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Abstract

Effective code reuse is desirable, but difficult to
achieve in practice, since it is often necessary to
adapt code before it can be reused successfully. The
good old solution to code reuse is simple: copy,
paste, then edit as needed. This is a brilliant idea,
except for the maintenance problems it causes. In
this paper we introduce a language extension for
declaratively performing adaptive code reuse at
compile-time. We decompose reuse into two oper-
ations; clone existing code, and adapt it to new re-
quirements. The clone and adapt technique allows
flexible code reuse, untangled from subtyping and
other irrelevant features, and without the mainte-
nance nightmare of copy&paste programming.

1 Introduction

Writing reusable code is notoriously difficult and
code reuse through inheritance is not sufficient to
solve this. A fundamental requirement for reuse
is the ability to perform code composition from
reusable parts. The programmer of these parts
must try to anticipate future reuse scenarios by de-
signing in variation points which make them easily
composable. Even when an effort has been made to
make the code reusable, further adjustment may be
necessary. Adaptation may be done by editing the
code, by using inheritance, aspects or some other
program transformation technique.

Inheritance is often the preferred way of doing

code reuse in object-oriented systems. The details
depend on the programming language, but inher-
itance typically allows you to add new fields and
methods to a class, and also override existing meth-
ods. However, the inheritance concept is actually
meant for modelling an is-a relationship between
classes; it implies a subtype relationship between
the original class and the new class (allowing in-
stances of the new class to be used instead of in-
stances of the original class), which is not always
desired. Mixins [8] have been suggested as an alter-
native formulation of inheritance which is believed
to be more flexible, as it offers increased compos-
ability compared to single inheritance.

While mixins and inheritance provide mecha-
nisms for code composition, aspects [20] provide a
good way for doing code adaptation by selectively
weaving pieces of extended behaviour into existing
classes. The programmer has detailed control of
this weaving through a high-level, declarative lan-
guage. However, the in-place modification to exist-
ing code restricts its use as a general code adapta-
tion mechanism, as we will show.

Another very useful adaptation technique is in-
tertype declarations. Like open classes [10], this
language feature of AspectJ allows the introduc-
tion of new interfaces, methods and fields into ex-
isting classes and is in this sense competing with
inheritance and mixins. As with aspects, it is also
hampered by restrictions related to in-place modi-
fication.

It would appear that mixins and aspects should
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together offer an appealing solution to both com-
position and adaptation of code by allowing the
reusable parts to be expressed and composed us-
ing mixins, with further adaptation performed by
aspects.

We observe that by extending intertype decla-
rations with the ability to clone classes, essentially
lifting the in-place restriction, we have exactly what
is needed to implement mixins. The question then
becomes: if we add this cloning as a separate lan-
guage construct, can it combine favourably with
more than just intertype declarations?

In this paper, we describe a declarative extension
to the Java language (but it is generally applica-
ble to any object-oriented language) that provides
cloning with renaming as a language construct. By
combining cloning with aspects (for code adapta-
tion), we obtain a wide range of reuse scenarios.

We will show that cloning offers clear and con-
cise solutions to design problems which cannot be
expressed cleanly by plain object-orientation or as-
pects. Furthermore, we will show that the clone op-
erator is a fundamental ingredient in many popular
language features such as templates and mixins and
that it also augments aspects by making them more
suitable for expressing generative programming.

The article is organised as follows. In Section 2,
we explain the clone operator. In Section 3, we
show how the clone operator may be combined
with renaming, aspects and intertype declarations
to allow per-context weaving, parameterisation of
classes and reusable implementations of design pat-
terns. In Section 4, we show how the clone oper-
ator combines with intertype declarations to ob-
tain mixins. In Section 5 we relate our work to
other language features and techniques for reuse in
object-oriented systems. In Section 6 we discuss the
implications of the clone operator, and in Section 7
we conclude and point out further work.

2 Clone and Rename

In this section we describe a declarative extension
to the Java language which allows decoupling of
code reuse from subtyping. However, the concept
is not restricted to Java and is generally applica-
ble to other object-oriented languages. The exten-
sion provides a clone operator that can be used to
make a copy of a particular set of named defini-

Clone ::= Visibility ? clone Definition

Direction ? as RenameExpr

WithClause *

Direction ::= + | -

WithClause ::= with Aspect

| with Identifier = Identifier

| with MethodSig as MethodSig

Definition ::= PackageName

| ClassName

| MethodName

RenameExpr ::= Identifier

| Identifier *

| * Identifier

| Identifier * Identifier

Aspect ::= aspect AspectBody

| aspect AspectName

MethodSig ::= Visibility Type MethodName

(Type , ...)

Visibility ::= private | protected | package

| public

Figure 2: Syntax for the clone operator. As-
pectName, PackageName, ClassName and Method-
Name are all variants of Identifier, which have been
disambiguated by the Java/AspectJ type system.
Type is a Java type expression. AspectBody is the
body clause of an aspect definition. In the case
of MethodSig, one or more of Visibility, Type, and
MethodName may wildcarded using *.

tions: packages, classes, fields and methods.1 The
clones receive their own names.

Consider Figure 1. In this example, A, B and C

are classes. The class C inherits from B, which in
turn inherits from A. The operator clone B as B1

will make an identical copy of B, named B1. The re-
sulting inheritance hierarchy becomes B1 extends

A, as expected. There is no typing relation between
B1 (the clone) and B (its original).

For convenience, the clone operator is aware of
inheritance. By writing clone B+ as *2, the user
clones the class B and all its subclasses. Their
names will all be suffixed by 2. Similarly, a clone

B- as *3 will clone B, including all its parents.
This makes it possible to easily clone (parts of)
existing class hierarchies.

We stress that it is the class definition which is
being cloned, not objects of the class.

