
A Survey of Strategies in Rule-Based
Program Transformation Systems

Eelco Visser

Technical Report UU-CS-2005-022
Institute of Information and Computing Sciences

Utrecht University

1 June 2005

Preprint of:

E. Visser. A Survey of Strategies in Rule-Based Program Transformation Sys-
tems. Journal of Symbolic Computation, 40(1):831–873, 2005. Special issue on
Reduction Strategies in Rewriting and Programming.

@article{Vis05.survey,
author = {Eelco Visser},
title = {A Survey of Strategies in Rule-Based

Program Transformation Systems},
journal = {Journal of Symbolic Computation},
year = 2005,
volume = 40,
number = 1,
pages = {831-873},
note = {Special issue on Reduction Strategies

in Rewriting and Programming},
editor = {Bernhard Gramlich and Salvador Lucas},

}

Copyright c© 2005 Eelco Visser

ISSN 0924-3275

Address:
Institute of Information and Computing Sciences
Utrecht University
P.O.Box 80089
3508 TB Utrecht

Eelco Visser
visser@acm.org

http://www.cs.uu.nl/~visser

http://www.cs.uu.nl/~visser

A Survey of Strategies in Rule-Based

Program Transformation Systems

Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht
P.O. Box 80089, 3508 TB Utrecht, The Netherlands

Abstract

Program transformation is the mechanical manipulation of a program in order to
improve it relative to some cost function and is understood broadly as the domain
of computation where programs are the data. The natural basic building blocks
of the domain of program transformation are transformation rules expressing a
‘one-step’ transformation on a fragment of a program. The ultimate perspective
of research in this area is a high-level, language parametric, rule-based program
transformation system, which supports a wide range of transformations, admitting
efficient implementations that scale to large programs. This situation has not yet
been reached, as trade-offs between different goals need to be made. This survey
gives an overview of issues in rule-based program transformation systems, focussing
on the expressivity of rule-based program transformation systems and in particular
on transformation strategies available in various approaches. The survey covers term
rewriting, extensions of basic term rewriting, tree parsing strategies, systems with
programmable strategies, traversal strategies, and context-sensitive rules.

Key words: Program transformation, transformation rule, transformation
strategy, program representation, term rewriting, pattern matching, extensions of
term rewriting, strategy annotations, tree parsing, attribute grammars, strategy
combinators, tree traversal, congruence operators, generic traversal strategies,
context-sensitive rules

1 Introduction

Program transformation is the mechanical manipulation of a program in order
to improve it relative to some cost function C such that C(P) > C(tr(P)), i.e.,

Email address: visser@acm.org (Eelco Visser).
URL: http://www.cs.uu.nl/~visser (Eelco Visser).

1

the cost decreases as a result of applying the transformation. The cost of a pro-
gram can be measured in different dimensions such as performance, memory
usage, understandability, flexibility, maintainability, portability, correctness,
or satisfaction of requirements. In general, transformations should preserve
the semantics of the program according to some appropriate definition of se-
mantics [88,82,29]. However, in some applications, such as program evolution,
the goal of a transformation may be to deliberately change the semantics of
the program. Furthermore, a strict interpretation of program transformations
restricts the term to rephrasings, i.e., transformations of a program to an-
other program in the same language. Here we also consider translations to
programs in another language. Such translations can be seen as rephrasings in
a language that is the union of the source and target languages. While trans-
formations can be achieved by manual manipulation of programs, in general,
the aim of program transformation is to increase programmer productivity by
automating programming tasks, thus enabling programming at a higher-level
of abstraction, and increasing maintainability and re-usability of programs.

Thus, program transformation is understood here broadly as the domain of
computation where programs are the data. In practice, the area is divided
into many different schools corresponding to application areas and implemen-
tation techniques. Many transformation systems are built for a particular ob-
ject language, a particular type of transformation, and for use in a particular
environment. The implementation uses specific data structures and involves
complex algorithms in order to achieve maximal performance, e.g., for use in
optimizing compilers. The resulting ad-hoc monolithic transformation systems
are difficult to understand, maintain, and reuse.

The aim of a broad consideration of the field is the reuse of results from sub-
fields to arrive at a unified high-level approach to the implementation of trans-
formation systems. The ultimate goal of this endevour is a component-based
approach to program transformation in which basic transformation compo-
nents can be reused in many different compositions. The natural ‘basic com-
ponents’ of the domain of program transformation are transformation rules
expressing a ‘one-step’ transformation on a fragment of a program. Rule-based
program transformation systems support formulation of basic transformation
rules and arrange their automatic application. Thus, the ultimate perspective
of research in this area is a high-level, language parametric, rule-based pro-
gram transformation system, which supports a wide range of transformations,
admitting efficient implementations that scale to large programs.

This goal has not yet been reached, as trade-offs between different goals need
to be made. The suitability of a rule-based transformation system for the im-
plementation of a certain type of transformation depends on the expressivity
in the formulation of rules, on the strategies available for their control, and on
the quality of their implementation. A highly generic system may allow con-
cise specification of many different transformations, but not with the speed

2

of a hand-written optimization component. On the other hand, a dedicated
tool with a restricted type of rule may be able to generate highly optimized
transformers, but may not be applicable to a slightly different type of trans-
formation.

A special concern in rule-based systems is the definition of strategies for the
application of rules. The combination of rules into complete transformations
requires control over the application of rules. While rule-based systems tra-
ditionally apply rules automatically according to a standard control strategy,
it turns out that program transformation usually requires more careful con-
trol. Thus, rule-based transformation systems tend to adopt mechanisms for
controlling the application of rules.

To summarize, research in the area of rule-based program transformation sys-
tems is concerned with:

• Formulation of rule-based solutions to a wide range of transformation prob-
lems

• Concise and reusable specification of rules and strategies
• Generation of efficient implementations for rule-based specifications (e.g.,

by adopting implementation techniques from transformation systems for
more specific domains)

This survey gives an overview of issues regarding rule-based program trans-
formation systems, focussing on the second item above, i.e., the expressivity
of rule-based program transformation systems, and in particular on transfor-
mation strategies available in various approaches.

To set the scene the next section describes the wide range of applications
of program transformation. Section 3 then describes term rewriting as the
basis for rule-based program transformation. At some appropriate level of
abstraction all program transformations can be modeled as the consecutive
application of rewrites, even though this model may not always be visible in the
actual implementation where rules and strategies are blended into a monolithic
implementation for efficiency and other reasons. The basic approach to term
rewriting with standard rewriting strategies such as innermost and outermost
has a number of limitations for application in transformation systems. The
remaining sections discuss extensions to the basic approach.

Section 4 discusses various ways of expressing properties of the syntax and
semantics of the programming language in rewrite rules. Examples include the
extension of term rewriting with concrete syntax, equational matching, bound
object variables, default rules, and strategy annotations. Section 5 discusses
approaches based on tree parsing in which tree grammar rules define actions
to be performed on tree nodes. A tree traversal schedule is computed based
on the dependencies between rules.

3

Section 6 considers the development of interactive systems for the assistance of
transformational programming, in which the need arose to automate reoccur-
ing sequences of transformations. This gave rise to systems with programmable
transformation strategies. A particular concern in the specification of strate-
gies is the traversal of program structures. Section 7 gives an overview of the
various solutions developed in this area.

Another shortcoming of rewrite rules is their context-free nature. That is,
rules only have access to the information in the term they apply to. Sec-
tion 8 presents solutions to this problem, which include information propagat-
ing strategies and the dynamic generation of rewrite rules.

Finally, there are many other issues that play a role in program transformation
systems and other approaches that are beyond the scope of this article.

2 Applications of Program Transformation

Program transformations can be classified according to various criteria such as
amount of automation, improvement achieved, or subject language [39,85,105].
When considered along the lines of research communities, roughly two main
schools can be distinghuished, i.e., those concerned with the development of
new programs and those concerned with the evolution of existing programs.

2.1 Program Development

Program development is concerned with the transformation from requirements
via specification to implementation. Usually the initial parts of the process
involve intervention from a programmer or even a software architect, while
later stages in the process are completely automated. In the course of the
last fifty years the boundary of automation has shifted considerably; formula
translation was considered an innovative automation in the 1950s, while arith-
metic expression are the assembly language (lowest level of abstraction) for
todays programmers.

Transformational Programming [84,39] is a methodology for formal develop-
ment of implementations from specifications and is on the boundary of au-
tomation, i.e., formal means that it can be mechanized (but not necessarily
automated), development entails traceability. In the course of development, de-
sign information is traded for increased efficiency. Feather [39] distinghuishes
meta-programming, i.e., the interactive transformation of a specification into
an implementation; extended compilation, i.e., completely automatic compila-
tion for a language with high-level constructs with advice from the program-
mer to the compiler about a specific program; and program synthesis or re-
finement [106] make transformation as automatic as possible without limiting
the specification language in any way.

4

Compilers provide completely automatic transformation from a high-level lan-
guage to a low-level language [1,2,75]. This translation is usually achieved in
several phases. Typically, a high-level language is first translated into a tar-
get machine independent intermediate representation. Instruction selection
then translates the intermediate representation into machine instructions. In
transformation-based compilers such as GHC [91] a large part of the com-
pilation process is implemented as the application of small transformation
steps. GHC even allows the programmer to specify additional rules for ap-
plication in the compiler [92]. Application generators [105] are compilers for
domain-specific languages. Examples are parser and pretty-printer generation
from context-free grammars [1,20]. A program optimization [2,75] is a transfor-
mation that improves the run-time and/or space performance of a program.
Example optimizations are fusion, inlining, constant propagation, constant
folding, common-subexpression elimination, dead code elimination, and par-
tial evaluation [60].

2.2 Program Evolution

Program evolution is concerned with the understanding and maintenance of
existing legacy programs.

Reverse engineering [25,17] is the inverse of compilation, i.e. the goal is to ex-
tract from a low-level program a high-level program or specification, or at least
some higher-level aspects. Reverse engineering raises the level of abstraction
and is the dual of synthesis. Examples of reverse engineering are decompilation
in which an object program is translated into a high-level program, architec-
ture extraction in which the design of a program is derived, documentation
generation, and software visualization in which some aspect of a program is
depicted in an abstract way.

In software renovation the extensional behavior of a program is changed in
order to repair an error or to bring it up to date with respect to changed
requirements. Examples are repairing a Y2K bug, or converting a program
to deal with the Euro. Refactoring [45] is renovation aimed at improving the
design of a program by restructuring it such that it becomes easier to under-
stand while preserving its functionality. Obfuscation [27] is a transformation
that makes a program harder to understand by renaming variables, inserting
dead code, etc. Obfuscation is done to hide the business rules embedded in
software by making it harder to reverse engineer the program.

In migration a program is transformed to another language at the same level
of abstraction. This can be a translation between dialects, for example, trans-
forming a Fortran77 program to an equivalent Fortran90 program or a trans-
lation from one language to another, e.g., porting a Pascal program to C.

5

3 Term Rewriting

A complex program transformation is achieved through a number of consec-
utive modifications of a program. At least at the level of design, it is useful
to distinguish transformation rules from transformation strategies. A rule de-
fines a basic step in the transformation of a program. A strategy is a plan for
achieving a complex transformation using a set of rules.

This section first examines the conceptual notion of transformation rules and
strategies, then considers the issue of representation of programs, and finally
describes the implementation of transformation by means of term rewriting
and its limitations.

3.1 Transformation Rules and Strategies

Rules are based on the semantics of the language. A rule generally preserves
the semantics of the program. That is, before and after the application of a
rule the program has the same meaning. Usually the observable behavior of
the program is preserved, but some other aspect is changed. Optimizations, for
example, try to decrease the time or space resource usage of a program. Ap-
plying constant propagation can decrease the need for registers, for instance.
Extracting a function during refactoring can improve the readability of the
program.

A rule involves recognizing a program fragment to transform and constructing
a new program fragment to replace the old one. Recognition involves matching
the structure of the program and possibly verifying some semantic conditions.
The replacement in a rule can consist of a simple term pattern, a function that
constructs a new tree or graph, or a semantic action with arbitrary side-effects.

rules
InlineF :

[[let f(xs) = e in e′[f(es)]]] → [[let f(xs) = e in e′[e[xs := es]]]]
InlineV :

[[let x = e in e′[x]]] → [[let x = e in e′[e]]]
Dead :

[[let x = e in e′]] → [[e′]] where x 6∈ e′

Extract(f,xs) :
[[e]] → [[let f(xs) = e in f(xs)]]

Hoist :
[[let x = e1 in let f(xs) = e2 in e3]] →
[[let f(xs) = e2 in let x = e1 in e3]]
where x 6∈ free-vars(e2)

Fig. 1. Some example transformation rules.

6

Fig. 2. Phenomena in composition of transformation rules: infinite branches, in-
verses, confluence, non-confluence.

Consider the transformation rules in Figure 1. The Inline rules define inlining
of function and variable definitions. The Dead rule eliminates an unused vari-
able definition. The Extract rule abstracts an expression into a function. The
Hoist rule defines lifting a function definition out of a variable definition if the
variable is not used in the function. Using this set of rules different transfor-
mations can be achieved. For example, a constant propagation strategy in an
optimizer could use the InlineV and Dead rules to eliminate constant variable
definitions:

let x = 3 in x + y → let x = 3 in 3 + y → 3 + y

On the other hand, a function extraction strategy in a refactoring browser
could use the Extract and Hoist rules to abstract addition with y into a new
function and lift it to top-level.

let x = 3 in x + y

→ let x = 3 in let addy(z) = z + y in addy(x)

→ let addy(z) = z + y in let x = 3 in addy(x)

A set of transformation rules for a programming language induces a rewrite
relation on programs [31]. If the relation is confluent and terminating, there is a
unique normal form for every program. In that case it is a matter of applying
the rules in the most efficient way to reach the normal form. However, in
program transformation this is usually not the case. As illustrated in Figure 2,
a set of transformation rules can give rise to infinite branches (e.g., by inlining
a recursive function), inverses in which a transformation is undone (e.g., by
distribution or commutativity rules), and non-confluence in which a program
can be transformed into two different programs.

