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Abstract

In the context of graph transformation we look at the operation of
switching, which can be viewed as an elegant method for realizing global
transformations of (group-labelled) graphs through local transformations
of the vertices.

In case vertices are given an identity, various relatively efficient al-
gorithms exist for deciding whether a graph can be switched so that it
contains some other graph, the query graph, as an induced subgraph.
However, when considering graphs up to isomorphism, we immediately
run into the graph isomorphism problem for which no efficient solution is
known. Surprisingly enough however, in some cases the decision process
can be simplified by transforming the query graph into a “smaller” graph
without changing the answer. The main lesson learned is that the size of
the query graph is not the dominating factor, but its cycle rank.

Although a number of our results hold specifically for undirected, un-
labelled graphs, we propose a more general framework and give many
positive and negative results for more general cases, where the graphs are
labelled with elements of a (finitely generated abelian) group.
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1 Introduction

The material in this paper is motivated by a quest for techniques which enable
the analysis of certain networks of processors. Our starting point is that the
vertices of a directed graph can be interpreted as processors in a network and
the edges can be interpreted as the channels/connections between them, labelled
with values from some (structured) set, call it ∆, to capture the current state.
The dynamics of such a network lies in the ability to change the labellings of the
graph which is done by operations performed by the processors. A major aspect
of the model here presented is that if a processor performs an input action, it
influences the labellings of all incoming edges in the same way; the same holds
for the output actions which govern the outgoing edges. In other words, we
have no separate control over each edge, only over each processor. On the other
hand, actions done by different processors should not interfere with each other,
making this model an asynchronous one.

Ehrenfeucht and Rozenberg set forth in [6] a number of axioms they thought
should hold for such a network of processors.

A1 Any two input (output) actions can be combined into one single input
(output) action.

A2 For any pair of elements a, b ∈ ∆, there is an input action that changes a
into b; the same holds for output actions.

A3 For any channel (i, j), the order of applying an input action to i and an
output action to j is irrevelant.

A fourth axiom stated that every network/graph should have at least three
processors. This was to make sure that no exceptions arose when deriving the
most general model that upholds the axioms above; in the paper of Ehrenfeucht
and Rozenberg it turned out that the model of a network of two processors is
more flexible than that of more than two processors. We do not state the axiom,
but shall use the model for more than two processors also for networks of two
processors. As an aside, the book by Ehrenfeucht, Harju and Rozenberg [5]
proposes another axiom: every processor can choose to remain inactive. There
is however no need for this axiom: it is implied by the others.

Although each processor i was to have a set of output actions Ωi and a
set of input actions Σi, in [6] (see also [5]) it was derived that under these
axioms the input (output) actions of every vertex are the same and form a
group. Also, the sets of input and output actions coincide, but an action will
act differently on incoming and outgoing edges, as evidenced by the asymmetry
in (3) in Section 4. The difference is made explicit by an anti-involution δ,
which is an anti-automorphism of order at most two on the group of actions.
The notion of anti-involution generalizes that of group inversion. The result of
this will be that if a channel between processors i and j is labelled with a, then
the channel from j to i will be labelled with δ(a). The model generalizes the
gain graphs of [12] and the voltage graphs of [7].
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Figure 1: The query and target skew gain graphs respectively

As we shall see later, the graphs labelled with elements from a fixed group ∆
(and under some fixed anti-involution of that group), called skew gain graphs in
the following, are partitioned into equivalence classes. These equivalence classes
capture the possible outcomes of performing actions in the vertices, i.e., the
states of the system reachable from a certain “initial” state. The transformation
from one skew gain graph to another, is governed by selecting in each vertex
an operation, which corresponds to an element of the group. Although the
equivalence classes themselves are usually considered static objects, it is not
hard to see that there is also a notion of change or dynamics: transforming a
skew gain graph yields a new skew gain graph on the same underlying network
of processors, but possibly with different labels. For this reason the equivalence
classes were called dynamic labelled 2-structures in [6].

Consider now the problem where we have a (target) skew gain graph h
which represents our network, and a skew gain graph g, the query graph, which
represents a fragment of a network which to us has a special meaning. An
example can be found in Figure 1 which features g on the left and h on the
right. Here the intended meaning of g signifies the existence of a deadlock.

A question to ask is then: is there a way to transform h by applying a
selector, such that in the result we can detect the subgraph g? In terms of
the example: is there a possible state in the system, derivable from h, which
contains a deadlocked subgraph somewhere. If the embedding from g into h
is known, then this can be (in many cases) efficiently solved by applying the
results of Hage [8]. However, the large number of possible embeddings of g
into h remains a problem. In fact, we quickly run into the Graph Isomorphism
problem which does not have a known efficient solution. In this paper, we
seek to alleviate this problem by seeing how we might reduce the skew gain
graph g to a different, simpler graph without changing the outcome, i.e. if the
reduced graph can be embedded, then so can g (and vice versa). As it turns
out, reduction is possible if the cycle rank (or cyclomatic index) of a graph is
low. In a nutshell, our result says that the embedding problem is exponential
not in the number of vertices of the graph, but in a different graph measure,
the cycle rank. This may be compared to such measures as treewidth [1], in
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which case there exist efficient for NP-complete problems working on graphs of
bounded treewidth. The main advantage of our work is that the cycle rank,
and the corresponding decomposition, can be computed very efficiently. This is
not the case for treewidth, for example. On the other hand, the cycle rank as
a measure is also quite a bit more restricted. As far as we know it only applies
to the embedding problem.

An earlier version of this paper was presented at the 2nd International Con-
ference on Graph Transformations in Rome [4]. The main changes with respect
to that paper are that in this paper we start by considering the special case of
undirected graphs, which conveys many of the essential ideas, but tries to avoid
depending on any knowledge of group theory. Even for this simplest of cases, the
embedding problem is NP-complete [3]. Secondly, Section 8 contains additional
impossibility results that were not in the first version, in particular, a result
that shows with rather tight bounds where looking for the given optimizations
is certainly not profitable.