1In this article, we will focus mostly on cloning at the

class level.
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A

B

C

B1clone B as B1

A

B

C

a

clone B+ as *2 B2

C2

clone B- as *3

A

B

C

A3

B3

b c

Figure 1: The clone operator applied to classes. (a) shows cloning of class B, (b) shows cloning of class
B and all its subclasses, (c) shows cloning of class B and all its superclasses.

The syntax for the clone operator is given in Fig-
ure 2. The direction of cloning (+ and -) is only
defined when the selected definition is a class. The
cloning operator as applied to a class works in three
steps:

1. copy ; the selection is evaluated. This will re-
sult in a set of one or more classes. E.g., in
the case of (a) in Figure 1, only one class is
selected, in (b) and (c) the result is multiple
classes.

2. rename; the supplied rename expression is ap-
plied to the set obtained in (1). Details on the
rename expression are given further down. For
each name which is modified, a mapping from
its old name to the new name is recorded.

3. fixup of internal references ; the bodies of all
methods in the selected classes are traversed,
and internal references are updated, according
to the map constructed in the previous step.

Essentially, steps two and three are together a
rename refactoring, applied to the clone. Concep-
tually, the clone operator works on the name space:
it can only be applied to named entities. It must
always respect the name space constraint that two
entities may not share a name. I.e., the resulting
name of a class after cloning must not be in con-
flict with another class in the same package. This
constraint must and can be checked at the time of
cloning.

Another consideration is references to and from
clones. The Java type system (and practically any
static type system) does not accept undefined ref-
erences in a program. The clone operator will never
introduce undefined references, as internal refer-
ences are resolved.

A concrete, though slightly contrived example of
cloning is given in Figure 3. The example demon-
strates that cloning is equivalent to copying the
source code for Component and Message, then ap-
plying appropriate rename refactorings to both.

The extension requires no runtime support. It
may be implemented as an independent stage in the
compiler, before aspects and type checking. Alter-
natively, it may be implemented as a separate pre-
processor. Even though cloning is primarily useful
for whitebox code reuse, our implementation does
not require access to the source code. Cloning with
renaming of packages, classes, methods and fields
works equally well at the bytecode level.

2.1 Name rewriting

Consider Figure 1 again. As part of a clone oper-
ation, the name of the class being cloned must be
modified. When cloning a set of classes (using - or
+), our extension allows the name to be prefixed,
postfixed or both. Where only one class is cloned,
its name may be replaced arbitrarily.

The name rewriting only allows changes to the
local part of the name of a definition. It is not pos-

3
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private clone Component+ as Cloned*;

abstract class Component {
public final int MODAL = 1;

private int state = 0;

public abstract int getWidth();

public abstract int getHeight();

protected void setState(int s)

{ state = s; }
public boolean isModal()

{ return state & MODAL; }
public void paint() { ... };

}
class Message extends Component {

private String m;

public Message(String m)

{ this.m = m; setState(Component.MODAL); }
public Message()

public void setMessage(String m) { ... }
public int getHeight() { ... }
public int getWidth() { ... }
publiv void paint() { ... }

}

⇓
class ClonedComponent { ... }
class ClonedMessage extends ClonedComponent {

...

public Message(String m)

{ this.m = m;

setState(ClonedComponent.MODAL); }
...

}

Figure 3: Application of clone+ to a class hierar-
chy.

sible to change the package of a clone using name
rewriting, nor the class of a method or field.

2.2 Changing visibility

The visibility of the clone may be changed arbi-
trarily from its original using the private, public,
protected, and package modifiers in front of
clone. The package keyword for visibility was in-
troduced for this purpose, as Java does not have an
explicit keyword for package visibility; it is assumed
where no other visibility keyword is given.

2.3 Cloning and Packages

The clone extension does not allow cloning classes
into new packages, or methods into new classes.
The scope of the clone must match the original.
In the case of classes, cloning into new packages
would most likely require violation of encapsula-
tion if the clone was to operate properly. For ex-
ample, suppose the public class frontend.Parser
relies on TokenFactory, which has package vis-
ibility. Cloning frontend.Parser into package
doctool.Parser will leave undefined the refer-
ence to TokenFactory. It cannot be rewritten to
frontend.TokenFactory, as that would violate en-
capsulation of the frontend package. The problem
is even more acute when cloning a method from one
class to another: all implicit dependencies must ei-
ther also be cloned, or they must be anticipated by
the developer performing cloning.

3 White Box Reuse

In this section we explore the application of the
clone operator to white box code reuse. In particu-
lar, we show how cloning enhances the code adap-
tation that can be achieved with aspects.

3.1 Per-Context Weaving

The aspects provided by the AspectJ language [3]
are applied on a per-class basis, thus affecting all
objects of that class, system-wide. It is technically
possible, though awkward to have multiple versions
of a class in your system, each in its own context
(classloader) with its own set of weaved aspects. As
we shall demonstrate in the sequel, this limitation is

clone Message as LoggedMessage with aspect {
pointcut messageCreation(String m) :

initialization(LoggedMessage.new(String))

&& args(m);

before(String m) : messageCreation {
Logger.log(m);

}
}

Figure 4: Code reuse without inheritance. Be-
havioural extension using aspects.

4
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class Array {
private Element data[];

public Element getElement(int index)

{ ... }
public void setElement(Element elt,

int index)

{ ... }
}

⇓
class StringArray {
private String data[];

public String getElement(int index)

{ ... }
public void setElement(String elt,

int index)

{ ... }
}

Figure 5: Instantiation of StringArray from Array

by renaming Element to String.

even more problematic for intertype introductions
than it is for aspects.