Depending on the goal of a transformation task, a path should be chosen
in the rewrite relation. For a specific program it is always possible to find
the shortest path to the optimal solution for a specific transformation task.
However, for most transformation tasks the process of finding a path needs to

7

be automated and optimal solutions might only be approximated. In this light,
a strategy is an algorithm for choosing a path in the rewrite relation. Given
one set of rules, there can be many strategies, each achieving a different goal.
On the other hand, a general strategy can be applicable to many different sets
of rules.

3.2 Program Representation

Before examining in more detail how rules and strategies can be defined, we
need to consider how the programs they manipulate are represented. Design
decisions made at the level of representation influence the design decisions
that can be made in the definition of rules and strategies.

Although some systems work directly on text, in general a textual represen-
tation is not adequate for performing complex transformations. Therefore, a
structured representation is used by most systems, and only such systems are
studied in this survey. Since programs are written as text by programmers,
parsers are needed to convert from text to structure and unparsers are needed
to convert structure to text. Since such tools are well covered elsewhere [1],
they are not examined in this survey.

3.2.1 Parse Trees or Abstract Syntax Trees

A parse tree is a direct representation of the derivation of a string (the pro-
gram text) according to the rules of a grammar. Parse trees contain syntactic
information such as layout (whitespace and comments), and parentheses and
extra nodes introduced by disambiguating grammar transformations. Since
this information is often irrelevant for transformation, parse trees are usually
transformed into abstract syntax trees that do not contain such information.
However, for some applications (such as software renovation and refactoring)
it is necessary to restore as much as possible the original layout of the pro-
gram after transformation. This requires that layout is stored in the tree and
preserved throughout transformation. A similar issue is the storage of source
locations (line and column numbers) in order to provide useful error messages.
Especially the preservation of layout and position information is problematic;
it is not clear in a generic manner where to insert comments in a transformed
fragment of a program. Possible solutions to this problem include origin track-
ing [33] in which a subtree in the transformed program is related to the subtree
it ‘originates’ from in the original tree; parse-tree annotations [63] that carry
their own methods for propagation; and comparing the transformed program
to the original to infer where comments can be inserted.

For other applications, e.g., certain optimizations and compilation, it is nec-
essary to carry type information in the tree. This requires the extension of
the tree format to store type information and to preserve consistency of types
throughout transformation.

8

3.2.2 Trees or Graphs

Program structure can be represented by means of trees, directed-acyclic
graphs (DAGs), or full fledged graphs with cycles.

Using pure trees is costly because copying of a tree (e.g., by using a variable
twice when constructing a new tree) requires creating a complete copy. There-
fore, most systems use DAGs. When copying a tree, only a pointer to the tree
gets copied, thus sub-trees are shared by multiple contexts. The advantage of
sharing is reduced memory usage. In the ATerm library [16] this approach is
taken to the extreme by only constructing one instance for each sub-tree that
is constructed, thus achieving maximal sharing and minimal memory usage.
Furthermore, testing the equality of two terms becomes an O(1) operation.

Sharing saves memory, makes copying cheap, and, in the case of maximal
sharing, testing for equality is cheap as well. However, the downside of sharing
is that performing a transformation of a tree requires re-building the context
in which the transformed tree is used. It would be more attractive to overwrite
the root node of the sub-tree that is changed with the new tree, thus updating
all contexts in which the old tree was used. However, this is not valid in general.
Two occurrences of a shared tree that are syntactically the same can have a
completely different meaning depending on their context. Even if they have
the same meaning, it is not always desirable to change both occurrences.

The same problem of occurrence arises when associating information with
nodes. When sharing is based on syntactic equivalence alone, annotations
become associated with all occurrences of the tree. Consider the examples
of position information in parse trees and type annotations in abstract syntax
trees to conclude that this is usually not desirable. On the other hand, if
annotation of a tree node results in a new tree, then equivalence becomes
equivalence with annotations, and equivalence modulo annotations is no longer
a constant operation.

Finally, full fledged graphs can be useful to represent back-links in the tree
to represent, for example, loops in a control-flow graph [2,64,75], or links to
declarations [30]. Updateable graphs make it easy to attach new information
to nodes, for example results of analysis. The problem of destructive update
versus copying while doing transformation is even more problematic in graphs.
Since a sub-graph can have links to the entire graph, it may be required to
reconstruct the entire graph after a transformation if it is necessary to keep
the original graph as well. For very specific purposes such as lazy evaluation
of functional programs, it is possible to make such graph updates transparent.

3.3 Term Rewriting

Term rewriting is a good starting point for the study of program transforma-
tion systems. Term rewriting is a simple formalism modeling modification of

9

trees (terms) through a sequence of rewrite rule applications. Thus, provid-
ing a general model for program transformation. Any specific transformation
can be modeled as a sequence of rewrites on the program tree. This does not
necessarily mean that such a sequence can always be seen as the normalizing
application of a set of rewrite rules according to a standard strategy. That is,
term rewriting interpreted as exhaustive application of a set of rules is not an
adequate technique for all applications of program transformation. The rest
of this section describes term rewriting and its limitations for use in program
transformation. The description is limited to the basics of term rewriting;
introductions to the vast literature on rewrite systems include [31,61,5,108].

A term rewriting system is a collection of rewrite rules defining one-step trans-
formations of terms. Terms are symbolic representations for the structure to
be transformed. We first consider basic term rewriting with first-order terms
representing trees or DAGs. More complex term structures will be discussed
in the next section.

3.3.1 Terms

An algebraic signature defines a family of sorted first-order terms through a set
of constructor declarations as follows: If C : S1 ∗ ... ∗ Sn → S0 is a constructor
declaration in the signature and t1 is a term of sort S1, ..., tn a term of sort
Sn, then C(t1, ..., tn) is a term of sort S0. Note that C : S is shorthand for
C :→ S.

First-order terms can be used to describe the abstract syntax trees of pro-
grams. There is a one-to-one correspondence between first-order terms and
trees with constructors as node labels and an ordered set of directed edges
to the trees corresponding to the subterms. Directed acyclic graphs can be
used to efficiently represent sharing in terms. Figure 3 illustrates this with a
signature for the language of propositional formulae. For instance, the formula
p ∧ ¬q is represented by the term And(Atom("p"), Not(Atom("q"))). Note
that the sort String is used to represent the set of all character strings. An-
other syntactic extension of first-order terms that are indispensible in program
transformation are lists of the form [t1,...,tn] which abbreviate terms of the
form [t1|[t2|...[tn|[]]]], i.e. terms over the signature

[] : List(a)

[_|_] : a * List(a) -> List(a)

3.3.2 Rewrite Rules

A rewrite rule is a pair of term patterns written as p1 -> p2. A term pattern
is a term with variables. A labeled rewrite rule is a named rule of the form
L : p1 -> p2. A rule defines a transformation of an expression of the form
p1 to an expression of the form p2. For example, the rule

10

signature
sorts Prop
constructors

False : Prop
True : Prop
Atom : String -> Prop
Not : Prop -> Prop
And : Prop * Prop -> Prop
Or : Prop * Prop -> Prop

rules
DAOL : And(Or(x, y), z) -> Or(And(x, z), And(y, z))
DAOR : And(z, Or(x, y)) -> Or(And(z, x), And(z, y))
DOAL : Or(And(x, y), z) -> And(Or(x, z), Or(y, z))
DOAR : Or(z, And(x, y)) -> And(Or(z, x), Or(z, y))
DN : Not(Not(x)) -> x
DMA : Not(And(x, y)) -> Or(Not(x), Not(y))
DMO : Not(Or(x, y)) -> And(Not(x), Not(y))

Fig. 3. Signature and rewrite rules for propositional formulae.

AA : And(And(x, y), z) -> And(x, And(y, z))

associates conjunction to the right. Rewrite rules can be used to express basic
transformation rules and can be considered as operationalizations of the alge-
braic laws of the language. For example, the rewrite rules in Figure 3 express
basic laws of propositional logic, i.e., the distribution rules, the rule of double
negation, and the De Morgan rules.

3.3.3 Reduction

A rule L : p1 -> p2 reduces a term t to t′, if t matches p1 with a substitu-
tion σ, i.e., t = σ(p1), and t′ = σ(p2). We say that t is the redex (reducible
expression), and t′ is the reduct. Thus, with rule AA we have the reduction

And(And(Var("a"), False), Var("b"))

-> And(Var("a"), And(False, Var("b")))

since the substitution [x := Var("a"), y := False, z := Var("b")] defines a
match for the left-hand side And(And(x, y), z) of the rule, and instantiates
the right-hand side And(x, And(y, z)) to the reduct.

A set of rewrite rules R induces a one-step rewrite relation on terms. If t
reduces to t′ with one of the rules in R then we have t →R t′. In this relation
reductions take place at the root of terms. The relation can be extended to
the relation ⇒R which relates two terms with a reduction under the root. The
relation is formally defined as follows:

t1 →R t2
t1 ⇒R t2

ti ⇒R t′i(1 ≤ i ≤ n)

c(t1, ..., ti, ..., tn) ⇒R c(t1, ..., t′i, ..., tn)

11

For example, with rule A : P(Z, x) -> x the term P(P(Z,S(Z)), S(Z))

reduces to P(S(Z), S(Z)) by reducing the first argument of the outermost P.

A term t rewrites to a term t′ with respect to a set of rewrite rules R if there
is a finite sequence of terms t = t1, ..., tn = t′ such that each ti reduces (under
the root) to ti+1. This is formalized by the rewrite relation ⇒∗

R, defined by the
following rules:

t ⇒∗
R t

t1 →R t2
t1 ⇒∗

R t2

t1 ⇒∗
R t2 t2 ⇒∗

R t3
t1 ⇒∗

R t3

ti ⇒∗
R t′i(1 ≤ i ≤ n)

c(t1, ..., ti, ..., tn) ⇒∗
R c(t1, ..., t′i, ..., tn)

That is, the reflexive, transitive and congruent closure of →R.

A term t is in normal form with respect to a set of rewrite rules R, if there is
no term t′ not equal to t such that t ⇒∗

R t′. If the rules in R are unconditional,
this is the case if there is no subterm of t that matches with one of the left-hand
sides of a rule in R.

3.3.4 Rewriting Strategies

The reduction relation induced by a set of rewrite rules is a tool for mech-
anizing the transformation of programs. Given a set of rewrite rules, correct
according to some criterium, a program can be transformed by applying the
rules in the order needed for the specific transformation. Thus, rewriting can
be used to model any specific transformation. However, this does not pro-
vide us a procedure for performing such transformations automatically; the
reduction relation does not impose any order on the application of rules.

A rewriting strategy is an algorithm for applying rules to achieve a certain
goal. Typically the goal is to normalize a term with respect to a set of rules,
that is, exhaustively apply rules to the term until it is in normal form. One
popular strategy for normalization is innermost normalization, as defined by
the relation ⇒im

R :

t1 ⇒im
R t′1 ... tn ⇒im

R t′n c(t′1, ..., t
′
n) ⇒red

R t

c(t1, ..., tn) ⇒im
R t

t1 →R t2 t2 ⇒im
R t3

t1 ⇒red
R t3

¬∃t2 : t1 →R t2
t1 ⇒red

R t1
This strategy states that before applying a rule to a term, first all its subterms
are normalized. The outermost strategy in contrast, first reduces redices closest
to the root, as defined by the relation ⇒om

R :

t1 ⇒rom
R t2

t1 ⇒om
R t2

t1 ⇒R tom
2 t2 ⇒om

R t3
t1 ⇒om

R t3

t1 →R t2
t1 ⇒rom

R t2

12

¬∃t′ : c(t1, ..., ti, ...tn) →R t′ ti ⇒rom
R t′i(1 ≤ i ≤ n)

c(t1, ..., ti, ..., tn) ⇒rom
R c(t1, ..., t′i, ..., tn)

This strategy is a transitive closure of the relation ⇒rom
R , which defines the

reduction of a single outermost redex.

Normalization of terms with respect to a set of rewrite rules is applicable in
areas such as algebraic simplification of expressions, and is provided by many
rewriting engines, including OBJ [50], ASF+SDF [32], ELAN [13], Maude [26],
Stratego [114] and many others. An overview of rewriting-based languages is
presented in [55]. Most of these systems also support extensions of the basic
rewriting paradigm.

3.4 Limitations of Term Rewriting

The advantage of term rewriting is that all that is needed for the imple-
mentation of a transformation is the specification of a set of rewrite rules.
The rewriting engine takes care of traversing the program tree in order to
find reducible expressions. In other words, term rewriting separates rules and
strategy. Due to this property the size of the specification corresponds to the
size of the problem to be solved, and is independent of the complexity of the
language, i.e., the size of the signature.

However, the complete normalization approach of rewriting turns out not to
be adequate for program transformation, because rewrite systems for pro-
gramming languages will often be non-terminating and/or non-confluent. In
general, it is not desirable to apply all rules at the same time or to apply all
rules under all circumstances. As an example, consider again the set of rewrite
rules in Figure 3. This rewrite system is non-terminating because rules DAOL

and DAOR enable rules DOAL and DOAR, and vice versa. If we want to define
a transformation to normalize formulae to disjunctive normal form we could
discard rules DOAL and DOAR. However, if in another part of the transformation
a conjunctive normal form is required we need a different rewrite system. It
is not possible to combine these rules in one rewrite system. Another example
is the following perfectly valid rule

Unroll : While(e1, e2) -> If(e1, Seq(e2, While(e1, e2)))

defining the unrolling of a loop in an imperative language. Applying such a
rule exhaustively directly leads to non-termination. It is not even possible to
create a terminating system by leaving out other rules.

Thus, the basic approach of normalizing a program tree with respect to a set
of transformation rules is not sufficient since no control over the application of
rules is provided. To provide users with more control, various solutions have
been adopted in transformation systems, ranging from alternative automatic
strategies to completely user-definable strategies. We can distinguish the fol-
lowing approaches:

13

• Fixed application order. The engine applies rules exhaustively according to
a built-in strategy. Examples are innermost and outermost reduction.

