
Minimizing the number of late jobs
in case of stochastic processing times
with minimum success probabilities

Marjan van den Akker

Han Hoogeveen

institute of information and computing sciences, utrecht university

technical report UU-CS-2004-067

www.cs.uu.nl

Minimizing the number of late jobs in case of

stochastic processing times with minimum success

probabilities

Marjan van den Akker ∗ Han Hoogeveen †

Abstract

We consider the single-machine scheduling problem of minimizing the number of late
jobs. We omit here one of the standard assumptions in scheduling theory, which is that
the processing times are deterministic. Our main message is that in a number of cases the
problem with stochastic processing times can be reformulated as a deterministic problem,
which is solvable in polynomial time through the famous algorithm by Moore and Hodgson.
We first review and reinterpret this algorithm as a dynamic programming algorithm. We
then consider four problem classes with stochastic processing times. The first one has equally
disturbed processing times, that is, the processing time consist of a deterministic part and
a random component that is independently, identically distributed for each job. The jobs
in the other three classes have processing times that follow: (i) A gamma distribution with
shape parameter pj and scale parameter β, where β is common to all jobs; (ii) A negative
binomial distribution with parameters pj and r, where r is the same for each job; (iii) A
normal distribution with parameters pj and σ2

j .
In this scheduling environment, the completion times will be stochastic variables as well.

Instead of looking at the expected number of on time jobs, we introduce the concept of a job
being ‘stochastically on time’, that is, we qualify a job as being on time if the probability that
it is completed by the deterministic due date is at least equal to a certain given minimum
success probability. We show that in case of equally disturbed processing times we can
solve the problem in O(n log n) time through the algorithm by Moore and Hodgson, if we
make the additional assumption that the due dates and the minimum success probabilities
are agreeable, which encompasses the case of equal minimum success probabilities. The
problems with processing times following a gamma or a negative binomial distribution can
be solved in O(n log n) time by Moore and Hodgson’s algorithm, even if the minimum success
probabilities are arbitrary; based on these two examples, we characterize the properties that
a distribution must possess to allow such a result. For the case with normally distributed
processing times we need the additional assumption that the due dates and minimum success
probabilities are agreeable. Under this assumption we present a pseudo-polynomial time
algorithm, and we prove that this is the best we can hope for by establishing weak NP-
hardness. We also show that the problem of minimizing the weighted number of late jobs
can be solved by an extension of the dynamic programming algorithm in all four cases;
this takes pseudo-polynomial time. We further indicate how the problem of maximizing the

∗E-mail: marjan@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB
Utrecht, The Netherlands. Supported by EC Contract IST-1999-14186 (Project alcom-FT).

†E-mail: slam@cs.uu.nl. Department of Computer Science, Utrecht University, P.O.Box 80089, 3508 TB
Utrecht, The Netherlands. Supported by EC Contract IST-1999-14186 (Project alcom-FT).

1

expected number of on time jobs (with respect to the standard definition) can be tackled if
we add the constraint that the on time jobs are sequenced in a given order.

Keywords. Scheduling, sequencing, single machine, number of late jobs, stochastic pro-
cessing times, minimum success probability, dynamic programming, NP-hardness.

1 Introduction

One of the standard complaints of many people nowadays is ‘so many things to do, so little time’.
If it is not possible to increase the amount of time available (for instance by hiring somebody),
then it may be inevitable to skip some tasks. The question then becomes of course: which tasks
should be skipped? This boils down to the machine scheduling problem that was studied in the
famous paper by Moore (1968). The busy person is translated into a single machine, and the
things to do are called jobs. Formally, the problem is then formulated as follows. The machine
is assumed to be continuously available from time zero onwards, and it can perform at most
one job at a time. The machine has to execute n jobs, denoted by J1, . . . , Jn. Performing task
Jj requires a period of length pj , and the execution of this task is preferably finished by its
due date dj . If job Jj is finished after its due date, then it is marked as late. The objective
is to minimize the number of late jobs. Since for this objective it does not matter at which
time a late job is finished, such a job can just as well be skipped altogether; the machine then
only carries out the jobs that will finish on time. Since it is not acceptable for a customer to
just hear ‘sorry, we did not make it’ at the due date, we assume that the firm has to tell the
potential client at time zero whether it will honor its request. If the request is denied, then
the client will go elsewhere, and the company does not have to execute this job. Note that,
if all information is available at time zero in a deterministic situation, then this assumption is
in fact irrelevant. Moore shows that the problem of maximizing the number of jobs that are
finished on time can be solved in O(n log n) time by an algorithm that since then is known as
Moore-Hodgson’s algorithm.