Run-time weaving, such as provided by Cae-
sarJ [26], provides a solution to this problem. As-
pects can be applied on a per-object instead of per-
class basis, but this requires (part of) the aspect
weaver to be available at runtime as well.

The code in Fig. 4 shows how per-context
weaving can be achieved at compile-time using
cloning. By clone Message as LoggedMessage

we can now create Messages with and without log-
ging depending on the context. Furthermore, the
type system will ensure that we will not use one
class instead of the other. In other words, this is
useful in those cases were reuse with adaptation is
required, but subtyping is not.

Other applications of per-context weaving in-
clude mixins as discussed in Section 4 and adap-
tation of reusable design pattern code as we will
discuss later.

3.2 Implicit Parameterisation of

Classes

Traditionally, Java implementations of container
data types, such as lists or arrays, use Object as the
element type. This causes problems for static type
checking; there is no way for the compiler to tell
the difference between a list of integers and a list
of strings, and no way to ensure that all elements
in a container are of the same type. Furthermore,
the programmer has to use type casts when retriev-
ing objects from the container, leading to syntactic
clutter. In some languages, such as C++, this can
be solved using generic programming, by parame-
terising the container class with the element type.
You can then create a ‘list of integers’ and a ‘list of
strings’, and the compiler can tell the difference.

Generic programming is supported in
Java 1.5 [17, 7], but not in earlier versions of
the language. Using clone and rename, we can
implement a simple form of generics, akin to
templates in C++. Consider the class Array from
Fig. 5, which contains elements of type Element.
We can make an array of strings by cloning Array

as StringArray, substituting String for Element:

clone Array as StringArray

with Element = String;

This will create a new class StringArray with ex-
actly the same functionality as Array, except that
it only allows strings as elements.

Since parameterisation is done by renaming, we
are not restricted to the set of parameters the class
implementor chooses to make available; any name
is a potential parameter. For instance, suppose we
have an old, non-generic implementation of Array,
which uses Object elements. We can then instan-
tiate type-safe versions using clone and rename:

clone Array as StringArray

with Object = String;

New code can use the safer StringArray, while
legacy code is unaffected, and can continue using
Array. Furthermore, if generics is available, we
can use clone/rename to turn non-generic code into
generic code:

clone Array as GenericArray<T>

with Object = T ;

5
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This technique cannot always be applied safely.
Consider a hash table class, which uses Object for
both its elements and its keys. If we try replacing
Object with String to create a hash table of string
elements, the key type is also changed, which may
not be appropriate. This is a weakness of renaming
as an adaptation mechanism.

3.3 Design Patterns

Design patterns are recipes for solving recurring
programming problems that need to be adapted to
the application at hand. By definition, a pattern
is a pattern (in some language) if it is not avail-
able as a language feature and cannot be abstracted
into a library [1, 16]. This entails that patterns are
not amenable to code reuse and require instantiat-
ing the pattern manually for each occurrence in the
code. Besides the code duplication that this causes,
it also means that the design decision to use the
pattern is now encoded at a low-level in the pro-
gram. Given the right language features, patterns
can be expressed directly as reusable programs. For
example, Hannemann and Kiczales [18] show that
aspects can be used to render a number of the GoF
design patterns [15] as reusable code. However, the
lack of a cloning operator forces designs that do not
correspond to the standard OO designs that would
have been used without considering reuse.

In the rest of this section we discuss several ex-
amples of reusable implementations of design pat-
terns using a combination of cloning and aspects.

3.4 Filter Collections

Filter collections are a variation on the Composite
pattern. The usage scenario of filter collections is
as follows. An application has objects that need
processing in several ways. For each kind of pro-
cessing there may be several ‘filters’ available. The
following interfaces provide a concrete example of
two types of filters. An IProcessor processes a
message response, while an IMessageFilter can
apply a filter to a Message or validate it.

public interface IProcessor {

void process(Response req);

}

public interface IMessageFilter {

void apply(Message msg);

boolean validate(Message msg)

throws Exception;

}

Example implementations of these interfaces
are TimeStampProcessor, which adds a time-
stamp to a response message, EncryptFilter,
which encrypts the contents of a message, and
NormalizeFilter, which normalises the headers.
Note that the types of filters and the signature
of the filter methods is entirely application spe-
cific. Also there is no direct relation between
IProcessors and IMessageFilters, except that
they play a similar role in the design pattern.

Now an application needs to apply several filters
consecutively, or choose from a pool of available
filters, where the set of filters to apply can alter
dynamically. Thus, the application needs to main-
tain a collection of filters and several strategies for
applying the filters in a collection. This is in fact a
pattern that could be reused in many applications.
However, in practice it needs to be recoded for ev-
ery application and for every type of filter in the
application.

With cloning and renaming we can
factor out the reusable pattern from a
ConcreteFilterCollection hierarchy and turn
it into a reusable FilterCollection hierarchy.
Figure 6 shows the structure of the pattern. The
classes on the left are the reusable design pattern
classes, the classes on the right are their concrete
instantiations obtained by cloning.

The FilterCollection class provides function-
ality for maintaining a collection and an abstract
apply method. The apply method is implemented
in subclasses to provide alternative strategies for
applying the filters in a collection.

Assume we clone FilterCollection from Fig-
ure 6 twice, once to ChoiceCollection and once
to SequentialCollection. The task of the
SequentialCollection is to apply all filters in its
collection. This is handled by its apply method:

public void apply() {

for(Iterator i = _filters.iterator();

i.hasNext();) {

try {

6
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FilterCollection

+collection

+add()

+remove()

+clear()

IFilter

+apply()

SequentialCollection ChoiceCollection

IConcreteFilter

+operation1()

+operation2()

<<clone>>

ConcreteCollection

+add()

+remove()

+clear()

+operation1()

+operation2()

<<clone>>

<<clone>>

SequentialCollectionClone

<<clone>>

<<clone>>

ChoiceCollectionClone

<<clone>>

ConcreteCollectionStrategy

Client

{weaved}

{weaved}

{weaved}

1

1*

1

*

1

Application CodeGeneric Design Pattern

<<aspect>>

FCAdapter
<<aspect>>

ConcreteFCAdapter

<<clone>>

Figure 6: Diagram for the instantiation of the FilterCollection pattern, expressed using aspects and
cloning with renaming.