• Automatic dependency analysis. The engine determines a strategy based on
an analysis of the rules. Examples are strictness and laziness analysis.

• Goal driven. The engine finds out how to apply rules to achieve a user-
defined goal.

• Strategy menu. A strategy can be selected from a small set. For example,
choose between innermost and outermost reduction or annotate constructors
with laziness information.

• Programmable. The strategy to apply rules can be programmed in a strategy
language.

In addition, there are a number of other shortcomings of basic term rewriting:

• Term syntax is not easy to read and write when terms (program fragments)
become large. This may seem a minor issue, but is relevant in program
transformation.

• Basic term pattern matching is not very expressive and cannot cope with
properties of constructors such as associativity and commutativity.

• Object variables are treated as normal terms and require careful handling
to avoid name capture.

• Transformation rules often need side conditions to test the applicability of
the transformation.

• Generic rule-based solutions do not always provide the required performance
needed for application in, say, production compilers.

• Rewrite rules are context-free, i.e., can only access information through
pattern matching the term to which the rule is applied. Often context in-
formation is needed for transformations.

For these reasons many extensions and variations on the basic paradigm of
rewriting have been developed for the application in program transformation
systems. Also program transformation systems are built using non-rewrite sys-
tems, in which the same issues play a role. The rest of this survey examines the
solutions for these problems employed in a variety of transformation systems.
Although the emphasis is on control issues, the other problems mentioned
above are discussed as well since they are recurring problems in transformation
systems and solutions may interfere with solutions for the control problem.

4 Extensions of Term Rewriting

In this section we consider several extensions to basic term rewriting that
make the formalism more expressive.

14

4.1 Concrete Syntax

Related to the internal representation of programs is the representation of
program fragments in the specification of transformation rules. While abstract
syntax provides a good model for program transformation, the direct manip-
ulation of abstraction syntax trees may not be appropriate. Abstract syntax
trees are represented using the data structuring facilities of the transforma-
tion language: records (structs) in imperative languages (C), objects in object-
oriented languages (C++, Java), algebraic data types in functional languages
(ML, Haskell), and terms in term rewriting systems.

Such representations allow the full capabilities of the transformation language
to be applied in the implementation of transformations. In particular, when
working with high-level languages that support symbolic manipulation by
means of pattern matching (e.g., ML, Haskell) it is easy to compose and
decompose abstract syntax trees. For transformation systems such as com-
pilers, programming with abstract syntax is adequate; only small fragments,
i.e., a few constructors per pattern, are manipulated at a time. Often, object
programs are reduced to a core language that only contains the essential con-
structs. The abstract syntax can then be used as an intermediate language,
such that multiple languages can be expressed in it, and transformations can
be reused for several source languages.

However, there are many applications of program transformation in which
the use of abstract syntax is not satisfactory since the conceptual distance
between the concrete programs that we understand and the data structure
access operations used for composition and decomposition of abstract syntax
trees is too large. This is evident in the case of record manipulation in C,
where the construction and deconstruction of patterns of more than a couple of
constructors becomes unreadable. But even in languages that support pattern
matching on algebraic data types, the construction of large code fragments in
a program generator can become painful.

Transformation languages supporting concrete object syntax let the program-
mer define transformations using the concrete syntax of the object language,
while internally using abstract syntax trees. For example, in Stratego the loop
unrolling rule from the previous section can be written as

Unroll :

|[while e1 do e2]| -> |[if e1 then (e2; while e1 do e2)]|

where the |[...]| delimiters are used to embed fragments of the object lan-
guage as terms in rewrite rules. This approach was developed in the algebraic
specification community. Using the correspondence between a context-free
grammar and an algebraic signature [52,49,48], a constructor can be declared

15

as mixfix operator, e.g., if e1 then e2 else e3 instead of If(e1,e2,e3).
Although available in systems such as OBJ, ELAN, and Maude, the approach
is taken to its extreme in ASF+SDF [54,32], where an actual syntax defini-
tion of the object language is used to describe terms (rather than just mixfix
operators). The approach is further generalized in [113,42,22], where a general
scheme for extending a meta-language with concrete object syntax is outlined.

Another line of work is that of meta-programming languages such as MetaML
[107] and Template Haskell [103] where fragments of a program can be trans-
formed or generated in the language itself. These fragments can be written in
concrete syntax rather than abstract syntax, but a fall back to abstract syntax
is available when necessary.

4.2 Extensions of Pattern Matching

When using a tree or term representation term pattern matching can be used.
First-order term patterns are used to decompose terms by simultaneously
recognizing a structure and binding variables to subterms, which would other-
wise be expressed by nested conditional expressions that test tags and select
subterms. However, first-order patterns are not treated as first-class citizens
and their use poses limitations on modularity and reuse: no abstraction over
patterns is provided because they may occur only in the left-hand side of a
rewrite rule, the arms of a case, or the heads of clauses; pattern matching is
at odds with abstract data types because it exposes the data representation; a
first-order pattern can only span a fixed distance from the root of the pattern
to its leaves, which makes it necessary to define recursive traversals of a data
structure separately from the pattern to get all needed information.

For these reasons, enhancements of the basic pattern matching features have
been implemented or considered for several languages. For example, list match-
ing in ASF+SDF [32] is used to divide a list into multiple sublists possibly
separated by element patterns. Associative-commutative (AC) matching in
Maude [26] and ELAN [10] supports the treatment of lists as multisets. Lan-
guages for XML transformation such as CDuce [7] provide recursive patterns
and regular expression patterns to match complex sub-documents. Higher-
order unification in λProlog [76,93] allows higher-order matching of subterms
in an arbitrary context [40,53], which in turn allows matching of subterms at
arbitrarily deep levels using higher-order variables without explicit traversal
of the structure involved. The MAG transformation system [74] supports a
restricted form of higher-order matching to specify generic fusion rules. Views
for Haskell, as proposed in [119], provide a way to view a data structure using
different patterns than are used to represent them. Overlays in Stratego [109]
are pseudo-constructors that abstract from an underlying representation using
actual constructors. The contextual and recursive patterns of Stratego [109]

16

are in fact strategies for tree traversal. Thus, pattern matching and strategic
control overlap.

4.3 Object Variables

A particular problem of program transformation is the handling of variables
and variable bindings. In the common approach, variables and variable bind-
ings in an abstract syntax tree are treated just like any other construct and
the transformation system has no special knowledge of them. This requires
the implementation of operations to rename bound variables, substitution,
etc. Transformations need to be aware of variables by means of extra condi-
tions to avoid problems such as free variable capture during substitution and
lifting variable occurrences out of bindings.

Transparent handling of variable bindings is desirable. In the use of De Bruijn
terms [23], bound variable names are replaced with indices pointing to the
binding construct. This has the nice property that equivalence modulo re-
naming becomes syntactic equivalence. However, the scheme is hard to un-
derstand when reading program fragments. Furthermore, when transforming
De Bruijn terms, the indices need to be recomputed. Higher-order abstract
syntax (hoas) [74,57,93] gives a solution to such problems by encoding vari-
able bindings as lambda abstractions. In addition to dealing with the problem
of variable capture, hoas provides higher-order matching which synthesizes
new functions for higher-order variables. One of the problems of higher-order
matching is that there can be many matches for a pattern, requiring a mecha-
nism for choosing between them. FreshML [94] provides a weaker mechanism
for dealing with variable bindings that transparently refreshes variable names,
thus solving the capture problem. Substitution for variables has to be dealt
with explicitly. Both hoas and FreshML require some amount of encoding for
the syntactic structure to fit the lambda abstraction binding scheme. This can
become rather far removed from the structure described by the grammar for
more complex binding schemes. Furthermore, implicit variable binding may
be in conflict with the ease of performing transformations, for instance, the
possibility of performing traversals over syntax trees.

Experience with variable renaming in GHC, the transformation-based Glasgow
Haskell Compiler [90], shows that transparent treatment of variable bindings
would help only in a few places in the compiler. A problem encountered there
was to minimize the amount of variable renaming done during transformation.
Rather than using a global fresh variable store, fresh names are generated with
respect to the in scope variables only.

In applications such as refactoring and renovation it is required that the trans-
formed code is as close as possible to the original code. Approaches to dealing
with object variables by renaming, are in conflict with this requirement.

17

A problem that is not addressed by the approaches discussed above is associ-
ating declaration information, e.g., type declarations, with usage. This usually
requires maintaining a symbol table during transformation, or distributing the
information over the tree, annotating usage occurrences of a symbol with the
information in the declarations. Either way, the information needs to be kept
consistent during transformations.

4.4 Default Rules

A term rewrite system consists of a set of rewrite rules. This means that
there is no inherent ordering of rules. Hence, an implementation can apply
rules in any order. Although an implementation needs to choose an order,
the programmer is not supposed to use this ordering since that violates the
declarative nature of the rules. For example, the following rules

Mem1 : Member(x, []) -> False

Mem2 : Member(x, [x | xs]) -> True

Mem3 : Member(x, [y | xs]) -> Member(x, xs)

rewrite applications of the Member function by first testing with the nonlinear
rule Mem2 whether the first element of the list is equal to the element looked
for. The Mem3 rule rewrites the application to a search in the tail of the list
assuming that the match with the previous rule has failed. However, rule Mem3
is not valid by itself. A rewrite engine may change the order of applying the
rules, leading to unanticipated results.

A solution to the problem of implicitly ordering rewrite rules, which has been
adopted in some systems such as ASF+SDF [32], is the declaration of default
rules. A default rule is tried in a match only after all other (non-default) rules
have been tried at the current term. Thus, the rewrite rules above can be
ordered by declaring rule Mem3 as a default rule:

Mem3 : Member(x, [y | xs]) -> Member(x, xs) (default)

Note that this declaration splits the set of rules into two sets. Default rules
and non-default rules. Priority rewriting [6] is a generalization of rewriting
with default rules in which a partial order on rules can be imposed.

4.5 Functional Programming with Rewrite Rules

A common solution to the problem of control over the application of rules, is
the adoption of a functional programming style of rewriting. This is not so
much an extension, as a style of implementing transformation systems with

18

rewrite rules. The method works by introducing additional constructors that
achieve normalization under a restricted set of rules. Such constructors are
called functions and are supposed to be completely eliminated by the rewrite
rules.

The approach is illustrated in Figure 4, which shows how the rewrite system
of Figure 3 can be turned into a terminating rewrite system that defines the
normalization to disjunctive normal form (DNF). To normalize a formula to
DNF the function dnf should be applied to it. Normalization to conjunctive
normal form requires a similar definition. The dnf function mimics the in-
nermost normalization strategy by recursively traversing terms. The auxiliary
functions not and and are used to apply the distribution rules and the nega-
tion rules. In functional programming such auxiliary functions are known as
smart constructors [37]. In the definition of the rules for and and not it is as-
sumed that the arguments of these functions are already in disjunctive normal
form. For example, if none of the arguments of and is an Or term, the term
itself is considered to be in DNF.

In the solution in Figure 4, the original rules have been completely intertwined
with the dnf transformation. The rules for negation cannot be reused in the
definition of normalization to conjunctive normal form. For each new trans-
formation a new traversal function and new smart constructors have to be
defined. Many additional rules had to be added to traverse the term to find

signature
constructors

dnf : Prop -> Prop
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF1 : dnf(True) -> True
DNF2 : dnf(False) -> False
DNF3 : dnf(Atom(x)) -> Atom(x)
DNF4 : dnf(Not(x)) -> not(dnf(x))
DNF5 : dnf(And(x,y)) -> and(dnf(x),dnf(y))
DNF6 : dnf(Or(x,y)) -> Or(dnf(x),dnf(y))

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 4. Functionalized rewrite system for disjunctive normal form.

19

the places to apply the rules. Instead of 5 rules, a total of 13 rules were needed.
Rules AND3 and NOT4 are default rules that only apply if the other rules do not
apply. Without this mechanism even more rules would have had to be used to
handle the cases were the real transformation rules do not apply.

The kind of problem illustrated in the example above occurs frequently in
all kinds of transformations. In general, trying to overcome the problems of
non-termination and non-confluence leads to encoding of control in terms of
additional rewrite rules (which is at variance with our goal to separate rules
from strategies as much as possible). This usually leads to a functional pro-
gramming style of rewriting, overhead in the form of traversal rules for each
constructor in the signature, intertwining of rules and function definitions, all
of which makes reuse of rules impossible, and leads to specifications that are
much harder to understand.

4.6 Conditional Term Rewriting

Transformation rules often need more information than provided by the match
of the left-hand side to decide whether the rule is applicable. Thus, side con-
ditions can be attached to check additional properties. Such conditions may
entail computations in a different paradigm than the transformation rules are
implemented in. For example, in [104] regular path expressions checking data-
flow properties of the program statement to be performed are attached to
transformation rules (see Section 8).

In conditional term rewriting [31], however, the rewriting mechanism itself
is used to evaluate conditions. Conditions are equations over terms, and a
conditional rewrite rule has the form:

t -> t′ where t1 = t′1 tn = t′n

When applying such a rule the equations are instantiated according to the
substitution obtained from the match of the left-hand side. The pairs of terms
are then compared for equality after rewriting them to normal form with the
same set of rules.

In a variation on this concept, one side of a condition may use variables not
occurring in the left-hand side of the rule. This term is then used to match the
normal form of the other side of the equation against. The resulting variable
bindings can be used in further conditions and the right-hand side of the rule.

