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Program Transformation with Scoped Dynamic Rewrite Rules

Martin Bravenboer, Arthur van Dam, Karina Olmos and Eelco Visser

Abstract. The applicability of term rewriting to program transformation is limited by the lack of
control over rule application and by the context-free nature of rewrite rules. The first problem is
addressed by languages supporting user-definable rewriting strategies. The second problem is ad-
dressed by the extension of rewriting strategies with scoped dynamic rewrite rules. Dynamic rules
are defined at run-time and can access variables available from their definition context. Rules defined
within a rule scope are automatically retracted at the end of that scope. In this paper, we explore
the design space of dynamic rules, and their application to transformation problems. The technique
is formally defined by extending the operational semantics underlying the program transformation
language Stratego, and illustrated by means of several program transformations in Stratego, includ-
ing constant propagation, bound variable renaming, dead code elimination, function inlining, and
function specialization.

1. Introduction

Program transformationis the mechanical manipulation of a program in order to improve it relative to
some cost functionC such thatC(P ) > C(tr(P )), i.e. the cost decreases as a result of applying the
transformation [30, 29, 11]. The cost of a program can be measured in different dimensions such as
performance, memory usage, understandability, flexibility, maintainability, portability, correctness, or
satisfaction of requirements. Related to these goals, program transformations are applied in different
settings; e.g. compiler optimizations improve performance [24] and refactoring tools aim at improving
understandability [28, 14]. While transformations can be achieved by manual manipulation of programs,
in general, the aim of program transformation is to increase programmer productivity byautomating
programming tasks, thus enabling programming at a higher-level of abstraction, and increasing main-
tainability and re-usability of programs. Automatic application of program transformations requires
their implementation in a programming language. In order to make the implementation of transforma-
tions productive such a programming language should support abstractions for the domain of program
transformation.

Address for correspondence: Department of Information and Computing Sciences, Universiteit Utrecht, P.O. Box 80089, 3508
TB Utrecht, The Netherlands.http://www.cs.uu.nl/~visser, visser@acm.org
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Term rewriting [35] is an attractive formalism for expressing basic program transformations. A
rewrite rulep1 → p2 expresses that a program fragment matching the left-hand side patternp1 can be
replaced by the instantiation of the right-hand side patternp2. For instance, the rewrite rule

|[ i + j ]| -> |[ k ]| where <add>(i ,j ) => k

expressesconstant foldingfor addition, i.e. replacing an addition of two constants by their sum. Simi-
larly, the rule

|[ if 0 then e1 else e2 ]| -> |[ e2 ]|

definesunreachable code eliminationby reducing a conditional statement to its right branch since the left
branch can never be executed. Thus, rewrite rules can directly express laws derived from the semantics
of the programming language, making the verification of their correctness straightforward. A correct
rule can be safely applied anywhere in a program. A set of rewrite rules can be directly operationalized
by rewriting to normal form, i.e. exhaustive application of the rules to a term representing a program. If
the rules are confluent and terminating, the order in which they are applied is irrelevant.

However, there are two problems associated with the application of standard term rewriting tech-
niques to program transformation: the need to intertwine rules and strategies in order to control the
application of rewrite rules and the context-free nature of rewrite rules.

Exhaustive Application of Rules Exhaustive application of all rules to the entire abstract syntax tree
of a program is not adequate for most transformation problems. The system of rewrite rules expressing
basic transformations is often non-confluent and/or non-terminating. An ad hoc solution that is often
used is to encode control over the application of rules into the rules themselves by introducing additional
function symbols. This intertwining of rules and strategies obscures the underlying program equalities,
incurs a programming penalty in the form of rules that define a traversal through the abstract syntax tree,
and disables the reuse of rules in different transformations.

The paradigm of programmable rewriting strategies solves the problem of control over the application
of rules while maintaining the separation of rules and strategies. A strategy is a little program that
makes a selection from the available rules and defines the order and position in the tree for applying
the rules. Thus rules remain pure, are not intertwined with the strategy, and can be reused in multiple
transformations. Support for strategies is provided by a number of transformation systems in various
forms. In TAMPR [5] a transformation is organized as a sequence of canonical forms. For each canonical
form a tree is normalized with respect to a subset of the rules in the specification. ELAN [4] provides
non-deterministic sequential strategies. Stratego [44, 38, 41] provides generic basic traversal operators
that can be used to compose a wide range of generic tree traversal schemas. See [42] for a survey of
strategies in rule-based program transformation systems.

Context-free Nature of Rewrite Rules The second problem of rewriting is the context-free nature of
rewrite rules. A rule has access only to the term it is transforming. However, transformation problems
are often context-sensitive. For example, when inlining a function at a call site, the call is replaced by
the body of the function in which the actual parameters have been substituted for the formal parameters.
This requires that the formal parameters and the body of the function are known at the call site, but
these are only available higher-up in the syntax tree. There are many similar problems in program
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transformation, including bound variable renaming, typechecking, data flow transformations such as
constant propagation, common-subexpression elimination, and dead code elimination. Although the
basic transformations in all these applications can be expressed by means of rewrite rules, these require
contextual information.

One solution to this problem is the use of contextual rules [3, 37, 44]. A contextual rule solves the
context problem by applying the transformation at the context level instead of at the location where the
actual transformation takes place. A context expressione [e’] matches or replaces an expressione’

occurring withine . For instance, the following contextual rule defines the inlining of a (unary) function
definition at a function call site:

UnfoldCall :
|[ let function f (x ) = e1 in e2 [f (e3 )] end ]| ->
|[ let function f (x ) = e1 in e2 [let var x := e3 in e1 end] end ]|

The rule is applied to an abstract syntax tree that contains both the function definition and its uses. Since
function calls can be nested deeply in the body of thelet expression, a local traversal is needed to find
them. When such a rule is applied as part of a complete traversal over a program, e.g., to perform inlining
for all function definitions, the extra local traversal leads to quadratic complexity.

To avoid this complexity, the more common solution to this problem is to extend the traversal over
the tree (be it hand-written or generic) such that it distributes the data needed by transformation rules.
For example, traversal functions in ASF+SDF [7] can be declared to have an accumulation parameter
in which data can be collected. Language independent definitions of operations such as bound vari-
able renaming in Stratego [38] capture a generic tree traversal schema that takes care of distributing an
environment through a tree.

The disadvantage of such solutions is that the rewriting nature of the solution is lost. Instead of
a rewrite rule performing a transformation, the traversal carries along a data structure that stores the
context information. The traversal code manages this data structure in order to add information at the
appropriate places and retrieve it in other places. For instance, an inlining algorithm needs to maintain
a table, mapping function names to their definitions. These data structures and operations are often
complicated by the fact that the context information is governed by the scope and the data flow of the
object program. Further complications arise when multiple kinds of context information need to be
carried along. Many variations of such data structures are used in transformation systems, e.g. symbol
tables in type checking, and hash tables in value numbering [24]. Representation of such data structures
as terms within term rewriting has the disadvantage of the suboptimal complexity of list manipulation
and inspection.

Dynamic Rules This article shows how context-sensitive rewriting can be achieved without the added
complexity of local traversals and without complex data structures, by the extension of rewriting strate-
gies with scoped dynamic rewrite rules. Dynamic rules are otherwise normal rewrite rules that are
defined at run-timeand thatinherit information from their definition context. As an example, consider
the following strategy definition as part of an inlining transformation:

DefineUnfoldCall =
?|[ function f (x ) = e1 ]|
; rules( UnfoldCall : |[ f (e2 ) ]| -> |[ let var x := e2 in e1 end ]| )
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The strategyDefineUnfoldCallmatches a function definition and defines the rewrite ruleUnfoldCall,
which rewrites a call to thespecificfunction f , as encountered in the definition, to alet expression
binding the formal parameterx to the actual parametere2 in the body of the functione1 . Note that the
variablesf , x , ande1 are boundin the definition contextof UnfoldCall. TheUnfoldCall rule thus
definedat the function definition site, can beusedat all function call sites. The storage and retrieval of
the context information is handled transparently by the underlying language implementation and is of no
concern to the programmer.

The concept of defining rules dynamically is enriched with a number of additional concepts:

• Multiple ruleswith the same name can be defined at the same time (e.g.UnfoldCall rules for
multiple functions).

• Rules can beredefined(e.g. a new definition ofUnfoldCall for a function after its definition has
been transformed).

• Rules can beundefined(e.g.UnfoldCall is undefined for recursive functions).

• Thescopein which a rule is applicable can be limited (e.g. a specific definition ofUnfoldCall can
only be used in that part of the abstract syntax tree in which the corresponding function definition
is in scope).

• Scope labelsprovide fine-grained control over the scope in which a rule is defined (e.g. the spe-
cializations of a function should be added to the scope of that function).

• Rules can be extended to rewrite to multiple right-hand sides (e.g. in partial evaluation a function
definition can be rewritten to multiple specializations).

• Rule sets can be forked and later joined again with intersection or union operations, which also
have fixed point variants. These operations can be used to model forking and joining in the data
flow of a program (e.g. after constant propagation in the branches of an if-then-else statement
the continuation of the statement should use the intersection of the propagation facts from the
branches).

These concepts are combined in a natural extension of the rewriting paradigm that does not require
transformation programmers to learn fundamentally new concepts. Dynamic rules are implemented in
an extension of the Stratego language where they provide a single high-level abstraction for dealing
with context information in a wide range of program transformations. Dynamic rules have already been
proven useful in a wide range of transformations, including: the substitution in bound variable renam-
ing [39]; the call replacement in function inlining [39]; the removal of declarations in dead code elimina-
tion [39]; the binding of variables in interpretation [12]; the representation of data flow facts in data flow
optimizations, e.g. the mapping from variables to their values in constant propagation [26, 27] or the
mapping from expressions to variables in common subexpression elimination; the specialization of func-
tions in partial evaluation; the representation of type assignments in typechecking; and the memoization
of instruction selections in code generation [9]. The language constructs have been carefully designed to
provide a natural fit in the rewriting setting, while at the same time making an efficient implementation
of the various operations possible, for instance, using hash tables for fast storage and retrieval of data.
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Contribution Dynamic rules provide a small and coherent language extension that captures many spe-
cialized data structures such as symbol tables and tables for the representation of data flow facts. This
high-level abstraction for program transformation is independent of any object language or kind of trans-
formation and supports concise specification of data flow and other transformations. This in turn enables
implementations of compilers and other transformation systems in significantly fewer lines of code, with
all the associated benefits for productivity, understandability, and maintainability. A particular contribu-
tion of the use of dynamic rules is the combination of program analysis and program transformation in a
single traversal, making it possible to achieve better results than with separate analysis and transforma-
tion stages, since the effects of transformations can be used in analysis immediately.

With respect to the earlier paper [39] that introduced dynamic rules by example, this article con-
tributes the following. New concepts are the extension of dynamic rules with multiple right-hand sides,
the application of dynamic rules only once, the scope labels that improve and generalize the earlier ‘over-
ride’ feature, and the intersection and union operators that model data flow splits in a transparent manner.
The syntax of the various operations has been simplified and made orthogonal. In addition, this article
presents a formal operational semantics of Stratego with dynamic rules. The implementation of dynamic
rules is described in the technical report version of this article [8]. Finally, we illustrate the various
concepts with actual Stratego code (possible due to the conciseness of the language) including several
as yet unpublished applications such as common subexpression elimination, dead code elimination, and
function specialization.

Outline We have aimed this article to be self contained. Therefore, the first two sections review the
basics of program transformation with rewriting strategies. Section 2 reviews the representation of pro-
grams as terms, the Tiger language that will be used in examples, term rewriting, and its use in program
transformation. Section 3 reviews the basics of rewriting strategies in Stratego and defines the syntax
and operational semantics of the language as basis for the definition of the extension with dynamic rules.

Sections 4 through 7 introduce the concepts of dynamic rules. Each section uses example transfor-
mations to motivate the concepts before giving a formal operational semantics. As a running example
an implementation of constant propagation is gradually extended. Section 4 starts with the definition of
dynamic rules, the shadowing of earlier definitions, and the undefinition of rules. These ideas are illus-
trated with constant propagation in basic blocks. Section 5 introduces constructs for the restriction of the
scope of dynamic rules and locally shadowing of earlier defined rules, which is illustrated with bound
variable renaming and inlining. Scopes are further refined with labels enabling definition or redefinition
of rules in earlier scopes. This is illustrated with intra-procedural constant propagation and dead func-
tion and variable declaration elimination. Section 6 extends dynamic rules with multiple right-hand sides
and limited application. This is illustrated with common subexpression elimination. Section 7 describes
the operations for intersection and union of rule sets to implement flow-sensitive data flow transforma-
tions. The operations are illustrated with flow-sensitive conditional constant propagation and dead code
elimination. Section 8 describes a strategy for online partial evaluation as a larger example.

Section 9 discusses related work and Section 10 concludes. Appendix A provides the definition of
free variables of a Stratego expression. The design of dynamic rules as described in this paper reflects
the implementation of dynamic rules in Stratego/XT version 0.14 [46].
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2. Program Transformation by Term Rewriting

In this section we review standard term rewriting and its application to program transformation, which
requires the representation of programs, or rather their abstract syntax trees, as terms. Throughout this
paper we use Tiger, the example language in the compiler construction textbook of Appel [2], to illustrate
all aspects of program transformation with rewriting strategies and dynamic rules. Therefore, we start
with a brief overview of Tiger.

2.1. The Tiger Language

Tiger is an imperative, first-order language with nested functions. Figure 1 presents the syntax of Tiger
programs in BNF1. In Tiger, data is composed using arrays and records from integers and strings, but in
this paper we ignore arrays and records. Integer values are processed using the standard built-in arith-
metic and relational operators. Boolean values are represented by integers as in C, thus0 represents false
and all other integers represent true. Control flow is determined using theif-then-else, if-then,
while andfor constructs. As an inheritance from functional languages, there is no syntactic distinc-
tion between expressions (yielding a value) and statements (producing a side effect). This entails that
assignments and loops can be used within ‘expressions’ using the sequence construct. A sequence of
expressions(e1;...;en) corresponds to the sequential composition of the expressionse1 to en. When
used as an ‘expression’, the last expression of the sequence must produce a value. Thus,x := a + (y
:= x + 1; y) is a valid assignment statement. Variables and functions in Tiger are introduced in the
let construct. A variable or function is visible in all subsequent declarations and in the body of thelet.
Function definitions can be nested and can refer to all functions and variables in scope. The program in
Figure 2 illustrates the essential aspects of the language.

Subsets of Tiger To avoid complexity that is not relevant for explaining a feature of the transformation
language, many of the presented transformations are restricted to a specific subset of the Tiger language.
We distinguishbasic blocks, function bodies, and programs withpure expressions. A basic blockis a
sequence of simple statements without control flow, i.e. an expression of the form(x1 := e1; ...;
xn := en). An example basic block is(x := a + b + 42; y := x + y; a := x + 3). Intra-
proceduraltransformations work on function bodies with local variable declarations in let bindings, but
without nested functions. Such expressions can be considered with or without control flow. For example,
the expression

let var x := a + b + 42; var y := x + y in a := x + 3; x + y end

is a basic block with local variables, but no control flow. The lack of separation between statements and
expressions, allowing expressions such as

y := (if x < y then (a := x + 1; a) else x + y)

can complicate transformations. Programs can be transformed automatically to a form in which expres-
sions arepure, i.e. side effect free and separate from statements, by lifting expressions with side effects
to the statement level. Thus, the assignment expression above can be transformed to

1 In actual Stratego/XT transformations, syntax definitions in SDF2 are used, mostly. The full syntax definition of Tiger in
SDF2 consists of some 300 lines of code and its details are not of interest to this article.
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d ::= VarDec : var x ta := e variable declaration

FunDecs : fd1...fdn function definitions

fd ::= FunDec : function f(farg1,...,fargn) ta = e function definition

farg ::= FArg : x ta function argument

ta ::= Tp : : tp type declaration

NoTp : ε no type declaration

e ::= Var : x variable

Str, Int : str | i string, integer constant

BinOp : e1 + e2 | e1 - e2 | e1 * e2 | ... arithmetic

RelOp : e1 < e2 | e1 > e2 | e1 = e2 | ... relational

And, Or : e1 & e2 | e1 | e2 Boolean

Assign : x := e assignment

Call : f(e1,...,en) function call

Seq : (e1;...;en) sequence

If : if e1 then e2 else e3 conditional

IfThen : if e1 then e2 conditional

While : while e1 do e2 while loop

For : for x := e1 to e2 do e3 for loop

Let : let d1...dn in e1;...;em end let binding

Figure 1. Abstract syntax of a subset of Tiger.

let var maxnbr := -1 var count := 0
function nextnumber() : int =
let var number := readint()

function setmax(number : int) = if number > maxnbr then maxnbr := number
in count := count + 1; setmax(number); number < 0 end

in while(nextnumber()) do ();
print("number of values: "); printint(count);
print("maximum: "); printint(maxnbr) end

Figure 2. Example Tiger program.

if x < y then (a := x + 1; y := a) else y := x + y

For some transformations we will assume programs to havepure expressions. Note that theif-then-
else operator can be used in pure expressions as long as all its subexpressions are pure. Naturally the
simplified forms of Tiger programs can be achieved using transformations, but we will not discuss those
transformations in this article.

2.2. Representing Programs as Terms

A context-free grammar for a programming language induces a tree structure for programs [1, 2], which
can be used as a structured representation to transform programs. The trees induced by a context-free
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t ::= str ≡ str() string constant

i ≡ i() integer constant

c ≡ c() nullary constructor application

c(t1,...,tn) n-ary constructor applicationn ≥ 0
(t1,...,tn) ≡ Tuple(t1,...,tn) n-ary tuplen ≥ 0
[t1,...,tn] ≡ Cons(t1,...,Cons(tn,Nil())) list

Figure 3. The Annotated Term (ATerm) Format.

grammar are isomorphic to first-order terms, which are the data manipulated in term rewriting. Afirst-
order termis essentially a constructorc applied to a, possibly empty, list of first-order termst1,...,tn, as
defined by the following grammar:

t ::= c(t1,...,tn) n-ary constructor applicationn ≥ 0
c ::= identifier | str | i constructors

Constructors are identifiers, quoted strings (str), or integer constants (i). While this is the notion of
terms we will use when considering the semantics of Stratego, we use a slightly enriched term format in
actual Stratego programs.

The Annotated Term (ATerm) Formatis a format for the representation and exchange of structured
data [6]. The format basically corresponds to first-order terms as defined above, but provides a little
syntactic sugar for common terms such as tuples and lists. The grammar in Figure 3 defines the structure
of ATerms, and indicates using the equivalences how ATerms correspond to first-order terms. Note that
the adjectiveannotatedstems from the fact that ATerms can be annotated with terms, a feature that is not
considered in this article. Stratego is indifferent to the source of the terms it transforms. These can be
produced by a parser derived from an SDF2 syntax definition [36], but may be produced by any program,
including for instance a YACC parser or another Stratego program.

To illustrate how programs correspond to terms, consider the constructors assigned to productions
in the grammar for Tiger in Figure 1. Examples of terms over the Tiger grammar areVar("x") which
represents the variablex; Call(Var("f"),[Var("x")]), which representsf(x), the call of function
f with argumentx; andLet([VarDec("x",NoTp,Int("1"))],[Var("x")]), which represents the
expressionlet var x := 1 in x end, the declaration of local variablex initialized to the integer
constant1.

A term patternis a term with variables, that is, a pattern is either a variable or the application
c(p1,...,pn) of an n-ary constructorc to term patternspi. To emphasize the distinction between
term patterns from terms without variables, the latter are sometimes referred to asclosed terms.

2.3. Term Rewriting

Term rewriting is a declarative paradigm for transforming terms. A rewrite system consists of a set of
rewrite rules of the formL: p1 -> p2 where s, consisting of a labelL, term patternsp1 andp2, and
conditions. An unconditional rule has the formL: p1 -> p2. A conditions is some computation, in-
volving the variables bound by the left-hand side, either checking an additional constraint for application
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of the rule and/or producing values to be used in the right-hand side by binding new variables. The exact
nature of conditions will be discussed in Section 3. Examples of rewrite rules are the following constant
folding and desugaring rules:

EvalBinOp : BinOp(PLUS, Int(i ), Int(j )) -> Int(k ) where <add>(i ,j ) => k

DefAnd : And(e1 , e2 ) -> If(e1 , e2 , Int("0"))

Note that pattern variables are typeset in italics.
A patternp1 matches with a termt if there is a substitutionσ mapping the variables inp1 to subterms

of t such thatσ(p1) ≡ t. A rewrite ruleL: p1 -> p2 where s applies to a termt if the left-hand side
patternp1 matchest with substitutionσ, the conditions succeeds underσ producing an extensionσ′,
and returns the instantiation of the right-hand side patternp2 with σ′. For example, the expression

And(Var("x"), BinOp(GT, Var("x"), Int("5")))

is rewritten by ruleDefAnd to

If(Var("x"), BinOp(GT, Var("x"), Int("5")), Int("0"))

As should be apparent from this description, a rewrite rule has access only to local information, i.e. the
subterms of the term to which it is applied, and thus lacks context information. This is the problem we
set out to solve with dynamic rules.