As a result, the paper is now structured as follows: after some general prelim-
inaries where we also explain how to switch (partial) undirected graphs, which
we call 0,1-graphs, we show in Section 3 how to derive an algorithm for verify-
ing whether such a graph, the query graph, can be embedded in an undirected
graph, the target graph. The resulting complexity depends not on the number
of vertices of the graphs in question, but rather on the number of cycles in the
query graph. The crucial ingredient we use here is the concept of bridging,
which is an operation that shortens cycles in the query graph.

Subsequently, we introduce the full mathematical model of switching classes
of graphs with skew gains, and reconsider the embedding problem. We formalize
the idea of embedding invariance, and give (im)possibility results for groups
other than Z2, which show in which cases the technique of Section 3 may be
applied as well. Most of the results in this part of our work are negative: they
show that the bridging operation does not readily extend to other groups. These
negative results are important in that they show where not to look for savings.
In view of the fact that we have nothing significantly better than exhaustive
search to look for optimization, this is certainly good to know.

2 Preliminaries

In this section we introduce some general notation on functions, sets and graphs,
and a special form of undirected graph, the 0,1-graph, in which we label the
edges of an undirected graph with either 0 or 1. We conclude the section with
the definition of the switching of 0,1-graphs and some basic results from the
literature.

For a (finite) set V , let |V | be the cardinality of V . We shall often identify a
subset A ⊆ V with its characteristic function A : V → Z2, where Z2 = {0, 1} is
the cyclic group of order two. We use the convention that for x ∈ V , A(x) = 1
if and only if x ∈ A. The restriction of a function f : V →W to a subset A ⊆ V
is denoted by f |A. We denote set difference by A−B. It contains the elements
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in A which are not in B. If B is a singleton {b}, then we may write A − b for
brevity.

The set E(V ) = {{x, y} | x, y ∈ V, x 6= y} denotes the set of all unordered
pairs of distinct elements of V . We write xy or yx for the unordered pair
{x, y}. The graphs of this paper will be finite, undirected and simple, i.e., they
contain no loops or multiple edges. We use E(G) and V (G) to denote the set of
edges E and the set of vertices V , respectively, and |V | and |E| are called the
order, respectively, size of G. Analogously to sets, a graph G = (V,E) will be
identified with the characteristic function G : E(V ) → Z2 of its set of edges so
that G(xy) = 1 for xy ∈ E, and G(xy) = 0 for xy /∈ E. Later we shall use both
notations, G = (V,E) and G : E(V ) → Z2, for graphs.

Before we go on to introduce the 0,1-graphs which are in fact our focus of
investigation, we first introduce some rather standard notation for graphs.

Let G = (V,E) be a graph. A vertex x ∈ V is adjacent to y ∈ V if xy ∈ E.
The degree of x in G, denoted dG(x), is the number of vertices it is adjacent
to. The neighbours of u in G, denoted NG(u), or N(u) if G is clear from the
context, is the set of vertices adjacent to u in G. A vertex which is not adjacent
to any other vertex in a graph is called isolated, a leaf has degree one, a chain
vertex degree two, and all other vertices are called dense vertices.

For a graph G = (V,E) and X ⊆ V , let G|X denote the subgraph of G
induced by X. Hence, G|X : E(X) → Z2.

A sequence of vertices p = (v1, . . . , vk), k > 0, is a path in G if vi is adjacent
to vi+1 for i = 1, . . . , k − 1 and all vertices are distinct. By E(p) we denote
the set of edges {(v1, v2), . . . , (vk−1, vk)}. Additionally, p is called a chain if
all vertices v2, . . . , vk−1 are chain vertices. The chain p is maximal in G if the
endpoints v1 and vk are not chain vertices. A cycle (v1, . . . , vk) is different from
a path in that v1 = vk. We naturally extend all notation for paths to cycles.

A cut edge in a graph is an edge which is not on any cycle.
Now we may continue and introduce the 0,1-graphs which are in fact slight

generalizations of the graphs given above. These graphs will be used in Section 3.
Afterwards, we shall generalize the graphs to our full model for this paper. From
a graph G = (V,E), we can obtain a 0,1-graph g by labelling its edges with
either 0 or 1: e ∈ E(G) if and only if g(e) = 0∨ g(e) = 1. Such a G is called the
underlying graph of g. For a graph G, we use LG to denote the set of 0,1-graphs
with underlying graph G.

A tricky aspect of this definition is the following: every graph G has a natural
counterpart g which is a 0,1-graph: taking the complete graph K|V (G)| as the
underlying graph we add labels as follows:

g(e) = 1 if e ∈ E(G) and 0 otherwise

Such a 0,1-graph will be referred to as a total 0,1-graph.
Hence, every 0,1-graph on a complete underlying graph has two graphs as-

sociated with it: its underlying graph which is a complete graph, and the graph
with which it is associated through its chosen labelling. In order not to confuse
the reader in the following, simple undirected graphs shall only arise in the role
of underlying graph.
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Now, let g ∈ LG and h ∈ LH for some graphs G and H. An injection
ψ : V (G) → V (H) embeds g, the query graph, into h, the target graph, (denoted
g ↪→ h) if

g(uv) = h(ψ(u)ψ(v)) for all uv ∈ E(G)

A useful intuition behind 0,1-graphs is that the absence of an edge in the un-
derlying graph of G means that we do not care what the corresponding edge of
h is labelled with.

The question whether a given simple undirected graph can be embedded in
another, entails mapping both graphs to 0,1-graphs with the underlying graph
a complete graph, and applying the definition above. As we shall see later,
this situation cannot be improved using our results. It is the case when the
query graph is relatively sparse (in a sense to be made precise later on), that
something can be gained.

With a path p = (v1, . . . , vk) in g ∈ LG we can associate the sequence of
labels

λ(p) = (g(v1v2), . . . , g(vk−1vk)) .

Now, p is an a-path if every value in λ(p) is equal to a. Secondly, p is a b-
summing path for some b if g(v1v2)+ g(v2v3)+ . . .+ g(vk−1vk) equals b modulo
2. We often denote this fact by writing g(p) = b.

We now move on to the definition of switching. Let g ∈ LG. A function
σ : V (G) → {0, 1} is called a selector. For each selector σ we associate with g a
0,1-graph gσ on G = (V,E) by letting, for each uv ∈ E,

gσ(uv) = σ(u) + g(uv) + σ(v) . (1)

where + is addition modulo 2. The switching class generated by g is then
[g] = {gσ | σ a selector }. In Section where we introduce switching more
generally, we shall prove that switching classes are equivalence classes of graphs.