4.7 Term Rewriting with Strategy Annotations

One problem in term rewriting is that of terms with infinite reduction paths
that cannot be resolved by removing unnecessary rules. For example, the spec-
ification in Figure 5 defines the computation of the factorial function using

20

imports integers
signature

sorts Int
constructors

Fac : Int -> Int
If : Bool * Int * Int -> Int

rules
Fac : Fac(x) -> If(Eq(x,0), 1, Mul(x,Fac(Sub(x,1))))
IfT : If(True, x, y) -> x
IfF : If(False, x, y) -> y

Fig. 5. Rewrite system with non-terminating reduction path.

the conditional If. Using a pure innermost rewriting strategy, a term Fac(3)

does not terminate, since the arguments of If are evaluated before rules IfF or
IfT are applied. While using an outermost strategy might solve termination
problems like these, the cost of finding the next redex is much lower in in-
nermost rewriting [95]. Therefore, several systems extend innermost rewriting
with strategy annotations to delay the evaluation of arguments.

4.7.1 Just-in-time

The strategy annotations in [95] are designed to delay the evaluation of argu-
ments, but guarantee that the term reached after evaluation is a normal form
with respect to the rewrite system, i.e., contains no redices.

A strategy annotation for a constructor is a list of argument positions and rule
names. The argument positions indicate the next argument to evaluate and
the rule names indicate a rule to apply. The innermost strategy corresponds
to an annotation strat(C) = [1,2,3,...,R1,R2,R3,...] for a constructor
C and indicates that first all its arguments should be evaluated and then the
rules Ri should be applied. By requiring that all argument positions and all
rules for a constructor are mentioned in the annotation, it can be guaranteed
that a normal form is reached. The just-in-time strategy is a permutation of
argument positions and rules in which rules are applied as early as possible.

Using these annotations the non-termination for the rewrite system in Figure 5
is solved by means of the annotation

strat(If) = [1,IfT,IfF,2,3]

that declares that only the first argument should be evaluated before applying
rules IfT and IfF.

4.7.2 E-Strategy

The just-in-time strategy cannot deal with rewrite systems that do not have
normal forms for some terms. For example, consider the rules in Figure 6.

21

signature
sorts Nat List(*)
constructors

Z : Nat
S : Nat -> Nat
Cons : a * List(a) -> List(a) {strat: (1 0)}
Inf : Nat -> List(Nat)
Nth : List(a) -> a

rules
Inf(x) -> Cons(x, Inf(S(x)))

Nth(Z, Cons(x, l)) -> x
Nth(S(x), Cons(y, l)) -> Nth(x, l)

Fig. 6. Specification with strategy annotations [78].

Terms of the form Inf(n), for some natural number n, do not have a normal
form.

The evaluation strategy of the OBJ family of systems [78,50] uses an extended
form of strategy annotations in which not all arguments need to be evaluated.
In this style a strategy annotation is a list of argument positions and the root
position (0). The annotation declares the order of evaluation of the arguments.
The root position 0 indicates the evaluation of the term at the root. Not
all argument positions need to be declared. An undeclared argument is not
evaluated.

For example, the non-termination in Figure 6 is solved by the strategy anno-
tation (1 0), which indicates that first the first argument of Cons should be
evaluated and then the constructor itself (0). The second argument is never
evaluated. The E-normal form of Nth(S(Z),Inf(Z)) is S(Z). Also the term
Inf(Z) has a normal form, i.e., Cons(Z,Inf(S(Z))).

4.7.3 Laziness annotations

The strategy annotations discussed above are interpreted by the rewrite en-
gine. In [44] it is shown how rewrite systems with laziness annotations can
be compiled into rewrite systems that can be evaluated using an innermost
strategy.

A laziness annotation indicates for an argument of a constructor that it is lazy,
i.e., that no reductions should be performed for subterms of that argument,
unless needed for matching. For example, for the rewrite system in Figure 6
the laziness annotation Lazy(Cons,2) achieves the delay of the evaluation of
the second argument of Cons.

A rewrite system with laziness annotations can be translated to an eager
rewrite system using thunks. A thunk is an auxiliary data structure that stores

22

rules

Inf(x) -> Cons(x, Thunk(L, Vec1(x)))

Nth(Z, Cons(x, l)) -> x

Nth(S(x), Cons(y, l)) -> Nth(x, Inst(l))

Inst(Thunk(L, Vec1(x))) -> Inf(S(X))

Inst(x) -> x

Fig. 7. Result of translating specification with laziness annotations to eager speci-
fication [44].

the structure of the term. For example, the term rewrite system (TRS) in Fig-
ure 6 is transformed to the eager TRS in Figure 7. Note that Thunk is a generic
constructor for representing thunks, L is a constructor for indicating the thun-
ked pattern, and Vec1 is a constructor for denoting a vector of length 1.

Note that annotations depend on the application in which they are used. For
example, without the Inf constructor there is no reason for annotating the
second argument of Cons as lazy.

5 Tree Parsing Strategies

Tree parsing is an alternative approach to transformation developed in the
area of code generation. In this approach rules are written as tree grammar
rules that are used to parse a tree, i.e., cover the tree with applicable rules and
execute corresponding actions. This requires deriving from the specification of
the rules a tree traversal schedule. This section discusses three approaches to
tree parsing. Simple tree parsing is used to generate single pass traversals.
Bottom-up tree parsers are used in code generators and employ a dynamic
programming approach to compute all possible rewrites in parallel. Finally, in
attribute grammars rules assign attribute values to tree nodes; attribute eval-
uation involves scheduling of the order of evaluation based on dependencies.

5.1 Tree Parsing

Tree parsing is analogous to string parsing; instead of finding structure in a
string, the goal is to find structure in a tree by covering the tree with patterns.
The tree parser generator for the antlr language processing system [83] gen-
erates tree walkers from tree grammars. A tree grammar is a bnf-like notation
for the definition of tree structures. For example, the grammar

exp : #(PLUS exp exp)

| INT

23

describes expression trees composed from integers and addition.

Tree translations and transformations are achieved by associating actions with
the grammar productions. Translations to textual output are achieved by
printing actions. For example, the following grammar prints expressions using
infix notation.

exp : #(PLUS exp <<printf("+");>> exp)

| i:INT <<printf("%d", i);>>

Tree transformations are achieved by reconstructing trees and returning them
as results. For example, the following grammar transforms expressions by
swapping the arguments of the PLUS operator.

exp :! #(PLUS l:exp r:exp) <<#exp = #(PLUS r l);>>

| INT

Grammar non-terminals can have arguments that can be used in the actions
in productions. Non-terminals can also return results. A tree grammar gives
rise to a set of mutually recursive functions, one for each non-terminal, that
together define a one-pass traversal over a tree. Patterns can be nested and
can use regular tree expressions with optionals, alternatives and lists.

Transformation rules in tree grammars are embedded in grammar productions.
Separation of rules and strategies and generic tree traversals are not supported
in antlr.

5.2 Bottom-up Tree Parsing

If a tree grammar is ambiguous, multiple parses of a tree are possible. The
parser needs to decide which parse to take. By associating costs to each pro-
duction, the disambiguation can be based on the accumulated cost of a tree.
Dynamic programming techniques can be used to compute all possible parses
in one traversal.

Burg [46,47,96] is a system for code generation from intermediate represen-
tation (ir) expression trees. A mapping from ir trees to machine instructions
is defined by means of a tree grammar. A production of the form n -> t (c)

defines a mapping of tree pattern t to non-terminal n at cost c. Associated
with each production is an action to take when the production is selected.
For example, Proebsting [96] gives the example grammar in Figure 8. Ac-
cording to this grammar, the term Fetch(Fetch(Plus(Reg,Int))) has two
coverings corresponding to the derivations 4(4(6(5(2,3)))) and 4(4(8(2)))

with costs 7 and 4, respectively.

As illustrated by this example, more than one covering of a tree is possible,
corresponding to different ways to generate code. Each node can have several

24

[1] goal -> reg (0) [5] reg -> Plus(reg, reg) (2)
[2] reg -> Reg (0) [6] addr -> reg (0)
[3] reg -> Int (1) [7] addr -> Int (0)
[4] reg -> Fetch(addr) (2) [8] addr -> Plus(reg, Int) (0)

Fig. 8. Example BURG specification.

different parses because of overlapping patterns and chain rules. The costs
associated with the productions express the cost of executing the associated
machine instruction. The goal of a code generator is to find the lowest cost cov-
ering (i.e., lowest execution time) of an intermediate representation expression
tree.

According to bottom-up rewriting theory (burs) an ir tree can be translated
to a sequence of instructions using the following strategy. In a bottom-up
traversal all lowest-cost patterns that match each node are computed and
associated with the node. This involves matching the right-hand sides of the
productions to the tree, taking into account earlier matches for sub-trees.
Instructions are then selected in a top-down traversal that is driven by the
goal non-terminal for the root of the tree.

This restricted form of rewriting can also be applied [96] for simple type infer-
ence problems, for checking tree formats, and for tree simplifications. However,
the scope of this paradigm is restricted to one-to-one translations in which the
structure of the target is closely related to the structure of the source program,
which is typically the case in instruction selection.

5.3 Attribute Grammars

Attribute grammars [62,1] provide a more general form of tree parsing. Instead
of associating actions with a fixed tree traversal, an attribute grammar defines
the computation of attribute values associated with tree nodes. Typically, the
values of an attribute can be defined in terms of the values of other attributes.
Thus tree traversal is implicit, i.e., inferred from the attribute definition rules.

As an example, consider the following set of rules defining the computation of
the set of free variables of a lambda expression with variables (Var), lambda
abstraction (Abs), and application (App):

e@Var(x) : e.free := [x]

e0@Abs(x, e1) : e0.free := <diff>(e1.free, [x])

e0@App(e1, e2) : e0.free := <union>(e1.free, e2.free)

The grammar consists of productions associating attribute evaluation rules
with tree constructors. The rules refer to the current node or its direct subn-
odes via identifiers. The example grammar defines the attribute free, which

25

evaluates to the set of free variables of an expression. These attributes are so
called synthesized attributes, since the attribute value of a node is defined in
terms of the attribute values of the sub-nodes. This example illustrates how
attribute grammars can be used for analysis.

Higher-order attribute grammars [118] can also be used for transformation
by computing new trees as part of attribute evaluation. The following ex-
ample illustrates this in a grammar for renaming bound variables in lambda
expressions:

e@Var(x) : e.rn := Var(<lookup>(x, e.env))

e0@Abs(x, e1) : e0.rn := Abs(y, e1.rn)

e1.env := [(x,y) | e0.env]

y := <first> e0.ifresh

e1.ifresh := <next> e0.ifresh

e0.sfresh := e1.sfresh

e0@App(e1, e2) : e0.rn := App(e1.rn, e2.rn)

e1.env := e0.env

e2.env := e0.env

e1.ifresh := e0.ifresh

e2.ifresh := e1.sfresh

e0.sfresh := e2.sfresh

This grammar defines the synthesized attribute e.rn, which evaluates to the
renaming of the lambda expression e. Two auxiliary attributes are used in the
definition. The attribute e.env is an inherited attribute, which is passed to
subnodes and maintains the mapping from variables to their new name. The
attribute e.ifresh is also an inherited attribute providing a supply of fresh
names. The synthesized attribute e.sfresh evaluates to the state of the name
supply after computing the renaming of e. This is used to thread the name
supply through the computation.

Attribute evaluation requires dependency analysis in order to determine a
traversal schedule. Such a schedule may involve multiple traversals over the
tree when an inherited attribute depends on a synthesized attribute, which
should thus be computed in an earliear traversal. Attribute grammars are used
in various systems such as the Synthesizer Generator [97] and LRC [101]. In
the intentional programming project [30] attribute grammars are used for the
definition of language extensions. Atribute grammars have been especially suc-
cesful in incremental computation of attribute values, enabling rapid feedback
in an interactive environment [97]. Explicit scheduling of atribute evaluation
is not necessary when implementing attribute grammars in a lazy functional
language [59]. Scheduling is achieved by the evaluation mechanism of the host
language. This is exploited in systems such as Elegant [4] and UUAG [102].

The example above illustrates that attribute propagation requires numerous
administrative rules. In extensions of the basic formalism, reoccurring patterns

26

such as broadcasting, threading, and collecting values are provided through
declarations. In the proposal for first-class attribute grammars in [73], such
patterns are programmable.

6 Programmable Strategies

Systems with fixed strategies are developed for application in specific domains
such as instruction selection, but are not sufficient as general purpose trans-
formation systems. The inappropriateness of the standard strategy to a spe-
cific application, invariably leads to encoding of control in rules. In previous
sections we saw various extensions to rule-based systems that allowed adap-
tations of the standard strategy, however, no completely different strategies
are allowed in such settings. In the areas of transformational programming
and theorem proving the tediousness of the interactive application of rules
required more automation, while retaining control. This led to the extension
of rule-based systems with tactics, i.e., specific algorithms for applying rules.
These systems influenced the design of program transformation systems with
programmable strategies, i.e., providing a basic set of combinators from which
complex strategies can be composed. This section sketches the development
from interactive program transformations systems to systems for automatic
program transformation with programmable strategies. The next section then
focuses on a particular aspect of such strategies, namely the specification of
term traversal.

6.1 Interactive Program Transformation

The transformational approach to software development is based on the para-
digm of top-down stepwise refinement [35] in which a high-level specification
of a problem is gradually refined to an efficient implementation solving that
problem. The aim is to achieve orders of magnitude improvement in program-
mer productivity [81]. By only applying correctness-preserving transforma-
tions, the resulting program is correct by construction. Transformation from
high-level specification to low-level implementation gives rise to wide spectrum
languages containing constructs for very high-level specification (e.g., non-
executable logic formulae) as well as low-level implementation (e.g., assembly
language instructions). Thus, all transformations are performed on the same
language. An alternative approach, pioneered in the Draco system [77], is to
define domain-specific languages that only cover a specific application domain
and level of abstraction, thus limiting the complexity of transformations.