IFilter f = (IFilter) i.next();

f.apply();

} catch (Throwable e) {

// Continue with next

}

}

}

On the other hand, the ChoiceCollection tries to
apply one filter in the collection. It uses exceptions
to determine if a filter failed, and stops as soon as
the application of a filter succeeded:

public void apply() {

for(Iterator i = _filters.iterator();

i.hasNext();) {

try {

IFilter f = (IFilter) i.next();

f.apply();

break; // Try to apply once

} catch (Throwable e) {

// Try next

}

}

}

Naturally, this hierarchy can be extended with
more complex data-structures for collections and
more complex strategies for filter applications, e.g.,

tree structured collections and prioritised strate-
gies.

Inheritance is not an option for reusing the im-
plementation in the FilterCollection hierarchy,
since that would require the filter methods in the
application to have the same method signature. By
cloning the appropriate classes in this hierarchy we
can reuse these classes in our application. All that
is needed for this reuse is cloning of the hierarchy
as follows:

clone *FilterCollection+

as *ConcreteFilterCollection

with * * apply()

as public void operation1()

with * * apply()

as public void operation2()

That is, clone each class in the hierarchy to a
Concrete counterpart, and clone the applymethod
to each of the filter operations required by the
IConcreteFilter interface of the application. In
our concrete example of mail messages with pro-
cessors and filters, we clone the FilterCollection
hierarchy for each type of filter:

clone *FilterCollection+

as *ProcessorFilterCollection

with * * apply()

7
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as public void process(Response req)

clone *FilterCollection+

as *MessageFilterCollection

with * * apply()

as public void apply(Message m)

with * * apply()

as public boolean validate(Message m)

throws Exception e

With cloning we have achieved an applica-
tion specific copy of the pattern hierarchy, but
it requires further adaption. That is, the
calls to the apply method within the clones
of the apply method need to be forwarded to
the concrete operations. For example, consider
the result of cloning the apply method in the
SequenceMessageFilterCollection:

public void apply(Message msg) {

for(Iterator i = _filters.iterator()

; i.hasNext(); ) {

try {

IFilter f = (IFilter) i.next();

f.apply();

} catch (Throwable e) { }

}

}

While the signature of the method has been
adapted, the call to apply in the method is not. To
adapt this call to the proper one, we use a generic
aspect that adapts clones of FilterCollection to
the specific context of there use. Figure 7 defines
this aspect. The callFilterMethodOnCollection
pointcut intercepts calls to methods targeting
IFilter objects and uses reflection to store the
method signature. Subsequent calls to apply

within that methods are intercepted using the
callFilterMethod pointcut and replaced with a
call to the surrounding method.

Thus, we have encoded a general pattern as
a class hierarchy and a generic aspect, that can
be instantiated for use in specific applications by
cloning. The advantage over the pure aspect ap-
proach of Hannemann and Kiczales [18] is that the
resulting class hierarchy follows the normal OO de-
sign that one would use when manually encoding
the pattern. For example, the filter collection that
we have discussed here is similar to the Composite
pattern by Hannemann and Kiczales. In their as-
pect solution, references to elements are stored in a

public aspect FilterCollectionAdapter {

public void IFilter.apply() { }

pointcut callFilterMethodOnCollection() :

execution(* *.*(..))

&& target(IFilter);

pointcut callFilterMethod(IFilter obj) :

cflowbelow(callFilterMethodOnCollection())

&& call(* *.apply(..))

&& target(obj)

&& this(IFilter);

private Object[] _args;

private Class[] _argTypes;

private String _methodName;

before() : callFilterMethodOnCollection() {

JoinPoint jp = thisJoinPoint;

CodeSignature sig =

(CodeSignature) jp.getSignature();

// Save information as it is needed

// later on

_args = jp.getArgs();

_methodName =

jp.getSignature().getName();

_argTypes = sig.getParameterTypes();

}

before(IFilter obj) : callFilterMethod(obj){

JoinPoint jp = thisJoinPoint;

Class cls = obj.getClass();

Method method =

cls.getMethod(_methodName, _argTypes);

Object res = method.invoke(obj, _args);

}

}

Figure 7: Generic aspect to adapt filter collection
to concrete filter collection.

WeakHashMap maintained in the aspect for all com-
posites at once. Although a WeakHashMap discards
its entries as soon as its key is discarded by the
garbage collector, this does not work in the case
of a circular references (e.g., a link from a file to
its parent directory). Thus the aspect solution re-
quires taking special care of this situation, whereas
our implementation follows the conventional OO
design, with the associated expected behaviour.

8
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IStrategy

<<aspect>>

StrategyPattern

+setStrategy(IStrategy)

+getStrategy(out IStrategy)

ISortStrategy

+sort(in int[],out int[])

LinearSort

+sort(in int[],out int[])

QuickSort

+sort(in int[],out int[])

<<clone, aspect>>

StrategyPattern

+setStrategy(ISortStrategy)

+getStrategy(out ISortStrategy)

<<clone with IStrategy as ISortStrategy>>

Client

Generic Design Pattern Application Code

<<clone>>

Figure 8: Diagram for the instantiation of the the Strategy pattern using aspects, cloning and renaming.

