terminating
generic functions. In future work we intend to generate this sub-
class of generic functions by imposing a timeout when performing
tests.

6. Results
Experimentation with our tool has produced encouraging results
with the generation of generic functions. We have generated ge-
neric equality, generic map, and generic zip. In this section we give
an account of the attempts for each function.

To handle the generation of the generic equality function, we
have generalized its signature to

equals{|a, b :: ∗|} :: (equals{|a, b|})⇒ a→ b→ Bool,

as explained in Section 4.4. Furthermore, we supply the properties
that specify that equality is reflexive, symmetric, and transitive, and
we provide the instances of equality on lists of booleans and trees.
Our tool generates the standard implementation of generic equality
(a number of times in alpha-equivalent versions).

We have experimented a bit with taking subsets of the specifi-
cation, all of which include the generalized type of equality.

First, only providing the examples is not always enough. For
example, if we supply as example only equality on lists of booleans
we also get a generic function with incorrect behavior for the
sum case. The function returnsTrue for two left components
independent of whatever is in those components. This is because
the left component of the sum in the structure type for lists is
Unit, and the equality function forUnit always returnsTrue. We
had to wait for quite a while to obtain this definition: specifying
properties not only helps in getting the right functions, we also get
them (much!) faster.

Second, providing no examples, but only the properties, is not
enough either. One of the functions generated for products only



compares the first components of the products, and ignores the
second components. However, the more properties are specified,
the fewer solutions we get.

By far the easiest function to generate has been the generic
map function. The highly polymorphic type of this function gives
very little freedom to Djinn to generate terms. In fact, each of the
following type queries in Djinn produces a unique correct answer:

gmap+ ? (a→ c)→ (b→ d)→ a + b→ c + d
gmap× ? (a→ c)→ (b→ d)→ a× b→ c× d
gmapUnit ? Unit→ Unit
gmapBool ? Bool→ Bool.

The only exception to this rule is the case for booleans, whose
type leaves some freedom for term generation. The first solution
returned by Djinn is the expected identity function. We enforce this
choice by providing the property that map is the identity function
on types of kind∗ (such asBool).

When trying to generate the genericzipWith function, a gener-
alization of the standardzipWith function with signature

zipWith{|a, b, c:: ∗|} :: (zipWith{|a, b, c|})⇒ a→ b→ c,

we encountered a problem with the sum case. Consider the sum
case definition ofzipWith, as given in L̈oh’s thesis [16]

zipWith{|α + β|} (Inl x ) (Inl y) =
Inl (zipWith{|α|} x y)

zipWith{|α + β|} (Inr x ) (Inr y) =
Inr (zipWith{|β|} x y)

zipWith{|α + β|} = undefined .

Using the analogy with lists, we can say that different alternatives
correspond to lists of different lengths. This implementation, unlike
the Haskell ones which returns an empty list, fails when structures
of different shapes are zipped. To generate the sum case, Djinn
needs to find a term of the following type:

(a→ c→ e)→
(b→ d→ f)→
a + b→ c + d→ e + f.

Djinn cannot populate this type because it cannot find a proof
of the corresponding logical expression. Which is not surprising,
because there does not exist such a proof. Djinn only generates total
functions and thezipWith case for sums cannot be total. We could
get around this limitation by adopting Haskell’s solution and using
the empty function [16] to generate a value corresponding to the
empty list. However, we prefer to follow a simpler approach and
change the type ofzipWith so that it can cope with failure without
depending on other functions.

zipWith{|a, b, c:: ∗|} :: (zipWith{|a, b, c|})⇒
a→ b→ Maybe c

This is a variant of the type ofzipWith used in PolyLib. With this
type, and the examples ofzipWith on lists and booleans, Djinn
generates the correct definition ofzipWith. In particular, it is not
hard to find a term of type:

(a→ c→ Maybe e)→
(b→ d→ Maybe f)→
a + b→ c + d→ Maybe (e + f).