First of all the approach required the development of theories for program
transformation [24,8] consisting of basic rules such as fold and unfold and

27

strategies such as composition, generalization, or tupling applying these rules
in a certain combination [89]. Using such a theory, programs can be derived
mechanically from specifications. Since manual application of rules is tedious
and error-prone, automation was a logical course. Thus, over the last 30 years
many systems have been developed to support some variation on the trans-
formational approach. Examples include ZAP [38], Programmer’s Appren-
tice [120,98], Draco [77], KIDS [106], CIP [85], APTS [81], Map [89], and
Ultra [86,51]. Although the systems differ in the details of their implementa-
tion, the kinds of transformation they apply, and the languages that are trans-
formed, they have many commonalities. First of all the systems are usually
specific for a programming language. Based on the semantics of this language
a library of valid and usually generic transformation rules is developed. Since
the declarative nature of the specifications allows many design choices, the
systems are interactive and let the user select the rules to apply and the order
in which to apply them. Thus, a basic transformation assistant is an aid to do
the bookkeeping for applying rules. Since the complete development of a pro-
gram may require the application of hundreds or thousands of rules, assistance
in applying single rules is not sufficient, and various mechanisms (tactics) for
automatically applying certain combinations of rules were added. Thus, in-
stead of a fixed (exhaustive) strategy, these systems allow the programmer to
choose the strategy to apply certain rules with.

The transformational programming approach has reincarnated in a different
guise in the area of software maintenance. Refactoring aims at cleaning up the
design of the code rather than producing a performance improvement [45].
Refactoring editors such as the Smalltalk Refactoring Browser [99] are the
modern incarnation of the programmer’s assistant. That is, they are interactive
tools that allow the programmer to apply specific transformation rules to
selected parts of the program. Typically, however, refactoring rules are more
course grained than single fold/unfold rules. Work so far concentrates on the
implementation of specific refactorings. If this line of work turns out succesful,
refactoring editors will be extended with scripting capabilities in order to
combine refactorings into more complex refactorings.

6.2 Staging

In transformational programming a transformation is geared to the transfor-
mation of one specific program, possibly employing reusable transformation
tactics. In automatic program transformation used in compilers, for example,
programmer intervention is not desirable since it is not reproducable and costs
a lot of time. As argued before, pure rewriting is not applicable because of
interference between rewrite rules. A step towards programmer control over
rules is the mechanism of sequence of canonical forms adopted in the tampr
— Transformation Assisted Multiple Program Realization — system [14,15],

28

aiming to derive implementations for different computer architectures from the
same specification, in particular in the domain of numerical programming.

A tampr specification consists of a series of rewrite rules. The tampr rewrite
engine applies rewrite rules exhaustively to reach a canonical form. The prob-
lem of non-termination caused by rules that are each others’ inverses is solved
by organizing a large transformation into a sequence of consecutive reductions
to canonical forms under different sets of rewrite rules. Typically such a se-
quence starts with several preparatory steps that bring the program in the
right form, followed by the pivotal step which achieves the actual transforma-
tion, followed by some post-processing.

As an example consider the transformation of nested function calls to flat
lists of function calls as part of a compiler from a functional program to an
imperative program (inspired by an example in [14]). The following pair of
program fragments illustrates the transformation:

let var x := foo(bar(a, b))

in ... end
⇒

let var y := bar(a, b)

in let var x := foo(y)

in ... end

end

In the canonical form that is reached by the transformation, each function
call is directly assigned to a variable and has no nested function calls. The
transformation is achieved by a number of simple rewrite rules (Figure 9) that
first assign each function call to a fresh variable by introducing a new let
binding. Then these bindings are lifted by distribution rules pushing function
applications and let bindings inside the body of the nested let binding. Since
rule IntroduceTemp is a non-terminating rule, some mechanism is needed to
control its application. The tampr approach is to organize a transformation as
a sequence of exhaustive normalizations and one-shot rule applications. Thus,
the call lifting transformation is defined by the strategy lift-nested-calls,
which first tries to apply rule IntroduceTemp exactly once to all nodes in the
program, and then exhaustively applies the other rules.

In [43] the authors state that: A major issue still to be addressed in transfor-
mation systems is the control of the derivation process; i.e., the specification of
strategies to achieve some goal. The division of a rewrite systems in separate
sets of rules which are applied exhaustively in sequence, does solve some of the
termination and confluence problems of rewriting, and it nicely preserves the
declarative nature of individual rewrite rules. However, many problems need
to be addressed by other means within a single traversal. For such cases, the
tampr approach still requires the use of functional rewriting.

29

rules

IntroduceTemp :

|[f(a*)]| -> |[let var x := f(a*) in x end]|

where new => x

LetFromApp :

|[f(a1*, let var x := e1 in e2 end, a3*)]| ->

|[let var x := e1 in f(a1*, e2, a3*) end]|

LetVarInLetVar :

|[let var y := let var x := e1 in x end in e2 end]| ->

|[let var y := e1 in e2 end]|

LetFromLet :

|[let var y := let var x := e1 in e2 end in e3 end]| ->

|[let var x := e1 in let var y := e2 in e3 end end]|

where <not(eq)>(|[x]|, |[e2]|)

strategies

lift-nested-calls =

one-shot(IntroduceTemp)

; transform*({LetFromApp, LetVarInLetVar, LetFromLet})

Fig. 9. Rewrite rules and strategy for lifting nested function calls.

6.3 Strategy Combinators

Taking the approach of tampr further requires more expressive specification
of strategies to control rule application, while preserving the separation of
rules and strategies. The algebraic specification language elan [9,10,11,12]
introduced support for user-definable strategies using a language of combina-
tors for composing strategies. The approach was also adopted in the design
of the program transformation language Stratego [115,114]. Despite differ-
ences in syntax and the sets of combinators, the basic ideas underlying the
strategy combinators of elan and Stratego are the same. Here the ideas of
the approach are explained using the Stratego syntax. Where there are real
differences, these will be pointed out explicitly.

In the strategic rewriting approach, a specification consists of a set of labeled
rewrite rules and a set of strategy definitions. Strategies are programs that
attempt to transform terms into terms, at which they may succeed or fail. In
case of success the result of such an attempt is a transformed term. In case of
failure there is no result of the transformation. The atomic strategies are the
labels of rewrite rules, the identity strategy id, which leaves the subject term
unchanged and always succeeds, and the failure strategy fail, which always
fails. These atomic strategies can be combined into more complex strategies
by means of a set of strategy combinators. The sequential composition s1 ;

s2 of strategies s1 and s2 first attempts to apply s1 to the subject term and,
if that succeeds, applies s2 to the result. The non-deterministic choice s1

30

strategies
try(s) = s <+ id
repeat(s) = try(s; repeat(s))
while(c, s) = try(c; s; while(c, s))
do-while(s, c) = s; try(c; do-while(s, c))
while-not(c, s) = c <+ s; while-not(c, s)
for(i, c, s) = i; while-not(c, s)

Fig. 10. Iteration strategies defined using strategy combinators.

+ s2 of strategies s1 and s2 attempts to apply either s1 or s2. It succeeds
if either succeeds and it fails if both fail; the order in which s1 and s2 are
tried is unspecified. The deterministic choice s1 <+ s2 of strategies s1 and
s2 attempts to apply either s1 or s2, in that order. Note that ; has higher
precedence than + and <+. The test strategy test(s) tries to apply the strat-
egy s. It succeeds if s succeeds, and reverts the subject term to the original
term. It fails if s fails. The negation not(s) succeeds (with the identity trans-
formation) if s fails and fails if s succeeds. A recursive strategy can be defined
using a recursive definition.

As an example of the versatility of these basic combinators, Figure 10 defines
a number of derived control combinators, corresponding to various iteration
schemes. To illustrate the use of these strategies consider again the rules for
evaluation of the Member function:

rules

Mem1 : Member(x, []) -> False

Mem2 : Member(x, [x | xs]) -> True

Mem3 : Member(x, [y | xs]) -> Member(x, xs)

strategies

member = repeat(Mem1 <+ Mem2 <+ Mem3)

In Section 4.4, the order of the application of these rules was enforced by
making Mem3, a default rule. Using the strategy combinators introduced above,
the priority between rules can be explicitly stated. Thus, the member strategy
repeatedly applies rules Mem1, Mem2, and Mem3 in that order.

Note that labeled rules apply at the root of the term to which they are ap-
plied. Furthermore, the combinators introduced above do also apply to the
root and do not descend into the term. This makes it impossible to apply
rules below the root. In elan this is remedied by two devices. First, using
so called congruence operators traversals over a tree can be defined. This
device will be further discussed in the next section. Second the special strat-
egy normalize(L1,...,Ln) normalizes a term with respect to rules L1,...,Ln.
Thus, the normalizing bit of the call lifting strategy can be defined as

normalize(LetFromApp,LetVarInLetVar,LetFromLet)

31

The one-shot strategy requires a special traversal, which will be discussed in
the next section.

Another difference between elan and Stratego is the bactracking model. The
choice operators + and <+ of Stratego provide local back-tracking. This means
that the choice is commited after a successful alternative has been applied.
Thus in the strategy (x + y); z if x is tried first and succeeds the choice is
commited and z is applied. If z fails the entire strategy fails instead of back-
tracking to y, which might potentially succeed and make z succeed as well.
Thus, (x + y); z is not equal to (x; z + y; z).

In elan there are several choice operators each with different back-tracking
properties. The failure/success model is based on sets of results, i.e., a strategy
returns a set of possible results, which can be implemented using global back-
tracking. That is, at a successful choice, the remaining choices are stored in
case a continuation strategy fails. The operator dk(e1,...,en) (don’t know)
returns all results from all strategies ei. The operator dc(e1,...,en) (don’t
care) returns the results from one of its argument strategies as long as it does
not fail. The operator first(e1,...,en) returns the results of the first ei

that does not fail. The operators dc one(e1, ..., en) and first one(e1,

..., en) return only one result. The operator iterate*(e) (respectively,
iterate+(e)) returns all possible results from iterating the strategy e zero
(respectively, one) or more times. The operator repeat*(e) (repeat+(e))
returns the last set of results from repeatedly applying e until it fails.

Finally, elan also has unlabeled rewrite rules, which are always applied using
a fixed innermost strategy, i.e., not under the control of a strategy. Another
feature of elan [10] is the reflective rewriting of strategies with rewrite rules,
which is possible since the strategy language is intepreted. Elan does not
support generic term traversal, a feature to be discussed in the next section.

7 Traversal Strategies

A special concern in any implementation of program transformation is the def-
inition of traversals that determine the order in which the nodes of an abstract
syntax tree are visited. In the pure rewriting approach traversal is implicit in
the strategy. However, we saw in Section 4.5 that rewriting often degrades to
functional programming with a steep penalty for the definition of traversals.
This penalty is especially large in program transformation, where languages
with tens to hundreds of constructors are common. Definition of a traversal
for each transformation to be defined leads to very large specifications. There
are several approaches to solving this problem, which will be discussed in this
section.

32

7.1 Traversal Functions

In ASF+SDF controlling the application of transformation rules has been
recognized as a problem for a long time. Especially for the specification of
transformations for large languages such as cobol the overhead of defining
traversals was seen as a problematic factor. First this was solved by the gen-
eration of default traversal rules [20,19] that could be overridden by normal
rules. In this approach typically only a few rewrite rules have to be speci-
fied, corresponding to the non-default behaviour of the traversal. However,
the number of generated rules still proves to be a source of overhead, be it
for the compiler, not the programmer. Furthermore, providing a new traversal
scheme requires the addition of a new generator.

In a recent approach [18], traversal functions are supported directly by the
rewriting engine, avoiding the compile-time overhead of generated rules. The
transformation language TXL [28] provides a similar approach. Figure 11 il-
lustrates the approach applied to the problem of normalization to disjunc-
tive normal form. The specification is the same as that in Figure 4, but the
dnf function has been declared a traversal function in the signature. The
attribute traversal(trafo, bottom-up, continue) declares that dnf per-
forms a bottom-up traversal over its argument. This means that the function
is first applied to the direct subterms (and, thus, recursively to all subterms)
before it is applied at the term itself. Rules need to be declared only for those
constructs that are transformed. The default behaviour is to reconstruct the
term with the original constructor. In the example this reduces the specifi-
cation of the traversal from 6 to 2 rules. In general, for a signature with n

signature
constructors

dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)}
and : Prop * Prop -> Prop
not : Prop -> Prop

rules
DNF4 : dnf(Not(x)) -> not(x)
DNF5 : dnf(And(x,y)) -> and(x,y)

AND1 : and(Or(x,y),z) -> Or(and(x,z),and(y,z))
AND2 : and(z,Or(x,y)) -> Or(and(z,x),and(z,y))
AND3 : and(x,y) -> And(x,y) (default)

NOT1 : not(Not(x)) -> x
NOT2 : not(And(x,y)) -> Or(not(x),not(y))
NOT3 : not(Or(x,y)) -> and(not(x),not(y))
NOT4 : not(x) -> Not(x) (default)

Fig. 11. Disjunctive Normal Form with traversal function (Version 1).

33

signature
constructors

dnf : Prop -> Prop {traversal(trafo,bottom-up,continue)}
rules

AND1 : dnf(And(Or(x,y),z) -> dnf(Or(And(x,z)),And(y,z))
AND2 : dnf(And(z,Or(x,y)) -> dnf(Or(And(z,x)),And(z,y))

NOT1 : dnf(Not(Not(x)) -> x
NOT2 : dnf(Not(And(x,y)) -> dnf(Or(Not(x),Not(y)))
NOT3 : dnf(Not(Or(x,y)) -> dnf(And(Not(x),Not(y)))

Fig. 12. Disjunctive Normal Form with traversal function (Version 2).

constructors only m of which need to be handled in a special way, this saves
n−m rules.

There is still some overhead in the specification in Figure 11 in the form of
the dispatching from the traversal function to the smart constructors and the
default rules for the smart constructors. A more concise specification is the
one in Figure 12 in which no smart constructors are used. In this style only
one rule is needed for each original rule. However, the problem with this style
is that the recursive calls in the right-hand sides of the rules will completely
retraverse the tree (the arguments of which are already normalized) before
applying one of the rules.

The traversal strategy of a traversal function is based on choices in several
aspects of a traversal. First of all a traversal can be a transformation (trafo)
that changes the shape of a tree and/or a accumulatator (accu) that collects
information during the traversal. Secondly the node visiting order of a traversal
can be either top-down and bottom-up. Finally, the traversal can stop as soon
as a rule has been applied successfully (break), or can continue (continue).