In this setting, each job is equally important. In many applications, however, some jobs
are more important than others. This importance can be measured by assigning a positive
weight wj to each job Jj (j = 1, . . . , n); the objective function then becomes to minimize the
total weight of the late jobs. Lawler and Moore (1969) show that this problem is solvable in
O(n

∑
pj) time by dynamic programming. Karp (1972) shows that pseudo-polynomial running

time is unavoidable for this problem (unless P = NP) by establishing NP-hardness in the
ordinary sense, even if all due dates are equal.

In this paper, we look at the problems described above, but we abolish one of the common
assumptions of scheduling theory, which is that the data are deterministic. We consider four
specific classes of instances. In the first one the processing times are stochastic variables that
are distributed according to a gamma distribution with parameters pj (which varies per job)
and β (which is equal for all jobs). The gamma distribution is often applied to model the
processing time of a task (see for instance Law and Kelton, 2000). The second class of processing
times is used to model a production process where items are produced that work well with
probability r and malfunction with probability (1 − r); a job Jj corresponds then to an order
of pj correctly functioning items. The corresponding processing time then follows a negative
binomial distribution with parameters pj and r. In the third class the processing times consist

2

of a deterministic component pj and a random disturbance, which we assume to be identically
distributed for each job. This can be used to model the situation that the disturbances in the
production process are not job-related but due to some side-equipment that is used by each
job in the same way. In the last case, we assume that the processing times follow a normal
distribution with known expected value pj and known variance σ2

j .
We suppose that each due date is deterministic, which is reasonable, as they are specified

by the customer issuing the request. More importantly, we further assume that this customer
is willing to accept a delayed completion of his/her order, if the company can convince him/her
that the planning is such that the probability that the order is delayed is ‘small enough’. This
is achieved by guaranteeing that the probability that the order is on time is at least equal to
some given lower bound value, which we define as the minimum success probability, and which
we denote by yj (j = 1, . . . , n). If the customer prefers to be convinced by hard cash, then you
can agree that he/her will be compensated if the completion is delayed; when the probability
distribution of the completion time of job Jj is known, then working with a minimum success
probability boils down to specifying an upper bound for the expected compensation payment,
which corresponds to a lower bound on the expected profit, and vice versa.

The remainder of the paper is organized as follows. In Section 2 we review the problem
of minimizing the number of late jobs with deterministic processing times, and we explain
Moore-Hodgson’s algorithm as a dynamic programming algorithm. We developed this approach
ourselves and only found out recently that it has been described in an unpublished paper by
Lawler (-) for the more complicated case with agreeable release dates rj (j = 1, . . . , n), where
‘agreeable’ in this setting implies that the jobs can be numbered such that ri ≤ rj implies that
di ≤ dj , for all i, j = 1, . . . , n (see Van den Akker and Hoogeveen (2004)). In Section 3 we
discuss the consequences of working with stochastic processing times. We show that the first
and second class of processing times can be reformulated as deterministic problems, and hence
can be dealt with by the traditional algorithms. We further specify a number of constraints such
that, if a probability distribution satisfies these, then the problem with stochastic processing
times following this distribution is solvable in O(n log n) time irrespective of the minimum
success probabilities; the first two classes of instances satisfy these conditions. For the other
two classes of processing times, we need the additional assumption that the minimum success
probabilities and the due dates are agreeable, which here implies that the jobs can be numbered
such that i < j implies that di ≤ dj and yi ≥ yj . We develop dynamic programming algorithms
that minimize the (weighted) number of late jobs for these instances; these algorithms are
based on the insight gained in Section 2. We further discuss the problems that we face in
case of general minimum success probabilities. In Section 4, we show that the problem with
stochastic processing times that follow a normal distribution is fundamentally more difficult
than the problem with deterministic processing times by establishing ordinary NP-hardness
for the problem of minimizing the number of late jobs. In Section 5, we address the problem of
minimizing the expected value of the (weighted) number of late jobs under the side-constraint
that the on time jobs are executed in any given order. Finally, we draw some conclusions in
Section 6.