3.5 Strategy Pattern

According to [18], the Strategy pattern [15] may
also be implemented for reuse with aspects. The
implementation has two parts. It consists of
an abstract interface IStrategy which all future
strategies must implement, and an aspect called
StrategyPattern which provides a small imple-
mentation of a strategy selector, as an intertype
declaration. See the left hand side of Figure 8. The
pattern is instantiated by extending IStrategy

with the new operations for the particular algo-
rithm in the instantiation. The aspect is then wo-
ven into the class which is supposed to hold the
strategy.

This approach has an unfortunate drawback. All
instantiations of the pattern will provide an in-
terface which accepts any instance of IStrategy.
Casting is performed to convert from from the
IStrategy to the actual strategy interface being
used in a given instantiation. This is obviously not
type safe: the type system allows all strategies to
be interchangeable, but doing this will result in a
ClassCastExceptions at runtime.

We would like our instantiation of the Strategy

pattern to only allow strategies suitable in our con-
text. In fact, we want to reuse the pattern without
inheriting from IStrategy. Cloning allows us to
do this. The right hand side of Figure 8 shows how
the generic aspect is cloned then extended using

inheritance. The cloning declaration

clone StrategyPattern as StrategyPatternClone

with IStrategy as ISortStrategy;

restricts the cloned aspect to only accept objects
of the type ISortStrategy, thus solving our typing
problem.

The client will set up his strategy as follows:

LinearSort linear = new LinearSort();

QuickSort quick = new QuickSort();

if (...) {

SortStrategyPatternClone.aspectOf().

setStrategy(linear);

} else {

SortStrategyPatternClone.aspectOf().

setStrategy(quick);

}

And later on, use it in the following manner:

int[] numbers = {5, 3, 2, 67, 42, 13};

ISortStrategy strat =

SortStrategyPatternClone.aspectOf().

getStrategy();

numbers = strat.sort(numbers);

3.6 Discussion

The StrategyPattern shows clearly that there
are instances when inheritance is an inappropriate

9
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<<mixin>>
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<<mixin>>
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<<mixin>>
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Figure 9: Mixin inheritance

technique for code reuse, because it tangles subtyp-
ing and composition. In many of these cases, the
desired effect is exactly that which is provided by
cloning.

A major drawback of current implementations
of design pattern libraries (such as Hannemann
and Kiczales [18]) is that they are sometimes too
generic. The use of a design pattern should not
force users to write type unsafe code or make con-
cessions to their application design. Our solution is
both generic (the template code) and specific (the
cloned and renamed instantiation). This makes the
code easier to understand and maintain, exactly
what design patterns are aimed for.

4 Implementing Mixins

The literature is rife with descriptions of mixin
classes (or just mixins). Its first appearance is of-
ten attributed to the Lisp community, in partic-
ular the Flavors system [27] and the mixin idiom
in CLOS [5]. Later work has documented simi-
lar ideas expressed for Modula-3 [8], Java [2, 14]
and Scala [28], to mention some. Limberghen and
Mens [22] give another, more formal treatment of
the topic.

In this paper, we mostly adopt the concept in
the way it is described in [8]. A mixin is an ab-
stract subclass which may be attached to a super-
class, with the purpose of creating a family of mod-
ified classes. The attachment happens when the su-
perclass is extended, and is controlled by the sub-
class. Figure 9 illustrates the usage. Class B (the
client) extends A (the superclass) and attaches M1

public abstract aspect Border {
public interface IBorder {};
public void IBorder.paintBorder()

{ ... }
}

public aspect MixMessageWithBorder

extends Border {
declare parents: BorderMessage

implements IBorder;

}

public class BorderMessage extends Message {
public void paint()

{ paintBorder(); super.paint(); }
}

Figure 10: The Border mixin expressed as an as-
pect.

(the mixin) at the same time. A similar situation
holds for C, which attaches both M2 and M1 to B at
the time of extension.

The result of mixing is always a linear inheri-
tance chain, as shown at the right hand side of the
arrow in Figure 9. The linearisation is a central
property in the mixin definition from [8], that we
also adopted. This particular feature has attracted
some critique [22].

In some languages without specific mixin con-
structs, idioms have evolved to capture the con-
cept. See [32] for the C++ idiom as an example.
Attempts at capturing mixins in AspectJ have been
done [30]. The code in Figure 10 demonstrates this
technique. Compared to full-blown mixins, the As-
pectJ idiom suffers from a few problems:

Name clashes: Signature conflicts are not al-
lowed, i.e. two mixins cannot both introduce
a method with the same signature, or a field
with the same name.

Referring to Figure 10, we have the problem
that IBorder.paintBorder cannot be named
IBorder.paint. If it was, it could not be in-
troduced into the BorderMessage class, as it
would conflict with the paint method already
defined there.

Inheritance: The introduced interface is not in-
serted as a parent of BorderMessage, nor as a
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subclass of Message. Name clashes notwith-
standing, the lack of inheritance prohibits
methods in the mixin from wrapping super-
class functionality by the use of super.

Mixin layers: Because of the name clash issue,
mixin layers [32] are difficult to implement,
and requires careful pre-planning. When com-
posing the layers, names are not allowed to
collide. This places a severe restriction on the
names available at the various layers in the
mixin code.

Syntax: The syntactical verbosity is a problem
both for human readers and tools. A mixin
is not an aspect. Aspects are separate, cross-
cutting concerns which may occur at all ab-
straction levels from expressions to methods
and classes, while mixins are about com-
position at the class level. In Figure 10,
the mixin had to be embedded into an as-
pect, and may therefore easily be confused
as such. Furthermore, any one mixin must
be scattered into two aspects: the mixin
definition itself, Border, and its applica-
tion MixMessageWithBorder. The latter, al-
though small, must be manually rewritten
from scratch for each application of the mixin
and must be kept in sync with its participants,
BorderMessage and IBorder.