The advantage of traversal functions is that default traversal behaviour does
not need to be implemented manually. This is similar to default visitors in
object-oriented programming or folds with updatable fold algebras in func-
tional programming. However, the approach has a number of limitations.

First of all, there is no separation of rules from strategies. A rule is bound
to one specific traversal via the traversal function. It is not possible to reuse
rules in different traversals. For example, to normalize under different rule
sets. Furthermore, rules are intertwined with strategies, making it hard to
distinguish the basic transformation rules from the traversal code.

Secondly, altough it is possible to implement a wide range of traversals, this
requires gluing together the basic traversals in an ad-hoc manner. That is,
traversal schemata are not first-class citizens of ASF+SDF. It is not possi-
ble in the language to give further abstractions for alternative or composite

34

traversal schemata, or for more elaborate functionality involving traversals.
That would require extending the rewriting engine interpreter and compiler.
Such extensibility is desirable for building libraries with language independent
strategies. For example, defining substitution without variable capture is sim-
ilar for many languages, given the shape of variables and variable bindings.
Extrapolating the traversal function approach, more and more such abstrac-
tions will be captured as additional primitives in the rewrite engine. At some
point it will make sense to extend the language with a mechanism for speci-
fying such abstractions generically.

7.2 Folds

Folds or catamorphisms in functional languages are an approach to traversal
that does admit reuse and definition of new traversal schemes. Instead of
redefining the traversal for each transformation, a higher-order definition of a
traversal is defined, which can be instantiated for different applications. For
example, the fold for lists is defined as

foldr(n, c) : [] -> z

foldr(n, c) : [x | xs] -> <p>(x, <foldr(z, p)> xs)

and can be used for the definition of the map function, which applies a function
f to each element of the list:

map(f) = foldr([], \ (x, xs) -> [<f>x | xs])

Thus, a fold performs a bottom-up traversal applying to the result of traversing
the subnodes, a function corresponding to the original constructor.

This idea can be generalized to arbitrary data types. For example, the fold for
lambda expressions is defined as

foldexp(var, app, abs) :

Var(x) -> <var> x

foldexp(var, app, abs) :

App(e1, e2) -> <app>(<foldexp(var, app, abs)> e1,

<foldexp(var, app, abs)> e2)

foldexp(var, app, abs) :

Abs(x, e) -> <abs>(x, <foldexp(var, app, abs)> e)

This function can be used in the definition of free-variable extraction, for
example

free-vars =

foldexp(id, union, \ (x,xs) -> <diff>(xs, x))

35

However, it is not usable for bound-variable renaming, since no information is
passed down the tree.

There are other shortcomings as well. Folds and similar traversals define a full
traversal over the tree. It is not always appropriate to apply a transformation
uniformly to the entire tree. Furthermore, the function is parameterized with
a function for each constructor. This not feasible for realistic abstract syntax
trees with tens or hundreds of constructors, since it requires the specification
of replacement functions for each constructor in the signature of the data
type. Updatable fold algebras [71] are an attempt at mitigating the number
of parameters by storing the constructor functions in a record.

7.3 Traversal with Congruence Operators

Congruence operators, introduced in elan and adopted by Stratego, provide
more fine grained primitives for composing traversals. For each n-ary construc-
tor C a congruence strategy operator of the form C(s1,...,sn) is available.
It applies to terms of the form C(t1,...,tn), applying each si to the corre-
sponding ti. An example of the use of congruences is the operator map(s)

map(s) = [] + [s | map(s)]

which applies a strategy s to each element of a list.

Congruence operators are very useful for defining traversals that are specific
for a language. This is used for example in the definition of a traversal that
follows the control-flow in an interpreter [36]. For example, given rules Beta

for beta-reduction, and SubsVar, SubsApp, and SubsAbs for substitution, the
strategy

eager-eval = rec e(

try(App(e, e) + Let(id, e, e))

; try((Beta + SubsVar + SubsApp + SubsAbs); e)

)

defines eager evaluation for lambda expressions, i.e., in which inner redices are
reduced first, but where no reduction under lambdas is performed. A variation
on this strategy is

lazy-eval = rec e(

try(App(e, id) + Let(id, id, e))

; try((Beta + SubsVar + SubsApp + SubsAbs); e)

)

which defines lazy evaluation, i.e., where no reductions of function arguments
are performed. This approach is also used in the specification of data-flow
optimizations [79] and partial evaluation [80].

36

Another application of congruence operators is in the definition of format
checkers, used to check syntactic properties of terms. For instance, the follow-
ing definitions

conj(s) = And(conj(s),conj(s)) <+ s

disj(s) = Or(disj(s),disj(s)) <+ s

dnf = disj(conj(Atom(id) + Not(Atom(id))))

define the strategy dnf, which checks that a propositional formula is in dis-
junctive normal form [109].

The difference between folds and congruence operators is that the former
define a complete recursive traversal over a tree, whereas the latter define only
a one level descent into the subtrees. This entails that different traversals can
be composed from the same basic building blocks. Similarly to folds, however,
it is still necessary to use the congruence operators for all constructors which
should be traversed.

7.4 Generic Traversal Strategies

The approaches to traversal discussed previously in this section all improve
some aspect of traversal specification, but have shortcomings as well. Traversal
functions are generic in the tree structure, but they are whole tree traversals
and do not admit definitions of new traversal schemata. Folds are parametric,
but not generic in the tree structure and define whole tree traversals. Congru-
ence operators are fine grained, i.e., partial tree traversals, but are not generic
in the tree structure, hence only reusable for a specific language. The solution
to traversal introduced in Stratego [72,115,114] combines the advantages of
these approaches. The key to this solution is the notion of a generic one-level
traversal operator, which can be used to freely compose many different generic
traversal strategies [72].

A generic one-level traversal operator is similar to a congruence operator,
which applies strategies to the immediate sub-terms of a term. The difference
is that generic traversal operators are indifferent to the constructor of the
term and uniformly apply a strategy to one or more of the sub-terms. For
example, the traversal operator all(s) applies s to all direct sub-terms of a
constructor application C(t1,...,tn). The application succeeds with a new
term C(t1’,...,tn’) constructed using the same constructor and the results
of transforming the sub-terms with the strategy s, if those transformations
succeed. Otherwise, the application fails. Similar one-level traversal operators
are one and some. The strategy one(s) applies s to one direct sub-terms of
a constructor application C(t1,...,tn). The strategy some(s) applies s to
some of the direct sub-terms of a constructor application C(t1,...,tn), i.e.,
to at least one and as many as possible.

37

strategies
topdown(s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s
downup(s) = s; all(downup(s)); s
downup2(s1,s2) = s1; all(downup2(s1,s2)); s2
oncetd(s) = s <+ one(oncetd(s))
onecbu(s) = one(oncebu(s)) <+ s
alltd(s) = s <+ all(alltd(s))
sometd(s) = s <+ some(sometd(s))
somebu(s) = some(somebu(s)) <+ s
innermost(s) = bottomup(try(s; innermost(s)))

Fig. 13. Generic traversal strategies.

The genericity and fine granularity of these operators makes it possible to de-
fine a wide range of generic full traversals. For example, consider the traversal
definitions in Figure 13. The strategy topdown(s) defines a pre-order traversal
visiting terms before descending to its sub-terms. The strategy bottomup(s)

defines a post-order traversal, visiting a term after visiting its sub-terms. The
strategy downup(s) visits sub-terms on the way down and on the way up.
The strategy oncetd(s) tries to find one application of s somewhere in the
term starting at the root working its way down; s <+ one(oncetd(s)) first
attempts to apply s, if that fails an application of s is (recursively) attempted
at one of the children of the subject term. If no application is found the
traversal fails. The traversal alltd(s) finds all outermost applications of s
and never fails.

These generic traversal strategies are parameterized with the actual transfor-
mation to be applied to the sub-terms. Figure 14 gives several examples of
uses of the strategies of Figure 13. The strategies disj-nf and conj-nf de-
fine normalizations to disjunctive and conjunctive normal-form, respectively,
using the rules from Figure 3. The eval strategy performs constant folding
on propositional formulae using the standard truth rules T (not shown here).
The strategies desugar and impl-nf define two desugarings of propositional
formulae, i.e., elimination of implication and equivalence, and desugaring to
implicative normal-form using standard elimination rules (not shown here).
These definitions illustrate how rules from the same collection can be reused
in different transformations, and likewise, a generic strategy such as innermost
can be instantiated to compose different transformations.

Using strategy combinators with one-level traversal operators, highly generic
strategies can be defined. The Stratego library defines a wide range of generic
strategies including the traversal strategies in Figure 13. In addition the li-
brary defines a number of higher-level language-independent operations such
as free-variable collection, bound variable renaming, capture free substitution,
syntactic unification, and computing the spanning tree of a graph. These op-
erations are parameterized with the relevant language constructs, but work

38

rules
T : And(True, x) -> x ...
T : Or(True, x) -> False ...
DefI : Impl(x, y) -> Or(Not(x), y) ...

strategies
disj-nf = innermost(DAOL + DAOR + DN + DMA + DMO)
conj-nf = innermost(DOAL + DOAR + DN + DMA + DMO)
eval = bottomup(repeat(T))
desugar = topdown(try(DefI + DefE))
impl-nf = topdown(repeat(DefN + DefA2 + DefO1 + DefE))

Fig. 14. Various transformations on propositional formulae.

generically otherwise [110].

Traversals can be combined in any way necessary. For example, the nested
function call lifting strategy from Section 6.2 is defined as

lift-nested-calls =

bottomup(try(IntroduceTemp))

; innermost(LetFromApp <+ LetVarInLetVar <+ LetFromLet)

where the one-shot strategy corresponds to a one-pass bottom-up traversal
and normalization to canonical form is implemented with innermost.

A problem of some generic strategies is that they lack knowledge of the compu-
tations in their argument strategies, which may cause overhead. For example,
the innermost strategy in Figure 13 renormalizes arguments of left-hand sides
of rules when they are used in the right-hand side. In [58] it is shown how this
can be repaired by fusing the generic innermost strategy with its arguments.

The approach of generic traversal based on one-level descent operators has
been adopted in Prolog [67], Haskell [70,66], and Java [117]. An overview
of the strategic programming approach is described in [68]. A comparison of
this approach with adaptive programming is given in [69]. Static typing is
an issue in a language with generic traversal. Solutions to this problem are
explored in [65] for the setting of rewriting strategies, and in [70] for functional
programming.

8 Context-Sensitive Rules

Another problem of rewriting is the context-free nature of rewrite rules. A
rule has only knowledge of the construct it is transforming. However, trans-
formation problems are often context-sensitive. For example, when inlining a
function at a call site, the call is replaced by the body of the function in which

39

the actual parameters have been substituted for the formal parameters. This
requires that the formal parameters and the body of the function are known at
the call site, but these are only available higher-up in the syntax tree. There
are many similar problems in program transformation, such as for example
bound variable renaming, typechecking, constant and copy propagation, and
dead code elimination. Although the basic transformations in all these ap-
plications can be expressed by means of rewrite rules, they need contextual
information. This section explores solutions in this area.

8.1 Parameterized Strategies

The usual solution to this problem is to extend the traversal over the tree
(be it hand-written or generic) such that it distributes the data needed by
transformation rules. For example, traversal functions in ASF+SDF [18] can
be declared to have an accumulation parameter in which data can be col-
lected. Language independent definitions of operations such as bound variable
renaming in Stratego [110] capture a generic tree traversal schema that takes
care of distributing an environment through a tree. The disadvantage of these
solutions is that the traversal strategy becomes data heavy instead of just
handling control flow. That is, all traversal functions become infected with
additional parameters carrying context information. Generic solutions break
down when multiple environments are needed, to handle multiple name spaces,
for instance.

8.2 Contextual Rules

Another solution is the use of contextual rules [3,115]. A contextual rule con-
tains context variables of the form e1[e2] indicating an expression e1 con-
taining an occurrence of another expression e2. This allows replacing terms
deeply nested in a term structure. For example, the rule

InlineVar :

|[let var x := e1 in e2[x] end]| ->

|[let var x := e1 in e2[e1] end]|

expresses the substitution of an occurrence in e2 of a let-bound variable x

with its value e1.

Contextual rules combine the context and the local transformation in one rule
by using a local traversal that applies a rule that reuses information from the
context. Indeed, in Stratego contextual rules are desugared to rules with a
local traversal. Thus, the rule above corresponds to the non-contextual rule

40

InlineVar :

|[let var x := e1 in e2 end]| ->

|[let var x := e1 in e2’ end]|

where <oncetd((|[x]| -> |[e1]|))> e2 => e2’

The problem with this approach is that it performs an extra traversal over the
abstract syntax tree, leading to quadratic complexity in case the contextual
rule is applied as part of a traversal over the same tree that the context
accesses.

8.3 Dynamic Rules

In [111] the extension of rewriting strategies with scoped dynamic rewrite rules
was introduced. A dynamic rule is a normal rewrite rule that is defined at run-
time and that can access information from its definition context. For example,
to define an inliner, a rule that inlines function calls for a specific function can
be defined at the point where the function is declared, and used at call sites
of the function, as illustrated in Figure 15. The DeclareFun strategy matches
a function declaration and then defines a rule InlineFun, which inherits from
its context the formal parameters xs, and the body of the function definition e.
Thus, when applying the InlineFun rule to a call of the specific function f

for which the rule was defined it is replaced with a let expression binding
the actual parameters (es) to the formal parameters (xs) in the body of the
function e.

Dynamic rules are first-class. Their application is under control of a normal
strategy. Thus dynamic rules can be applied as part of a global tree traversal.
Rules can override the definition of previously defined rules. To restrict the
application of a dynamic rule to a certain part of the tree, the live range of
a rule can be determined by rule scopes. A rule temporarily overridden in a
scope becomes visible again at the end of that scope. To hide rules defined
in outer scopes, rules can be undefined. Rules from outer scopes can also be
permanently overridden.