Example 2.1 Below we have depicted a typical example of a switch. In the
first graph, the vertices are labelled with their name, in the second graph we
have labelled them with the value selected for the given vertex by the selector,
as in σ(u) = 0 and σ(v) = 1. Note that the path (u, v, w, x, u) is 0-summing
both in g and gσ.

σ

u

x

v

w

1

1

1

1

1

0

0

0

0

0 1

01

=⇒1

The fact that the cycle (u, v, w, x, u) gave the same sum in g and gσ turns
out not to be a coincidence. A crucial property used in this paper is the Cyclic
Sum Invariance (cf. [11], [9]), the proof of which is part of folklore of the theory
of switching classes:
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Theorem 2.2 (Cyclic Sum Invariance)
For every cycle c in a 0,1-graph g, and selector σ on g, g(c) = gσ(c).

A stronger version of this theorem can be formulated, since it turns out that
the cyclic sums of triangles which involve any given vertex v uniquely determines
the switching class.

Related to this result is the Forest Forcing Lemma (cf. Hage [9]):

Lemma 2.3 (Forest Forcing Lemma)
Let g ∈ LG for some graph G = (V,E), and let T be any acyclic subgraph of G.
For every t ∈ LT , there exists a h ∈ [g], such that for all e ∈ E(T ) : h(e) = t(e).
If the acyclic subgraph T is a spanning subgraph of G, then there is exactly one
such h.

We shall now extend the embedding problem for graphs in a natural way to
switching classes:

g ↪→ [h] if there exists a h′ ∈ [h] such that g ↪→ h′ .

Obviously, g ↪→ [h] if and only if gσ ↪→ [h].
The Forest Forcing Lemma has the following consequence for the embedding

of acyclic 0,1-graphs:

Corollary 2.4
For every acyclic graph T , and every t ∈ LT , t can be embedded in any g which
has a (non-induced) subgraph isomorphic to T .

In other words, if the query graph is acyclic, the labels do not matter. The
fact that it seems easier to embed structures with few cycles, indeed holds true
as we shall show in the next section.

3 An efficient embedding algorithm for 0,1-graphs

In this section we show how to derive a rather efficient algorithm on 0,1-graphs
which decides g ↪→ [h] for the case that h is a total 0,1-graph. In addition to the
Cyclic Sum Invariance and the Forest Forcing Lemma, the result is based on two
more ingredients: the first of these is the following graph theoretical argument
which shows that if we consider graphs that do not have any isolated vertex or
leaves, and every chain has bounded length, then the number of vertices in the
graph can be bounded by a constant multiple of the cycle rank of the graph.
The cycle rank of a graph G is defined as the size of its cycle base, and equals
e − n + k, where n = |V (G)|, e = |E(G)| and k is the number of connected
components of G (see Harary [10] for more details).

Lemma 3.1
Let G = (V,E) be a connected graph without leaves and at least one dense
vertex. If every maximal chain in G has at most c > 0 chain vertices, then
|V (G)| ≤ 2cξ, where ξ is the cycle rank of G.
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Proof: We first make an estimation for graphs which only contain dense ver-
tices. Note that in this case we can choose c = 1. Then, by the handshaking
lemma of graph theory, 2e =

∑
v∈V dG(v) ≥ 3n, since dG(v) ≥ 3 for all v. Hence

ξ = e− n+ 1 ≥ 3n/2− n+ 1 = n/2 + 1, so that n ≤ 2ξ as required. Now, any
edge between two dense vertices can be replaced by a chain of a most c chain
vertices, which adds to n and e in equal amounts, so that n ≤ 2cξ. Additionally,
we may introduce chains between two such dense vertices, increasing n with at
most c, and ξ by one, which keeps the invariant intact.

Before making use of the previous lemma, we have to prove that if we con-
sider the underlying graph of a certain 0,1-graph and find chains of at least
a certain length, that we can replace these by shorter ones. In the case of
0,1-graph this ’certain’ length turns out to be 5.

Lemma 3.2
Let g be a 0,1-graph on the domain {0, 1, . . . , 5} such that the path (0, 1, . . . , 5)
is zero-labelled. Then whatever the labels on the other edges in g, there is
always a 0-summing path of length 3 from 0 to 5.

Proof: Consider the following graph b, where a solid line indicates a label 0,
and all other edges are labelled by something thus far unknown.

5
1

0

2 3

4

Now, if b(0, 3) = 0, then b(0, 3, 4, 5) = 0. The same reasoning applies to
(2, 5). In the other cases, b(0, 3) = 1 = b(2, 5) and b(0, 3, 2, 5) = 0.

The above result also holds in the other direction:

Lemma 3.3
Let g be a 0,1-graph on the domain {0, 1, . . . , 5} such that the path (0, 1, 2, 3) is
zero-labelled. Then whatever the labels on the other edges in g, there is always
a 0-summing path of length 5 from 0 to 5.

Proof: We depend here on a computer program to try all cases.
Based on this we can show that bridging is a sound operation, in that it does

not change the ability to embed:

Lemma 3.4
Let g, g′ ∈ LG be 0,1-graphs which only differ in the following way: g has a 0-
labelled chain p = (u0, u1, u2, u3, u4, u5) which is part of a cycle in G, where g′

has a 0-labelled chain (u0, u1, u2, u5), and u3 and u4 are isolated vertices. Then
g embeds in [h] if and only if g′ embeds in [h], where h is a total 0,1-graph.
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Proof: Let h1 ∈ [h] be such that it has a subgraph isomorphic to g. We show
that there is a switch of h1 which has a subgraph isomorphic to g′. Consider the
vertices V = {v0, . . . , v5} in h1 corresponding to U = {u0, . . . , u5}. Lemma 3.2
says that whatever h1 is like, the subgraph h1|V has at least one path p′ =
(v0, x, y, v5) which sums to 0. Then g′ is isomorphic to a subgraph of hσ1 by
switching an appropriate σ ⊆ {x, y} to turn the non-zero values from p′ in h1

into actual zeroes. Such a switch however does not endanger the embedding of
g′ into hσ1 , because x and y are the images of chain vertices in g′, and because
of the Cyclic Sum Invariance it is guaranteed not to harm the sums along any
of the cycles, including the one of which the path p′ is a part. The vertices u3

and u4 can simply be mapped to the two still unused vertices in V .
The same reasoning can be applied in the reverse direction, this time using

Lemma 3.3.
It is worth noting that we have two degrees of freedom here: we can take

another switch to embed in, and we can change our embedding. We did both
in this case.