The mixin style supported by AspectJ is strik-
ingly similar to traits, as described in [29]. Refer
to Section 5 for more details.

4.1 Mixins using Clone and Rename

In [8], the authors present a generic recipe for im-
plementing mixins in languages which do not di-
rectly support it: “the effect of a mixin can be
achieved by explicitly creating subclasses and copy-
ing the mixin code into the subclass, preventing
code sharing and abstraction”.

Using the clone operator, we can eliminate the
manual code copying, and using the concept of open
classes [10], we can insert the copied class into the
inheritance hierarchy. All we have to add is lineari-
sation. Unfortunately, this is cumbersome to do
manually. Also, the declare parents construct in
AspectJ does not allow you to change the superclass
of a class unless the new superclass is a subtype of

MixinDec ::= mixin Identifier Extends ?

Extends ::= extends MixinName

MixinClassDec ::= ClassModifiers

class Identifier

TypeParams ? Super ? Mixins

Interfaces ? ClassBody

Mixins ::= mixes MixinName +

Figure 11: Syntax for the mixin extension. Mixin-
Name is a variant of Identifier which has been dis-
ambiguated by the Java/AspectJ type system. Su-
per, ClassModifiers, Interfaces and ClassBody are
identical to the Java Language Specification.

mixin Border {
private void paintPreBorder() { ... }
private void paintPostBorder() { ... }
public void paint()

{ paintPreBorder(); super.paint();

paintPostBorder(); }
}

mixin ShadowedBorder extends Border {
private void paintPreShadow() { ... }
private void paintPostShadow() { ... }
public void paint()

{ paintPreShadow(); super.paint();

paintPostShadow(); }
}

mixin NoisyComponent {
private void emitSound() { ... }
public void paint()

{ super.paint(); emitSound(); }
}

class FancyMessage extends Message

mixes ShadowedBorder, NoisyComponent {
FancyMessage(String m) { setMessage(m); }

}

Figure 12: Example of mixin inheritance

the old one. In the case of mixins, this restriction
must be lifted, as we do not want to manifestly fix
the typing relation at mixin implementation time.

In order to investigate cloning plus open classes
as implementation primitives for mixins, we have
made a small syntactical extension to Java that
makes mixins first class entities. Figure 11 details
its syntax. The extension also embodies the lin-
earisation algorithm that is characteristic to mix-
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abstract class Border {
public void paint()

{ ... ; super.paint(); ... }
}

abstract class ShadowedBorder

extends Border { ... }

abstract class NoisyComponent { ... }

clone ShadowedBorder- as FancyMessage*;

clone NoisyComponent as FancyMessage*;

aspect MixBorderWithBorderedMessage {
declare parents:

FancyMessageBorder extends Component;

declare parents: FancyMessageNoisyComponent

extends FancyMessageBorder;

declare parents: FancyMessageBorder

extends FancyMessageNoisyComponent;

}

Figure 13: A sketch of how mixins are conceptu-
ally realized using cloning and open classes. Note
that due to the unresolved super in Border.paint

and declare parents inability to change the su-
pertype of a class, this example will not compile in
AspectJ.

ins. We illustrate its usage by the classical border
example, shown in Figure 12. Given class Message
and Component as already described in Figure 3,
we want to extend Message with a fancy border
and some captivating sound. The declaration of
FancyMessage in this example will, after linearisa-
tion, result in the inheritance chain FancyMessage

→ NoisyComponent→ ShadowedBorder→ Border

→ Message → Component.
(As our goal is to show how cloning en-

ables mixins, we will not argue why mixins
should be preferred over inserting Message into a
BorderContainer or adding border painting as an
around advice.)

The resolution of this mixin inheritance is pretty
straightforward. A sketch of its elementary units
of operation is shown in Figure 13. First, we view
each mixin as an abstract class. It is important to
note that a mixin cannot be compiled separately,
since it may freely rely on fields and methods in
its superclass. These undefined references will not
be fixed until the mixin is attached to a superclass.

This property carries over to the abstract class view
as well.

Second, all mixins (still in the form of abstract
classes) are cloned. This is crucial. The cloning
is the enabling operator that allows us to modify
the inheritance properties of the mixin so that a
mixin may be mixed into several hierarchies inde-
pendently. Without cloning, a mixin could only be
attached once.

Third, a slightly relaxed declare parents oper-
ator is applied to connect the cloned mixins with
the super- and subclasses. The AspectJ declare

parents does not allow arbitrary inheritance mod-
ification, but this rule turns out to be necessary in
our case.

4.2 Discussion

If we compare our mixin implementation with mix-
ins as expressed in AspectJ, we can note the fol-
lowing:

Name clashes: Because of the linearisation,
name clashes are no longer a problem. If a
mixin provides an identical signature with
its superclass, subclass or another mixin, it
will be resolved using the single dispatch
mechanism provided by the Java runtime.

Inheritance: As mixins are now inserted into the
inheritance hierarchy, we can exploit this in
our border examples. In Border.paint in Fig-
ure 12, we first draw part of the border, have
the superclass draw itself, then draw the rest
of the border.

Mixin layers: Our current prototype implemen-
tation does not directly support multiple lev-
els of mixins, i.e. you cannot declare mixin

A mixes B, thus mixin layers are not signif-
icantly easier to implement than using the
open class mechanism in AspectJ. Extending
our prototype to include this feature would be
straightforward. Only the linearisation code
must be extended.

Syntax: With the concrete mixin syntax we have
suggested, the syntactical representation is
straightforward and readable. Even without
it (viewing mixins as abstract classes), there
is a slight improvement, as mixins will appear
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as abstract classes, and not embedded into as-
pects.