Dynamic rules turn out to be a very expressive extension of programmable
rewriting strategies and has many applications. In [21] it is shown how the
combination of user-definable, generic traversals in combination with dynamic
rules can be used to define the instruction selection strategies provided by
burg. In [79] it is shown how dynamic rules can be used to define data-flow
sensitive transformations on imperative programs. Other applications include
interpretation [36], type checking, and partial evaluation [80]

41

DeclareFun =
?|[function f(xs) : t = e]|
rules(

InlineFun :
|[f(es)]| -> |[let ds in e end]|
where <zip(BindVar)> (xs, es) => ds

)
BindVar :

(|[x : t]|, e) -> |[var x : t = e]|

Fig. 15. Dynamic definition of a function inlining rule.

8.4 Regular Path Expressions

Another approach to context-sensitive rules is the use of regular path expres-
sions as conditions in rewrite rules [104]. For example, the following rule ex-
presses constant propagation

ConstProp :

|[y := e[x]]| -> |[y := e[c]]|

where fromentry({}*;

{?|[x := c]|; <const> c};

{not(def(x))};

{use(x)})

by defining a rewrite on an assignment with an occurrence of a variable which
is assigned a constant. This fact is expressed by the path expression in the
condition of the rule, which states that there is a path from entry to the
current node with an assignment assigning c to x and no redefinition of x in
any node in between.

The applicability of such rewrite rules depends on an analyis of the entire
procedure in which the assignment is embedded. In the approach described in
[104] this is done automatically by the transformation system while traversing
the tree. On every application of a rule the analysis needs to be recomputed. To
make this feasible the analysis is performed incrementally, by maintaining for
each node in the tree, the partial matches to the regular expression. Thus, the
reanalysis needs only to be performed on the path to the root of the tree. For
this purpose the generic traversal strategies use the zipper data structure [56]
for the tree representation to allow flexible navigation through the tree.

42

9 Discussion

9.1 Related Work

Program transformation is a large research area with a long history. This
survey gives an overview from the perspective of strategies in rule-based pro-
gram transformation systems. In this overview many related aspects have been
touched. For each of these aspects more thorough surveys exists. Introductions
to term rewriting in general include [31,5,108]. A survey of rewriting-based lan-
guages and systems is given in [55]. The use of equations and rewriting for
transformation is discussed in [41]. There are special surveys for application ar-
eas of program transformation such as transformational programming [39,85],
reverse engineering [25,17], and application generation [105]. A survey of early
transformation systems is [87]. The 1999 Workshop on Software Transforma-
tion Systems [100] contains a series of articles reflecting on past experience
with transformation systems. The Program Transformation Wiki [116] gives
an overview of many types of program transformations, a list of transforma-
tion systems, and has elaborate special sections on decompilation and reverse
engineering [34]. Then there are areas that are not discussed in this survey, in-
cluding graph transformation systems, abstract interpretation, reflective and
generative approaches, and typing and correctness of transformation rules and
strategies. Finally, this survey has concentrated on mechanisms for transfor-
mation not on specific transformations. An earlier version of this survey ap-
peared as [112].

9.2 Conclusion

Rule-based program transformation is going in the right direction. With re-
cent developments in transformation languages more types of transformations
can be expressed in rule-based formalisms. Recent additions such as dynamic
rules and regular path queries drastically extend the expressiveness. Thus, an
increasing number of transformation problems can be expressed concisely in a
rule-based setting. Specification of control over rules while maintaining sepa-
ration of rules and strategy is crucial. This does not mean that these solutions
can always be used in production compilers, say, since dedicated implementa-
tions are still much faster. However, with the improvement of implementation
techniques, but also just with the increase in computing power available, the
size of problems that can be addressed by rule-based solutions increases. The
main challenge for research in rule-based program transformation is the fur-
ther expansion of the types of transformations that can be addressed in a
natural way by accumulating the right abstractions.

43

Acknowledgments

I would like to thank Bernhard Gramlich and Salvador Lucas for inviting
me to write the first version of this paper for the Workshop on Rewriting
Strategies in 2001 and for their patience with my delivery of this revised article.
Jan Heering, Patricia Johann, Paul Klint, and Jurgen Vinju commented on
a previous version of this paper. The comments by Oege de Moor and the
anonymous referees for this special issue helped to improve the paper.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles, techniques, and tools.
Addison Wesley, Reading, Massachusetts, 1986.

[2] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[3] A. W. Appel and T. Jim. Shrinking lambda expressions in linear time. Journal
of Functional Programming, 7(5):515–540, September 1997.

[4] A. Augusteijn. Functional Programming, Program Transformations and
Compiler Construction. PhD thesis, Department of Computing Science,
Eindhoven University of Technology, The Netherlands, 1993.

[5] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[6] J. Baeten, J. Bergstra, J. Klop, and W. Weijland. Term-rewriting systems
with rule priorities. Theoretical Computer Science, 67(2–3):283–301, October
1989.

[7] V. Benzaken, G. Castagna, and A. Frisch. CDuce: An XML-centric general-
purpose language. In Proceedings of the ACM International Conference on
Functional Programming, pages 51–64, August 2003.

[8] R. S. Bird and L. Meertens. Two exercises found in a book on algorithmics. In
L. Meertens, editor, Program Specification and Transformation, pages 451–458.
North-Holland, 1987.

[9] P. Borovanský, H. Cirstea, H. Dubois, C. Kirchner, H. Kirchner, P.-E. Moreau,
C. Ringeissen, and M. Vittek. ELAN V 3.4 User Manual. LORIA, Nancy
(France), fourth edition, January 2000.

[10] P. Borovanský, C. Kirchner, and H. Kirchner. Controlling rewriting by
rewriting. In J. Meseguer, editor, Proceedings of the First International
Workshop on Rewriting Logic and its Applications (WRLA’96), volume 4 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
September 1996.

44

[11] P. Borovansky, C. Kirchner, H. Kirchner, and P.-E. Moreau. ELAN from a
rewriting logic point of view. Theoretical Computer Science, 285:155–185, July
2002.

[12] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen.
An overview of ELAN. In C. Kirchner and H. Kirchner, editors, Proceedings
of the second International Workshop on Rewriting Logic and Applications
(WRLA’98), volume 15 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, September 1998.

[13] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and M. Vittek. ELAN:
A logical framework based on computational systems. In J. Meseguer, editor,
Proceedings of the First Workshop on Rewriting Logic and Applications 1996
(WRLA’96), volume 4 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 1996.

[14] J. M. Boyle. Abstract programming and program transformation–An approach
to reusing programs. In T. J. Biggerstaff and A. J. Perlis, editors, Software
Reusability, volume 1, pages 361–413. 1989.

[15] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program
transformation system: Simplifying the development of numerical software.
In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software
Tools for Scientific Computing, pages 353–372. Birkhäuser, 1997.

[16] M. G. J. van den Brand, H. de Jong, P. Klint, and P. Olivier. Efficient
annotated terms. Software, Practice & Experience, 30(3):259–291, 2000.

[17] M. G. J. van den Brand, P. Klint, and C. Verhoef. Reverse engineering and
system renovation: an annotated bibliography. ACM Software Engineering
Notes, 22(1):42–57, January 1997.

[18] M. G. J. van den Brand, P. Klint, and J. J. Vinju. Term rewriting with traversal
functions. ACM Transactions on Software Engineering and Methodology,
12(2):152–190, 2003.

[19] M. G. J. van den Brand, M. P. A. Sellink, and C. Verhoef. Generation
of components for software renovation factories from context-free grammars.
Science of Computer Programming, 36:209–266, 2000.

[20] M. G. J. van den Brand and E. Visser. Generation of formatters for context-
free languages. ACM Transactions on Software Engineering and Methodology,
5(1):1–41, January 1996.

[21] M. Bravenboer and E. Visser. Rewriting strategies for instruction selection.
In S. Tison, editor, Rewriting Techniques and Applications (RTA’02), volume
2378 of Lecture Notes in Computer Science, pages 237–251. Springer-Verlag,
July 2002.

[22] M. Bravenboer and E. Visser. Concrete syntax for objects. Domain-specific
language embedding and assimilation without restrictions. In D. C. Schmidt,
editor, Proceedings of the 19th ACM SIGPLAN conference on Object-Oriented

45

Programing, Systems, Languages, and Applications (OOPSLA’04), October
2004.

[23] N. de Bruijn. A survey of the project AUTOMATH. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus, and Formalisms, pages 579–
606. Academic Press, 1980.

[24] R. M. Burstall and J. Darlington. A transformational system for developing
recursive programs. Journal of the ACM, 24(1):44–67, 1977.

[25] E. Chikofski and J. Cross. Reverse engineering and design recovery: A
taxonomy. IEEE Software, 7(1):13–17, 1990.

[26] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer, and J. F.
Quesada. Maude: specification and programming in rewriting logic. Theoretical
Computer Science, 285(2):187–243, 2002.

[27] C. Collberg, C. Thomborson, and D. Low. Manufacturing cheap, resilient and
stealthy opaque constructs. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’98), pages 184–
196, January 1998.

[28] J. R. Cordy, I. H. Carmichael, and R. Halliday. The TXL Programming
Language, Version 8, Apr. 1995.

[29] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In Proceedings of the ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL’02),
pages 178–190, January 2002.

[30] K. Czarnecki and U. W. Eisenecker. Intentional programming. In Generative
Programming. Methods, Tools, and Applications, chapter 11. Addison-Wesley,
2000.

[31] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In J. van Leeuwen,
editor, Handbook of Theoretical Computer Science, volume B, chapter 6, pages
243–320. Elsevier Science Publishers, 1990.

[32] A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An
Algebraic Specification Approach, volume 5 of AMAST Series in Computing.
World Scientific, Singapore, September 1996.

[33] A. van Deursen, P. Klint, and F. Tip. Origin tracking. Journal of Symbolic
Computation, 15(5–6):523–546, 1993.

[34] A. van Deursen and E. Visser. The reengineering wiki. In Proceedings
6th European Conference on Software Maintenance and Reengineering
(CSMR’02), pages 217–220. IEEE Computer Society, 2002.

[35] E. W. Dijkstra. A constructive approach to the problem of program
correctness. BIT, 8(3):174–186, 1968.

46

[36] E. Dolstra and E. Visser. Building interpreters with rewriting strategies. In
M. G. J. van den Brand and R. Lämmel, editors, Workshop on Language
Descriptions, Tools and Applications (LDTA’02), volume 65/3 of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, April
2002.

[37] C. Elliott, S. Finne, and O. de Moor. Compiling embedded languages.
Springer-Verlag, 2000.

[38] M. S. Feather. A system for assisting program transformation. ACM
Transactions on Programming Languages and Systems, 4(1):1–20, January
1982.

[39] M. S. Feather. A survey and classification of some program transformation
approaches and techniques. In L. G. L. T. Meertens, editor, Program
Specification and Transformation, IFIP, pages 165–195. Elsevier Science
Publishers, 1987.

[40] A. Felty. A logic programming approach to implementing higher-order term
rewriting. In L.-H. Eriksson, L. Hallnäs, and P. Schroeder-Heister, editors,
Extensions of Logic Programming (ELP ’91), volume 596 of Lecture Notes in
Artifial Intelligence, pages 135–158. Springer-Verlag, 1992.

[41] J. Field, J. Heering, and T. B. Dinesh. Equations as a uniform framework
for partial evaluation and abstract interpretation. ACM Computing Surveys,
30(3es):2, 1998.

[42] B. Fischer and E. Visser. Retrofitting the AutoBayes program synthesis system
with concrete object syntax. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science, pages
239–253. Spinger-Verlag, 2004.

[43] S. Fitzpatrick, A. Stewart, M. Clint, and J. M. Boyle. An algebra for
deriving efficient implementations for an array processor parallel computer
from functional specifications. Technical Report 1995/Jun-SF.AS.MC.JMB,
Department of Computer Science, The Queen’s University of Belfast, Northern
Ireland, June 1995.

[44] W. J. Fokkink, J. F. T. Kamperman, and H. R. Walters. Lazy rewriting on
eager machinery. ACM Transactions on Programming Languages and Systems,
22(1):45–86, January 2000.

[45] M. Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.

[46] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engineering a simple,
efficient code-generator generator. ACM Letters on Programming Languages
and Systems, 1(3):213–226, September 1992.

[47] C. W. Fraser, R. R. Henry, and T. A. Proebsting. BURG—fast optimal
instruction selection and tree parsing. ACM SIGPLAN Notices, 27(4):68–76,
April 1992.

47

[48] K. Futatsugi, J. Goguen, J.-P. Jouannaud, and J. Meseguer. Principles
of OBJ2. In B. Reid, editor, Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’85), pages 52–
66, 1985.

[49] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B. Wright. Initial algebra
semantics and continuous algebras. Journal of the ACM, 24(1):68–95, 1977.

[50] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P. Jouannaud.
Introducing OBJ. In J. A. Goguen and G. Malcolm, editors, Software
Engineering with OBJ: Algebraic Specification in Action, Advances in Formal
Methods, chapter 1, pages 3–167. Kluwer Academic Publishers, 2000.

[51] W. Guttmann, H. Partsch, W. Schulte, and T. Vullinghs. Tool Support for
the Interactive Derivation of Formally Correct Functional Programs. Journal
of Universal Computer Science, 9(2):173–188, Feb. 2003.

[52] W. S. Hatcher and T. Rus. Context-free algebras. Journal of Cybernetics,
6:65–76, 1976.

[53] J. Heering. Implementing higher-order algebraic specifications. In D. Miller,
editor, Proceedings of the Workshop on the λProlog Programming Language,
pages 141–157. University of Pennsylvania, Philadelphia, 1992. Also published
as Technical Report MS-CIS-92-86; http://www.cwi.nl/~jan/HO.WLP.ps.

[54] J. Heering, P. R. H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual. ACM SIGPLAN Notices, 24(11):43–75,
1989.