Lemma 3.5
Let g ∈ LG and let ξ be the cycle rank of g. Then, there exists a g′ embedding
equivalent with g such that ni(g′) ≤ 6ξ, where ni(g′) is the number of non-
isolated vertices of g′.

Proof: Remove first from g all cut edges and then use repeatedly switching
and Lemma 3.4 as many times as possible to change g to g′. A switching is
performed to force paths of 6 vertices to be 0-labelled, and then Lemma 3.4
is applied to the result. Then g′ has no vertices of degree 1, and every edge
belongs to a cycle. Moreover, in g′ no chain has more than 3 chain vertices.

Now we can apply Lemma 3.1 to each of the components of the graph (the
cycle rank of a disconnected graph equals the sum of the cycle rank of its com-
ponents) to obtain the given bound for the number of chain and dense vertices.
We omit in this reasoning components which are simple cycles: connected graphs
which have only chain vertices. These, however, can all be reduced to cycles of
length at most six, again using Lemma 3.4, after turning all, except maybe one,
label into zero by an appropriate switch.

Finally, we can formulate a bound on the time complexity of the embedding
problem for Z2 as follows:

Theorem 3.6
Let g, h be 0,1-graphs with h a total one, n = |V (h)| and ξ is the cycle rank of
the underlying graph of g. It can be decided in O(n6ξ+2) time whether g ↪→ [h].

Proof: After checking that |V (g)| ≤ n, we can find an embedding equivalent g′

such that ni(g′) ≤ 6ξ through Lemma 3.5. Now, we actually remove the isolated
vertices from g′. The number of possible injections from g′ into h is bounded
by n6ξ, for each of which we have to do at most O(n2) work to see if under
the injection, we can switch h so that it contains g′ (using the results of [8]).
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The preprocessing of g, which consists of removing leaves, isolated vertices and
shortening chains, can easily be done in time O(n2).

The above result has obvious links with the basic idea behind treewidth [1],
which is a well-known measure of graphs. Essentially, many graph theoretic
NP-complete problems are feasible for graphs of bounded treewidth. The same
is shown here for the embedding problem of switching classes with query graph
of bounded cycle rank.

A difference with our situation is that, because we deal with switching
classes, which gives us an added flexibility, the measure itself, which is the
cycle rank, is a much easier notion than that of treewidth. Moreover, the cycle
rank of a graph is easy to compute efficiently, something which is not the case
for treewidth. On the down side of course, the use of the cycle rank measure is
restricted to the embedding problem for switching classes (at least, as far as we
can tell).

4 Switching classes of graphs with skew gains

In this section, we introduce the general model for switching classes based on
the axioms listed in the introduction. It generalizes the model from the first
part of this paper in that the labels are now taken from an arbitrary group, and
the label on the edge from vertex u to vertex v, is related to the label on the
edge from v to u by an anti-involution, i.e. anti-automorphism, of order at most
two. This, instead of simply being identical.

For a group Γ we denote its identity element by 1Γ. Let Γ be a group. A
function δ : Γ → Γ is an anti-involution, if it is an anti-automorphism of order
at most two, that is, δ is a bijection and for all x, y ∈ Γ, δ(xy) = δ(y)δ(x) and
δ2(x) = x. We write (Γ, δ) for a group Γ with a given anti-involution δ.

Since our underlying graphs now become directed graphs to allow different
labels between two vertices depending on the direction of the edge, we redefine
E2(V ) = {(u, v) | u, v ∈ V, u 6= v}, the set of nonreflexive, directed edges over
V . We continue to write uv for the edge (u, v), but in this and later sections
uv 6= vu. For an edge e = uv, the reverse of e is e−1 = vu.

We consider graphs G = (V,E) where the set of edges E ⊆ E2(V ) satisfies
the following symmetry condition:

if e ∈ E then also e−1 ∈ E.

Such graphs can be viewed as undirected graphs where the edges have been
given a two-way orientation.

Let G = (V,E) be a graph and (Γ, δ) a group with anti-involution. A pair
(G, g) where g is a mapping g : E → (Γ, δ) into the group Γ is called a (Γ, δ)-gain
graph (on G) (or a graph with skew gains or a skew gain graph), if g satisfies the
following reversibility condition

g(e−1) = δ(g(e)) for all e ∈ E . (2)
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Figure 2: Two elements of LG(Z4, id)

In the future we will refer to a skew gain graph (G, g) simply by g unless confu-
sion arises. We adopt in a natural way some of the terminology of graph theory
for graphs with skew gains. For instance, every path in G is also a path in g,
and we can use E(g) to denote the set of edges of the underlying graph G.

The class of (Γ, δ)-gain graphs on G will be denoted by LG(Γ, δ) or simply
by LG. More importantly, L(Γ, δ) =

⋃
{LG(Γ, δ) | G is a graph }. A gain graph

is a (Γ,−1)-gain graph; these are also called inversive skew gain graphs.
The notion of b-summing path extends naturally to arbitrary groups: a path

p = (v1, . . . , vk) is a b-summing path for some b ∈ Γ if g(v1v2)·g(v2v3) · · · g(vk−1vk)
equals b. (We often denote this fact by writing g(p) = b.) In other words, eval-
uating the product of values found along p using the group operation · of Γ
evaluates to the group element b.

Furthermore, let g ∈ LG(Γ, δ). A set X ⊂ V (G) is an a-clique if for all
x, y ∈ X: x 6= y implies g(x, y) = a. Also, for X,Y ⊆ V (G), X is said to be
a-connected to Y , if X ∩ Y = ∅ and g(x, y) = a for all x ∈ X, y ∈ Y .