The user of mixins must also be aware of a few
issues:

Duck typing: 2 Our mixins are not separately
compilable. They may be partial, that is, they
contain references to methods and fields meant
to be provided by the superclass they will be
attached to. These references will be resolved
and type checked at mixin time. This makes
them very flexible—they are applicable wher-
ever their open references are resolvable—but
also slightly foreign to the Java paradigm.

We experimented with adding a requires

clause to our mixins. This would dictate an
interface that must be fulfilled by the parent
for the mixin to be applied. It would elimi-
nate the reliance on duck typing, but require
superclasses to anticipate their mixins. Alter-
natively, AspectJ open classes could be used
to introduce new interfaces on the superclass
post-facto, thus providing the mixin developer
with stricter control of where his mixins may
be applied safely, but this places a question-
able burden on the mixin user.

Data members: When a mixin introduces its
own fields, these may unintentionally overlap
with those of the superclass when there is a
naming conflict. The Java semantics resolves
these conflicts by having subclass fields shadow
those of the superclass. This problem with
mixins has been attacked in [29].

Constructor chains: A problem occurs when a
mixin is applied to a superclass without a de-
fault constructor. Either the mixin developer
must have anticipated this by providing the
mixin with a suitable constructor which for-
wards to the correct superclass constructor, or
an appropriate “glue”-constructor may be in-
troduced into the mixin using local aspects at
the time of mixing.

In summary, our prototype implementation
shows that mixins may be realized using only
cloning and slightly relaxed intertype declarations.

2From the proverb “if it walks like a duck and talks like

a duck, it must be a duck”.

5 Related Work

5.1 Related Language Features for

Reuse

Here we discuss related language features which of-
fer solutions to the code reuse problem, and con-
trast them to the use of cloning.

Aspects [20] modify existing class hierarchies,
preventing generic reuse of woven classes in mul-
tiple contexts within the same program.

Mixins [8] allow reusable behaviour, but do not
allow separate implementation of cross-cutting con-
cerns. Mixins have been described in many OO lan-
guages, among them Smalltalk [8], Jam for Java [2],
CLOS for Lisp [5] and the Scala language [28].

Traits differ from mixins in that they do not
have state, and they do not require linearisation.
“A trait is a group of pure methods that serves
as a building block for classes and is a primitive
unit for code reuse” [29]. They have a flatten-
ing property, which states that “the semantics of
a class defined using traits is exactly the same as
that of a class constructed directly from all the
non-overridden methods of the traits”. Traits have
been explored in many OO-languages, among them
Smalltalk [12, 29], and Scala [28]. This can already
be expressed in AspectJ using intertype declara-
tions in the style of Figure 10. No cloning is neces-
sary.

Templates are available in C++ [33] and for
Haskell in TemplateHaskell [31]. They provide a
powerful and flexible technique for code reuse de-
coupled from inheritance, but require that the code
is expressed as templates from the beginning. With
careful use of cloning and renaming, we can get
some of the same benefits of templates. Virtual
classes [24] is an alternative technique for describ-
ing generics.

Inheritance [34] is the fundamental technique for
code reuse on which all object-oriented language
have been built. The exact details of what inher-
itance is, varies between languages, but is usually
taken to mean a combination of code reuse, subtyp-
ing (the is-a relationship) and dynamic dispatch.
Our clone operator is only about code reuse, de-
coupled from the other elements of inheritance (dis-
patch techniques, typing relationship).

Open classes [10] or intertype declarations in As-
pectJ allow methods and fields to be added into
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existing classes without breaking encapsulation. In
Java, this means that newly inserted methods at
best only have friendly access, and cannot see the
private parts of a class. Open classes may only
modify existing classes in-place. A system which
brings this to Java, along with some forms of com-
ponent composition, is Jiazzi [25].

At their most general, meta object protocols [19]
make the entire language open for programming,
and blurs the distinction between runtime and com-
pilation time. They allow arbitrary meta programs,
written in an object-oriented style, to be applied
to a program both at compile-time and runtime.
Our cloning operator is equal to copying (cloning)
a meta object representing a class, method or field.

Module systems have been described for imper-
ative (Modula-2), object-oriented (e.g., Java pack-
ages) and functional [21, 23] languages. Visible,
named entities from a module may be imported
from one module to another, and renamed in the
process. This creates an alias for the code in the
original module. Unlike cloning, code modification
performed on the new name will affect the orig-
inal (only) definition, as the name is merely an
alias. This prohibits the use of aspects for context-
specific adaptation. Coupling module imports with
a safe solution to cross-package cloning would pro-
vide module systems with per-context aspect weav-
ing.

Higher-order hierarchies [13] is a language fea-
ture in the gbeta language, proposed as a solution
to improve reuse by minimising the need for boiler-
plates (copy-then-modify reuse). It allows the ex-
tension of class hierarchies into new, modified hier-
archies. The author points out that unlike aspects,
higher-order hierarchies allow both the new and
old hierarchies to co-exist side-by-side in a given
system, and argues that this is preferable to the
in-place modification required by aspects. Using
cloning we can create a copy of a class hierarchy,
then adapt it using aspects, offering similar func-
tionality to higher-order hierarchies. The major
difference is that in higher-order hierarchies, the
new, extended hierarchy enjoys a well-defined typ-
ing relation with the old, whereas in our approach
there is none. This allows pure code reuse decou-
pled from inheritance.

Most object-oriented (as well as many impera-
tive and functional) languages allow the expression
of callbacks, closures, delegates and aggregation, ei-

ther as idioms or through dedicated language con-
structs. In languages where callbacks, closures and
delegates are named entities, they may be cloned
and adapted, provided visibility is respected. New
callbacks may be exposed by adapted code; advice
may be used to expose new variation points in a
class after it has been cloned. In some situations,
when aggregation and delegation is about flexibly
adding new behaviour to a class, mixins (through
cloning and open classes) may be substituted. This
allows the preservation of object identity.