3

2 Moore-Hodgson’s algorithm reviewed

In this section, we take a closer look at the problem with deterministic processing times; we will
use this insight in Section 3. We start with some simple, well-known observations. As mentioned
before, the completion time of job Jj , which we denote by Cj , has become unimportant once
it is greater than the due date. Hence, the late jobs are executed after all the on time jobs (if
the late jobs are executed at all). The second observation is that the jobs that are marked as
on time are executed in order of nondecreasing due date, which is known as the EDD-order;
this is due to Jackson (1955), who showed that executing the jobs in EDD-order minimizes the
maximum lateness, where the lateness of a job j is defined as Cj−dj (this maximum lateness is
at most equal to zero if all jobs are on time). Hence, instead of specifying the whole schedule,
we can limit ourselves to specifying the set E (for early) containing the on time jobs, as it can
be checked whether the jobs in E can be all on time together by putting them in EDD-order.
A set E of jobs that are selected to be on time is called feasible if none of them is late when
executed in EDD-order. The goal is therefore to find a feasible set E of maximum cardinality.
From now on, we will use the following notation. By |Q| and p(Q) we denote the number and
total processing time of the jobs in a given set Q, respectively. Since the EDD-order is crucial
in the design of the algorithm, we assume from now on that the jobs are numbered such that

d1 ≤ d2 ≤ . . . ≤ dn.

We want to show that Moore-Hodgson’s algorithm is in fact a dynamic programming algorithm
with a special structure; we need this in Section 3. For this dynamic programming algorithm,
the following dominance rule is crucial.

Dominance Rule 2.1 Let E1 and E2 be two feasible subsets of the tasks {J1, . . . , Jj} with
|E1| = |E2|. If p(E1) < p(E2), then any solution E with E ∩ {J1, . . . , Jj} = E2 can be ignored.

Proof. Let E correspond to an optimal solution, and suppose that E ∩ {J1, . . . , Jj} = E2.
We will show that replacing the jobs in E ∩ E2 by the jobs in E1 yields a feasible subset Ē of
{J1, . . . , Jn}; since |Ē| = |E|, the subset Ē must then correspond to an optimal solution, too.

To show that Ē is a feasible subset, we must show that in the EDD-schedule of Ē all jobs
are on time. Let σ and π denote the EDD-schedule of the jobs in Ē and E, respectively. Due
to the numbering of the jobs, we know that the jobs in E1 precede the remaining jobs of Ē
in σ; as E1 is a feasible subset, these jobs are on time in σ. The remaining jobs in Ē start
p(E2)− p(E1) > 0 time units earlier in σ than in π, and hence these jobs are on time as well.

As a consequence of the dominance rule, the only feasible subsets of {J1, . . . , Jj} with cardinality
k that we have to care about are the ones with minimum total processing time. We define zj

(j = 1, . . . , n) as the maximum number of jobs in the set {J1, . . . , Jj} that can be on time
together; the value of zj will be determined through the algorithm. We further define E∗

j (k)
(j = 1, . . . , n; k = 0, . . . , zj) as a feasible subset containing exactly k jobs from {J1, . . . , Jj}
with minimum total processing time. We derive a dynamic programming algorithm to solve
the problem of minimizing the number of late jobs as follows. We add the jobs one by one in
EDD-order. For each combination (j, k), where j (j = 1, . . . , n) refers to the number of jobs that
have been considered and k (k = 0, . . . , zj) denotes the number of on time jobs, we introduce a

4

state-variable fj(k) with value equal to p(E∗
j (k)). As an initialization, we define z0 = 0 and put

fj(k) = 0 if j = k = 0 and fj(k) =∞, otherwise. Suppose that we have determined the values
zj and fj(k) for a given j and all k = 0, . . . , zj . We first determine zj+1 by checking whether
job Jj+1 can be on time given that it succeeds the jobs in E∗

j (zj). Hence, we get the recurrence
relation

zj+1 =

{
zj + 1 if fj(zj) + pj+1 ≤ dj+1

zj otherwise
(1)

We put fj+1(0) = 0 and determine fj+1(k) (k = 1, . . . , zj+1) through the recurrence relation

fj+1(k) = min{fj(k), fj(k − 1) + pj+1}. (2)

Assuming the correctness of our approach (which we shall show below), we can compute the
values fj(k) in O(n2) time altogether, from which we immediately determine the minimum
number of late jobs as (n − zn), whereas the optimum schedule can be determined through
backtracking.

Lemma 2.2 The value fj(k) computed through the recurrence relation is equal to the minimum
total processing time of all feasible subsets of {J1, . . . , Jj} containing k jobs.