A function σ : V → Γ is called a selector. For each selector σ we associate
with g a (Γ, δ)-gain graph gσ on G = (V,E) by letting, for each uv ∈ E,

gσ(uv) = σ(u)g(uv)δ(σ(v)) . (3)

Example 4.1
To illustrate switching, consider g1 and g2, the (Z4, id)-gain graphs of Fig-

ure 2(a) and (b) respectively (the group Z4 is the group of addition modulo 4;
the anti-involution is the identity function giving rise to a symmetric graph).
The second of these, g2, can be obtained from g1 by applying the selector σ that
maps both 1 and 3 to 3, and both 2 and 4 to 1. For example, the label of the
edge (1, 3) is computed as follows: g2(1, 3) = gσ1 (1, 3) = σ(1)g1(1, 3)δ(σ(3)) =
3+1+ δ(3) = 3+1+3 = 3, where + is addition modulo 4. The path (1, 2, 3, 4)
is a 0-path in both g1 and g2. The cycle c = (1, 3, 4, 1) is 3-summing in g1 (here
λ(c) equals (1, 0, 2)) and 1-summing in g2 (here λ(c) equals (3, 0, 2)).

Note that this is an example where the Cyclic Sum Invariance fails. The
reason is that the anti-involution is not the group inversion in this case. There-
fore we shall later consider only abelian groups with anti-involution equal to the
group inversion.

12



The class [g] ⊆ LG(Γ, δ) defined by

[g] = {gσ | σ : V → Γ}

is called the switching class generated by g.
It is not difficult to prove that a switching class is an equivalence class of

skew gain graphs. The underlying equivalence relation on LG(Γ, δ) is that for
g, g′ ∈ LG(Γ, δ)

g ≡ g′ if and only if ∃σ : V (G) → Γ such that g′ = gσ. (4)

Obviously g ≡ g and if g1 ≡ g2 then also g2 ≡ g1, because gσ1 = g2 if and only
if g1 = gσ

−1

2 , where the σ−1 is such that σ−1(v) = σ(v)−1 for all v ∈ V .
Closure under composition of selectors is something that we would expect

in our model: it is a consequence of Axiom A1 of the introduction. If we define
the composition of two selectors σ and τ to be στ(v) = σ(v)τ(v), then we can
prove that for each g ∈ LG(Γ, δ) and selectors σ, τ , gστ = (gτ )σ.

Indeed, let uv ∈ E(G). Then

(gτ )σ(uv) = σ(u)τ(u)g(uv)δ(τ(v))δ(σ(v))
= σ(u)τ(u)g(uv)δ(σ(v)τ(v))
= (στ)(u)g(uv)δ((στ)(v)) = gστ (uv) .

If the group Γ is the cyclic group of order 2, Z2, then by necessity the
anti-involution is the identity function and the skew gain graphs are exactly
the 0,1-graphs of the first part of the paper. Directed graphs are obtained by
choosing Γ = Z4 and we take the anti-involution δ to be the group inversion.

5 The general approach

As we hinted in the first part of the paper, we now introduce a general framework
in which operations like bridging (in the sense of Lemma 3.4) and switching can
be modelled as operations which preserve the ability to embed.

In the following let Γ be a fixed, but arbitrary abelian group and δ a fixed,
but arbitrary anti-involution of Γ.

Let g ∈ LG(Γ, δ) and h ∈ LH(Γ, δ) be skew gain graphs. An injection

ψ : V (G) → V (H) embeds g into h, denoted by g
ψ
↪→ h, if

g(uv) = h(ψ(u)ψ(v)) for all uv ∈ E(G).

If we do not care what ψ is, we write g ↪→ h instead. Note that in some
definitions of embedding there is also an injection on the labels, but since our
application attaches meaning to the labels, we do not allow that here.

The embedding ψ is an isomorphism from g to h if g
ψ
↪→ h and h

ψ−1

↪→ g. We

denote this fact by g
ψ∼= h, or, equivalently, h

ψ−1

∼= g.

13



The definition of embedding can be extended to switching classes in a natural
way:

g ↪→ [h] if and only if there exists h′ ∈ [h] such that g ↪→ h′.

In this and the following sections, the central problem is to decide whether the
query skew gain graph g ∈ LG(Γ, δ) can be embedded in a switch of the target
skew gain graph h ∈ LH(Γ, δ).

We assume for the remainder of the paper that the target skew gain graph
is total, meaning that H = (V,E2(V )) for some set of vertices V .

We now come to the definitions central to this paper. We are interested in
establishing for a certain query graph g into which other skew gain graph g′

it may be transformed so that the ability of embedding g into h is preserved
and reflected into g′. More formally, we define R(Γ,δ) as the set of embedding
equivalent pairs (g, g′) ∈ L(Γ, δ)× L(Γ, δ) such that

∀h : g ↪→ [h] ⇐⇒ g′ ↪→ [h].

Note that in our definition we have left the embedding itself unspecified, meaning
that in general we do not care whether g and g′ are embedded “in the same
place”. It also implies that g and g′ may have different underlying graphs.

Although we have just defined the largest possible (equivalence) relation
relating skew gain graphs from L(Γ, δ) to each other, it does not give us any
concrete information which pairs are actually in the relation for a given group
and anti-involution. In the remainder of this paper we shall establish a number
of results which either show that some pairs are definitely in this relation, or
that some pairs can never be.

Let R be any equivalence relation on L(Γ, δ). R is an embedding invariant
relation (emir) if (g, g′) ∈ R implies (g, g′) ∈ R(Γ,δ).

We now give some examples of emirs that occur in the literature. The
following easy lemma shows that for embedding the identities of the vertices of
the query graph are unimportant.

Lemma 5.1
For two isomorphic (Γ, δ)-gain graphs g and g′ (with isomorphism φ from g to

g′): if g
ψ
↪→ h, then g′

ψ·φ−1

↪→ h.

The second example, one that we already glanced at for the case of 0,1-
graphs, is that embedding a query graph g is the same as embedding one of its
switches:

Lemma 5.2
If g

ψ
↪→ [h], then also gσ

ψ
↪→ [h] for any selector σ : V (g) → Γ.

Note that Lemma 5.1 implies the existence of an emir RIR: (g, g′) ∈ RIR if
and only if g ∼= g′. Lemma 5.2 shows that ≡ as defined in (4) is also an emir.