The usual interpretation of a set of rewrite rules in standard rewriting engines is to compute the nor-
mal form of a term with respect to all rules, that is, exhaustively apply rules to all subterms until no
rule can be applied anymore. In this interpretation, it is usually assumed or required that rule sets are
confluent and terminating. That is, any order in application of the rules has the same result (confluent)
and always leads to a normal form (terminating). The lack of these properties in pure rewrite rules leads
to workarounds in the form of additional constructors (functions) that control the order in which transfor-
mations are applied and leads to tangling of rewrite rules and their application strategy. Programmable
rewriting strategies avoid this tangling by allowing alternative strategies to be defined independently of
the rewrite rules.

2.4. Concrete Syntax

We have argued above that programs can be represented as terms and that term rewrite rules can be used
to manipulate programs. However, when manipulating larger program fragments, term syntax tends to
become harder to understand. Exploiting the isomorphism between the trees induced by context-free
grammars and terms, we can use theconcrete syntaxof the programming language to express the term
patterns of rewrite rules [40]. We write|[ E ]|, with E a phrase in concrete syntax, to denote the term
corresponding toE. For example, the rule

EvalBinOp : |[ e + 0 ]| -> |[ e ]|

denotes the following rule using abstract syntax:

EvalBinOp : BinOp(PLUS, e , Int("0")) -> e
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EvalBinOp : |[ e + 0 ]| -> |[ e ]|
EvalBinOp : |[ i + j ]| -> |[ k ]| where <add>(i , j ) => k

EvalBinOp : |[ i * j ]| -> |[ k ]| where <mul>(i , j ) => k

AddAssoc : |[ (e1 + e2 ) + e3 ]| -> |[ e1 + (e2 + e3 ) ]|

EvalIf : |[ if 0 then e1 else e2 ]| -> |[ e2 ]|
EvalIf : |[ if i then e1 else e2 ]| -> |[ e1 ]| where <not(eq)>(i , 0)
EvalWhile : |[ while 0 do e ]| -> |[ () ]|

EmptyLet : |[ let in e* end ]| -> |[ (e* ) ]|
LetSplit : |[ let d1 d2 d* in e* end ]| -> |[ let d1 in let d2 d* in e* end end ]|
LetFlat1 : |[ let d in let d* in e* end end ]| -> |[ let d d* in e* end ]|

DefAnd : |[ e1 & e2 ]| -> |[ if e1 then e2 else 0 ]|
DefOr : |[ e1 | e2 ]| -> |[ if e1 then 1 else e2 ]|

AssignIf : |[x := (if e1 then e2 else e3 )]| -> |[if e1 then x := e2 else x := e3 ]|

ElimIf : |[ if e then () else () ]| -> |[ (e ; ()) ]|
ElimIf : |[ if e1 then e2 else () ]| -> |[ if e1 then e2 ]|
ElimIf : |[ if e1 then () else e2 ]| -> |[ if not(e1 ) then e2 ]|
ElimIf : |[ if e then () ]|-> |[ (e ; ()) ]|
ElimFor : |[ for x := e1 to e2 do () ]| -> |[ (e1 ; e2 ; ()) ]|

Figure 4. Some rewrite rules for Tiger expressions.

Stratego supports the specification of transformation systems withconcrete object syntaxfor arbitrary
object languages [40]. In the rest of this paper, we will use concrete syntax for all terms inexample
specifications. In the semantic rules we will use the term representation, i.e. consider terms of the form
c(t1,...,tn). In example programs, pattern variables will be typeset in italics. Figure 4 presents a set
of rewrite rules on Tiger expressions, some of which will be referred to in later examples. Note that the
names of meta-variables correspond to the non-terminals in the Tiger grammar in Figure 1; for example,
e denotes a Tiger expression,x a Tiger variable, andi an integer constant.

3. Rewriting Strategies

Programmable rewriting strategies provide a mechanism for achieving control over the application of
rewrite rules, while keeping rules and strategies separated and avoiding the introduction of new con-
structors or rules. The strategies in Stratego were inspired by the strategy language ofELAN [4], which
was itself influenced by tactics in theorem provers. The specific contributions of strategies in Stratego
are first class pattern matching and generic traversal based on basic traversal operators [22, 43, 44]. This
section reviews the syntax and semantics of basic rewriting strategies in Stratego and lays the foundation
for their extension with dynamic rules in the next sections.
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P ::= d1...dn program (list of definitions)

d ::= dsig = s strategy definition

dsig ::= f(sd1, ..., sdn | vd1, ..., vdm) definition signature

sd ::= f | f:tp strategy argument (with optional type)

vd ::= x | x:tp term argument (with optional type)

p ::= str | i | r string, integer, real constant

x term variable

c(p1, ..., pn) constructor application

s ::= ?p match

!p build

{x1, ..., xn:s} term variable scope

let d1, ..., dn in s end local definitions

f(s1, ..., sn| p1, ..., pm) call

id identity

fail failure

s1 ; s2 sequential composition

s1 < s2 + s3 guarded deterministic choice

c(s1, ..., sn) congruence traversal

tr(s) traversal to subterms

tr ::= all | one traversal operator

f ::= identifier strategy operator

x ::= identifier term variable

c ::= identifier constructor

tp ::= ... type (omitted)

Figure 5. Syntax of (a subset of) core Stratego.

3.1. Syntax and Semantics

Syntax Stratego is split in a core language providing the fundamental constructs and syntactic abstrac-
tions defined in terms of those constructs. The syntax of core Stratego is presented in Figure 5. The core
language is enriched with several syntactic abstractions which are presented in Figure 6 and which are
reduced to the core syntax of Figure 5. The extension of Stratego with dynamic rules is introduced in
Section 4. The syntax definition in Figure 5 also introduces themeta-variablesthat will be used in the
operational semantics. For instance,s denotes a strategy andp a term pattern. Note that the core syntax
in Figure 5 is not complete. We are omitting generic term deconstruction [38], some traversal operators,
and term annotations.

Operational Semantics A rewriting strategyis a program that transforms a term or fails at doing so.
In the case of success, the result is a transformed term. In the case of failure, there is no resulting term,
but the state may be changed. A rewrite rule is just a strategy that applies a transformation to the root of
a term. Strategies can be combined into more complex strategies by means of strategy combinators. In
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d ::= dsig : p1 -> p2 (where s)? rule definition (with optional condition)

dsig ::= f(sd1, ..., sdn) definition without term arguments

f definition without arguments

p ::= (p1, ..., pn) tuple

[p1, ..., pn|p] list

[p1, ..., pn] fixed length list

s ::= if s1 then s2 else s3 end conditional choice

s1 <+ s2 deterministic choice

where(s) test

not(s) negative test

<s>p apply to pattern

s => p match against pattern

f(s1, ..., sn) call (only strategy arguments)

f call (no arguments)

rec f(s) recursive closure

{s} local scope for all free variables ins

Figure 6. Extensions (sugar) of the syntax of core Stratego.

this section, we will give an overview of the constructs of the Stratego language and define them using
a formal operational semantics. The operational semantics is an extension of the semantics presented in
[43, 44], and integrates an environment and a state in the rules. The semantics should be understood as a
description of the behaviour of programs, not (necessarily) as a model of the implementation.

The semantics of the core constructs is defined in terms of assertions of the form

D,Γ, E ` 〈s〉 t =⇒ t′ (Γ′, E ′)

which states that the application of strategys to subject termt in the context of strategy definitionsD,
stateΓ, and environmentE evaluates to the new subject termt′, stateΓ′, and environmentE ′. A failing
strategyapplication is denoted by an assertion

D,Γ, E ` 〈s〉 t =⇒ ↑ (Γ′, E ′)

That is, the result of the application of a strategy is in the domain of terms extended with the special
value↑, denoting failure. We uset to denote a value from the extended domain of terms, whilet always
denotes a term, and not failure. Strategy definitions in the setD are only visible in the lexical scope
of their definition and are not changed as result of strategy applications. We omit strategy definitions
from semantic rules, except in Section 3.4, where we define their semantics. StatesΓ are used to model
dynamic rules; their structure will be described in Section 4. EnvironmentsE model pattern variable
bindings. Note that changes to the state and environment are preserved in the case of failure. The
semantics of syntactic abstractions is expressed by means of equationse1 ≡ e2. We will also use
such equations to illustrate some of the algebraic properties of the language constructs. Equations are
universally quantified unless otherwise indicated.
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3.2. Matching and Building Terms

In the previous section we described rewrite rules as operations that first match their left-hand side
pattern, then evaluate their condition, and finally instantiate the right-hand side pattern. Instead of taking
rewrite rules as basic actions, in Stratego the actions that make up rewrite rules are first class. That is,
matching a term against a pattern and instantiating a pattern to build a new term are first class strategies.
The strategy?p denotes matching against the patternp, and!p denotes building an instantiation of the
patternp. This decomposition allows many language constructs to be defined from first principles. For
instance, a rewrite rulep1 -> p2 corresponds to the sequential composition?p1;!p2. The sequential
composition of strategies will be defined formally below, but it comes down to first applying the first
strategy and then the second. To define match and build precisely we need variable binding environments.

Environments A variable binding environmentE ≡ [x1 7→ t1, ..., xn 7→ tn] is a finite ordered map-
ping from variables to closed terms or failure. An environment can contain more than one binding for
a variablex, in which case the first binding (from the left) is applicable. Thus, theapplicationof an
environmentE to a variablex is defined as

[x1 7→ t1, ..., xn 7→ tn](x) =

{
ti if xi ≡ x and∀j < i : xj 6≡ x

↑ if ∀j ≤ n : xj 6≡ x

The loose applicationE(x) of an environment behaves as the identity map on unbound variables:

E(x) =

{
t if E(x) = t

x otherwise

The application of environments can be extended to term patterns and strategies. Thestrict instantiation
E(p) of a term patternp with an environmentE yields the closed term obtained by replacing each variable
x in p with E(x), if eachE(x) is defined, and↑ otherwise. Theloose instantiationE(p) of a term pattern
p with an environmentE yields the term pattern obtained by replacing each variablex in p with E(x).
The loose instantiationE(s) of a strategy expressions consists in replacing each term patternp in s
with E(p).

An environmentE ′ is arefinementof the environmentE (notationE ′ w E) if E ′ has the same domain
asE and ismore definedthanE . That is, ifE = [x1 7→ t1, ..., xn 7→ tn] thenE ′ = [x1 7→ t′1, ..., xn 7→ t′n]
and for eachi, E(xi) = E ′(xi) or E(xi) = ↑ andE ′(xi) = t for some termt. An environmentE ′ is the
smallest refinementof E with respect to a term patternp (notationE ′ wp E), if E ′ w E and for allx not
in p, E ′(x) = E(x). That is, the only difference betweenE ′ andE are bindings for variables inp.

ThecompositionE1E2 of two environmentsE1 andE2 is equivalent to the concatenation of the two
mappings.

Match The match operation?p matches the subject term against the term patternp. This involves
checking that the subject term corresponds to the pattern and also involves binding the variables in the
pattern to the corresponding subterms of the subject term. Matching is defined by the following rules. A
strategy?p applies to a termt if there is an environmentE ′ that refines the current environmentE and



14 M. Bravenboer, A. van Dam, K. Olmos and E. Visser / Transformation with Dynamic Rewrite Rules

makesp equal tot. A match fails if there is no such environment.

E ′ wp E ∧ E ′(p) ≡ t

Γ, E ` 〈?p〉 t =⇒ t (Γ, E ′)
¬∃E ′ : (E ′ wp E ∧ E ′(p) ≡ t)
Γ, E ` 〈?p〉 t =⇒ ↑ (Γ, E)

Note that patterns may be non-linear or contain variables that have been used in an earlier match, but
that the definition ofw entails that such variables can only be bound to the same term they were bound
to before.

Example: applying?|[(e1 | e2 ) & e3 ]| to the term|[(a < b | c) & d > 10]| succeeds since
the environment[e1 7→ |[a < b]|, e2 7→ |[c]|, e3 7→ |[d > 10]|] makes the pattern equal to the sub-
ject term.

Build The build operation!p replaces the subject term with the instantiation of the patternp using the
bindings from the environment. The semantics of!p is defined as follows:

Γ, E ` 〈!p〉 t =⇒ E(p) (Γ, E)

Note that this uses the strict instantiation ofp, entailing that if one of the variables inp is not bound
in E , the build fails. Example: in the presence of environment[e1 7→ |[a < b]|, e2 7→ |[c]|, e3 7→
|[d > 10]|], the build!|[(e1 | e2 ) & e3 ]| produces the term|[(a < b | c) & d > 10]|.

Scope Once a variable is bound, it cannot be rebound to a different term. Thescope of a variable
bindingcan be restricted using the{x1,...,xn:s} scope construct. That is, the binding to a variablexi

outside the scope{x1,...,xn:s} is not visible inside it, nor is the binding toxi inside the scope visible
outside it. The semantics of the scope construct is formally defined as follows:

Γ, [y1 7→ ↑, ..., yn 7→ ↑]E ` 〈[y1/x1...yn/xn]s〉 t =⇒ t′ (Γ′, [y1 7→ t1, ..., yn 7→ tn]E ′)(y1...ynfresh)
Γ, E ` 〈{x1, ..., xn:s}〉 t =⇒ t′ (Γ′, E ′)

That is, the strategys, with the scope variables replaced by fresh copies, is evaluated in an extended
environment in which the local variables are unbound initially. After the application of the strategy the
new bindings are removed from the environment and the old bindings are recovered. The convenience
construct{s} implicitly makes all free variables ins local:

{s} ≡ {x1, ..., xn:s} with {x1, ..., xn} ≡ freevars(s)

Appendix A gives a formal definition of the free variables of a strategy expression.
Example: In the strategy expression{e1,e2,e3 :?|[(e1 |e2 )&e3 ]|;!|[(e1 &e3 |e2 &e3 )]|},

the scope of the variablese1 , e2 , ande3 is restricted to the match-build sequence. Thus, this ex-
pression implements a rewrite rule that can be used multiple times. That is, each time it is applied, fresh
unbound variables are used in the pattern match. As an aside, this transformation, which distributes&
over|, is only valid if e3 is apureTiger expression, since thee3 computation is duplicated.
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3.3. Strategy Combinators

Match and build are the basic operations of program transformation and can be combined using a few
built-in combinators into complex transformations. The combinators can be divided into control combi-
nators and traversal combinators. We start with the former, and come back to the latter in Section 3.5.

The control combinators basically allow composing transformations sequentially, or choosing be-
tween transformations. For programming with these combinators, it is useful to have the identity and
failure strategies as unit or zero:

Γ, E ` 〈id〉 t =⇒ t (Γ, E) Γ, E ` 〈fail〉 t =⇒ ↑ (Γ, E)

The identity strategyid always succeeds and leaves its subject term unchanged. Thefailure strategy
fail always fails.

Sequential Composition Thesequential compositions1 ; s2 of strategiess1 ands2, first attempts to
applys1 to the subject term. If that succeeds, it appliess2 to the result; otherwise it fails.

Γ, E ` 〈s1〉 t =⇒ t′ (Γ′, E ′) Γ′, E ′ ` 〈s2〉 t′ =⇒ t′′ (Γ′′, E ′′)
Γ, E ` 〈s1 ; s2〉 t =⇒ t′′ (Γ′′, E ′′)

Γ, E ` 〈s1〉 t =⇒ ↑ (Γ′, E ′)
Γ, E ` 〈s1 ; s2〉 t =⇒ ↑ (Γ′, E ′)

From this definition it is clear that in the sequential composition?p1;!p2 of a match and a build, the
bindings from the match are carried over to the build via the environmentE ′ in the first rule above. The
identity strategy is a unit for sequential composition, and failure a left zero, i.e.

id ; s ≡ s s ; id ≡ s fail ; s ≡ fail ∃s : s ; fail 6≡ fail

However, failure is not a right zero for sequential composition because of the effects on the state that the
first strategy may have.

Guarded Choice The other fundamental strategy combinator is theguarded choices1 < s2 + s3 of
strategiess1, s2, ands3. It first attempts to applys1 to the subject term. If that succeeds it appliess2 to
the result, but if it fails, it appliess3 to the original subject termandenvironment.

Γ, E ` 〈s1〉 t =⇒ t′ (Γ′, E ′) Γ′, E ′ ` 〈s2〉 t′ =⇒ t′′ (Γ′′, E ′′)
Γ, E ` 〈s1 < s2 + s3〉 t =⇒ t′′ (Γ′′, E ′′)

Γ, E ` 〈s1〉 t =⇒ ↑ (Γ′, E ′) Γ′, E ` 〈s3〉 t =⇒ t′ (Γ′′, E ′′)
Γ, E ` 〈s1 < s2 + s3〉 t =⇒ t′ (Γ′′, E ′′)

The following laws illustrate the choice between the branches induced by success or failure of the guard
strategy:

id < s2 + s3 ≡ s2 fail < s2 + s3 ≡ s3

This might suggest that the combinator is a simple conditional choice, which it is not. Rather it is a
limited backtracking combinator. The guard strategys1 can be a complex strategy that may fail at some
point, in which case control backtracks to thes3 strategy, which is applied to the original subject term
and environment. But when thes1 strategy succeeds, the choice is committed and control continues with
s2; no backtracking tos3 is then possible, even ifs2 or the continuation of the expression fails.

The guarded choice operator is rarely used directly. A number of syntactic abstractions capture
typical uses of the choice.
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Deterministic Choice Thedeterministicor left choices1 <+ s2 of strategiess1 ands2, first attempts
to applys1 to the subject term. Only ifs1 fails, it attempts to applys2 to the subject term. Ifs1 and
s2 both fail, the choice fails as well. The left choice combinator is a special case of the guarded choice
combinator as expressed by the first of the following equations:

s1 <+ s2 ≡ s1 < id + s2 id <+ s ≡ id ∃s : s <+ id 6≡ s fail <+ s ≡ s s <+ fail ≡ s

The other equations assert that identity is a left zero, but not a right unit or zero for left choice, and that
failure is a left and right unit for left choice. The inequality above indicates how left choice and identity
can be used to turn a strategy that may fail into a strategy that always succeeds. Note that sequential
composition does not distribute over left-choice:

∃s1, s2, s3 : (s1 <+ s2) ; s3 6≡ (s1 ; s3) <+ (s2 ; s3)

∃s1, s2, s3 : s1 ; (s2 <+ s3) 6≡ (s1 ; s2) <+ (s1 ; s3)

In the first case the incorporation ofs3 in the choice may lead to failure of the left branch whiles1 by
itself might succeed and commit the choice. The first case becomes an equality ifs3 is guaranteed to
succeed. The second case is an equality in cases1 has no effect on the stateΓ.

The choice combinator is typically used as prioritized choice between rewrite rules; ifs1 to sn are
rewrite rules, then the strategys1 <+ ... <+ sn tries each of the rules one by one from left to right, stopping
as soon as one of the rules has been applied successfully.

Testing A strategy can be used totesta property of a term, in which case one is not interested in the
result of the transformation, but only in the fact of its success or failure. This can be achieved using the
where andnot combinators, which are defined as follows:

not(s) ≡ s < fail + id where(s) ≡ {x: ?x; s; !x}} x 6∈ freevars(s)

Thewhere combinator tests whether a strategy succeeds, and thenot combinator tests whether a strategy
fails. Both combinators restore the original term, but the effects on the state and in case ofwhere on the
environment are retained. The following laws hold for these combinators:

where(id) ≡ id where(fail) ≡ fail not(fail) ≡ id not(id) ≡ fail

If-then-else-end The guarded left choice combinator is reminiscent of the conventional if-then-else
construct in which the condition decides on the branch. Indeed Stratego provides anif-then-else-end
construct defined as

if s1 then s2 else s3 end ≡ where(s1) < s2 + s3

The condition in this construct preserves the subject term usingwhere, entailing thats2 and s3 are
applied to the original subject term.
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Abstractions for Applying Strategies The first class status of pattern matching and instantiation
makes it easy to define compound constructs capturing frequently occurring uses of these operations.
One such use is the direct application of a strategy to a term pattern and matching the result of a strategy
application to a term pattern. These are expressed using the constructs<s>p ands => p, respectively,
which are defined as

<s>p ≡ !p ; s s => p ≡ s ; ?p

A typical example is the combined use of these constructs in a strategy expression<add>(i,j ) => k ,
which is thus equivalent to!(i,j ); add; ?k and applies the strategyadd to the pair(i,j ) and
matches the result against the patternk .