5.2 Related Design Techniques for

Reuse

Design patterns are elements of reusable engineer-
ing knowledge. They are are recipes for a given
class of recurring problems and their solution,
stated in general terms. A design pattern must
be “instantiated” by the developer, in the form of
a concrete implementation.

Component engineering is about constructing
reusable elements at a substantially coarser gran-
ularity than the class-level. For the reasons of en-
capsulation discussed previously, we do not believe
cloning and renaming make much sense at this level
of abstraction.

Frameworks are object-oriented class hierarchies
constructed using available language constructs,
such as inheritance, aggregation, and even mixins,
traits, templates, where available. When the avail-
able language features are not expressive enough,
idioms and design patterns are resorted to.

Invasive software composition [4] is about com-
posing software from reusable components, and
adapting them at composition time. The start-
ing point is a minimal set of program transforma-
tions which are used to build composition opera-
tor libraries. In turn, these parameterise, extend,
connect, mediate, and aspect-weave components as
part of the composition process. In the more gen-
eral context, our approach can be viewed as an in-
stance of this general technique.

6 Discussion

Cloning of packages, classes, methods, fields can
be expressed in many languages offering meta pro-
gramming facilities [5] or meta object protocols [9,
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35]. Program transformation systems [36, 11] also
provide this capability. While these systems are
extremely expressive, they are also highly complex
and require both discipline and experience to use.
It is our belief that their complexity can be tamed
and distilled into useful, high-level, declarative lan-
guage constructs. In the case of cloning, we view
these technologies as competing alternatives for ex-
pressing its implementation. Our prototype is im-
plemented entirely in the Stratego program trans-
formation system [36].

Cloning entire packages is problem-free, as they
are self-contained units with respect to visibility.
Cloning classes across package (or module) barri-
ers is desirable, but without runtime support, this
is difficult in languages providing encapsulation fea-
tures. Unless a class was designed to be cloned, by
not referencing any non-public parts of its pack-
age, it cannot safely be cloned into a new pack-
age. In a sense, mixins are a special case, since
they by nature should be designed for cloning. Sev-
eral trade-offs to tackle this problem are possible.
The simplest is to disallow cross-package cloning
entirely. A more flexible alternative would be to
make the clone a “foreign” citizen in the new pack-
age. To its clients, the clone appears to reside in
the new package, but retains only privileges from
its old package.

With the relaxed declare parents operator
(see Section 4), we can insert mixins into existing
inheritance chains, between any two classes. This
differs from pure intertype declarations on two ar-
eas: (1) the introduced code may be expressed and
treated as a composable class – a mixin, and (2)
the methods in the mixin may augment the meth-
ods in their parent class by use of super. For our
bordered message example in Figure 12, a similar
effect to super in the mixin paint may be attained
by implementing the paint method as an around

advice, but this approach is verbose and requires
extra care. The advice should be applied on a
per-context basis. We cannot weave the border
around advice directly on Message. That would
turn all Messages into FancyMessages, clearly not
what we want. Using intertype declarations, we
may work around this by adding a member flag to
the Message class which when set, will have the ad-
vice draw the border, giving us a per-object gran-
ularity at the cost of a slight runtime overhead. It
is our opinion that in this case, it is more of an im-

plementation trick to emulate mixins than a clean
design.

Language constructs for capturing design pat-
terns [6] and reusable libraries of design patterns
[1] are appealing because they make the patterns
into concrete, reusable entities, and also allow con-
cise embeddings of the patterns into the code.
An minor annoyance identified in [1] is that de-
sign patterns expressed as reusable code some-
times have overly generic method names, such as
anOperation. When instantiating the design pat-
tern, the name must be kept. Clearly, this can
easily be avoided when the pattern is instantiated
using cloning and renaming.

An obvious critique against the clone operator
is that it actually duplicates code. The code for
every named identifier it is applied to is in fact
copied. Unlike classical code duplication, this kind
of code duplication is only taxing on the runtime
environment, not the developer or program de-
signer. In theory, the duplication could be min-
imised in a sufficiently advanced runtime, by em-
ploying a copy-on-adapt scheme: the copying will
actually only occur when the cloned version is used
and modified. Furthermore, only the actually mod-
ified parts (methods and fields inside classes) need
to be cloned. Even without runtime support, the
cost of cloning is not likely to be prohibitive. Most
design techniques were invented exactly to avoid
copy-then-modify, which cloning now provides as a
basic language feature. While the gap in the design
space filled by cloning is small enough for code du-
plication not to be a serious issue, we have argued
that is is an important gap.

7 Conclusion and Further

Work

We have detailed the clone operator, a small,
declarative extension to the Java language which
improves code reuse. We have discussed its imple-
mentation, how it can be combined with intertype
declarations to implement mixins, how it combines
with the aspect language AspectJ to allow per-
context weaving, how it can be used as a primitive
template mechanism and how it can be combined
with aspects to implement reusable design patterns
as code.
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We have related our work to alternative tech-
niques for code reuse and adaptation for object-
oriented languages and argued that the concept of
cloning is either already inherent in the solution, or
would be complementary and beneficial.

We clearly rely on mechanisms other than
cloning to perform code adaptation. In this arti-
cle, we have used aspects and intertype declarations
to declaratively express these adapting transforma-
tions. While we have shown that there are useful
and interesting cases for this approach, there is no
hiding the fact that aspects have a limited capa-
bility for program transformation. In future work,
we seek to uncover alternative adaptation mecha-
nisms which preserve the declarative nature of as-
pects and intertype declarations, but combine bet-
ter with the cloning operator.
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