We shall now give a slightly more complicated example.
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Define RDCR such that (g, g′) ∈ RDCR if g′ can be obtained from g by
removing any number of cut edges of g. The symmetric closure of this relation,
RCR, is an equivalence relation on (Γ, δ)-gain graphs. So any two g and g′ are
related if and only if they have exactly the same cycles and the same domain.
The Forest Forcing Lemma extended to arbitrary switching classes proves that
this relation is in fact an emir (see for instance [9]). Note that by removing
edges we do not change the size of the domain of the (Γ, δ)-gain graph; this is
necessary for establishing embedding invariance.

To combine two emirs into one we can use the join operation: for two emirs
R and R′ on (Γ, δ), the join of R and R′, denoted by R ∨ R′, is the smallest
equivalence relation including both R and R′.

Lemma 5.3
If R and R′ are emirs, then the join of R and R′ is an emir.

The join can be used to combine various emirs into a larger one. For instance,
joining an emir such as RDCR with RIR yields an emir that “incorporates”
removing cut edges and taking isomorphisms. In such a way we can define
various emirs and compose these to come as close as possible to the largest of
emirs, R(Γ,δ).

6 The general approach to bridging

In Section 3 we considered the possibilities for bridging in Z2 and its con-
sequences. In this section define bridging more generally, followed by some
general results. We follow up in later sections by considering the case of the
group Z3, and give some limits of possibility results, which show in which cases
bridging are not possible at all.

In the case of Z3 we can use the same approach as in Section 3 to obtain an
efficient algorithm for embedding (although the constant in the exponent will
be a somewhat larger).

In this and the coming sections we assume that the group Γ is abelian and
that the anti-involution δ is the group inversion −1; we will denote the identity of
the group simply by 0. This is necessary since the bridging operation depends
on the Cyclic Sum Invariance and the Forest Forcing Lemma. We refer the
reader to the formulation in Section 2, which hold as formulated there also for
arbitrary abelian groups with the anti-involution set to the group inversion.

Let g, g′ ∈ L(Γ, δ) be such that g contains a 0-chain p = (x0, . . . , xk). Then,
for integers k and ` with k ≥ `, g′ is a (k, `)-bridging of g, denoted gBk` g

′, if g′

is a (Γ, δ)-gain graph on V (g) with

E(g′) = (E(g)− E(p)) ∪ E(p′) for p′ = (x0, . . . , x`−1, xk)

and

g′(e) =
{
g(e), if e ∈ E(g)− E(p)
0, otherwise
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We additionally define Bk` to be equal to (B`k)
−1 for k ≤ `.

For the following two (Γ, δ)-gain graphs g (left) and g′ (right) it holds that
gB5

3g
′. In this case p = (x0, . . . , x5):

x6
0

0
0 0

0

0

0 0

x0

x1 x2 x3 x4 x5

x6

x7

x1

x7

x2

x3 x4

R5
3

x0

x5

Note that we can assume that the chain is labelled with zeroes, since if it
does not we can always switch it so that it does.

In what follows we are interested in determining for which groups we can
always (i.e., for any (Γ, δ)-gain graph g ∈ L(Γ, δ)) change chains of length k to
chains of length `. For this we introduce the following relation RΓ ⊆ N ×N,
where (k, `) ∈ RΓ if and only if Bk` is an emir on L(Γ, δ). Obviously, for any
group Γ it holds that (k, k) ∈ RΓ where k > 0.

The following lemma couples the concept of bridging to something we can
more easily verify. Implicitly we allow the embedding only to be changed on the
chain vertices that occur on the bridge.

A (Γ, δ)-gain graph on {0, . . . , n} for some n is an (n, k)-bridge structure if
it has a 0-path (0, . . . , k).

The following lemma shows that to decide whether we can reduce chains of
length k to `, we can look at total skew gain graphs which have a 0-labelled
path (0, . . . , k) and show that whatever labels are on the other edges, we can
always find a 0-summing path from 0 to k of length `. It is essentially a more
general version of Lemma 3.4.

Lemma 6.1
Let k and ` be natural numbers, and let n = max(k, `). It holds that (k, `) ∈ RΓ

if and only if for every (n, k)-bridge structure b there is a 0-summing path p in
b of length ` from 0 to k.

Proof: By definition (k, `) ∈ RΓ if and only if for all gBk` g
′, for all h, g ↪→ [h]

if and only if g′ ↪→ [h].
For the if-part the proof is a repeat of that of Lemma 3.4 which shows the

validity of replacing a path of length k in g by one of length ` without changing
the ability to embed.

The only-if-part follows from the fact that if we cannot replace the path
of length n by a path of the same sum of length k, then we change the cyclic
sum along at least one cycle, which contradicts the Cyclic Sum Invariance. It is
possible that changing the embedding completely compensates this fact in some
cases, but this cannot work uniformly.
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Theorem 6.2
For natural numbers k1 > 1 and k2 > 2: (k1, 1) /∈ RΓ and (k2, 2) /∈ RΓ, if Γ is
not the trivial group, {0}.

Proof: Let a ∈ Γ with a 6= 0. Let g2 be a (Γ, δ)-gain graph on {0, . . . , k2}
such that for 1 ≤ i ≤ k2 − 1, g2(0, i) = 0, g2(i, k2) = a. Hence for all i,
g2(0, i, k2) = a 6= 0. The same kind of reasoning can be applied to the other
case.

Example 6.3
If we know that (5, 3) ∈ RΓ, then it is easy to see that (k, k − (5 − 3)) =
(k, k− 2) ∈ RΓ as long as k− 2 ≥ 3: if g contains a chain of length greater than
5, then we can take any part of this chain of length 5 and reduce it to 3 and
thereby reduce the length of the entire chain from k to k − 2. We can repeat
this process until the chain is not sufficiently long anymore. We conclude that
if we prove that (5, 3) ∈ RΓ then (k, k − 2) ∈ RΓ for k ≥ 5 and even (k, k − 2`)
for k − 2` ≥ 3. Using similar reasoning we conclude that (3, 5) ∈ RΓ implies
that (k, k + 2`) for k ≥ 3. �

In general we have

Lemma 6.4
If (k1, `1) ∈ RΓ then (k2, `2) ∈ RΓ where `2 = k2 − (k1 − `1)m, m ≥ 1 and
`2 ≥ `1.