3.4. Strategy Definitions

With matching and building as basic operations, complex transformation strategies can be constructed
using a small set of built-in strategy combinators. In order to abstract over recurring patterns in strategy
expressions,strategy definitionscan be used to create new strategy combinators.

A strategy definitionf(f1,...,fn|x1,...,xm) = s introduces a new strategy combinatorf with
bodys, parameterized with strategy variablesf1, ..., fn and term variablesx1, ..., xm. An application
f(s1,...,sn|p1,...,pm) entails applying the bodys of f with the strategy argumentssi bound to
the strategy parameterfi and the instantiated pattern argumentspi to the term variablesxi. To express
the semantics of strategy definitions we actually need a third environmentD in the semantic rules that
keeps track of the available strategy definitions. Since this environment is static and just passed around
unchanged in all other rules, it is omitted there.

Dfresh(f) = f(f1, ..., fn|x1, ..., xm) = s t1 ≡ E(p1)...tm ≡ E(pm) E ′ ≡ [x1 7→ t1...xm 7→ tm]
bind(D, E)(f(s1,...,sn|p1,...,pm)) ≡ ([f1=s1...fn=sn], E ′, s)

Dfresh(f) = f(f1, ..., fn|x1, ..., xm) = s ∃i : (1 ≤ i ≤ m ∧ E(pi) ≡ ↑)
bind(D, E)(f(s1,...,sn|p1,...,pm)) ≡ ↑

bind(D, E)(f(~s|~p)) ≡ ↑
D,Γ, E ` 〈f(~s|~p)〉 t =⇒ ↑ (Γ, E ′′)

bind(D, E)(f(~s|~p)) ≡ (D′, E ′, s) D′D,Γ, E ′E ` 〈s〉 t =⇒ t′ (Γ′, E ′E ′′)
D,Γ, E ` 〈f(~s|~p)〉 t =⇒ t′ (Γ′, E ′′)

The auxiliary ‘bind’ assertion is used to bind the actual parameters of a call to the formal parameters of
a strategy definition. HereDfresh(f) produces a fresh instance of the strategy definition off , i.e. using
unique new namesf1, ..., fn andx1, ..., xm for all bound variables. In the implementation, this is of
course efficiently implemented by means of stack frames. Note that the original environmentE may
change during the execution of the call since the strategy argumentssi may refer to variables in that
environment and bind them, if not already bound. However, the environmentE ′ does not change since
all term parameters are bound at call-time, as expressed in the definition of ‘bind’.

The list of term arguments of a strategy combinator is optional and the| can be left out if no term
arguments are present. Similarly, if the list of strategy arguments is also empty the parentheses may be
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omitted. Thus we have the following equivalences for definitions and calls:

f(f1,...,fn) = s ≡ f(f1,...,fn|) = s f = s ≡ f(|) = s

f(s1,...,sn) ≡ f(s1,...,sn|) f ≡ f(|)

There are no global term variables in Stratego programs. Therefore, the scope of any free term variable
in a top-levelstrategy definition is the body of that definition:

f(f1,...,fn|x1,...,xm) = s ≡ f(f1,...,fn|x1,...,xm) = {y1,...,yj:s}

with y1, ..., yj = freevars(s)/{x1, ..., xm}

Example: The following definitions define the combinatortry that attempts to apply a strategy, but
falls back toid when that fails, andrepeat, which repeatedly applies a strategy until it fails:

try(s) = s <+ id
repeat(s) = try(s; repeat(s))

Local Strategy Definitions Strategy combinators can be introduced locally using thelet-in-end
construct, which extends the definition environment while executing the body of thelet:

fresh(let d1...dn in s end) = let d′1...d
′
n in s′ end [d′1...d

′
n]D,Γ, E ` 〈s′〉 t =⇒ t′ (Γ′, E ′)

D,Γ, E ` 〈let d1...dn in s end〉 t =⇒ t′ (Γ′, E ′)

Again the names of the local definitions are renamed to avoid name clashes.

Recursive Closure The recursive closurerecf(s) is syntactic sugar for a local recursive definition,
i.e., rec f(s) is equivalent tolet f = s in f end. The construct can be useful in strategy expres-
sions to abbreviate a recursive invocation. For example, by writingrepeat(s) = rec x(try(s; x))
instead ofrepeat(s) = try(s; repeat(s)).

Rewrite Rules Now we can define rewrite rules in terms of strategies. Alabeled conditional rewrite
rule is implemented by a strategy definition that first matches the left-hand side pattern, then evaluates
the condition, and finally builds the right-hand side, as is expressed by the equation:

dsig : p1 -> p2 where s ≡ dsig = {x1,...,xn:?p1; where(s); !p2}

with x1, ..., xj = freevars(p1, p2, s)/vars(dsig)

An unconditional rule corresponds to a conditional rule with the identity strategy as condition, i.e.,
dsig: p1 -> p2 is equivalent todsig: p1 -> p2 where id. Example: the rewrite rule

DefAnd : |[ e1 & e2 ]| -> |[ if e1 then e2 else 0 ]|

corresponds to the strategy definition

DefAnd = {e1 ,e2 : ?|[ e1 & e2 ]|; where(id); !|[ if e1 then e2 else 0 ]|}
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Multiple Definitions It is sometimes useful to give a set of rules the same name. For instance the
EvalBinOp rules in Figure 4 define multiple rules for evaluating binary arithmetic expressions. A set
of definitions with the same signature are reduced to a single definition making a choice between the
bodies of the definitions, i.e.dsig = s1 ... dsig = sn ≡ dsig = (s1 <+ ... <+ sn). Note that the order
in which definitions are combined is not defined. Thus, it is generally only sensible to use this method
when definitions are mutually exclusive or confluent, as is the case in the example rules above.

3.5. Term Traversal

The strategy combinators just described combine strategies which apply transformation rules to the roots
of their subject terms. In order to apply a rule to a subterm, it is necessary to traverse the term. Strat-
ego defines several basic combinators which expose the direct subterms of a constructor application.
These can be combined with the combinators described above to define a wide variety of complete term
traversals.

Congruence Congruence combinators provide one mechanism for term traversal in Stratego. Ifc is
an n-ary constructor, then the congruencec(s1,...,sn) is the strategy that applies only to terms of
the form c(t1,...,tn), and works by applying each strategysi to the corresponding termti. For
example, the congruenceLet(s1,s2) transforms terms of the formLet(t1,t2) into Let(t′1,t

′
2), where

t′i is the result of applyingsi to ti. If the application ofsi to ti fails for anyi, then the application of
c(s1,...,sn) to c(t1,...,tn) also fails. Congruence combinators can be defined using rewrite rules
of the following form:

c(s1,...,sn) : c(x1,...,xn) -> c(y1,...,yn) where <s1>x1 => y1;...;<sn>xn => yn

Congruences are very useful for defining traversals that are specific for some abstract syntax. For exam-
ple, the following strategies define operations on lists using congruences:

map(s) = [] <+ [s | map(s)]
filter(s) = [] <+ [s | filter(s)] <+ Tl; filter(s)
Tl : [x | xs] -> xs

Themap strategy applies a transformation to each element of a list, but fails when one of those applica-
tions fails. Thefilter strategy does the same, but removes elements for which the application fails.

In this article, we will use concrete syntax for congruences over Tiger constructs using the nota-
tion <s> to embed a strategy within a Tiger expression. Thus, for example, the strategy expression
|[if <s1> then <s2> else <s3>]| corresponds to congruenceIf(s1,s2,s3) over theif-then-else
construct and applies strategys1 to the condition and the strategiess2 ands3 to thethen andelse
branch, respectively. We use the notation<*s> to distinguish application to a list of subterms from ap-
plication to a list with a single element. For example, Tiger’slet construct has a list of declarations
and a list of expressions as direct subterms. Thus, we use|[let <*s1> in <*s2> end]| to denote
Let(s1,s2), i.e., the application of the strategiess1 ands2 to the lists of declarations and expressions,
respectively. Compare this to|[let <s1> in <s2> end]|, which denotesLet([s1],[s2]).
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All Subterms Often a traversal over an abstract syntax tree has uniform behaviour for most or even all
constructors of the language. In those cases, it is attractive to use ageneric traversalinstead of spelling
out the traversal for all constructors. Stratego provides basic combinators such asall andone that allow
the composition of many different generic traversals. Theall(s) combinator appliess to all direct
subtermsti of a constructor applicationc(t1,...,tn). It succeeds if and only if all applications to the
direct subterms succeed. The resulting term is the constructor applicationc(t′1,...,t

′
n) where thet′i are

the results obtained by applyings to the termsti.

Γ0, E0 ` 〈s〉 t1 =⇒ t′1 (Γ1, E1) ... Γn−1, En−1 ` 〈s〉 tn =⇒ t′n (Γn, En)
Γ0, E0 ` 〈all(s)〉 c(t1, . . . , tn) =⇒ c(t′1, . . . , t′n) (Γn, En)

Γ0, E0 ` 〈s〉 t1 =⇒ t′1 (Γ1, E1) ... Γi−1, Ei−1 ` 〈s〉 ti =⇒ ↑ (Γi, Ei)
Γ0, E0 ` 〈all(s)〉 c(t1, . . . , tn) =⇒ ↑ (Γi, Ei)

Note thatid is a zero forall, thatall(s) is the identity on constants (constructor applications without
subterms), and thatall(fail) only succeeds on constants, i.e.

all(id) ≡ id <all(s)>c ≡ <id>c <all(fail)>c(t1, ..., tn) ≡ fail (if n > 0)

Example: Traversal Strategies Many different traversals can be composed using theall traversal
combinator. As an example consider the following strategy definitions:

topdown(s) = s; all(topdown(s))
bottomup(s) = all(bottomup(s)); s
alltd(s) = s <+ all(alltd(s))
downup(s) = s; all(downup(s)); s
innermost(s) = bottomup(try(s; innermost(s)))

In the first definition, the strategy expressions; all(topdown(s)) specifies that the parameter trans-
formations is first applied to the root of the current subject term. If that succeeds, the strategy is applied
recursively to all direct subterms of the term, and, thereby, to all of its subterms. This definition of
topdown captures the generic notion of a traversal that visits each subterm in pre-order.Bottomup
defines a post-order traversal.Alltd applies a topdown traversal that stops as the transformation it is
applying succeeds.Downup applies a transformation pre-order and post-order.Innermost is a fixed
point traversal that applies a transformation exhaustively starting with innermost terms.

The examples in the following sections use traversal strategies that are partly specific for certain
constructs of the language, and otherwise generic where uniform behaviour is possible.

Example: Desugaring and Constant Folding As an example of the application of these generic strate-
gies consider the followingdesugaringtransformation for Tiger that simplifies programs by defining
constructs in terms of other constructs or simplifying their usage; e.g. splitting let bindings into lets with
only a single binding.

desugar = topdown(repeat(Desugar <+ LetSplit <+ EmptyLet <+ ElimSingletonTuple))

Thedesugar strategy performs a topdown traversal applying a number of rules along the way. Some of
these rules are shown in Figure 4. TheDesugar strategy that is called is a composition of many rewrite
rules:
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Desugar = DefPlus <+ DefMinus <+ DefEq <+ ... <+ DefSeq1 <+ DefAnd <+ DefOr

Thus, a fairly elaborate transformation—touching many constructors—is defined in only a few lines of
code using separately defined and reusable rewrite rules.

Another example is the followingconstant foldingtransformation that evaluates constant valued
expressions:

const-fold = bottomup(try(EvalBinOp <+ EvalRelOp <+ EvalIf <+ EvalWhile <+ EvalFor))

It is defined as a bottom-up traversal applying various evaluation rules where possible. Again the trans-
formation is a one-liner using separately defined rewrite rules; each of theEval rules is actually a choice
between several rewrite rules with the same name.

One Subterm While theall combinator transforms all direct subterms of a term, theone combinator
finds a single subterm that it transforms.

Γ, E ` 〈s〉 t1 =⇒ ↑ (Γ1) ... Γi−1, E ` 〈s〉 ti−1 =⇒ ↑ (Γi−1) Γi−1, E ` 〈s〉 ti =⇒ t′i (Γi, Ei)
Γ, E ` 〈one(s)〉 c(t1, . . . , tn) =⇒ c(t1, ..., ti−1, t′i, ti+1, ..., tn) (Γi, Ei)

Γ, E ` 〈s〉 t1 =⇒ ↑ (Γ1, E1) ... Γn−1, E ` 〈s〉 tn =⇒ ↑ (Γn, En)
Γ, E ` 〈one(s)〉 c(t1, . . . , tn) =⇒ ↑ (Γn, En)

Note that this is a backtracking combinator, in that it restores the environment after failing to apply to a
subterm, and before applying to the next subterm. Some example traversal strategies composed with this
combinator are:

oncetd(s) = s <+ one(oncetd(s))
oncebu(s) = one(oncebu(s)) <+ s

The strategyis-subterm is an example application ofoncetd:

is-subterm(|x ) = oncetd(?x )

It traverses the subject term to find an occurrence of the term argumentx by means of the match?x.

Example: Contextual Rules As an example of the expressivity of the combination of generic traversal
and first class pattern matching, consider how contextual rules can be implemented in Stratego [37]. The
function inlining rule

UnfoldCall :
|[ let function f (x ) = e1 in e2 [f (e3 )] end ]| ->
|[ let function f (x ) = e1 in e2 [let var x := e3 in e1 end] end ]|

replaces a call to a functionf by an instance of its body. This can be implemented by means of alocal
traversalin the condition of the rule:

UnfoldCall :
|[ let function f (x ) = e1 in e2 end ]| -> |[ let function f (x ) = e1 in e2’ end ]|
where <oncetd({e3 : ?|[f (e3 )]|; !|[let var x := e3 in e1 end]|})> e2 => e2’
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Theoncetd strategy searches for one subterm ofe2 that is a call to functionf and replaces it with the
instantiation of the body. It achieves this by means of a pattern match and a build that involve variables
that were boundin the contextof the traversal, i.e. by the match of the left-hand side of the rule. The
Stratego compiler supports contextual rules using the implementation scheme sketched above [44, 37]
(although the syntax is currently only supported for rules using abstract syntax terms). While the idea is
nice, the shortcoming of the approach is (1) that the traversal is local to the inlining rule and is initiated
at the definition site, (2) that onlyonefunction at a time is inlined, and (3) thatoncetd does not respect
the scoping rules of the object language.

4. Defining Rules Dynamically

In the previous section we have seen how programmable rewriting strategies allow the definition of
separate rewrite rules and fine-grained control over their application. The combination of first class
pattern matching and traversal strategies allows context-sensitive rewriting to a certain extent in the
form of contextual rules. However, the local traversal and the single binding of context variables makes
contextual rules of limited use. Nonetheless, the contextual rule solutiondoescontain the germ of a more
general solution. The strategy expression

{e3 : ?|[f (e3 )]|; !|[let var x := e3 in e1 end]|}

in the implementation of theUnfoldCall contextual rule is a rewrite rule (a sequence of a match and a
build) with some of its pattern variables, i.e.,f ande1 , bound in the contextinstead of being bound by
the application of the match as is the case with conventional rewrite rules.

This is exactly the idea behind adynamic rule. That is, a dynamic rule is a rewrite rule that inherits
bindings to its pattern variables from the context in which it is defined. The difference with a contextual
rule is that a dynamic rule isnamedlike a normal rewrite rule and can be referred tooutside the lexical

s ::= rules (drd1 ... drdn) dynamic rule definition

{|f1, ..., fn:s|} dynamic rule scope

s1 /f1,...,fn\ s2 fork and intersect

s1 \f1,...,fn/ s2 fork and union

/f1,...,fn\* s fix and intersect

\f1,...,fn/* s fix and union

drd ::= drsig : p1 -> p2 (where s)? dynamic rule definition

drsig :+ p1 -> p2 (where s)? dynamic rule extension

drsig : p dynamic identity rule definition

drsig :- p dynamic rule undefinition

f+p label current scope

drsig ::= sig relative to current scope

sig.p relative to labeled scope

sig+p relative to current scope and label current scope

Figure 7. Extension of syntax of Stratego with dynamic rules.
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scope of its definition. Furthermore, there can be many dynamic rules with the same name, differing in
the values bound to the pattern variables of the rule. Thus, an inlining transformation can define rules
dynamically when encountering function definitions and apply those rules when encountering function
calls, all in the same traversal.

There are many variation points in the definition and use of dynamic rules, which have been captured
in a coherent extension of the Stratego language. The syntax of this extension is presented in Figure 7. In
this and the next three sections, we will define the semantics of these language constructs, and motivate
their design and usage by means of example transformations. In this section, we introduce the basic
concepts of dynamic rules, i.e. applying rules, defining rules dynamically, the shadowing of older rules
by newer rules, and explicitly undefining rules.

4.1. Example: Constant Propagation in Basic Blocks

Constant propagation replaces uses of variables that can be determined to have constant values with those
values [1, 24]. We will use this transformation as a running example, and gradually extend it to cover
the whole Tiger language. We start with constant propagation in basic blocks, which should achieve a
transformation such as the following:

(b := 1;
c := b + 3;
b := b + 1;
b := z + b;
a := b + c)

⇒

(b := 1;
c := 4;
b := 2;
b := z + 2;
a := b + 4)

Here the variableb in the second statement is replaced by its value in the first and the resulting constant
expression is folded. The assignment in the third statement redefines the value ofb to be propagated.
The assignment in the fourth statement blocks the further propagation of the constant value ofb, butc
does have a constant value in the fifth statement and should be replaced.

Constant folding can clearly be expressed by means of rewrite rules using theEvalBinOp rules from
Figure 4. The replacement of a variable by a value, e.g.b by1, can also be expressed by rewriting, i.e. by
a rewrite rule such as|[ b ]| -> |[ 1 ]|. However, such a rewrite rule cannot be applied everywhere;
not to the variable in the left-hand side of an assignment, and not after a different expression has been
assigned to the variable. Thus, such a rewrite rule is specific to a part of a particular program, rather than
being a universally valid transformation rule. Thus, the idea of dynamic rules is to define such rulesat
run-timeand only apply them to the parts of the program where they are valid.

prop-const =
PropConst <+ prop-const-assign <+ (all(prop-const); try(EvalBinOp <+ EvalRelOp))

prop-const-assign =
|[ x := <prop-const => e > ]|
; if <is-value> e then rules( PropConst : |[ x ]| -> |[ e ]| )

else rules( PropConst :- |[ x ]| ) end

Figure 8. Strategy for constant propagation in basic blocks.
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Theprop-const strategy in Figure 8 implements constant propagation for basic blocks using dy-
namic rules. The strategy has three cases. The first is the application of thePropConst rule, which
replaces a variable with a constant value, if it has one. In the second case an assignment statement is
encountered and used to define a dynamic rule, as will be discussed below. In the final case, a generic
traversal is performed and the sub-expressions are transformed with theprop-const transformation.
After that an attempt is made to perform constant folding using some appropriateEval rule.

Now the crucial part of the transformation is theprop-const-assign strategy, whichdefinesa
PropConst rule for each particular assignment it encounters. First, the congruence strategy|[x :=
<prop-const => e >]| (equivalent toAssign(?x,prop-const => e)) is used to transform the right-
hand side expression by a recursive invocation of theprop-const strategy, leaving the left-value un-
touched (to prevent the replacement of the variable in the left-value). If the right-hand side expression of
the assignment is a constant, as determined by theis-value strategy, then aPropConst rule is defined
that replaces an occurrence of the variablex from the left-hand side of the assignment by the expression
e from the right-hand side. This is expressed by the strategy expression

rules( PropConst : |[ x ]| -> |[ e ]| )

Therules construct introduces several rules which inherit variable bindings for all variables occurring
in the context. If the expressione is not a constant, then thePropConst rule isundefinedfor x with the
strategy expression

rules( PropConst :- |[ x ]| )

which disables anyPropConst rules withx as left-hand side.
To get an impression of events during this transformation, the middle box in the following diagram

represents at each line the set of dynamicPropConst rules that are validafter transforming the statement
on the same line in the left box.