Alternatively, the property

x y ∧ zipWith x y Just x ∨
x 6 y ∧ zipWith x y Nothing

suffices to find this definition ofzipWith.
We think thatzipWith in the library of Generic Haskell should

be replaced by this version.

7. Conclusions
We have presented an approach to the automatic generation of
generic functions. Our approach uses Djinn to generate arms of
a generic function for instances of the user-specified generic sig-
nature of the desired function on the type indices (or view types)
of generic functions. A safe and useful step a user almost always
should take here is generalizing the type of the desired generic
function: the more general a type, the fewer terms are generated
by Djinn. We prune the set of terms returned by Djinn by testing
them against user-specified properties using QuickCheck. We fur-
ther reduce the set of generic functions by testing specializations
of generated generic functions against user-provided examples. We
have shown that type-based generation of a number of generic func-
tions is realistic. Our approach has a number of limitations, which
are listed in the future work section below.

7.1 Related work

Koopman and Plasmeijer [15] use a type-based systematic enumer-
ation of terms for the problem of function generation. Function
terms are represented in a system of data types such that all the
values that are generated are well typed and follow syntactic re-
strictions that prevent the generation of non-terminating functions.
Candidate functions are tested against input-output pairs until a
function satisfying those tests is found. Enforcing well-typedness
in the syntax of expressions gives a simple and efficient approach
for function generation. However, it is not clear how to extend this
approach to generate functions that take functions as arguments,
such as the sum and product cases of generic functions. We believe
that our typed term representation makes it possible to use the enu-
meration approach with higher-order functions.

Katayama [14] provides another approach to the systematic gen-
eration of lambda expressions. The enumeration takes into account
type information when doing a breadth-first search of expressions.
Recursion is only possible by means of paramorphism operators
on lists and natural numbers. Because this is a general approach,
we believe that the performance improvement techniques can also
be applied to our tool, should we choose to pursue the systematic
enumeration direction.

7.2 Future work

The current tool is a proof of concept, with which we have shown
that it is possible to automatically generate generic functions from
their type and example instances. We simplified our domain in a
number of places: generic functions are self dependent, and cannot
have dependencies on other generic functions. These restrictions
are easy to lift. The fact that Djinn generates a finite number of
terms for a type implies that it will be hard to generateInt or String
cases using Djinn. Furthermore, since Djinn cannot handle recur-
sive types, we cannot handle generic functions with recursive types
in their signature. Lifting these restrictions requires adapting Djinn
in a fundamental way. We will investigate to what extent this is pos-
sible. Since QuickCheck can only check monomorphic properties,
example instances of generic functions have to provided for types
of kind ∗. The type-specialization and function-specialization algo-
rithms in our tool have only been implemented for types of kind∗.

We intend to investigate using the systematic enumeration of
typed terms as in the work of Koopman and others [15], instead of,
or besides, Djinn.

Our approach uses type-based generation, and example-based
testing. It would be interesting to see if example-based generation
with type-based testing would work equally well. We have experi-
mented with example-based generation, in which we try to generate
arms in the definition of a generic function from example instances.
Our ad-hocattempts were not very successful. We want to inves-
tigate whether or not it is possible to “invert” the fusion algorithm



from Alimarine et al. [1], which fuses embedding-projection pairs
with type-indexed functions to obtain code that is almost equal to
hand-written example instances of generic functions, to obtain arms
in the definition of a generic function.

To get access to constructor names, structure types in Generic
Haskell contain occurrences of theCon type:

data Con a = Con a

The compiler tags occurrences of theCon type with information
about the constructor, such as its name and arity. In a generic
function we get access to this information in theCon case, for
example (from the library of Generic Haskell):

constructorOf {|Con c a|} (Con a) = c

Of course, Djinn cannot generate functions based on constructor
information. So generic functions that depend on constructor infor-
mation are out of reach for the approach described in this paper.
The example-based generation type-based testing approach might
not suffer from this problem.
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