Proof. Because of the initialization, we find fj(k) =∞ if k > zj , which is the correct value by
definition. We use induction to prove the correctness for all j and k ≤ zj . For j = 0 and k = 0,
correctness holds because of the initialization. Suppose that the values fj(k) are correct for all
j = 0, . . . ,m and k = 0, . . . , zm for some value m ≥ 0. We will show correctness of fm+1(k),
where k is any value from {1, . . . , zm+1} (the case k = 0 being trivial). If k ≤ zm, then there
are two possibilities: we add job Jm+1 to the set of on time jobs, or we mark it as late. In the
latter case, we find a minimum total processing time of fm(k). If we include Jm+1 in the set
of on time jobs, then we have to select a feasible subset from the jobs {J1, . . . , Jm} containing
k− 1 jobs, and we know that the best one has total processing time fm(k− 1). Job Jm+1 does
not necessarily have to be on time when placed after this subset of k − 1 jobs, but it will be if
fm(k − 1) + pm+1 < fm(k), since fm(k) is equal to the completion time of the last job in the
set of on time jobs, which amounts to no more than dm ≤ dm+1 by definition.

If k = zm+1 = zm + 1, then we need to add job Jm+1 to the set of on time jobs to get the
desired number. In that case, the check performed when computing zm+1 guarantees that Jm+1

is on time when it starts at time fm(zm), and the correctness of the value fm(zm) settles the
proof of the correctness of fm+1(zm+1).

This algorithm immediately carries over to the weighted case, since the dominance rule holds
true (with total weight of the on time jobs instead of the cardinality of the set of on time jobs).
The state-variables fj(k) are defined as before, but k then assumes the values 0, 1, . . . ,

∑j
i=1 wi.

Hence, the running time of the dynamic programming algorithm becomes O(n
∑

wi). Note that
we have to change the recurrence relation to

fj+1(k) = min{fj(k), fj(k − wj+1) + pj+1}.

Now we return to the case with unit weights. We will show that by looking at the dynamic
programming algorithm in the right way we can obtain Moore and Hodgson’s algorithm. Here
we need the close relation between the sets E∗

j (k) and E∗
j (k − 1) expressed in the following

lemma.

5

Lemma 2.3 A set E∗
j (k − 1) is obtained from the set E∗

j (k) by removing a task from E∗
j (k)

with largest processing time.

Proof. Suppose that the lemma does not hold for some combination of j and k. Let Ji be a
task in E∗

j (k) with maximum processing time. According to our assumption, p(E∗
j (k − 1)) <

p(E∗
j (k))− pi. Determine Jq as the job with maximum due date that belongs to E∗

j (k) but not
to E∗

j (k− 1). Now consider the subset Ē∗
j (k) = E∗

j (k− 1)∪{Jq}; we will prove that this subset
is feasible, which contradicts the optimality of E∗

j (k), since p(E∗
j (k)) > p(E∗

j (k − 1)) + pi ≥
p(E∗

j (k − 1)) + pq = p(Ē∗
j (k)). We have to check the EDD-schedule for the tasks in Ē∗

j (k),
which is obtained from the EDD-schedule for the jobs in E∗

j (k − 1) by inserting Jq at the
correct spot. Due to the feasibility of E∗

j (k − 1), the only jobs that may be late are Jq and the
jobs after Jq. Observe that the choice of Jq implies that from Jq onwards the EDD-schedule
of Ē∗

j (k) consists of exactly the same jobs as the EDD-schedule of E∗
j (k), but they are started

p(E∗
j (k))−p(Ē∗

j (k)) > 0 time units earlier now. Since E∗
j (k) is a feasible subset, the same holds

for Ē∗
j (k).

As a consequence, if we know the set E∗
j (zj) (and not just its total processing time), then fj(zj)

is equal to p(E∗
j (zj)) and we can compute fj(zj − 1) as the total processing time of E∗

j (zj)
minus the processing time of the longest job in E∗

j (zj). Hence, we know from the recurrence
relation (2) that we can compute E∗

j+1(zj+1) in the following way. First we determine whether
zj+1 = zj or zj+1 = zj + 1. The criterion is whether fj(zj) + pj+1 = p(E∗

j (zj)) + pj+1 ≤ dj+1;
if this is the case, then zj+1 = zj + 1, and we need Jj+1 in the early set as an additional job.
Otherwise, we have to choose when determining E∗

j (zj) between ignoring job Jj+1, which yields
a set with total processing time p(E∗

j (zj)), and replacing the longest job in E∗
j (zj) with Jj+1.