(b := 1;
c := b + 3;
b := b + 1;
b := z + b;
a := b + c)

⇒

b -> 1
b -> 1, c -> 4
b -> 2, c -> 4

c -> 4
c -> 4

⇒

(b := 1;
c := 4;
b := 2;
b := z + 2;
a := b + 4)

Theb- anda- entries indicate that thePropConst rule isundefinedfor these variables. Note how the
definition of the rule forb on the third linereplacesthe previous rule forb. Thus, a rule can beredefined
as well as undefined.

4.2. Semantics: Defining and Undefining Rules

For each dynamic ruleL an entry in the stateΓ is maintained. This entry encodes the current set of
dynamic rules. In the semantic rules, we encode a set of dynamic rules as a strategy expression, since that
allows us to define the behaviour of dynamic rules as concisely as possible. In our current implementation
a more efficient encoding using hash tables is used [8].

Thus,applying a dynamic ruleL entails looking up the strategys encoding the current rule set forL
and applying it.

Γ, E ` 〈s〉 t =⇒ t′ (Γ′, E ′)
ΓL(s), E ` 〈L〉 t =⇒ t′ (Γ′, E ′)



M. Bravenboer, A. van Dam, K. Olmos and E. Visser / Transformation with Dynamic Rewrite Rules 25

ΓL(s) means thatΓ has an entry forL and that its strategy iss. If no L rules are defined, we haveΓL(fail).
Therules(...) construct is used to define dynamic rules and can contain a list of rule definitions.

Such a list is equivalent to the sequential composition of the definition of the individual rules, i.e.

rules(L1 : r1 . . . Ln : rn) ≡ rules(L1 : r1) ; . . . ; rules(Ln : rn)

The definition of a single dynamic rule entails modifying theL entry inΓ.

s′1 ≡ {E(?p1 ; where(s2) ; !p2)} <+ s1

ΓL(s1), E ` 〈rules(L : p1 → p2 where s2)〉 t =⇒ t (ΓL(s′1), E)

The new strategy is a prioritized choice that first tries to apply the new rule, and if that fails the old
strategy expression is applied. The new rule is specialized by substituting variables bound in the envi-
ronment. This definition entails that: (1) multiple rules can be defined at the same time; (2) a definition
of a rule with the same left-hand side as an earlier defined rule, shadows (or redefines) that earlier rule.
Note that we require that left-hand sides of dynamic rules do not overlap in order to guarantee an efficient
implementation; see [8].

Finally, rules can beundefined. This is achieved by inserting into theΓL(s) strategy a test for the
pattern concerned and explicitly failing when it is encountered.

s′ ≡ if {?E(p)} then fail else s end

ΓL(s), E ` 〈rules(L :- p)〉 t =⇒ t (ΓL(s′), E)

This entails that after undefining a pattern, an attempt to rewrite a term matching that pattern will fail.
For terms not matching the pattern, the search continues in the old strategy, however.

5. Dynamic Rule Scope

A useful feature of dynamic rules as defined in the previous section is that rule definitions are not con-
strained to a lexical scope, but are visible globally. This entails that rules are propagatedimplicitly; a
transformation strategy does not need to pass around the current set of rules. Thus, a rule defined in one
part of a strategy can be applied in another part, without parameter passing. In particular, this means that
a transformation can be organized as a sequence of phases that pass on information through dynamic
rules. For instance, one phase may define inlining rules for top-level functions, which are then used to
inline function calls in subsequent phases.

As a consequence of this design, the definition of a dynamic rule permanently redefines any previous
definition for the same left-hand side. Likewise, the undefinition of a dynamic rule permanently erases
that definition. However, sometimes it is useful to redefine or undefine a rule only temporarily and restore
the old definition after performing some local transformation. For instance, an inlining rule for a local
function may redefine an inlining rule for an outer function with the same name. Thus, after traversing the
subtree in which the local function is in scope, the inlining rule for the outer function should be restored.
Achieving this with only rule definition and undefinition requires maintaining information about dynamic
rules in strategies, which is undesirable. Instead, Stratego provides a construct for limiting the lifetime
of dynamic rules. In this section, we introduce the basicdynamic rule scopeconstruct{|L:s|}, and its
refinement with scope labels, which provide fine-grained control over the scope in which a rule is defined.
These concepts are illustrated by bound variable renaming, function inlining, constant propagation with
local variables, and dead function elimination.
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let var a : int := x
function foo(a : int) : int =
let var a := a + 3

var z := 0
in for a := a to a + 100 do

z := z + a end
in foo(a) end

⇒

let var a : int := x
function foo(b : int) : int =
let var c := b + 3

var z := 0
in for d := c to c + 100 do

z := z + d end
in foo(a) end

Figure 9. Application of bound-variable renaming.

5.1. Example: Bound Variable Renaming

Programs can use the same name for different variables in a program. Local variablesshadowthe declara-
tion of variables in outer blocks. The scoping rules of the language determine which variable occurrence
corresponds to which variable declaration. Bound variable renaming is a transformation that gives de-
clared variables a unique new name, producing a program in which no variable declaration shadows any
other variable declaration. This may be useful to clarify the program for programmers, and for other
program transformations, after bound variable renaming, two occurrences of the same identifier denote
the same variable. Bound variable renaming is necessary in transformations to avoid variable capture
upon substitution.

The example in Figure 9 illustrates bound variable renaming for local variables (var), function ar-
guments (function) and loop index variables (for) in Tiger. The program on the left uses the identifier
a for a number of different variables. These are renamed to new identifiers in the program on the right.
The example illustrates the different binding constructs in Tiger and their scoping rules. That is, not all
subterms are necessarily in the scope of a declaration. The arguments of a function definition are visible
in the body of that function, and shadow all external declarations for the same name. A local variable
declaration (var) is visible in all subsequent declarations in the samelet and in the body of thelet,
but not in the initializer of the declaration. Finally, the index variable of afor loop is local to that loop,
but the lower and upper bound of the loop are not in the scope of that declaration.

Implementation of bound variable renaming can be achieved with dynamic rules, where we define
a new renaming rule for each declared variable. Thus, for each binding construct we define a transfor-
mation rule that (1) renames the variable being declared and (2) defines the renaming ruleRenameVar
to replace occurrences of the old variable with its new name. For example, for variable declarations we
introduce the following rule:

RenameVarDec :
|[ var x ta := e ]| -> |[ var y ta := e ]|
where new => y ; rules(RenameVar : |[ x ]| -> |[ y ]|)

It replaces the identifierx in the declaration with a new identifiery . Thenew primitive strategy generates
a new name that is guaranteed not to occur anywhere in any term currently in memory. (See Appendix
B of [8] for a discussion of the semantics ofnew.) Furthermore, an instance ofRenameVar is defined,
renaming an occurrence ofx to y .

Now, when we would just perform a topdown traversal over the program applyingRenameVarDec
andRenameVar, as in

exprename = try(RenameVarDec + RenameVar); all(exprename)
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exprename = rec rn(
RenameVar
<+ |[ var <id> <id> := <rn> ]|; RenameVarDec
<+ |[ let <*id> in <*id> end ]|; {| RenameVar : all(rn) |}
<+ |[ for <id> := <rn> to <rn> do <id> ]|

; {| RenameVar: RenameFor; |[ for <id> := <id> to <id> do <rn> ]| |}
<+ |[ function <id>(<*id>) <id> = <id> ]|

; {| RenameVar : RenameArgs; |[ function <id>(<*id>) <id> = <rn> ]| |}
<+ all(rn))

RenameVarDec :
|[ var x ta := e ]| -> |[ var y ta := e ]| where <NewVar> x => y

RenameFor :
|[ for x := e1 to e2 do e3 ]| -> |[ for y := e1 to e2 do e3 ]|
where <NewVar> x => y

RenameArgs :
|[ function f (x1* ) ta = e ]| -> |[ function f (x2* ) ta = e ]|
where <map(FArg|[ <NewVar> : <id> ]|)> x1* => x2*

NewVar :
x -> y where if <RenameVar> |[ x ]| then new else !x end => y

; rules( RenameVar : |[ x ]| -> |[ y ]| )

Figure 10. Bound variable renaming.

the result would not be correct, since the renaming rules for variables in innerlets would replace re-
naming rules for variables from outerlets. Thus, the scope of a renaming rule should be restricted to
the traversal of that part of the program in which the corresponding variable is in scope. After that the
old renaming rule should re-emerge.

The dynamic rule scope construct{|L:s|} restricts the scope of new definitions of the dynamic rule
L to the strategys. That is, any rule defined during the execution ofs is removed afters terminates.
Thus, in the strategy expression{| RenameVar : all(exprename) |} anyRenameVar rule defined
during the traversalall(exprename) is undefined afterwards. This is exactly what we need in order to
restrict renaming rules to the scope of the corresponding variable declarations.

Figure 10 presents the complete variable renaming transformation for Tiger. It consists of a number
of rules that rename identifiers in binding constructs using the auxiliary ruleNewVar, which defines the
RenameVar rule. These rules are called during the traversal performed by theexprename strategy. This
strategy uses the dynamic rule scope construct to restrict the scope of theRenameVar rules. For instance,
the clause

|[ let <*id> in <*id> end ]|; {| RenameVar : all(s) |}

declares that anyRenameVar rules defined during the traversal of alet are restricted to thatlet. Sim-
ilarly, the traversal restricts the scope of function arguments to the body of the function definition and
the scope of thefor loop index variable to thebodyof the loop. Note that the loop bound expressions
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let function fact(n : int) : int =
let function f(n : int, acc : int) : int =

(while n > 0 do
(acc := acc * n; n := n - 1)

; acc)
in f(n, 1) end

in fact(10) end

⇒

let var n : int := 10
var b : int := n
var acc : int := 1

in while b > 0 do
(acc := acc * b;
b := b - 1);

acc end

Figure 11. Example application of function inlining.

are visited before defining the renaming rule. Similarly, the initializer of a variable declaration is vis-
ited before renaming the variable declaration itself, thus ensuring that any occurrences of the identifier
within the initializer are renamed first. Finally, note how theNewVar rule invokes theRenameVar rule to
establish whether the identifier was already used in an enclosing scope; ifRenameVar fails, then this is
not the case and there is no need to rename the identifier.

5.2. Example: Function Inlining

Another example of the use of scoped definitions isfunction inlining. Function inlining is a transforma-
tion that replaces a function call with the body of the corresponding function, instantiating the formal
parameters with the actual parameters. For example, the transformation in Figure 11 shows the result of
first inlining the local functionf in the body offact and then inlining the functionfact at its call site.

The specification in Figure 12 defines a simple inlining algorithm replacing all function calls of
inlineablefunctions with their bodies. This algorithm is overly simplistic, since an actual inliner would
(1) use sophisticated criteria at the definitionand at the call site to determine whether a particular call
should be inlined, and (2) would combine inlining with other transformations [31]. Nonetheless, the
strategy contains the essence of inlining.

Theinline strategy has four cases. The first case is the application of the dynamicUnfoldCall
rule to replace a function call with an instantiation of the function body, followed by a renaming of bound
variables (exprename), and a recursive invocation ofinline on the inlined code. In the second case,
a new scope for theUnfoldCall rule is entered when encountering alet, to ensure that functions are
only inlined in their lexical scope.

The real work is done in the third case, when encountering a list of function declarations. Recall
from the syntax of Tiger in Figure 1 on page 7 that a list of function declarations is a single declaration
in a let binding. Furthermore, these declarations can be mutually recursive, and then have to be treated
as one when inlining. The strategyinline-fundecs uses the congruence|[<fd*:s>]| to transform a
list of function declarations. In particular,inline-fundecs visits the declarations three times. The first
time to define an unfolding rule for each inlineable2 function. The second time to apply the inlining
transformation to the function declarations themselves. And the third time to define unfolding functions
for the transformed function declarations. Furthermore, the last stageremoveseach function declaration
that is being inlined; after inlining all function calls there is no need for the declarations anymore.

2The strategyis-inlineable represents some analysis to determine whether a function is inlineable. For instance, recursive
functions could be excluded from inlining to prevent non-termination. Other heuristics such as the size of the function body, or
its ‘atomicity’ could be added.
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inline = inline-call <+ inline-let <+ inline-fundecs <+ all(inline)

inline-call = UnfoldCall; exprename; inline

inline-let = |[ let <*id> in <*id> end ]|; {| UnfoldCall : all(inline) |}

inline-fundecs =
|[ <fd*: map(is-inlineable < define-unfold + undefine-unfold)

; map(inline)
; filter(is-inlineable < define-unfold; fail + undefine-unfold)> ]|

define-unfold =
?|[ function f (x* ) ta = e ]|
; rules( UnfoldCall : |[ f (a* ) ]| -> |[ let d* in e end ]|

where <zip(bind-arg)> (x* , a* ) => d* )
bind-arg :
(FArg|[ x ta ]|, e ) -> |[ var x ta := e ]|

undefine-unfold =
?|[ function f (x* ) ta = e ]|; rules( UnfoldCall :- |[ f (a* ) ]|)

zip(s) : ([], []) -> []
zip(s) : ([x |xs ], [y |ys ]) -> [z | zs ] where <s>(x ,y ) => z ; <zip(s)>(xs , ys ) => zs

Figure 12. Function inlining.

Thedefine-unfold strategy defines a newUnfoldCall rule for a functionf , replacing a call to
f with its body inside alet, binding the actual parametersa* to the formal parametersx* as local
variables. The creation of the listd* of local variable declarations is achieved byzipping together the
list of formal parametersx* and the list of actual parametersa* , usingbind-arg to create a declaration
for each pair. If a function is not deemed inlineable, theUnfoldCall rule is undefined in order to shadow
any inlining rules for a function with the same name in an enclosing scope.

5.3. Semantics: Scope

In the semantics of dynamic rules in the previous section, a strategy expression was used to encode the
set of rules defined. In order to keep track of rules introduced in different scopes, we refine this to a
list of strategy expressionss1|...|sn, where the leftmost strategys1 denotes the rules defined in the most
recent scope. The scope construct{|L1, ..., Ln:s|} can restrict the scope of multiple dynamic rulesL1

to Ln, which is equivalent to nesting the scopes, as expressed by the following equation:

{|L1, ..., Ln:s|} ≡ {|L1:{|L2:...{|Ln:s|}...|}|}

Therefore, we will treat only the case of a scope for a single rule. Thus, entering a new scope entails
adding a new scope strategy to the list:

ΓL(fail|s2|...|sn), E ` 〈s〉 t =⇒ t′ (Γ′
L(s1|s2|...|sn), E

′)

ΓL(s2|...|sn), E ` 〈{|L:s|}〉 t =⇒ t′ (Γ′
L(s2|...|sn), E ′)
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Since no rules have been defined yet, the strategy for the new scope corresponds tofail. After appli-
cation of the strategys, the new scope is removed. The definition and undefinition of a dynamic rule
modifies the strategy expression in the current scope:

s′1 ≡ define(drd, E , s1)
ΓL(s1|s2|...|sn), E ` 〈rules(drd)〉 t =⇒ t (ΓL(s′1|s2|...|sn), E)

Where the modification of the scope strategy is factored out using the semantic function ‘define’:

define(L : p1 → p2 where s1, E , s2) ≡ {E(?p1 ; where(s1) ; !p2)} <+ s2

define(L :- p, E , s) ≡ {?E(p) ; !⊥} <+ s

That is, undefining a rule is modeled by producing the special term⊥. This is necessary to distinguish
failure to find any matching pattern in the current scope from finding an undefined pattern.

Applying a rule requires finding themost recentrule definition matching the subject term. This
corresponds to the prioritized application of the strategies corresponding to the scopes, with the most
recent scope having the highest priority. There are three cases to consider. First, one of the scope
strategies succeeds, producing a termt′ (not equal to⊥).

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ t′ (Γ′, E ′) t′ 6≡ ⊥
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ t′ (Γ′, E ′)

Secondly,t matches an explicitly undefined pattern, hence, the application of the scope strategies pro-
duces⊥. In that case, application of the dynamic rule fails. Finally, if all of the scope strategies fail, then
obviously no rule matchingt was defined, and application fails as well.

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ ⊥ (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ ↑ (Γ′, E ′)

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ ↑ (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ ↑ (Γ′, E ′)

5.4. Example: Constant Propagation for Local Variables

New dynamic rules are defined in the current scope and disappear at the end of that scope. This is not
always adequate. Sometimes it is necessary to redefine rules that have been defined in an earlier scope.
Consider for instance, the application of constant propagation in Figure 13. Each of the variablesa,
b, andc requires different behaviour. The innerlet-block defines a new local variablec. Hence, the
propagation rules forc in the enclosing block should be shadowed within and restored at the end of the
inner block. Thus, the occurrence ofc in the last statement refers to the value ofc before the inner block.
This behaviour is obtained by using a dynamic rule scope for the traversal oflet blocks, as follows:

let var a := 1 var b := 2 var c := 3
in a := b + c;

let var c := a + 1
in b := b + c;

a := a + b;
b := z + b end;

a := c + b + a end

⇒

let var a := 1 var b := 2 var c := 3
in a := 5;

let var c := 6
in b := 8;

a := 13;
b := z + 8 end;

a := 3 + b + 13 end

Figure 13. Application of constant propagation on program with local variables.
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prop-const =
PropConst <+ prop-const-assign <+ prop-const-let <+ prop-const-vardec
<+ all(prop-const); try(EvalBinOp <+ EvalRelOp)

prop-const-let =
|[ let <*id> in <*id> end ]|; {| PropConst : all(prop-const) |}

prop-const-vardec =
|[ var x ta := <prop-const => e > ]|
; if <is-value> e then rules( PropConst+x : |[ x ]| -> |[ e ]| )

else rules( PropConst+x :- |[ x ]| ) end

prop-const-assign =
|[ x := <prop-const => e > ]|
; if <is-value> e then rules( PropConst.x : |[ x ]| -> |[ e ]| )

else rules( PropConst.x :- |[ x ]| ) end

Figure 14. Constant propagation for basic blocks with local variables.

|[ let <*id> in <*id> end ]|; {| PropConst : all(prop-const) |}

This entails that a new local propagation rule is defined when encountering a local variable declaration
or assignment, and these rules are discarded after the traversal.

On the other hand, the variablesa andb are not redeclared in the inner block. Thus, assignments in
the inner block affect the values of these variables in the enclosing block. That is, the occurrence ofa
in the last statement refers to the value assigned toa in the inner block, and since the value ofz cannot
be determined,b should not be replaced in the last statement. Now, the problem is that this behaviour is
not supported by dynamic rule scopes as defined above. Any rules that are defined within the scope are
discarded afterwards.

The solution is more fine-grained control over the scope in which a rule is defined. We achieve
this by labeling scopes with symbolic names (terms), and referring to these labels when defining or
undefining a rule. The specification in Figure 14 is an extension of the constant propagation strategy
in Figure 8 for blocks with local variables. A new scope is started just as in the case of renaming with
{| PropConst : all(prop-const) |}. In order to ensure that propagation rules are defined in the
right scope, these are labeled with the names of the variables declared within that scope. Thus, when
encountering a variable declaration, the rule definition

rules( PropConst+x : |[ x ]| -> |[ e ]| )

defines a constant propagation rule for the variablex in thecurrent scopeand labels the current scope
with labelx . This models the fact that a variable declaration introduces a new local variable. On the
other hand, when encountering an assignment, a propagation rule is defined in the scope labeled with the
name of the variable being assigned to:

rules( PropConst.x : |[ x ]| -> |[ e ]| )

In case the expression assigned to a variable is not a constant, thePropConst rule is undefined for that
variable, following the same reasoning: labeling the current scope in the case of a variable declaration,
and undefining in the labeled scope in the case of an assignment.
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5.5. Semantics: Labeled Scopes

The definition of a dynamic rule in conjunction with labeling the current scope is a composition of those
two operations:

rules(L+p : r) ≡ rules(L+p) ; rules(L.p : r)

To model labeled scopes, each scope of a dynamic rule has a list of labels associated with it;Γ.labelsLi

denotes the set of terms labeling theith scope ofΓL. Labeling the current scope entails adding a label to
this list:

lbls ≡ [E(p)|Γ.labelsL1 ]
Γ, E ` 〈rules(L+p)〉 t =⇒ t (Γ.labelsL1 := lbls, E)

Note that labels are term patterns and are instantiated using the current variable bindings.
Defining a rule in a scope labeled withp, entails finding the first scope that is labeled withp, extend-

ing the corresponding strategy, and removing the rule from any more recent scopes.

label(drd) ≡ p E(p) ∈ Γ.labelsLi define(drd, E , si) ≡ s′i
∀i−1
j=1(E(p) 6∈ Γ.labelsLj ∧ remove(drd, E , sj) ≡ s′j)

ΓL(s1|...|si−1|si|si+1|...|sn), E ` 〈rules(drd)〉 t =⇒ t (ΓL(s′1|...|s′i−1|s′i|si+1|...|sn), E)

Here ‘label’ denotes the label of a dynamic rule definition, where⊕ abstracts over definition (:), undefi-
nition (:-), and extension (:+):

rules(L⊕ r) ≡ rules(L.ε⊕ r) label(L.p⊕ r) ≡ p

Note thatε is used to denote the current scope. That is, defining a rule without a label is equivalent to
defining a rule in the scope labeled withε. Since every scope has this label, this entails defining it in the
current scope. Removing a rule from a scope is defined as follows:

remove(L.p0 : p1 → p2 where s1, E , s2) ≡ {?E(p1)} < fail + s2

remove(L.p0 :- p1, E , s) ≡ {?E(p1)} < fail + s

By letting the scope strategy fail when encountering the pattern concerned, lookup will proceed in the
next scope.