If Γ = Γ1 × Γ2 then (k, `) ∈ RΓ implies (k, `) ∈ RΓi
(i = 1, 2), but not

vice versa, not even if Γ1 = Γ2 (see Theorem 8.1). The positive result is easy,
because the identity of Γ maps to the identities of the direct factors. Hence the
0-summing paths stay 0-summing in the projection. The following result says
that if a bridging is not possible for a given group, it automatically precludes
bridging in groups of which it is a direct factor.

Lemma 6.5
If Γ is a group such that (k, `) /∈ RΓ, then this also holds for all groups of which
Γ is a direct factor.

In terms of the notation just introduced we have the following result for Z2,
which is in fact a restatement of Lemma 3.3.

Lemma 6.6
(5, 3) ∈ RZ2

We can go even further and show that this is the best bridging possible for
Z2.

Lemma 6.7
(k, `) /∈ RZ2

if k and ` are of opposite parity.
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Proof: Let k and ` be of opposite parity. We may assume `, k ≥ 3, because of
Theorem 6.2.

Let n = max(k, `), b be a (n, k)-bridge structure and V = V (b). By
Lemma 6.1, we only need to exhibit one such structure which has no path
of length ` from 0 to k which sums to 0. For that, choose b such that the sets
K ⊆ V and V −K are 0-connected 1-cliques. Here, K = {x | 0 ≤ x ≤ k, x even}.
Note that there is a 0-path (0, 1, . . . , k).

We are interested in paths of length ` which go from 0 to k and sum to 0.
If k is even, then ` is odd, and the path is one that starts in K and ends in K.
Since we must switch from K to V −K an even number of times, we traverse
an odd number of edges within either K and V − K. Since these edges each
contribute 1 to the sum, and they are the only edges which contribute, the sum
along the path equals 1. If k is odd and hence the path starts in K and ends in
V −K similar reasoning leads to a sum of 1.

Theorem 6.2 and Lemmas 6.4, 6.6 and 6.7 lead to the following.

Corollary 6.8
If k ≥ ` > 2 then (k, `) ∈ RZ2

if and only if k and ` have the same parity. Also,
(k, `) ∈ RZ2

for 1 ≤ ` ≤ 2 if and only if k = `.

7 Bridging in Z3

For Z3, it turns out that there is a result similar to the one for Z2, which as a
result allows us to find an optimized embedding algorithm for what might be
called 0, 1, 2-graphs (of a kind). Again, the embedding problem is restricted to
embedding in total 0, 1, 2-graphs.

The following result was quite a surprise.

Lemma 7.1
(6, 4) ∈ RZ3

and (6, 5) ∈ RZ3
, but (5, 4) /∈ RZ3

.

Proof: The positive results have been obtained by a computer check of all
paths of length 4 and 5, respectively, from 0 to 6 in a (6, 6)-bridge structure.

The counterexample for (5, 4) is given in the following figure, where the solid
edges are labelled with 0 and the dashed edges (in the direction of the arrow)
with 1. The reader may verify that indeed no path from 0 to 5 of length 4 sums
to 0. Therefore Lemma 6.1 gives the claim.

2

0

3

5

1 4

In other words, in general the best we can do is to shorten chains to a length
of 5 which yields the following result
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Theorem 7.2 Let g, h ∈ L(Z3,
−1) with h total, n = |V (h)| and ξ is the cycle

rank of the underlying graph of g. It can be decided in O(n10ξ+2) time whether
g ↪→ [h].

Proof: Analogous to the approach of Theorem 3.6, this time however the
bound is somewhat higher, because at worst, we have c = 5 in Lemma 3.1.

8 Impossibility results

In the first part of this section we are interested in determining, given a natural
number `, for which finitely generated abelian group Γ1 it holds for every k > `,
that (k, `) /∈ RΓ. In Theorem 6.2 we found two such examples, ` = 1 and ` = 2,
in which case impossibility was obtained for all groups. Since we have already
treated the cases for ` ≤ 2, we assume ` ≥ 3, and hence k > 3. From Lemma 6.5
and the Fundamental Result On Finitely Generated Abelian Groups, it follows
that we can restrict ourselves to solving this question for the cyclic groups (of
order a prime power) and Z.

Since we are interested in proving the impossibility of bridging, we have to
show that we can always find (k, k)-bridging structures in which there is no
0-summing path of length ` from 0 to k.

First we investigate which edges in the bridge structures must be labelled
with a non-identity element. These are exactly the edges that are on a path of
length ` from 0 to k which traverse only edges on the path (0, . . . , k), except
for one edge which has an undetermined label. We observe that these edges are
those of the form

(i, i+ (k − `+ 1)), i = 0, . . . , `− 1. (5)

We shall next prove that the only bridging (k, 3) for k > 3 occurs if the
group is trivial or the group is Z2. The main technique used here is to generate
a family of skew gain graphs, depending on k, which contains a large 0-clique X,
and only relatively few other edges. Parts of the paths in X contribute nothing
to the sum along a path, so only the values on the other edges really matter.
To simplify the proof, any vertex outside X is connected in a uniform way to
all vertices in X and (by reversibility) the other way around. In 2-structures
jargon, such a set X is called a clan (see [5]). The next theorem is a typical
example of this kind and can be viewed as an illustration of the proof technique.

Theorem 8.1
If for k > 3, (k, 3) ∈ RΓ for a finitely generated abelian group, then Γ is either
Z2 or the trivial group.

Proof: Like in Lemma 6.2 the idea is to find a (k, k)-bridge structure which
does not exhibit a 0-summing path of length ` = 3 from 0 to k. Because

1We continue to insist that the anti-involution is the group inversion; bridging can only be
applied if that is the case, anyway.
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of Lemma 6.5 and the Fundamental Theorem On Finitely Generated Abelian
Groups, we start by considering the cyclic groups of order larger than two and
the group Z of integer addition.

Consider the following graph in which all edges whose value is as yet unknown
are labelled with a variable label ai for some i, and the vertex X represents a
0-clique on k − ` vertices.