[55] J. Heering and P. Klint. Rewriting-based Languages and Systems, chapter 15,
pages 776–789. Volume 55 of Terese [108], 2003.

[56] G. Huet. Functional Pearl: The Zipper. Journal of Functional Programming,
7(5):549–554, Sept. 1997.

[57] G. Huet and B. Lang. Proving and applying program transformations
expressed with second-order patterns. Acta Informatica, 11:31–55, 1978.

[58] P. Johann and E. Visser. Fusing logic and control with local transformations:
An example optimization. In B. Gramlich and S. Lucas, editors, Workshop on
Reduction Strategies in Rewriting and Programming (WRS’01), volume 57 of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
May 2001.

[59] T. Johnsson. Attribute grammars as a functional programming paradigm.
In G. Kahn, editor, Functional Programming Languages and Computer
Architecture, volume 274 of Lecture Notes in Computer Science, pages 154–
173. Springer-Verlag, 1987.

[60] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

48

http://www.cwi.nl/~jan/HO.WLP.ps

[61] J. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
1–116. Oxford University Press, Oxford, England, 1992.

[62] D. E. Knuth. Semantics of context-free languages. Mathematical Systems
Theory, 2(2):127–145, 1968. Correction in: Mathematical Systems Theory 5(1),
pp. 95-96, Springer-Verlag, 1971.

[63] J. Kort and R. Lämmel. Parse-tree annotations meet re-engineering
concerns. In Third IEEE International Workshop on Source Code Analysis
and Manipulation (SCAM’03), pages 161–172. IEEE Computer Society Press,
September 2003.

[64] D. Lacey and O. de Moor. Imperative program transformation by rewriting.
In Compiler Construction (CC’01), volume 2027 of Lecture Notes in Computer
Science, pages 52–68. Springer-Verlag, April 2001.

[65] R. Lämmel. Typed generic traversal with term rewriting strategies. Journal
of Logic and Algebraic Programming, 54:1–64, 2003.

[66] R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. ACM SIGPLAN Notices, 38(3):26–
37, March 2003. Proceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI’03).

[67] R. Lämmel and G. Riedewald. Prological language processing. In M. van den
Brand and D. Parigot, editors, Proceedings of the First Workshop on Language
Descriptions, Tools and Applications (LDTA’01), volume 44 of Electronic
Notes in Theoretical Computer Science. Elsevier Science Publishers, April
2001.

[68] R. Lämmel, E. Visser, and J. Visser. The essence of strategic programming,
October 2002. (Draft).

[69] R. Lämmel, E. Visser, and J. Visser. Strategic programming meets adaptive
programming. In Proceedings of Aspect-Oriented Software Development
(AOSD’03), pages 168–177, Boston, USA, March 2003. ACM Press.

[70] R. Lämmel and J. Visser. Typed combinators for generic traversal. In
Proceedings Practical Aspects of Declarative Programming PADL 2002, volume
2257 of Lecture Notes in Computer Science, pages 137–154. Springer-Verlag,
January 2002.

[71] R. Lämmel, J. Visser, and J. Kort. Dealing with large bananas. In J. Jeuring,
editor, Proceedings of the Workshop on Generic Programming (WGP’00),
pages 46–59. Technical Report UU-CS-2000-19, Department of Information
and Computing Sciences, Utrecht University, July 2000.

[72] B. Luttik and E. Visser. Specification of rewriting strategies. In M. P. A.
Sellink, editor, 2nd International Workshop on the Theory and Practice of
Algebraic Specifications (ASF+SDF’97), Electronic Workshops in Computing.
Springer-Verlag, November 1997.

49

[73] O. de Moor, K. Backhouse, and S. D. Swierstra. First class attribute
grammars. Informatica: An International Journal of Computing and
Informatics, 24(2):329–341, June 2000. Special Issue on Attribute grammars
and their applications.

[74] O. de Moor and G. Sittampalam. Higher-order matching for program
transformation. Theoretical Computer Science, 269(1–2):135–162, 2001.

[75] S. S. Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann Publishers, 1997.

[76] G. Nadathur and D. Miller. An overview of λProlog. In R. A. Kowalski,
editor, Logic Programming. Proceedings of the Fifth International Conference
and Symposium, volume 1, pages 810–827, Cambridge, Mass., USA, 1988. MIT
Press.

[77] J. M. Neighbors. The Draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, SE-10(5):564–573,
September 1984.

[78] K. Ogata and K. Futatsugi. Implementation of term rewritings with
the evaluation strategy. In Proceedings 9th Symposium on Programming
Languages: Implementations, Logics, and Programs (PLILP’97), volume 1292
of Lecture Notes in Computer Science, pages 225–239. Springer-Verlag, 1997.

[79] K. Olmos and E. Visser. Strategies for source-to-source constant propagation.
In B. Gramlich and S. Lucas, editors, Workshop on Reduction Strategies
(WRS’02), volume 70/6 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, July 2002.

[80] K. Olmos and E. Visser. Turning dynamic typing into static typing by program
specialization. In D. Binkley and P. Tonella, editors, Third IEEE International
Workshop on Source Code Analysis and Manipulation (SCAM’03), pages 141–
150. IEEE Computer Society Press, September 2003.

[81] R. Paige. Viewing a program transformation system at work. In
M. Hermenegildo and J. Penjam, editors, Proceedings of the Sixth
International Symposium on Programming Language Implementation and
Logic Programming, volume 844 of Lecture Notes in Computer Science, pages
5–24. Springer-Verlag, September 1994.

[82] R. Paige. Future directions in program transformations. Computing Surveys,
28A(4), December 1996.

[83] T. J. Parr et al. ANTLR reference manual. http://www.antlr.org, January
2003. ANTLR Version 2.7.2.

[84] H. Partsch. Transformational program development in a particular problem
domain. Science of Computer Programming, 7(2):99–241, Sept. 1986.

[85] H. Partsch. Specification and Transformation of Programs. A Formal Approach
to Software Development. Springer-Verlag, 1990.

50

http://www.antlr.org

[86] H. Partsch, W. Schulte, and T. Vullinghs. System support fo the interactive
transformation of functional programs. In Proceedings of the 21st international
conference on Software engineering [100], pages 701–702. The actual
proceedings are available at http://www.dur.ac.uk/CSM/STS/.

[87] H. Partsch and R. Steinbrüggen. Program transformation systems. ACM
Computing Surveys, 15(3):199–236, 1983.

[88] A. Pettorossi and M. Proietti. Future directions in program transformation.
ACM Computing Surveys, 28(4es):171–es, December 1996. Position Statement
at the Workshop on Strategic Directions in Computing Research. MIT,
Cambridge, MA, USA, June 14-15, 1996.

[89] A. Pettorossi and M. Proietti. Rules and strategies for transforming functional
and logic programs. ACM Computing Surveys, 28(2):360–414, 1996.

[90] S. L. Peyton Jones and S. Marlow. Secrets of the Glasgow Haskell Compiler
inliner. Journal of Functional Programming, 12(4):393–434, July 2002.

[91] S. L. Peyton Jones and A. L. M. Santos. A transformation-based optimiser for
Haskell. Science of Computer Programming, 32(1–3):3–47, September 1998.

[92] S. L. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: rewriting
as a practical optimisation technique in GHC. In R. Hinze, editor, 2001 Haskell
Workshop. ACM SIGPLAN, September 2001.

[93] F. Pfenning and C. Elliot. Higher-order abstract syntax. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’88), pages 199–208. ACM, 1988.

[94] A. M. Pitts and M. J. Gabbay. A metalanguage for programming with
bound names modulo renaming. In R. Backhouse and J. N. Oliveira, editors,
Proceedings of the 5th International Conference on Mathematics of Programme
Construction (MPC2000), volume 1837 of Lecture Notes in Computer Science,
pages 230–255. Springer-Verlag, July 2000.

[95] J. van der Pol. Just-in-time: On strategy annotations. In International
Workshop on Reduction Strategies in Rewriting and Programming (WRS’01),
volume 57 of Electronic Notes in Theoretical Computer Science, 2001.

[96] T. A. Proebsting. BURS automata generation. ACM Transactions on
Programming Languages and Systems, 17(3):461–486, May 1995.

[97] T. Reps and T. Teitelbaum. The Synthesizer Generator: A System for
Constructing Language-Based Editors. Springer-Verlag, 1988.

[98] C. Rich and R. C. Waters. The Programmer’s Apprentice. Frontier Series.
ACM Press, 1990.

[99] D. Roberts, J. Brant, and R. E. Johnson. A refactoring tool for Smalltalk.
Theory and Practice of Object Systems, 3(4):253–263, 1997.

51

http://www.dur.ac.uk/CSM/STS/

[100] M. Sant’Anna, J. Leite, I. Baxter, D. Wile, T. Biggerstaff, D. Batory,
P. Devanbu, and L. Burd. International workshop on software transformation
systems (STS ’99). In Proceedings of the 21st international conference on
Software engineering, pages 701–702. IEEE Computer Society Press, 1999.
The actual proceedings are available at http://www.dur.ac.uk/CSM/STS/.

[101] J. Saraiva and M. Kuiper. LRC - A generator for incremental language-oriented
tools. In K. Koskimies, editor, 7th International Conference on Compiler
Construction (CC’98), volume 1383 of Lecture Notes in Computer Science.
Springer-Verlag, April 1998.

[102] J. Saraiva and S. D. Swierstra. Data structure free compilation. In 8th
International Conference on Compiler Construction (CC’99), volume 1575 of
Lecture Notes in Computer Science, pages 1–16. Springer-Verlag, March 1999.

[103] T. Sheard and S. L. Peyton Jones. Template metaprogramming for Haskell. In
M. M. T. Chakravarty, editor, ACM SIGPLAN Haskell Workshop 02, pages
1–16, October 2002.

[104] G. Sittampalam, O. de Moor, and K. F. Larsen. Incremental execution of
transformation specifications. In Proceedings of the ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’04), pages 26–
38, January 2004.

[105] Y. Smaragdakis and D. Batory. Application generators. In J. Webster, editor,
Encyclopedia of Electrical and Electronics Engineering. John Wiley and Sons,
2000.

[106] D. R. Smith. KIDS: A semiautomatic program development system. IEEE
Transactions on Software Engineering, 16(9):1024–1043, 1990.

[107] W. Taha and T. Sheard. MetaML and multi-stage programming with explicit
annotations. Theoretical Computer Science, 248(1-2):211–242, 2000.

[108] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical
Computer Science. Cambridge University Press, 2003.

[109] E. Visser. Strategic pattern matching. In P. Narendran and M. Rusinowitch,
editors, Rewriting Techniques and Applications (RTA’99), volume 1631 of
Lecture Notes in Computer Science, pages 30–44. Springer-Verlag, July 1999.

[110] E. Visser. Language independent traversals for program transformation. In
J. Jeuring, editor, Workshop on Generic Programming (WGP’00). Technical
Report UU-CS-2000-19, Department of Information and Computing Sciences,
Utrecht University, July 2000.

[111] E. Visser. Scoped dynamic rewrite rules. In M. van den Brand and R. Verma,
editors, Rule Based Programming (RULE’01), volume 59/4 of Electronic Notes
in Theoretical Computer Science. Elsevier Science Publishers, September 2001.

[112] E. Visser. A survey of rewriting strategies in program transformation systems.
In B. Gramlich and S. Lucas, editors, Workshop on Reduction Strategies in

52

http://www.dur.ac.uk/CSM/STS/

Rewriting and Programming (WRS’01), volume 57 of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, May 2001.

[113] E. Visser. Meta-programming with concrete object syntax. In D. Batory,
C. Consel, and W. Taha, editors, Generative Programming and Component
Engineering (GPCE’02), volume 2487 of Lecture Notes in Computer Science,
pages 299–315. Springer-Verlag, October 2002.

[114] E. Visser. Program transformation with Stratego/XT: Rules, strategies, tools,
and systems in StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific
Program Generation, volume 3016 of Lecture Notes in Computer Science.
Spinger-Verlag, June 2004.

[115] E. Visser, Z.-e.-A. Benaissa, and A. Tolmach. Building program optimizers
with rewriting strategies. In Proceedings of the third ACM SIGPLAN
International Conference on Functional Programming (ICFP’98), pages 13–
26, September 1998.

[116] E. Visser et al. The Program Transformation Wiki. http://www.
program-transformation.org.

[117] J. Visser. Visitor combination and traversal control. In Proceedings of the
16th ACM SIGPLAN conference on Object-Oriented Programing, Systems,
Languages, and Applications (OOPSLA’01), pages 270–282, November 2001.

[118] H. Vogt. Higher-Order Attribute Grammars. PhD thesis, Department of
Computer Science, Utrecht University, 1989.

[119] P. Wadler. Views: A way for pattern matching to cohabit with data
abstraction. In Proceedings of the ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL’87), pages 307–313. ACM,
January 1987.

[120] R. C. Waters. The programmer’s apprentice: Knowledge based program
editing. IEEE Transactions on Software Engineering, 8(1):1–12, 1982.

53

http://www.program-transformation.org
http://www.program-transformation.org

	Introduction
	Applications of Program Transformation
	Program Development
	Program Evolution

	Term Rewriting
	Transformation Rules and Strategies
	Program Representation
	Term Rewriting
	Limitations of Term Rewriting

	Extensions of Term Rewriting
	Concrete Syntax
	Extensions of Pattern Matching
	Object Variables
	Default Rules
	Functional Programming with Rewrite Rules
	Conditional Term Rewriting
	Term Rewriting with Strategy Annotations

	Tree Parsing Strategies
	Tree Parsing
	Bottom-up Tree Parsing
	Attribute Grammars

	Programmable Strategies
	Interactive Program Transformation
	Staging
	Strategy Combinators

	Traversal Strategies
	Traversal Functions
	Folds
	Traversal with Congruence Operators
	Generic Traversal Strategies

	Context-Sensitive Rules
	Parameterized Strategies
	Contextual Rules
	Dynamic Rules
	Regular Path Expressions

	Discussion
	Related Work
	Conclusion

	References