Finally, the semantics of dynamic rule scope needs to be redefined, since the strategies of enclosing
scopes may change within the scope by rule definition relative to a label:

ΓL(fail|s2|...|sn), E ` 〈s〉 t =⇒ t′ (Γ′
L(s′1|s′2|...|s′n), E

′)

ΓL(s2|...|sn), E ` 〈{|L:s|}〉 t =⇒ t′ (Γ′
L(s′2|...|s′n)

, E ′)

A scope label may also be assigned as part of the scope declaration, which is an abbreviation for a scope
with an explicit labeling action:

{|L.p:s|} ≡ {|L: rules(L+p); s|}

The application of a dynamic rule is not affected by the addition of labels.



M. Bravenboer, A. van Dam, K. Olmos and E. Visser / Transformation with Dynamic Rewrite Rules 33

6. Extending Dynamic Rules

The examples of dynamic rewrite rules we have considered so far rewrite one left-hand side term to one
right-hand side term. When defining a new rule, the old rule with the same left-hand side is discarded. In
some applications it turns out to be useful to be able to rewrite to multiple right-hand sides. For example,
in partial evaluation, for each function call with static arguments, a specialized function definition is
generated. Thus, the original function definition should be rewritten to a list of specialized function
definitions. This could be modeled by maintaining a list of terms as right-hand side. For example, the
strategy for specializing function calls might have a code fragment such as the following:

... => fd

; <Specializations> |[ function f (x* ) ta = e ]| => fd*

; rules( Specializations : |[ function f (x* ) ta = e ]| -> [fd |fd* ] )

where somehow a specialized function definitionfd is computed. To extend the list with specializations
for functionf , the old list of specializationsfd* is retrieved by applying theSpecializations rule,
and then theSpecializations rule for functionf is redefined to include the new function definition.
This turned out to be a frequently occurring programming pattern for dynamic rules, leading to code
cluttered with list extension operations, distracting from the actual transformation being defined.

The idea of dynamic ruleextensionis to allow multiple rules with the same left-hand side and dif-
ferent right-hand sides. For example, using this approach, function specializations can be modeled by a
dynamic ruleSpecialization, which rewrites a function definition toa specialization. Thus, the code
fragment above is reduced to

... => fd

; rules( Specialization :+ |[ function f (x* ) ta = e ]| -> fd )

which declares that the dynamic rule isextendedwith a new case for functionf without discarding
previously defined rules. A dynamic rule thus defined can be applied in various ways; producing the
most recently added right-hand side, producing all right-hand sides, producing one right-hand side and
then discarding it. The result is a more general model for dynamic rules in which the undefinedness
of a dynamic rule corresponds to the absence of any rules. In this section, we generalize dynamic
rules to support rule extension with different application modes, and we illustrate rule extension with
common subexpression elimination. Another application features in the function specialization example
in Section 8.

6.1. Example: Common Subexpression Elimination in Basic Blocks

Common subexpression elimination (CSE) is a transformation in which an expression is replaced with
a variable containing the value of that expression as computed earlier in the program. The following
application illustrates the transformation, and the main issues in its implementation:

(x := a + b;
y := a + b;
z := a + c;
a := 1;
z := (a + c) + (a + b))

⇒

(x := a + b;
y := x;
z := a + c;
a := 1;
z := (a + c) + (a + b))
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cse = cse-assign <+ (all(cse); try(ReplaceExp))

cse-assign =
|[ x := <cse => e > ]|
; where(<undefine-subexpressions> |[ x ]|)
; if <not(is-subterm(||[ x ]|))> |[ e ]| then

rules(ReplaceExp : |[ e ]| -> |[ x ]|)
; where(<register-subexpressions(|e )> |[ x := e ]|)

end

register-subexpressions(|e ) =
get-vars; map({y : ?|[ y ]|; rules(UsedInExp :+ |[ y ]| -> e )})

undefine-subexpressions =
bagof-UsedInExp; map({?e ; rules(ReplaceExp :- |[ e ]|)})

get-vars = collect({?|[ x ]|})

Figure 15. Common subexpression elimination in basic blocks.

The example shows how later occurrences of the expressiona + b can be replaced with the variable
x, since that variable contains the value of the expression. However, as soon as the variablex or one
of the variablesa or b in the expression are assigned a new value, that replacement is no longer valid.
Thus, the occurrence ofa + b in the last statement cannot be replaced, since the assignment toa in the
preceding statement invalidates it. For the same reason, the occurrence ofa + c in that statement cannot
be replaced withz.

Figure 15 shows the specification of common subexpression elimination for basic blocks. The trans-
formation is similar to constant propagation, but the rewrite rule is reversed. That is, instead of defining a
rule that rewrites the variablex to the expressione when encountering an assignment|[x := e ]|, a rule
is defined that rewritese to x (unlessx occurs ine ). The main difference between CSE and constant
propagation is that it is not obvious which rules to undefine when encountering an assignment. In the
case of constant propagation, an assignment|[x := e ]| invalidates the propagation rule with variable
x as left-hand side. This is directly expressed asrules(PropConst :- |[x ]|). However, in common
subexpression elimination, an assignment|[x := e ]| invalidatesall rules that rewrite an expressione’
containingx or tox .

The specification in Figure 15 models this by maintainingtwo dynamic rules;ReplaceExp rewrites
expressions to the variables that contain their value, andUsedInExp keeps track of which expressions
a variable is used in. Thus,register-subexpressions defines an instance ofUsedInExp for each
variable occurring in an assignment. This rule definition isan extension, since a variable can occur in
multiple expressions. Subsequently, on encountering an assignment|[x := e ]|, all ReplaceExp rules
that rewrite an expression containing the variablex are undefined byundefine-subexpressions. This
is achieved using thebagof-UsedInExp strategy that producesall expressions thatUsedInExp rewrites
x to.
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6.2. Dependent Dynamic Rules

The approach of using an extra dynamic rule to keep track of the rules defined for another dynamic rule
may seem awkward, and cumbersome to extend to a setting with local scopes and control flow (as dis-
cussed in Section 7). However, a general pattern can be recognized. Thecse strategy is registering all
dependencies of theReplaceExp dynamic rule. In [27] we describedependent dynamic rules, an exten-
sion of dynamic rules, which provides built-in support for registering rule dependencies and undefining
rules by their dependencies. Using this approach, theReplaceExp rule is defined as

where(<get-vars> |[ x := e ]| => deps )
; rules(ReplaceExp : |[ e ]| -> |[ x ]| depends on deps )

When encountering an assignment|[y := e’ ]| a call toundefine-ReplaceExp(|y ) suffices to un-
define all rules depending ony . The dependent dynamic rule mechanism is an abstraction built on top
of the dynamic rules described in this article.

6.3. Semantics: Extend Rule

To define the semantics of rule extension, the strategy encoding of a rule set needs to produce all terms
that a term rewrites to. This is implemented in the semantics by having the strategies produce a list
of terms. A normal rule definition adds an alternative that produces a singleton list, thus discarding
all previously defined rules matching the same pattern. Undefinition of a pattern (:-) is modeled by a
strategy producing the empty list. Finally, extension (:+) is defined by a strategy that builds a list with
the new right-hand side as head element and any other applicable terms for applying the original strategy
to produce the tail of the list.

define(L.p0 : p1 → p2 where s1, E , s2) ≡ {?E(p1);where(E(s1));![E(p2)]} <+ s2

define(L.p0 :- p1, E , s) ≡ {?E(p1); []} <+ s

define(L.p0 :+ p1 → p2 where s1, E , s2) ≡ {?E(p1);where(E(s1));(s2<+![])=>x;![E(p2)|x]}
<+ s2

with x a fresh variable

Thus, by using the empty list[] to model undefinedness, there is no more need for the⊥ value of
Section 5.

Application Normal application of a rule produces the most recent term from the applicable rule in-
stance. Thus, if the prioritized choice of the scope strategies rewrites to a list of terms, the first one is
produced:

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ [t1,...,tm] (Γ′, E ′) (m > 0)
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ t1 (Γ′, E ′)

When the scope strategies produce the empty list, rewriting for this term was explicitly undefined. When
application of the scope strategies fails, no matching rule was encountered. In both cases application
fails:

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ [] (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ ↑ (Γ′, E ′)

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ ↑ (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈L〉 t =⇒ ↑ (Γ′, E ′)
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Bagof Now, the interesting use of ‘extended’ rules is obtaining all possible rewrites for a term. For
each dynamic ruleL, there is a correspondingbagof-L rule that produces the list of all termsti to
which a termt rewrites withL.

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ [t1,...,tm] (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈bagof-L〉 t =⇒ [t1,...,tm] (Γ′, E ′)

Γ, E ` 〈s1 <+ ... <+ sn〉 t =⇒ ↑ (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈bagof-L〉 t =⇒ [] (Γ′, E ′)

Note thatbagof-L always succeeds. If there are no defined rules, the result is just the empty list.

Once Another interesting use of extended dynamic rules, is the application of a dynamic rulejust once.
That is, by applying the rule it is ‘consumed’ and cannot be applied again. Thus, for each dynamic rule
L, there is a corresponding strategyonce-L, which applies the first availableL rule, which is then
undefined:

Γ, E ` 〈onceL1(s1) <+ ... <+ onceLn(sn)〉 t =⇒ t′ (Γ′, E ′)
ΓL(s1|...|sn), E ` 〈once-L〉 t =⇒ t′ (Γ′, E ′)

Γ, E ` 〈s〉 t =⇒ [t1,...,tn] (Γ′, E ′) (n > 0) s′ ≡ {?t; ![t2,...,tn]} <+s

Γ, E ` 〈onceLi(s)〉 t =⇒ t1 (Γ′
L(s1|...|si−1|s′|si+1|...|sm), E ′)

Γ, E ` 〈s〉 t =⇒ ↑ (Γ′, E ′)
Γ, E ` 〈onceLi(s)〉 t =⇒ ↑ (Γ′, E ′)

Γ, E ` 〈s〉 t =⇒ [] (Γ′, E ′)
Γ, E ` 〈onceLi(s)〉 t =⇒ ↑ (Γ′, E ′)

These rules are somewhat simplified, since the undefinition in the second rule is done for theterm t,
rather than for the underlyingpatternp. This is an anomaly of the representation of dynamic rules that
we have chosen for presenting the semantics.

An example of the use of this feature is to ensure that a function is unfolded at most once, which
is achieved by calling the unfolding rule asonce-UnfoldCall. When this is successfully applied to a
function call, it is automatically undefined. In Section 8 we present a larger application of dynamic rules
to the implementation of function specialization, which uses this feature.

7. Intersection and Union of Rule Sets

In the previous sections, we have used dynamic rules in various program transformations, including ones
such as constant propagation and common-subexpression elimination where they are used to model data
flow facts. However, we have only considered straight line code in these transformations so far. That
is, code without conditionals or loops. In straight line code there is a single execution path. A traversal
strategy follows this path and maintains data flow information along the way in the form of dynamic
rewrite rules. For example, thePropConst rule set represents all known propagation facts at the current
point in the program at any time during the constant propagation transformation. Real programs do not
have a single execution path. Rather, execution forks at conditionals and iterates at loops. Thus, to model
data flow facts using dynamic rules, we need to account for these phenomena. To achieve this we need
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to fork dynamic rule sets for use in different branches, and join them again when branches meet. These
operations are captured in several strategy combinators, which provide exactly the abstractions needed
to define data flow transformations for programs with structured control flow in a concise manner. In this
section we define the semantics of these fork-and-join combinators, and illustrate their use with two data
flow transformations, constant propagation and dead code elimination.

7.1. Example: Flow-Sensitive Conditional Constant Propagation

Thus far, we have considered constant propagation with straight line code, possibly with local variables.
Figure 18 presents acompletespecification of intra-procedural, flow-sensitive constant propagation. A
particular point of interest about this specification is that it combines analysis with transformation in
the same traversal, similarly to the conditional constant propagation transformation of Wegman and
Zadek [47] and the approach of Lerner et al. [19]. This combination is strictly more expressive than
separate analysis and transformation phases, since transformation can influence the result of analysis.
For example, the transformation in Figure 16 shows how the application of constant propagation (to
determine thatx is 10 at the condition), gives rise to elimination of code, reducing theif-then-else
construct to thethen branch. This elimination prevents considering theelse branch, which would inter-
fere with the knowledge thatx is 10. We achieve this with the generally applicable features of strategies
and dynamic rules, which are not specific to constant propagation, or even data flow transformation.

The flow-sensitive constant propagation strategy is an extension of the constant propagation strategy
for straight line code. To understand the extension, we reexamine the design of the original strategy. The
basic idea of the transformation is that the set ofPropConst rules reflects the constant propagation facts
valid at the currently visited program point for all executions of the program. The rule set is modified
during the traversal to maintain this invariant. Thus, an assignment statementx := e either redefines
PropConst to rewritex toe in casee is a constant, or undefines the rule in casee is not a constant. Any
other rules are not affected by the assignment and remain in the rule set. Variable declarations introduce
local propagation rules (or locally undefined rules) shadowing any rules in outer scope.

For straight line code, there is only one possible execution. However, for code with control flow
there are multiple execution paths, for all of which the propagation invariant needs to be maintained. The
issues that need to be solved in the implementation of flow-sensitive constant propagation are illustrated
by the example in Figure 17. (1) Facts that are valid before a conditional should be propagated into both
branches of the conditional. For example,a andz in the second branch get the value that they have
beforethe conditional. (2) Within a branch, facts can be propagated as is usual in a basic block. For

let var x := 0 var y := 0
in x := 10;

while A do
(if x = 10
then dosomething()
else (dosomethingelse();

x := x + 1));
y := x

end

⇒

let var x := 0
var y := 0

in x := 10;
while A do
dosomething();

y := 10
end

Figure 16. Combination of analysis and transformation.
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let var x := 1 var y := z
var z := 3 var a := 4

in x := x + z;
a := 5;
if y then (y := y + 5;

z := 8)
else (x := a + 21;

y := x + 1;
z := a + z);

b := a + z;
z := z + x end

⇒

x y z a b
1 - - - -
1 - 3 4 -
4 - 3 4 -
4 - 3 5 -
4 - 3 5 -
4 - 8 5 -
26 - 3 5 -
26 27 3 5 -
26 27 8 5 -
- - 8 5 -
- - 8 5 13
- - 8 5 13

⇒

let var x := 1 var y := z
var z := 3 var a := 4

in x := 4;
a := 5;
if y then (y := y + 5;

z := 8)
else (x := 26;

y := 27;
z := 8);

b := 13;
z := 8 + x end

Figure 17. Example application of flow-sensitive constant propagation. The table shows the constant valuesafter
transforming the statement on the same line.

example, the value ofx can be propagated within the second branch. (3) Facts that are guaranteed to be
the same after execution of any of the branches can be propagated after the conditional, but facts that are
inconsistent should not be propagated. For example, the value ofa is unchanged by both branches, so it
is the same after the conditional. Whilez is changed in both branches, its value is always the same, so it
can be propagated. However, the value ofx is changed in the second branch, therefore its value cannot
be propagated afterwards.

Thus, to maintain the propagation invariant (1) transformation of the two branches of a conditional
should start with the same set of dynamic rules as was valid before the conditional. Hence, after prop-
agation in one branch, the rule set should be restored to what it wasbeforethe conditional in order to
correctly propagate in the other branch. (2) Within a branch, transformation proceeds as usual. (3) After
the conditional, transformation proceeds with those rules from the rule sets for the branches that are
consistent. These requirements are implemented by thes1 /L\ s2 strategy combinator, which applies
two strategiess1 ands2 sequentially to the subject term, but each starts with the same rule set forL and
the resulting rule sets are intersected to form the new rule set forL afterwards. The/L\ combinator
is language independent, that is, it has no knowledge of what are the ‘branches’ that should be treated
separately. Instead this notion is expressed in the argument strategies. For example, the strategy

|[ if <id> then <prop-const> else <id> ]|
/PropConst\ |[ if <id> then <id> else <prop-const> ]|

applies the strategyprop-const first to thethen-branch of the conditional and then to theelse-branch.
Afterwards, thePropConst rule sets from the branches are intersected to maintain only those propaga-
tion rules that are the same after both branches.

In the case of loops, one traversal is not sufficient. The propagation rules applied to the loop body
should be valid foreveryiteration of the loop. The rule set applicable before the loop is not necessarily
valid in every iteration. We compute a rule set thatis valid in all iterations by repeatedly applying the
propagation to the loop, taking the intersection between the rule set~s before and the rule set~s′ after the
application, until a stable rule set is achieved, i.e., such that~s ≡ ~s∩~s′. At each iteration we transform the
original loop, rather than accumulating the transformations from all iterations. This is necessary since
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prop-const = PropConst <+ prop-const-assign <+ prop-const-vardec <+ prop-const-let
<+ prop-const-if <+ prop-const-while <+ prop-const-for
<+ (all(prop-const); try(EvalBinOp <+ EvalRelOp))

prop-const-vardec =
|[ var x ta := <prop-const => e > ]|
; if <is-value> e then rules( PropConst+x : |[ x ]| -> |[ e ]| )

else rules( PropConst+x :- |[ x ]| ) end
prop-const-assign =
|[ x := <prop-const => e > ]|
; if <is-value> e then rules( PropConst.x : |[ x ]| -> |[ e ]| )

else rules( PropConst.x :- |[ x ]| ) end
prop-const-let =
|[ let <*id> in <*id> end ]|; {| PropConst : all(s) |}

prop-const-if =
|[ if <prop-const> then <id> ]|
; (EvalIf; s <+ (|[ if <id> then <prop-const> ]| /PropConst\ id))

prop-const-if =
|[ if <prop-const> then <id> else <id> ]|
; (EvalIf; s <+ (|[ if <id> then <prop-const> else <id> ]|

/PropConst\ |[ if <id> then <id> else <prop-const> ]|))
prop-const-while =
|[ while <id> do <id> ]|
; (|[ while <prop-const> do <id> ]|; EvalWhile

<+ /PropConst\* |[ while <prop-const> do <prop-const> ]|)

prop-const-for =
|[ for <id> := <prop-const> to <prop-const> do <id> ]|
; (EvalFor <+ /PropConst\* |[ for <id> := <id> to <id> do <prop-const> ]|)

Figure 18. Intra-procedural flow-sensitive constant propagation.

let var w := 20 var x := 20 var y := 20 var z := 10
in while SomethingUnknown() do

(if x = 20 then w := 20 else w := 10;
if y = 20 then x := 20 else x := 10;
if z = 20 then y := 20 else y := 10);

w; x; y; z end

let var w := 20 var x := 20 var y := 20 var z := 10
in while SomethingUnknown() do

(if x = 20 then w := 20 else w := 10;
if y = 20 then x := 20 else x := 10;
y := 10);

w; x; y; 10 end

w x y z

20 20 20 10

1 20 20 10 10

20 20 - 10

2 20 - 10 10

20 - - 10

3 - - 10 10

- - - 10

4 - - 10 10

- - - 10

Figure 19. Example showing the need for multiple iterations. The table shows the values of the variables before
the loop (first row) and at the end of each iteration, before and after computing the intersection with the previous
rule set.
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the transformations from all but the last iteration may apply rules that are not valid in all iterations, and
may thus be incorrect. This process is illustrated in Figure 19. Note that the rule set~s′ after the loop
need not be the same as the rule set before the loop. Thus, within the loop values can still be propagated
as usual. In the example, variabley has the value10 after every iteration. This cannot be propagated
outside the loop since it has a different value before the loop, and there is no guarantee that the loop will
execute at least once.