0

0
0

0

0 a1

a2

a0

a4X
k

k − 1k − 2

a3

By (5), a0, a1 and a2 should be labelled by values different from 0. It is easily
seen that also a4 6= 0 (for paths through X). We also find that a0 6= −a4,
because of the path (0, k − 2, x, k) where x ∈ X. In fact if we set a3 = 0, a0, a2

and a4 to the generator of the group, 1, and a1 to −1 there is no path of length
` = 3 which sums to 0. It is important to note that since the group has order
at least three, 1 6= −1.

Since a (k, 3) bridging existed for Z2, we should also show that such a
bridging is not possible for Z2 × Z2. Taking the same graph as our starting
point, we choose a3 the identity (0, 0) and set a0 = a1 = a2 = (0, 1) and
a4 = (1, 0). Again, the reader can verify (there are only a finite number of
cases), that no path of length 3 from 0 to k sums to (0, 0).

In the second part of this section, we turn the question around. Bridgings,
say from n to k, are discovered by taking a group, generating all (n, n)-bridge
structures and verifying for each that there is a 0-summing path from 0 to n
of length k. For large groups there are many such structures, so it would be
interesting to know which groups we can omit from our search. The following
results give a large part of the answer, capturing the intuition that the larger
the group, the more likely are we to encounter an (n, n)-bridge structure which
does not have the property we are looking for.

Lemma 8.2
For any given n, (n, k) /∈ RΓ for all k < n for all groups Γ = Zp1 × . . .× Zpn−1 ,
where each pi ≥ 2.

Proof: Consider any combination n, k with k < n, and Γ as defined in the the-
orem. Let g be (n, n)-bridge structure with the following additional properties:
for every vertex u, we define the labels on the edges to all vertices v > u + 1
uniformly: g(uv) = (0, . . . , 0, 1, 0, . . . , 0), where the only non-zero element is in
the u position, and in fact equal to the generator 1 of the group Zpu

. Because
we only look at the case that the anti-involution is the group inversion, we have
g(vu) = −g(uv).

Consider now any path p of length k < n, leading from 0 to n. Since k < n,
we must traverse at least one edge uv of which the endpoints are not neighbours
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on the path (0, 1, . . . , n). In fact, we assume that uv is the earliest such pair,
meaning that p is of the form p = (0, 1, ..., u, v) for some u ≥ 0 and v > u + 1.
We know that u < v, so that to the sum along p, the value (0, . . . , 0, 1, 0 . . . , 0)
is added (the 1 in the uth position). However, since we have now both arrived
in u and left it again, we may never return, since otherwise p is not a valid path.
But this means that the uth component of the sum along p will continue to be
non-zero, since the only edge label which may cancel it is the label on the edges
going into u from vertices v > u+ 1.

Lemma 8.3 For all n, (n, k) /∈ RΓ where Γ = Z, the group of integers under
addition.

Proof: Similar to the previous proof, now taking the labels from u to v > u+1
equal to 2u (and −2u for the reverse edge). The independence between the
various values in the sum comes from the fact that we use different powers of
two, which in fact simulates the use of tuples of the previous lemma.

Lemma 6.5, Lemma 8.2, Lemma 8.3, and the Fundamental Theorem On
Finitely Generated Abelian Groups give the following:

Corollary 8.4
Let n be a fixed natural number. For every group Γ that has at least n − 1

non-trivial direct factors, it holds that (n, k) /∈ RΓ for all k < n.

The usefulness of these results is that they limit the number of finitely gen-
erated abelian groups we have to look at, when we take a certain fixed value n,
and are interested in finding a bridging (n, k) for some k. Our current set-up is
to simply generate all (n, n)-bridge structures and show that each of them has
a 0-summing path of length k. Hence, this saves us from looking for a long time
in a number of certifiably wrong places.

A little bit more thought allows us to derive the following improved result:

Theorem 8.5
For every group Γ that has at least k non-trivial direct factors, it holds that

(n, k) /∈ RΓ for all n > k.

Proof: The proof is very similar to that of Lemma 8.2, except that edges
outgoing from i to j > i + 1 are labelled with 0 if i ≥ k. In other words, only
the vertices 0 to k − 1 actually have non-zero elements on the edges to their
successors. The reason why the result continues to hold, is that we can be sure
that the first non-zero edge uv (from the proof of Lemma 8.2) leaves a vertex
in {0, . . . , k − 1}. And that edge is all we need to obtain a non-zero sum.

By Corollary 8.4 and Theorem 8.5 we obtain the following.

Theorem 8.6
Let Γ be a group with p (non-trivial) direct factors in its decomposition (ac-
cording to the Fundamental Theorem Of Finitely Generated Abelian Groups).
Then (n, k) /∈ RΓ for all n > k, n ≥ p and k > p− 1.

As a result, for every group we only have to check a finitely number of
combinations for n and k.
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9 Conclusions and future work

Taking the model of Ehrenfeucht and Rozenberg as our starting point, we have
considered the embedding problem in detail. We have set up a framework to
establish results about reducing query skew gain graphs to smaller ones and
proved some general results in this matter. Then we concentrated on bridging,
which, for Z2 and Z3 at least, results in an algorithm for the embedding problem
which is dominated not by the size of the query graph, but by its cycle rank,
corresponding to the general intuition in switching classes that cycles make
life harder. The measure we need for switching classes is rather straightfor-
ward, compared to measures like cliquewidth and treewidth which are in use for
graphs. On the other hand, we have only investigated the embedding problem,
and not other infeasible problems for switching classes. This is certainly an area
worthy of investigation.

We have not completed a full investigation of all possible bridgings for all
possible finitely generated abelian groups, although we have the full picture for
Z2 and Z3 and many cases in which bridging is certainly not possible. Note by
the way, that bridging is just one possible reduction strategy and others might
exist. In that sense, the research in this area is still very much open, especially
for non-abelian groups or abelian groups with arbitrary anti-involutions where
bridging is not even an option.

A different way of approaching the problem, is to investigate embedding
preservation and not embedding invariance. In that case we look for pairs (g, g′)
such that g′ ↪→ [h] implies g ↪→ [h], but not necessarily vice versa. Another
aspect is that in all the cases described above, we can also reconstruct the
embedding for the larger structure from the embedding for the smaller structure.
Maybe if all we want to know is whether embedding is possible, but not where
exactly, we may get more possibilities for optimization.
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