The iteration of dynamic rule propagation with intersection is expressed using the fixed point com-
binator/L\* s, which repeats the application ofs until no more changes in the rule set forL occur, i.e.,
until a fixed point is reached. For example, in the constant propagation transformation, the strategy

/PropConst\* |[ while <prop-const> do <prop-const> ]|)

expresses the fixed point iteration over awhile-loop. The specification in Figure 18 uses these intersec-
tion combinators to express constant propagation over structured control flow constructs.

Finally, the transformation is enhanced with unreachable code elimination, which gives the effect of
conditional constant propagation [47, 19] as illustrated in Figure 16. This is achieved by the following
strategy expression

|[ if <prop-const> then <id> else <id> ]|
; (EvalIf; prop-const <+ (|[ if <id> then <prop-const> else <id> ]|

/PropConst\ |[ if <id> then <id> else <prop-const> ]|))

which first appliesprop-const to the conditional. Then it tries to applyEvalIf, which discards one of
the branches if the condition is constant, after which that branch can be transformed as normal code with
an application ofprop-const. If the conditional cannot be reduced, the intersection is invoked, instead.

7.2. Semantics: Intersection of Dynamic Rules

The semantics of the join-and-fork combinators are straightforward. The argument strategies are applied
sequentially to the subject term. That is, the second strategy is applied to the result of the first. However,
each strategy application uses the original set ofL rules, and afterwards the intersection of the resulting
rule sets is taken.

ΓL(~s), E ` 〈s1〉 t =⇒ t′ (Γ′
L(~s′)

, E ′) Γ′
L(~s), E

′ ` 〈s2〉 t′ =⇒ t′′ (Γ′′
L( ~s′′)

, E ′′)

ΓL(~s), E ` 〈s1 /L\ s2〉 t =⇒ t′′ (Γ′′
L(~s′∩ ~s′′)

, E ′′)

ΓL(~s), E ` 〈s1〉 t =⇒ ↑ (Γ′
L(~s′)

, E ′)

ΓL(~s), E ` 〈s1 /L\ s2〉 t =⇒ ↑ (Γ′
L(~s), E ′)

ΓL(~s), E ` 〈s1〉 t =⇒ t′ (Γ′
L(~s′)

, E ′) Γ′
L(~s), E

′ ` 〈s2〉 t′ =⇒ ↑ (Γ′′
L( ~s′′)

, E ′′)

ΓL(~s), E ` 〈s1 /L\ s2〉 t =⇒ ↑ (Γ′′
L(~s), E ′′)

The intersection of two rule sets is the point-wise intersection of the scope strategies, and the intersection
of two scope strategies corresponds to the intersection of the resulting strategy application:

~s ∩ ~s′ ≡ (s1 ∩ s′1)|...|(sn ∩ s′n) s1 ∩ s2 ≡ <isect>(<s1>,<s2>)
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whereisect is a library strategy that computes the intersection of two lists, andunion computes the
union of two lists, removing duplicate elements.

The fixed point variants of the intersection operation repeats the application of a strategy until the
rule set is stable. Thus, the first semantic rule defines that the result of the application of the fixed point
operation produces the result of applying the transformation, if the intersection~s ∩ ~s′ of theL rule set
~s before and~s′ after application are equal to~s. The second rule expresses that if this is not the case, a
recursive invocation of the fixed point operation should be performed.

Γ, E ` 〈s1〉 t =⇒ t′ (Γ′
L(~s′)

, E ′) ~s ≡ ~s ∩ ~s′

ΓL(~s), E ` 〈/L\* s1〉 t =⇒ t′ (Γ′′
L(~s), E ′)

Γ, E ` 〈s1〉 t =⇒ t′ (Γ′
L(~s′)

, E ′) ~s′′ ≡ ~s ∩ ~s′ 6≡ ~s Γ
L( ~s′′)

, E ′ ` 〈/L\* s1〉 t =⇒ t′′ (Γ′
L( ~s′′′)

, E ′′)

ΓL(~s), E ` 〈/L\* s1〉 t =⇒ t′′ (Γ′′
L( ~s′′′)

, E ′′)

Note that in the second case the recursive invocation applies to theoriginal subject termt. Only the
result of the last iteration is produced as result of the transformation. Thus, the transformation is applied
only after a stable rule set is obtained.

We have omitted the failure rules for the fixed point operator, which recover the rule set to its original
state, just like the binary operator. In fact, the fork-and-join combinators are more general, since they
allow a list of dynamic rules over which the fork-and-join operations are performed simultaneously. The
extension of the semantics to these generalized combinators is straightforward. Furthermore, Stratego
provides theunionoperators\L/ and\L/* , the semantics of which is entirely analogous to semantics
of the intersection operators with intersection replaced by union. An example of their use follows below.

7.3. Example: Dead Code Elimination

Finally, as an example of the\L/ combinators for taking the union of rule sets, we present the spec-
ification of dead code elimination, a transformation that removes assignments that compute a value that
is not needed. The transformation is illustrated in Figure 20. It removes an assignment statement if its
left-value variable is not needed on entry to the next statement. A variable is needed if it is used in a
statement, which is needed itself and follows the assignment of the variable. Thus, the neededness of a
variable requires abackwardsflow analysis. By combining this analysis with the actual transformation,
i.e., removing dead assignments, all dead code can be eliminated in a single traversal.

The specification in Figure 21 defines the strategy for dead code elimination for basic blocks with
control flow, but without variable declarations. The central rule of the specification isElimAssign,
which replaces an assignment with the empty sequence, if the variable it assigns is not needed. Need-
edness is indicated by theNeeded dynamic rule. If an assignmentx:=e is needed (ElimAssign fails
to apply), the dynamic rule isundefinedby dce-assign for x, since all subsequent uses of the variable
use the value computed by the assignment. By generically traversing needed expressions, all needed
variables are encountered, which are then marked as needed byVarNeeded. The generic traversal is
specialized for sequence, if, and while statements, which should be traversed in backwards control flow
order. Thus,dce-seq uses thereverse-filter strategy to applydce recursively to the statements
in a sequence from last to first, and to remove those statements that have been reduced to the empty
sequence(). Thedce-if strategy first eliminates code in the branches of anif-then-else statement,
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(x := foo(b);
y := bar(h);
a := c + 23;
if 4 > x then
(d := b + a;
g := 4 + y)

else
(b := 2;
a := y + 3;
a := 4 + x);

print(a))

⇒

{c,b}
{x,c}
{x,c}
{x,a}
{a}
{a}

{x}
{x}
{x}
{a}

⇒

(x := foo(b);

a := c + 23;
if not(4> x) then

a := 4 + x;
print(a))

Figure 20. Example of dead code elimination. The table indicates which variables are neededon entryof the
statement on the same line.

dce = VarNeeded <+ ElimAssign <+ dce-assign <+ dce-seq <+ dce-if <+ dce-while <+ all(dce)

ElimAssign : |[ x := e ]| -> |[ () ]| where <not(Needed)> |[ x ]|

ElimIf : |[ if e then () else () ]| -> |[ (e ) ]|
ElimIf : |[ if e1 then e2 else () ]| -> |[ if e1 then e2 ]|
ElimIf : |[ if e1 then () else e2 ]| -> |[ if not(e1 ) then e2 ]|

VarNeeded = ?|[ x ]|; rules(Needed : |[ x ]|)

dce-assign = ?|[ x := e ]|; rules(Needed :- |[ x ]|); |[ <id> := <dce> ]|

dce-seq = |[ (<* reverse-filter(dce; not(?|[ () ]|)) >) ]|

dce-if =
(|[ if <id> then <dce> else <id> ]| \Needed/ |[ if <id> then <id> else <dce> ]|)
; |[ if <dce> then <id> else <id> ]|
; try(ElimIf)

dce-while = |[ while <id> do <id> ]|; (\Needed/* |[ while <dce> do <dce> ]|)

Figure 21. Intra-procedural dead code elimination.

taking the union of the variables needed in both branches, and then transforms the condition.ElimIf
simplifies a statement if one or both branches reduced to the empty sequence. Similarly,dce-while
computes the fixed point of the variables needed in awhile loop.

8. Example: Function Specialization

Next we present a somewhat larger example, illustrating nested dynamic rules, the use ofonce-L dy-
namic rule application, and the interaction between dynamic rules.

Partial evaluationis a transformation that specializes a program to its static inputs [17]. One aspect
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function mod(x : int, y : int) : int =
x - ((x / y) * y)

function even(x : int) : int =
mod(x, 2) = 0

function square(x : int) : int =
x * x

function power(x : int, n : int) : int =
if n = 0 then 1
else if even(n) then
square(power(x, n / 2))

else x * power(x, n - 1)
function main() =
printint(power(string2int(argv(1)),5))

⇒

function square(x: int): int = x * x
function a(x: int): int = x * b(x)
function b(x: int): int = square(c(x))
function c(x: int): int = square(e(x))
function e(x: int): int = x * f(x)
function f(x: int): int = 1
function main() =
printint(a(string2int(argv(1))))

Figure 22. Specialization ofpower( ,5).

of partial evaluation isfunction specialization, the generation of a derived function definition that is
specialized to some values of its parameters. Partial evaluation can be considered as an extension of
constant propagation to involve functions. The example in Figure 22 illustrates partial evaluation by
the specialization of thepower function to the constant value5 as its second argument. A specialized
function a(x) is generated that denotespower(x,5). Propagating the constant5 in the body of the
specialized function gives rise to a callpower(x,4), which is itself specialized tob(x). This process
continues by specializing all function calls that have some constant values as arguments. Function calls
for which all arguments are constants, are not specialized, but are unfolded. Since all argument values
are available, these calls can be completely evaluated. For example, as part of partial evaluation of the
specialized body ofpower(x,5), the calleven(n) is instantiated toeven(5). By unfolding this call
and all nested calls, the value ofeven(5) is computed during specialization, and can thus be used to
evaluate theif-then-else.

To achieve partial evaluation, the specification in Figure 23 is a combination of constant propagation
for local propagation of constant values, call unfolding and function specialization. The strategy has
basically the same structure as the constant propagation strategy in Figure 18, with a few extra cases.
The strategiesprop-const-vardec, prop-const-assign, prop-const-if, prop-const-while,
andprop-const-for are reused from Figure 18

The major part of the transformation is the strategydeclare-fundec, which defines for each func-
tion definition three dynamic rules. First,Specialization is the rule used to collect specializations
for the function, which is initialized to produce the function itself as specialization. Then,UnfoldCall
is the familiar unfolding rule that replaces a call with an instantiation of the function body, but only if
all arguments are constants. Finally,SpecializeCall generates a new function with the body of the
original function with the constant actual parameters bound to the corresponding formal parameters. Be-
fore examining the latter rule in more detail, note how these rules are used in the overall strategy. The
prop-const-let strategy transformslet bindings by first declaring the unfolding and specialization
rules by means of a map over all declarations indeclare, which callsdeclare-fundec for each func-
tion definition. Next, it performs constant propagation in thelet body (recursive call toprop-const),
which may give rise to function specializations. Finally, all function specializations are added to thelet,
by rewriting each function definition to the list of its specializations inspecialize.
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prop-const = PropConst <+ prop-const-assign <+ prop-const-let <+ prop-const-fundec
<+ prop-const-funarg <+ prop-const-if <+ prop-const-while <+ prop-const-for
<+ all(prop-const); try(EvalBinOp <+ EvalRelOp <+ unfold-call <+ SpecializeCall)

unfold-call = UnfoldCall; exprename; prop-const

prop-const-let =
|[ let <*id> in <*id> end ]|
; {| PropConst, UnfoldCall, SpecializeCall, Specialization :

|[ let <*declare> in <*prop-const> end ]|; |[ let <*specialize> in <*id> end ]| |}
; try( \ |[ let d* in i end ]| -> |[ i ]| \ )

declare = map(prop-const-vardec + |[ <fd*:map(declare-fundec)> ]|)
specialize = map(try(|[ <fd*:mapconcat(specialize-fun)> ]|))
specialize-fun = ![<once-Specialization; prop-const>|<specialize-fun>] <+ ![]

declare-fundec =
?|[ function f (x1* ) ta = e1 ]|;
rules(
Specialization+f :
|[ function f (x1* ) ta = e2 ]| -> |[ function f (x1* ) ta = e1 ]|

UnfoldCall :
|[ f (a* ) ]| -> |[ let d* in e1 end ]|
where <map(is-value)> a* // only unfold if all args static
; <zip(\ (FArg|[ x ta ]|, e ) -> |[ var x ta := e ]|\ )> (x1* , a* ) => d*

SpecializeCall :
|[ f (a1* ) ]| -> |[ g (a2* ) ]|
where <split-static-dynamic-args> (x1* , a1* ) => (d* , (x2* , a2* ))

; new => g

; rules(
Specialization.f :+ |[function f (x1* ) ta = e2 ]| ->

|[function g (x2* ) ta = let d* in e1 end]|
)

)

split-static-dynamic-args =
zip; partition(bind-arg-value); (not([]), unzip)

bind-arg-value : (FArg|[ x ta ]|, e ) -> |[ var x ta := e ]| where <is-value> e

prop-const-fundec =
?|[ function f (x* ) ta = e ]|; {| PropConst : all(prop-const) |}

prop-const-funarg =
?FArg|[ x ta ]|; rules( PropConst+x :- |[ x ]| )

Figure 23. A simple online partial evaluator with function specialization.
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The interesting rule in the specification isSpecializeCall. It transforms a callf (a1* ) into a call
to a new functiong . The new function is a specialization of functionf to the constant valued arguments
of the call. As a side effect, the definition of the new functiong is declared as a specialization off by
means of the nested dynamic rule definition forSpecialization. By extendingtheSpecialization
rule, any previous specializations are preserved. That is,bagof-Specialization produces all special-
izations forf . The definition of the specialized functiong has the following form:

|[ function g (x2* ) ta = let d* in e1 end ]|

It is a combination of the original function definition forf and the actual parametersa1* of the
call. Thesplit-static-dynamic-args strategy is used to partition the formal and actual parameters
(x1* ,a1* ) into (1) a list of local variable declarationsd* , assigning the constant valued arguments
to the corresponding formal parameters (produced bybind-arg-value); and (2) a list of formal pa-
rametersx2* and actual parametersa2* , corresponding to the non-constant valued arguments. Thus
the specialized functiong has the remaining parametersx2* as formal parameters and uses the variable
bindingsd* to specialize the original bodye1 . Finally,g (a2* ) is a call to the newly created specialized
function with as parameters the non-static parameters off (a1* ).

As an example, consider the specialization of the callpower(y,5). Splitting the argument list
produces the variable declaration|[ var n : int := 5 ]|, and the remaining non-constant argument
y with the formal parameter|[ x : int ]|. Arbitrarily choosinga as the name for the specialized
function,SpecializeCall produces the specialized calla(y), and extends the definition of the dynamic
ruleSpecialization as follows:

Specialization :+ |[ function power(x : int, n : int) : int = e2 ]| ->
|[ function a(x : int) : int =

let var n : int := 5
in if n = 0 then 1

else if even(n) then square(power(x, n / 2)) else x * power(x, n - 1)
end ]|

Note that this specialized function has not yet been transformed byprop-const itself. That is, the
specialization is just a copy of the original function definition with a local variable declaration, binding
the formal parametern to the actual parameter5. No specializations have been generated for the recursive
call in this specialization.

Thus, the result of transforming the body of alet is that alldirect function calls have either been
unfolded or specialized. The specializations have not been specialized themselves. This is done while
replacing the original function definition with its specializations in thespecialize strategy. Since
the partial evaluation of the specialized functions may give rise to further specializations, it is not
sufficient to applybagof-Specialization once. To obtain all specializations of a function, an in-
teraction between constant propagation and retrieving specializations is needed. For this purpose, we
useonce-Specialization, which produces one right-hand side of the dynamic rule, discarding it at
the same time. Thus,once-Specialization produces one previously defined specialization for the
function under consideration, and then deletes that specialization from the rule set. The auxiliary strat-
egyspecialize-fun builds a list of specializations by callingonce-Specialization to obtain the
next specialized function, partially evaluating it by callingprop-const, and then recursively calling
specialize-fun to obtain further specialized functions. For example, partially evaluating the special-
ization ofpower( ,5) above produces the following definition

|[ function a(x : int) : int = let var n : int := 5 in x * b(x) end ]|
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and gives rise tob(x), a call to the specialization ofpower(x,4). Specialization ofb gives rise to the
new functionc, and so on. (Note that the variable declaration forn is dead and can be removed, which
is not done by the specializer in Figure 23, but by a separate dead code removal transformation.)

To summarize, the specification in Figure 23 defines an online partial evaluator that evaluates calls
with all constant arguments and specializes calls with at least one constant argument (and at least one
non-constant argument). The complete specification is a bit over 100 lines including the propagation
strategy for control flow, but excluding standard evaluation rules. This specification lacks memoization
to prevent re-specialization of function calls with the same constant arguments. This requires another
dynamic rule. This approach to partial evaluation has been incorporated in a compiler for Octave [25],
a high-level language, primarily intended for numerical computations [13]. We have also developed an
offline partial evaluator with separate binding-time annotation using these techniques [45].

9. Related Work

Scoped dynamic rewrite rules are a novel extension of strategic rewriting. The rewriting strategy controls
not only the application of static rewrite rules, but also controls the definition, scope, and application of
dynamic rewrite rules. This language extension is inspired by and/or related to previous work in sev-
eral areas. Firstly, in compilers, program analysis, and program optimizers all kinds of specialized data
structures, e.g. symbol tables, are used to store information about the program. Secondly, several pro-
gramming languages support implicit parameters and dynamic scoping of names. Lastly, many systems
provide run-time code generation, usually for adding code that is dependent on information not available
until runtime.

9.1. Data Structures in Program Optimization and Compilation

Symbol Tables In program transformation systems all kinds of data structures are used for storing
context-sensitive information. In particular,symbol tablesare widely used to associate symbols in a
program with information, e.g. the type of the symbol. Symbol tables are often implemented by using
a hash table for efficient lookup. Since symbol tables are concerned with names, they have to handle
the scoping rules of the object programming language. For example, the symbol table implementation
used in Appel’s Tiger compiler [2] remembers the state of a hash table in abeginScope and restores
this information in theendScope. Dynamic rewrite rules lift this functionality for handling scopes to
the language level by adding special purpose language constructs for scoping to the meta-language. The
implementation of scopes in Stratego is efficient and general enough to handle a wide variety of scopes
in programming languages.

Bit Vectors In data flow analysisbit vectorsare used to represent facts about entities in a program. For
example, in calculating the definitions that reach program points, for every program point a bit vector
is constructed. The bit vector of a program point contains a character for every definition, so the length
of the bit vector is the number of definitions in a procedure. To collect the required information, the
control flow of the program is simulated until a fixed point is reached. Such a bit vector encoding of
information is extremely compact and intersection and union of bit vectors is very efficient. Dynamic
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rewrite rules also have fixed point operations, union, intersection, and they can be used as predicates.
However, compared to data flow analysis with bit vectors this abstraction clearly comes at a cost.

Value Numbering Value numberingis used in a wide range of program optimizations. Initially, it was
a method used for common subexpression elimination and constant folding in basic blocks [10]. In value
numbering every expression in a basic block is assigned a unique number. The goal of value numbering
is to discover redundancy, which is determined by letting the value of two expressions be equal if the
expressions are equal. This number is stored in a hash table, of which the keys are based on the structure
of the expression. For example, for a binary operator the key is determined by its operands and the
operator. Dynamic rewrite rules use a comparable method for efficient access to the rewrite rules that
have been defined for a term. The rewrite rules are stored in a hash table, of which the key is based on
the dynamic part of the left-hand side of the rewrite rule.

9.2. Language Independent Traversals

Language independent traversals [38] allow the implementation of certain program transformations using
traversals that are independent of a specific object language. These traversals have been implemented for
reoccurring program transformations, such as collecting free variables, renaming bound variables, syn-
tactic unification of terms with object variables, and substitution of expressions for object variables. The
language independent traversals are implemented using the generic traversal operators of Stratego [44]
and are parameterized with strategies for handling language specific issues, such as the representation of
variables and the constructs for variable binding.

Language independent traversals for program transformation often implement context-sensitive trans-
formations. Before the introduction of scoped dynamic rewrite rules, such context-sensitive issues had to
be handled by threading an environment with context information through the traversal, or alternatively,
by controlling the traversal from the topmost location where the required information is available. The
second option leads to repeated traversals over the abstract syntax tree of the object program and in both
cases the traversals are more difficult to understand and maintain.

Scoped dynamic rewrite rules are a useful language extension for making these language independent
traversals more concise. First, the threading of context-sensitive information can now be delegated to
dynamic rules, which are implicitly passed to strategies. Second, scope can be controlled in a declarative
way with the scoping facilities of dynamic rules. Third, program analysis and program transformation
can now be combined in a single traversal. The resulting traversals are much more attractive. For
example, information on constructs having local scope do not need to leave this scope. This solves the
name conflicts that have to be solved in case a separate global table of information is constructed first.

The traversal functions in ASF+SDF [7] can be used to thread an environment through a traver-
sal. ASF+SDF provides three kinds of traversal functions: transformers, accumulators and accumulat-
ing transformers. For each of these kinds, there is a fixed set of traversal functions:bottom-up and
top-down, which can be configured tobreak or continue after a successful application. The accu-
mulators and accumulating transformers are used to accumulate information, in case of an accumulating
transformer during a transformation. The accumulated value is updated on every application of the accu-
mulator, and the next application will then use this new value. In Stratego, context-sensitive information
is represented in dynamic rewrite rules, which makes the threading of context-sensitive information more
natural in the paradigm of strategic rewriting. Alternative rewritings are represented by defining several
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applicable rewriting rules, as opposed to expensive construction and threading of lists. Like the appli-
cation of static rules is controlled by a strategy, so is the definition, scope, and application of dynamic
rewrite rules under full control of user-definable traversal strategies.

9.3. Runtime Extension of Logic Programs

Dynamic rewrite rules are closely related to the extra-logical operatorsassert andretract in Pro-
log. These operators allow dynamic inspection and modification of the clause database. The predicate
assert(X) adds the clauseX to the rule database. If the clause is added to an existing predicate with
assert, then the location of the new clause is implementation dependent. Theasserta andassertz
operators provide more control over this by letting the new clause be the first, respectively the last, clause
of the predicate. The predicateretract(X) removes the first clause that unifies withX. Most Prolog
implementations provide aretractall(X) predicate, which removesall clauses that unify withX.

Backtracking In case of backtracking a clause added by an assert is not removed from the database.
The clause must be retracted by hand if this is required. Similarly, Stratego’s dynamic rewrite rules are
not removed on backtracking either. However, the scoping of dynamic rewrite rules makes it possible
to restrict the live range of dynamic rules. This is not completely comparable to retracting clauses on
backtracking, since the dynamic rules generated in this scope are removed in case of failureandsuccess.
Currently, there is no language construct for removing rules in case of failure, although this can easily be
implemented with the dynamic rule API. Similar to backtracking over an assert predicate, clauses are not
re-added to the Prolog database if backtracking occurs over a retract predicate. In Stratego, undefined
rules become visible again when the scope of undefinition is left. Also in this case, there is no language
construct for making the dynamic rules visible again in case of failure only.

Live Range In Prolog the live range of clauses is controlled by the retract predicate. The retract
predicate requires an argument that is used for specifying the clause that must be removed. On the
other hand, a dynamic rule scope automatically removes all rules that have been defined in this scope.
Therefore, the dynamic rules are not removed based on their input or output. This is natural in the
application domain of program transformations, since scopes typically correspond with scopes in the
object language. If this scope is left, then the information collected in this scope is no longer applicable.
If a scope is left, then dynamic rules that were defined outside the scope are preserved and might become
visible when the scope is left.

Retract removes clauses based on their goal. In contrast, dynamic rules are undefined by their left-
hand side. Although clauses and rewrite rules are different constructs, the goal of a clause is more
comparable to the right-hand side of a rewrite rule. Clauses can be made undefined by a pattern of
their output, whereas rewrite rules are undefined by a pattern of their input. Dynamic rules are only
undefined for the current (or a given) scope. If this scope is left, then the dynamic rules that have been
defined outside this scope will become visible again. Again, this is natural in the domain of program
transformation.

In Prolog the location of a clause in an existing predicate can be controlled byasserta andassertz.
Stratego’s dynamic rewrite rules organize the defined dynamic rewrite rules in scopes, which might be
labeled. This scope label can be used to define a dynamic rule in an outer scope instead of the current
one. These features provide fine-grained control over the location of a newly defined rule.
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Alternative Results In Prolog the ordinary collectors (e.g.bagof, setof, findall) can be used to
get all alternative solutions. Backtracking for clauses generated at run-time byassert is not different
from ordinary backtracking. In Stratego’s dynamic rules there is a distinction between static and dynamic
rewrite rules. Static rules with the same name cannot be applied to produce all alternative solutions, since
they are combined by thelocal-choiceoperator (<+), which commits the choice for a strategy argument
if it succeeds. In contrast, all possible results of applying a dynamic rule can be produced by means
the special purpose strategybagof-L, which immediately returns all results. It might be interesting to
consider more programmer control over the backtracking behaviour.

9.4. Dynamic Binding

Dynamic rewrite rules are related to dynamic scoping and binding. In this section we will first review how
dynamic rules implement dynamic binding, and proceed discussing differences with implementations of
dynamic binding in other programming languages.

The terms dynamic scoping and dynamic binding are often used as synonyms, although they refer
to different, yet related, concepts. Abinding is an association between a name and a value. Thescope
of a name concerns its visibility, that is, the part of the program where the name can be used.Extent
refers to the lifetime of a binding. Instaticor lexical scoping, the scope of a name is determined by the
lexical structure of the program. A binding is available from the start of the definition construct to its end.
In other words, names are evaluated in the definition environment. The name might be shadowed by a
nested definition of a name, but this does not mean that the binding is really not available, since it should
still be available if the control flow turns to a part of the program where the name is not shadowed by a
nested binding. Indynamicscoping a name is visible in all execution paths that include the definition of
the name. In other words, dynamic variables are evaluated in the environment of their application. Since
these execution paths cannot be determined at compile-time, the binding of names must be determined
at runtime, whereas the binding can be determined at compile-time if lexical scoping is used.

In most programming languages variables are lexically scoped, but dynamic binding is also used by
default or at least available in many programming languages. The best-known examples are the various
Lisp dialects (e.g. McCarthy’s Lisp, Common Lisp, GNU Emacs Lisp), but TEX, shell scripting, and
XSLT 2.0 implement dynamic binding as well. More recently several papers have reintroduced dynamic
scope as a feature in strongly-typed general purpose languages, namely statically-typed Haskell-like
languages with Hindley-Milner type inference [21], and Java-like languages [16].

Dynamic Rewrite Rules The scope of the name of a dynamic rewrite rule isglobal. In other words,
a dynamic rewrite rule can be applied anywhere in a program. If no dynamic rules for this rule have
been defined (or those that have been defined, have been undefined), then the application just fails. This
is perfectly acceptable, since failure of strategy application is used for control flow in Stratego. More
comparable to dynamic variables are dynamic rule scopes. The binding of dynamic variables is based on
the execution path. Similarly, the dynamic rule scopes of the execution path determine the dynamic rules
that can be applied. The dynamic rule scopes thus correspond to dynamic variables whose value is a set
of dynamic rules. A novel aspect of dynamic rewrite rules is that a scope itself does not automatically
hide the rewrite rules defined in outer scopes. Furthermore, dynamic rewrite rules defined in the current
scope, but at execution paths that have already returned, are still available.
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In contrast to the dynamic binding of dynamic rules, the context variables of a dynamic rewrite rule
have lexical scope. That is, their value at rule definition time is stored as a closure in the dynamically
defined rewrite rule. Currently, strategy definitions in the context of a dynamic rule definition are not
part of its closure.

Lisp Dialects Dynamic binding first appeared as a more or less unintended feature of Lisp 1.0. Lisp
1.0 had one kind of variable, which was dynamically scoped. The unexpected behaviour of dynamic
binding was soon reported, and was at first was thought to be a bug by McCarthy [23]. The analysis of
this problem led to the identification of thefunarg problem and the first implementation of closures, a
representation of a function and the lexical environment in which the function is defined. In Lisp dialects
that have been developed later, dynamic scoping was no longer default for variables. However, most
dialects include an explicit notion of dynamically scoped variables. In Common Lisp, variables can be
declared to bespecial, which indicates that they are dynamically scoped. Usually, top-level variables
(globals) are special and local variables are lexical. Dynamically scoped variables can be used to give
the ‘global’ variable a new value temporarily, since a new a re-definition of the global variable with a
let only influences the execution paths that contain thelet.

Alternatively, several Scheme implementations provide thefluid-let binding construct to control
dynamic binding [15]. Fluid bindings are somewhat similar to special variables in Common Lisp. How-
ever, the fluid-let of Scheme does not determine the scope of a variable. Instead, it temporarily assigns
a different value to variables that have already been defined in some outer scope. This binding is stored
in a per-thread fluid binding association list, which is consulted when a non-local variable is evaluated.
Therefore, the fluid-let can be described as a thread-local (inherited by child threads) scoped assignment
construct.

Dynamically scoped variables are very useful for passing values to parts of a program to configure its
behaviour, without passing loads of parameters to every function that might possibly be on an execution
path to this part of the program. These variables allow values to be passed in animplicit way. Decades
after the introduction of dynamic and lexical scoping in Lisp and Scheme, there has recently been more
interest in adding dynamically scoped variables to current programming languages.

Implicit Parameters in Haskell Lewis et al. [21] have proposed implicit parameters for functional
programming languages like Haskell. These implicit parameters have been implemented as extensions
of Haskell in Hugs [20] and GHC. Implicit parameters can be deeply embedded in a functional definition
and can be bound at some outer level without having to pass the value explicitly through all the inter-
mediate function calls. Rather, the need for passing an implicit parameter is inferred statically. Adding
implicit parameters to a statically-typed language with type inference introduces some problems, which
results in some limitations. First, the approach does not allow function arguments that take implicitly pa-
rameterized arguments. Second, implicit parameters must be monomorphic. Third, implicit parameters
are not allowed in the context of a class or instance declaration. Besides these restrictions that are based
on static type system issues, the implicit parameters are just that: parameters. Implicit information can
be only be passed to callees. There are noimplicit results, which would allow the passing of results to
callers in an implicit way.
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Dynamic Variables in Imperative Languages Hanson and Proebsting [16] reintroduced dynamic
scope as a feature in imperative languages. They propose a minimalistic language extension for dy-
namic variables, which are to be used sparingly. The use of a dynamic variable refers to the most recent
setting of a dynamic variable with the same name. Dynamic variables could replace thread local vari-
ables (for example available in Java asjava.lang.ThreadLocal), which allow separate threads to
have their own, independent variables. Indeed, the dynamic variable proposal is based on a data struc-
ture for storing dynamic variables on the stack, which automatically makes the dynamic variables local
to a thread. Note that there is thus a slight difference with the fluid-let in Scheme, where child threads
inherit dynamic variables from their parent. Java provides a separate subclass ofThreadLocal called
InheritableThreadLocal. For this class, the initial values of the thread local variables are inherited
from its parent. The child thread still gets it own copy of the variable: it can set the value of the thread
local variable, but the value of the parent’s variable will not be modified.

XSLT’s Tunnel Variables Most recently, Schadow proposed dynamically scoped variables for XSLT
[33]. This proposal has been accepted for XSLT 2.0 [18], where they are now called tunnel parameters.
A parameter of a template can be defined as a tunnel parameter. Tunnel parameters are recursively and
implicitly passed to all templates that are called. All tunnel parameters are passed through a built-in
template rule. The tunnel parameters are very similar to the dynamic variables that have been discussed
before. XSLT does not allow side effects to variables and there is no way to return dynamically scoped
variables implicitly. In short, the design of tunnel parameters is not very surprising, yet, it is interesting to
see dynamically scoped variables live again in a pure functional language that is widely used in practice.

It would be interesting to develop a system comparable to dynamic rules for XSLT. This would then
be a facility for the run-time definition of templates, where variables from the definition context can be
used in the dynamically defined templates.

Domain-Specific Languages Domain-specific languages such as TEX and shell scripting make use of
dynamically scoped variables that allow for easy redefinition of behaviour; for example, in TEX configu-
ration of a document, style can be influenced by redefining macros representing parameters of the style.
In shell scripting, environment variables are implicitly passed to all parts of the shell script.

9.5. Fresh O’Caml and FreshML

FreshML and Fresh O’Caml [34, 32] lift the problem of manipulating names and binding constructs to
the meta language. This makes meta-programming tasks that have to consider free and bound variables
much easier, since the meta language guarantees that these constructs are manipulated in a proper way.
Variable binding in object languages is the focus of FreshML. Therefore, it does not provide any further
facilities to deal with context-sensitive information in program transformations. Furthermore, FreshML
restricts the possible ways of binding to just lexical (static) binding. Object languages with dynamic
binding cannot be transformed with the variable binding facilities of FreshML.
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10. Conclusion

In this paper we have presented an extension of term rewriting with the run-time definition of context-
dependent rewrite rules. Dynamic rules can be used as part of the global tree traversal, thus not increasing
complexity by performing additional traversals. The extension is not limited to some specific form of
program representation such as control flow graphs, but can be applied in the transformation of arbitrary
abstract syntax trees. The implementation of dynamic rules in Stratego has been designed to achieve the
best possible efficiency of all operations such that transformations can scale to large programs.

Scoped dynamic rewrite rules solve (many of) the limitations caused by the context-free nature of
rewrite rules, strengthening the separation of rules and strategies, and supporting concise and elegant
specification of program transformations. This has been illustrated in this paper by the specification of
several transformations, i.e., bound variable renaming, function inlining, constant propagation, common-
subexpression elimination, dead function elimination, and online partial evaluation. The techniques are
equally well applicable to many other program transformations.
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A. Free Variables

This appendix contains a definition of the free pattern variables in a strategy expression in core Stratego.

freevars(str) ≡ {}
freevars(i) ≡ {}
freevars(r) ≡ {}
freevars(x) ≡ {x}

freevars(c(p1, ..., pn)) ≡ freevars(p1) ∪ ... ∪ freevars(pn)

freevars(?p) ≡ freevars(p)
freevars(!p) ≡ freevars(p)

freevars({x1, ..., xn:s}) ≡ freevars(s)/{x1, ..., xn}
freevars(let d1, ..., dn in s end) ≡ freevars(d1) ∪ ... ∪ freevars(dn) ∪ freevars(s)

freevars(f(s1,...,sn|p1,...,pm)) ≡ freevars(s1) ∪ ... ∪ freevars(sn)
∪ freevars(p1) ∪ ... ∪ freevars(pm)

freevars(id) ≡ {}
freevars(fail) ≡ {}

freevars(s1 ; s2) ≡ freevars(s1) ∪ freevars(s2)
freevars(s1 < s2 + s3) ≡ freevars(s1) ∪ freevars(s2) ∪ freevars(s3)
freevars(c(s1, ..., sn)) ≡ freevars(s1) ∪ ... ∪ freevars(sn)

freevars(all(s)) ≡ freevars(s)
freevars(one(s)) ≡ freevars(s)

freevars(f(sd1, ..., sdn | vd1, ..., vdm) = s) ≡ freevars(s)/{vd1, ..., vdm}
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B. Implementation

In the previous sections we have described the syntax and semantics of dynamic rewrite rules. For this
feature to be useful, an efficient implementation is critical. In this section we discuss the constraints and
design choices for the implementation and describe how dynamic rules are implemented in the Stratego
compiler. We start with a brief discussion of the compilation of Stratego programs.

B.1. Compilation of Stratego Programs and Term Representation

The Stratego compiler translates Stratego programs to C programs using the ATerm library [6] for the
internal and external representation of terms. The external representation provides support for exchang-
ing terms between transformation components. The internal representation supportsmaximal sharingof
terms, which entails that any two terms which are equal, are represented by the same node in memory.
This has a number of benefits: (1) the number of copies of a term does not affect memory usage, (2)
comparing terms for equality is a matter of testing the equality of their pointers, i.e., an O(1) operation,
and (3) all terms and symbols in use are ‘known’. The latter point is the basis for thenew name gener-
ation used in the definition of bound variable renaming in Section 5. In order to generate a unique new
name that is not used in any active term, it is sufficient to enumerate names until one is found that is not
in use. These aspects of the implementation could be modeled in the formal semantics using an extra
element in the stateΓ mapping constructors and terms to indices. However, this would overly complicate
the semantics.

The implementation of maximal sharing is based on a hashing scheme, which can also be used for
fast lookup of terms in a table. The ATerm library provides a hash table API to implement mappings
in which arbitrarily complex terms can be used as keys and values. Stratego allows the declaration
of external definitions, for which the implementation should be provided by a library. Through this
mechanism, the Stratego standard library provides access to the ATerm hash table API in Stratego itself.
In this section we will describe how ‘Stratego with dynamic rules’ is implemented in terms of ‘Stratego
with hash tables’.

B.2. Efficient Lookup

The basic approach in the semantics is to represent a dynamic rule set with a strategy of the form

{E1(?p1 ; where(s) ; !p2)} <+ ... <+ {En(?p1 ; where(s) ; !p2)} <+ fail

That is, each time a rule is defined byrules(L : p1 -> p2 where s), a new choice is added to the
rule set, instantiating the general form{?p1 ;where(s);!p2} of the rule with the environmentE to bind
the context variables of the rule. As a concrete example, consider the following dynamic rule definition
strategy:

prop-const-assign =
?Assign(Var(x ), e ); if <is-value> e then rules( PropConst : Var(x ) -> e ) end

If we apply prop-const-assign first to the termAssign(Var("a"),Int("3")), then to the term
Assign(Var("b"),Int("17")) and finally to the termAssign(Var("a"),Int("42")) we get the
rule set
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{?Var("a");!Int("42")} <+ {?Var("b");!Int("17")} <+ {?Var("a");!Int("3")} <+ fail

Application of thePropConst rules corresponds to application of this strategy. It succeeds if a rule
matching the current term is defined, and fails otherwise. Note how redefinition of a rule shadows an
earlier rule. While rule addition is cheap with this approach, rule application entails a linear search of
the rule set, which is inefficient when many rules are defined and redefined. That is, the complexity of
application is O(n), with n the number of rule (re)definitions.

The complexity of rule application can be reduced to O(1) by using a hash table for storing the
mapping from left-hand side to right-hand side. Thus, defining a rule entails adding an entry to the
hash table and applying a rule entails a table lookup. On top of the ATerm hash table API, the Stratego
library implements an API for dynamic rules. Using this library, the Stratego compiler implements
dynamic rules by means of a source-to-source transformation, lifting dynamic rules to top-level, and
using hash table operations for the coordination between definition and application. For example, the
prop-const-assign definition above is transformed into the following pair of definitions:

prop-const-assign = ?Assign(Var(x ), e );
if <is-value> e then where(dr-set-rule(|"PropConst", Var(x ), e )) end

PropConst :
b @ Var(x ) -> e where dr-lookup-rule(|"PropConst", b ) => e

The definition of a rule entails adding an entry to the"PropConst" table with keyVar(x ) and value
e usingdr-set-rule. Application of a rule entails looking up the valuee corresponding to the key
Var(x ) in the"PropConst" table usingdr-lookup-rule. Note thatx@p entails a match of the vari-
ablex and and the patternp; this is used here to avoid reconstructing the termVar(x ) in the call to
dr-lookup-rule.

This example corresponds to simple rule definition and application as described in Section 4. In the
rest of this section we discuss the refinement of this schema to cover the more advanced features. Along
the way, the meaning of strategies suchdr-set-rule anddr-lookup-rule is refined as well.

B.3. Extending and Undefining Dynamic Rules

In Section 6 we described dynamic rules with multiple right-hand sides. For example, in the definition
of common-subexpression elimination we used the following definition:

register-subexpressions(|e) =
get-vars; map({y:?Var(y); rules(UsedInExp :+ Var(y) -> e)})

The dynamic ruleUsedInExp rewrites a variable to all expressions in which it is used. To support this
feature we use lists of terms instead of single terms as values in the table for a dynamic rule. Thus, the
rule definition above is translated as follows:

register-subexpressions(|e) =
get-vars; map({y:?Var(y); where(dr-add-rule(|"UsedInExp", Var(y), e))})

Thedr-add-rule strategy extends the current value of the mapping for the key (Var(y) in this case)
with the new value (e in this case).

Looking up a key will now result in a list of values, which is empty in the case no rules were defined.
When applying a rule we can now choose to get some value from the list, or the entire list of values.
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Normal application of a rule produces the most recent value, as illustrated by the lifted definition of
UsedInExp:

UsedInExp : m @ Var(y) -> e where dr-lookup-rule(|"UsedInExp", m) => [e|_]

Note that the result of the lookup is matched against a non-empty list pattern, so this fails if the list is
empty. Another possibility is to rewrite a term to all possible right-hand sides, which is implemented by
thebagof-L strategy:

bagof-UsedInExp :
m @ Var(y) -> es where (dr-lookup-rule(|"UsedInExp", m) <+ ![]) => es

Note that the result of lookup is again a list of values, which is now returned in the right-hand side of the
rule. Furthermore, the application ofbagof-L always succeeds; in the case that no rules are defined, the
empty list is produced.

The normal definition of a dynamic rule has to be adapted somewhat. Consider the implementation
of prop-const-assign:

prop-const-assign = ?Assign(Var(x), e);
if <is-value> e then where(dr-set-rule(|"PropConst", Var(x), e))

else where(dr-undefine-rule(|"PropConst", Var(x)))

Instead of defining a mapping from key to value,dr-set-rule registers a mapping from the key to a
singleton list, which replaces any previous list of values. Similarly,dr-undefine-rule replaces the
value of a mapping with theemptylist in order toundefinea rule.

B.4. Closures

So far we have implicitly assumed that dynamic rules are unconditional and that all variables in dynamic
rules are bound by the context. This assumption makes it possible to have a simple mapping from the
left-hand side term to the right-hand side term. However, this is not always the case. Some variables
in the left-hand side may only be bound at application time. Furthermore, some computations may be
performed in the condition of the rule. For example, consider the following simplified version of the
unfolding rule from Section 5:

define-unfold =
?FunDec(f, [FArg(x, ta1)], Some(ta2), e1)
; rules( UnfoldCall : Call(f, [e2]) -> Let([d], e1)

where <bind-arg>(x, ta1, e2) => d )
bind-arg :
(x, ta1, e2) -> VarDec(x, ta1, e2)

In the left-hand side ofUnfoldCall, the variablef is bound by the context, bute2 is not (which is
natural since we want to define an unfolding rule for arbitrary calls off). Similarly, variabled in the
right-hand side is computed in the condition of the rule. Thus, the implementation model used so far is
not general enough.

First of all, we cannot use the literal instantiation of the left-hand side as key. This is remedied by
using as key the left-hand side with all unbound variables replaced by the dummy term[DR DUMMY()],
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e.g.,Call(f,[[DR DUMMY()]]) in the case ofUnfoldCall. Secondly, in order to construct the condi-
tion and right-hand side, we need to record as the value of the mapping aclosureconsisting of a tuple with
all variables used in the condition and right-hand side. Thus, the definition ofUnfoldCall becomes:

define-unfold =
?FunDec(f, [FArg(x, ta1)], Some(ta2), e1)
; where(dr-set-rule(|"UnfoldCall", Call(f,[[DR_DUMMY()]]), (e1,x,ta1)))

Application of a rule now becomes a two-step procedure. First, a lookup with the ‘dummified’ key
produces a list of closures. Next, these closures are used to execute the condition and right-hand side of
the rule using the auxiliary ruleaux-L. In the case ofUnfoldCall this is implemented as follows:

UnfoldCall :
s @ Call(f, [e2]) -> <fetch-elem(aux-UnfoldCall(|f, e2, s))> closures
where dr-lookup-rule(|"UnfoldCall", Call(f,[[DR_DUMMY()]])) => closures

aux-UnfoldCall(|f, e2, s) :
(e1,x,ta1) -> Let([d], e1) where <bind-arg>(x, ta1, e2) => d

The strategyfetch-elem(s) traverses a list until it finds an element for whichs succeeds; it then
produces the result of that application. Thus, here it produces the first application ofaux-UnfoldCall
that succeeds. Note how the term arguments ofaux-UnfoldCall together with the variables from the
closure tuple together reconstruct all information needed to execute the condition and right-hand side
of the rule. Thebagof-L variation of application usesfilter instead offetch-elem to produce all
values, instead of just the first.

B.5. Multiple Dynamic Rules

Another implicit assumption in the implementation model above is that there is only one ‘type’ of dy-
namic rule for each named rule. However, there can be multiplerules(...) definitions, defining rules
with the same name. In the case of overlapping left-hand sides this is problematic, and in other cases
some measure needs to be taken. We systematically explore all scenarios using the following definitions,
and takingcontext0 as the base case:

context0(|x,z) = rules(Foo : Bar(x,y) -> <foobar1>(x,y,z))
context1(|x,z) = rules(Foo : Bar(x,y) -> <foobar1>(x,y,z))
context2(|x,z) = rules(Foo : Bar(x,y) -> <foobar2>(x,y,z))
context3(|x) = rules(Foo : Baz(x,y,z) -> <foobar3>(x,y,z))
context4(|x,z) = rules(Foo : Bar(x,Bor(z)) -> <foobar4>(x,z))

(0,1) The rules are exactly the same. There is no problem in this case; the contexts are treated as if there
was only one definition context.

(0,2) The rules have the same left-hand side, but different right-hand sides (or conditions). This
entails that the result of applying the rule depends on which context was used to define it. This can be
achieved by tagging the closures to distinguish the rules. Thus, closures are extended at definition time
with an extra value (a unique string) that is recognized by theaux-L rule. For example, the following is
generated forcontext0:
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context0(|x,z) = where(dr-set-rule(|"Foo", Bar(x,[DR_DUMMY()]), ("a_1",z)))
aux-Foo(|x,y,b_1) : ("a_1",z) -> <foobar1>(x,y,z)

That is, the string"a 1" is used to distinguish the closure for this context for those of other contexts.
(0,3) The rules have different left-hand sides. Again there is no problem here, but closure tags are

useful for making sure that rules are not accidentally mixed up. Entries for these rules will live happily
alongside each other. That is, it is not possible to redefine a rule defined withcontext0 by invoking
context3.

(0,4) The rules have overlapping left-hand side keys. That is, for one or more of the subterms there is
a dummy term in one pattern and not in the other. For example in the case of contexts 0 and 4 above the
keys areBar(x,[DR DUMMY()]) andBar(x,Bor(z)), which conflict in the second argument. Rules
for terms of the formBar(t1,Bor(t2)) can be defined with both contexts, but will end up in different
entries in the hash table. Application of the rule to a term of that form is ambiguous, and the behaviour of
such rules may not be what was expected. Therefore, the meaning of such overlapping rules is undefined
by the compiler and should not be used. The compiler should actually forbid the use of overlapping rules,
or at least warn against them, but does not do so currently. The semantic rulesdo cater for overlapping
dynamic rules, but that is based on the linear search approach, which we wanted to avoid. It seems that
overlapping left-hand sides do not combine with an efficient implementation. In practice, this is not an
obstacle for the effective use of dynamic rules, as witnessed by the examples in this article.

B.6. Scopes

The next issue is the representation of scopes. Such a representation should support all of the following
operations efficiently: (1) entering a new scope, (2) exiting a scope, i.e., removing all rules in the current
scope, (3) adding a rule to the current scope, (4) adding a rule to a labeled scope, and (5) looking up a
rule. In addition, the implementation of intersection and union of rule sets should be considered, but that
will be considered later.

One option is to maintain a single hash table with a stack of (lists of) values for each key. The
first implementation of dynamic rules, according to the design described in [39], used this approach.
The advantage is that addition and lookup areO(1) operations. However, the cost of exiting a scope
is proportional to the number of rules added in the scope. That is, each stack entry to which a value
was added should be popped on leaving the scope. It turns out that with this representation it is also
difficult to implement labeled scope addition, since it is not clear where in the stack the entry should be
added; this may require labeling each individual entry in the rule set with each label. Finally, the cost of
intersection and union for this representation is proportional to the number of rules in the rule set.

Because of these problems, we have opted for another approach in the current implementation of
scopes, i.e., maintaining a hash table for each scope. This comes at a slight cost for lookup and labeled
rule addition, which becomeO(s) with s the number of scopes. However, the gain is that the operations
become much cheaper or even possible. Entry and exit of scopes becomeO(1) operations, i.e., adding
and removing a hash table from the stack of scopes. Adding a rule to the current scope is still anO(1)
operation, and usually there will not be many scopes.
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Defining, calling and undefining a rule O(s)
Entering and exiting of scope O(1)
Forking of dynamic rule environment O(1)
Intersection/union of rule sets O(n)
Committing a change set O(n′)

Figure 24. Complexity of dynamic rule operations

B.7. Intersection and Union

Finally, we consider the implementation of the intersection and union of rule sets. This requires forking
or cloning a rule set before applying the branch transformations, and merging the two rule sets afterwards.
Doing this efficiently requires avoiding to make actual copies of the entire rule set when forking, and
avoiding to inspect all elements of a rule set when merging. This is what we did in our first experiment
with data flow transformation described in [26].

The solution that we adopted for the current implementation extends the implementation of scopes
described above. Instead of making a complete copy of the hash tables in a rule set, only the list of
pointers to those tables are duplicated. To each copy achange setis added, which is used to record
all modifications to the rule set in each branch separately, without affecting the scope tables. After
transforming the branches, merging is performed on these change sets. Thus, the effort of merging is
proportional to the number of rules produced in the branches, rather than the number of rules in the entire
rule set.

As future work it would be interesting to investigate the use of alternative (functional) data structures,
such as binary decision diagrams, for the representation of rule sets.

B.8. Complexity

There are many variation points in the design of definition and application of dynamic rules. The dynamic
rule API in the Stratego library allows the implementation of many (subtly) different operations. The set
of operations that we have presented here has been carefully carved out to provide a coherent language
extension with an efficient implementation, as summarized in the table in Figure 24. Here,s is the
number of enclosing scopes upon rule (un-)definition or calling,n is the total number of rules in the
two change sets to be intersected andn′ is the number of rules in the change set to be committed.
The only point in which we had to compromise is in the complexity of rule definition, calling and
undefinition, which is proportional to the number of enclosing scopes. However, in practice this is
a small number. These theoretical complexities have been confirmed in a set of benchmarks that are
discussed in Appendix C.
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C. Benchmarking Dynamic Rules

We have performed a number of benchmarks of the dynamic rule features in order to verify the theoretical
complexities of the various operations. So the goals is not so much to test absolute preformance, but
rather observe trends in the performance. These benchmarks were performed using Stratego/XT version
0.10 in April and May 2004. To benchmark the several aspects of dynamic rules use we use the constant
propagation for Tiger (see Figure 18). The subject Tiger programs are automatically generated and
typically containO(105) statements. The constant propagation implementation is profiled using a built-
in equivalent of the Unixtimes command. User and system time are accumulated and child processes
play no role here. All experiments are performed five times and running times are averaged.

C.1. Benchmark: Definition and Application

A first test will show how dynamic rules behave for a growing number of rule definitions and applications.
Figure 25 gives the typical test inputs. The general test consists of a sequence ofm assignments of unique
integers to distinct variables, followed bym assignments of these variables to other distinct variables.
Hence, the latter sequence consists entirely of statements that can be optimized by replacing variable
references with propagated integers. Scope labeling and definition of dynamic rules in specific labeled
scopes has been turned off for this test, i.e. all dynamic rule definition and application occurs in the
current scope. This has no effect on the resulting propagation transformation for this type of input, but it
avoids any possible labeling related costs in this benchmark.

Since dynamic rule definition and lookup essentially comes down to constant time saves and lookups
of context values, runtime is expected to be linear in the number of statements in the subject Tiger pro-

v_1 := 1;
// ...
v_m := m;
w_1 := v_1;
// ...
w_m := v_m

v_1 := 1;
// ...
v_m := m

v_1 := 1;
w_1 := v_1;
// ...
w_m := v_1

Figure 25. Left: Tiger program withm integer assignments, followed bym variable assignments. Middle and
right: programs which only contain the integer or variable assignments respectively.
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gram. Figure 26 shows that overall this is indeed the case, but that the runtime scales differently around
certain program sizes. This is most likely due to some low-level memory management mechanisms,
such as memory allocation and garbage collection. We did not observe any influence from the size or fill
percentage of hash tables in some experiments that varied the initial table size.

Comparing dynamic rule definition costs to application costs is done by omitting the first and the sec-
ond assignment sequence respectively from programs like the first one in Figure 25. More precisely, for
testing application costs only one initial rule is defined, followed by assignmentsxi := x0 (i = 1 . . .m).
Figure 27 shows that definition and application of dynamic rules are equally expensive, on average.

C.2. Benchmark: Dynamic Rules Scope

The runtime representation of dynamic rewrite rules has been designed for very cheap computationally
costs on entry and exit of dynamic rule scopes. Creation and destruction of hash tables (one per scope
entering and leaving) is very efficient in the underlying ATerm library [6].

Figure 28 shows the typical input files for the tests executed for benchmarking the performance of
dynamic rule scopes.let-blocks are nested up to depthn and at each level there is a sequence of2m
assignments, similar to the ones in the previous benchmark. Note that the depthn only amounts ton
times longer runtime, and has no special meaning by itself. The cost of scope nesting is supposed to be
influenced by increasing the parametersp andq, which we will explain first.

First, three kinds of scopes are involved here. We say that a dynamic rewrite rule isdefined ina scope
s1 if the dynamic rewrite rule is part of this scopes1. That is, if scopes1 is left, then the dynamic rewrite
rule is no longer available. We say that a dynamic rule isgenerated ina scopes2 if the program is in
scopes2 when the dynamic rule is defined in a scopes1. The third scope that is involved, is the scope
where a dynamic rule is applied.

To explain the parameterp, consider the second Tiger fragment in Figure 28. At top level, Tiger-
PropConst will create a labeled scope fora andb. The body of thislet first contains two additional
nestedlets, which results in extra scopes (labelede andf). It is only then that a dynamic rule definition
occurs, namely for the two integer assignments toa andb. This scope distance between the scope of
definition and generation is denotedp, which isp = 2 in this example.

Similarly, the distanceq between generation and application scope can be measured. In the same
example, notice that after the two integer assignments, an additional scope for thelet var c... is
introduced containing the statements that will receive propagated values froma andb. The distance
between the generation and application scope ofa andb is q = 1. Notice that the distance between the
definitionand the application scope isp + q. Therefore,q can be a negative number.

The aim of this benchmark is to find out how the performance is affected if there is a certain distance
between definition, generation, and application scope. The costs of nested scopes is expected to be linear
in the distance between the scopes, since both rule generation and application have to traverse from the
current scope up to the scope in which the rule definition is stored. This is simply a sequential walk
through the stack of scopes.

Three tests were performed, all withm = 1000 andn = 10. Figure 29 shows the results of these
tests. The first test variesp from 0 to 30 (‘distant generations’). In this test, rule application only occurs
in the generation scope, i.e.q = 0. The second test variesq from 0 to 30 and keeps generation of rules in
the definition scope, i.e.p = 0 (‘distant calls’). First and foremost, the results of these two tests shows
linear behaviour for the scope traversing. However, ‘distant generations’ are far more costly than ‘distant
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let var c
var e

in (c := 1;
e := 2;
c;
e;
let var a

var b
in (a := 1;

b := 2;
a;
b)

end)
end

let var a
var b

in (let var f
in let var e

in (a := 1;
b := 2;
let var c
in (a;

b)
end)

end
end)

end

Figure 28. Left: Tiger program withn = 2 nestedlet-blocks,
each withm = 2 assignments. Scope labeling, rule definition and
rule application are in the same scope (p = 0, q = 0). Right:
Tiger program withn = 1 let-block, each withm = 2 assign-
ments. Distance between scope labeling and rule generation is
p = 2 (scopes forf ande), and distance between rule generation
and rule application isq = 1 (scope forc).
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Figure 29. Performance of Tiger-PropConst
on nestedlets with increasing distance be-
tween definition and generation scope, and
between generation and application scope.

calls’. This is explained by the fact that rule generations have to inspect the list of scope labels at each
scope, whereas rule calling only does a constant time lookup in the hash table of each scope.3

The third line in Figure 29 also depicts ‘distant generations’, but in this case no rule calls were
included. This is achieved by leaving out thePropConst-sensitive expressions (a; b in Figure 28, right
program). The reason for this is whenp > 0 andq = 0, the application scope is actually ‘distant’, namely
p scopes away from the top-level definition scope. Hence, in the ‘distant generations’ experiment, the
scopes list had to be traversed for both the generation and the application. By leaving out the calls, a
more fair comparison can be made between generation and application. Likewise, the cost increases
similarly per scope. More interesting is the crossing at distance≈ 8. Apparently, the inspection of the
scope labels, which are represented by singleton lists in this case, is cheaper than the hash table lookup
until that point.

Nevertheless, the main conclusion is that although costs are always linear, distant rule generation is
relatively expensive because of the scope label inspection.

C.3. Benchmark: Dynamic Rules Set Intersection

If transformations using dynamic rules have to deal with control flow structures, then rule sets have to be
combined. Section 7 introduced the intersection or union of two rule sets.

Intersection is potentially an expensive operation, having to intersect two entire rule sets that consist
of several scopes, with several rule definitions inside each scope. Our implementation has a more efficient
approach to this however, by using change sets on top of rule sets when control flow is involved.

3The implementation of scope labels has been changed from lists to hashed sets, which solves these problems.
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if cond
then (f := 1;

g := f;
if cond
then (a := 1;

b := a)
else (c := 1;

e := c))
else (h := 1;

i := h)

if cond
then (c := 1;

e := c;
if cond
then (a := 1;

b := a)
else (a := 1;

b := a))
else (c := 1;

e := c)

if cond
then (f := 1;

g := 2;
h := f;
i := g;
if cond
then (a := 1;

b := 2;
c := a;
e := b)

else 1)
else 1

Figure 30. Left: Tiger program withn = 2 if-blocks, each withm = 1 assignments in both branches, rule sets
are disjoint. Middle: Tiger program withn = 2 if-blocks, each withm = 1 assignments in both branches, rule
sets are identical. Right: Tiger program withn = 2 nestedif-blocks, each withm = 2 assignments in just its
(then) branch.

The benchmark input now consists ofn if then else blocks, where each branch containsm/2
assignment sequences as seen in the initial benchmark in section C.1. Thus, the same number of rule
definitions and rule calls is involved, but additionally there are costs for the intersection operations.
One variant will have unique variable names in both branches. In this case intersection will produce
empty rule sets and no additional propagation rules remain. Another variant will have the same sequence
of assignments in both branches. This does not change the local propagation in any manner, but the
intersection afterwards will now produce a full set of rules. The third type of test input hasm assignments
that are all in thethen branch, and a dummy statement in the else branch. Figure 30 lists three sample
inputs. Note that the nesting does not play an important role here, since each intersection just operates
on the localPropConst rules from thatif block.

The two described branch-variants, one and two branches, were run forn = 10 andm varying from
100 up to 10000. The results have been compared to the measurements in section C.1. Figure 31 shows
that the intersection operations takes an additional 60% and 120% on top of the normal propagation
costs.

At first sight, the difference between the two branch-variants seems strange. Intersecting two distinct
sets ofm/2 rules is about twice as expensive as intersecting a list ofm rules with an empty list. The
probable cause for this is that although the same number of rules have to be compared in both cases,
comparing a rule to nothing is cheaper than comparing a rule to an other, different rule.

The costs of intersecting either two identical or two disjoint sets do not differ very much here. Since
each propagation rule has only one instance in the rule set. Intersecting thus comes down to walking over
the set of rules and intersect two singleton lists for each element.

This benchmark shows that although the costs increase by a serious constant factor, behaviour is
still linear. When the rule sets to be intersected contain multiple instances of rules the intersection of
these instance lists results in quadratic costs (in the number of instances), but the number of instances is
generally small.

Finally, the fixed point manipulation of rule sets, basically comes down to a repeated application
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Figure 31. Performance of Tiger-PropConst on nestedif blocks. Increasing length of assignment sequence tests
the intersection costs.

of rule set intersection. Hence, the costs will behave similarly, multiplied by the number of fixed point
iterations. For most applications this will be constant (2 or 3), but some delicate input programs can be
created that cause the fixed point iteration to run just as long the actual loop in the Tiger program would!

C.4. Evaluation

The benchmarks confirmed our theoretical analysis of the complexity of our implementation of dynamic
rules. Costs are linear in the number of rules and the nesting depth of scopes. This is due to the constant
time lookups in the hash tables per scope. Costs of intersections are linear in the number of distinct rules
in one scope. Besides, intersection costs are quadratic in the number of alternative, generated instances
for one rule definition. This number is generally small though, so we do not consider this to be a problem.

A final reflection on the performed tests; the size of the Tiger programs that were transformed was
not always too realistic. Programs with 600,000 assignments are not all that common. However, the tests
were able to reveal certain qualitative behaviour of the performance, which is of fundamental importance
when reasoning about the efficiency of a concept like dynamic rules. Quantitative results depend on
many other factors of a transformation, and input programs are hardly ever of such regularity as the tests
used here.
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