Since we want to minimize the total processing time of the early set, we prefer the first option if
pj+1 is equal to or larger than the largest processing time in the set E∗

j (zj); otherwise, we prefer
the second option. Hence, the choice between these options boils down to finding the largest
job, say Jk, in the set E∗

j (zj) ∪ {Jj+1} and setting E∗
j+1(zj+1) equal to E∗

j (zj) ∪ {Jj+1} \ {Jk}.
If Jk = Jj+1, then E∗

j+1(zj+1) = E∗
j (zj), which is feasible; if Jk 6= Jj+1, then the completion

time of Jj+1 is equal to p(E∗
j+1(zj+1)) ≤ p(E∗

j (zj)) ≤ dj ≤ dj+1, from which feasibility follows
immediately. Summarizing, we get the following:

• If p(E∗
j (zj)) + pj+1 ≤ dj+1, then E∗

j+1(zj+1)← E∗
j (zj) ∪ {Jj+1}.

• If p(E∗
j (zj))+pj+1 > dj+1, then find the longest job in E∗

j (zj)∪{Jj+1} and set E∗
j+1(zj+1)

equal to E∗
j (zj) ∪ {Jj+1} minus this job.

But this leads exactly to Moore and Hodgson’s algorithm, which is defined as follows:
Moore & Hodgson
Step 1. Set σ equal to the EDD-schedule for all jobs J1, . . . , Jn.
Step 2. If each job in σ is on time, then stop.
Step 3. Find the first job in σ that is late; let this be job Jj . Find the largest job from the set
containing Jj and all its predecessors in σ and remove it from σ. Remove the idle time from
the resulting schedule by shifting jobs forward; call this new schedule σ, and go to Step 2.

Hence, the algorithm by Moore and Hodgson can be regarded as a dynamic programming algo-
rithm that works with state-variables gj(zj) only, where the state-variable gj(zj) then contains

6

the subset of the jobs that lead to fj(zj). Since the number of state-variables is O(n), it can be
implemented to run in O(n log n) time, whereas our dynamic programming algorithm requires
O(n2) time.

3 Stochastic processing times

From now on we assume that the processing times are stochastic variables, which we denote
by πj (j = 1, . . . , n); we stick to deterministic due dates, which is not unreasonable, as they
are specified by the customers beforehand. Since the processing times are no longer fixed, we
cannot represent a schedule anymore by specifying the time intervals during which each job is
processed. Therefore, we represent the schedule by the order of the jobs; when running the
schedule we determine the starting and completion times on line through the ‘wait-and-see’
approach: as soon as a job is finished, we start the next one in the sequence. This implies that
we only know the completion times of the jobs, and hence whether a job was on time or tardy,
after the schedule has been executed. Due to our assumption that we have to make the decision
of accepting or rejecting a job at time zero, we cannot even await the actual processing times of
the first couple of jobs in the schedule and use this information in our decision. Hence, we can
only be sure that a job will be completed on time if its own processing time and the processing
times of all its accepted predecessors satisfy some given upper bound (which exists only if the
distribution is bounded), but working with this upper bound as the actual processing time
will lead to a very small number of accepted jobs. To overcome this problem, we change our
definition of on time as follows, such that it becomes more practicable for the case of stochastic
processing times.

Definition 3.1 Given the sequence in which the jobs are to be executed, a job is considered to
be on time if the probability that it is completed by its due date is at least equal to some given
probability, which we call the minimum success probability. We call this version of on time
stochastically on time.

The objective function is then to minimize the number of late jobs. We will consider four
classes of instances of stochastic processing times; in all cases we assume that the corresponding
stochastic variables are independent. The four classes are defined as follows:

• The processing time πj of job Jj (j = 1, . . . , n) follows a gamma distribution with shape
parameter pj and scale parameter β, which is equal for all jobs. The expected processing
time is then equal to pjβ. Since the scale parameter β is equal for all jobs, the total
processing time

∑
i∈S πi follows a gamma distribution with parameters

∑
i∈S pi and β.

• The processing time πj of job Jj (j = 1, . . . , n) is distributed according to a negative
binomial distribution with parameters pj and r, which is equal for all jobs. The negative
binomial distribution can be used to model the process of picking pj correctly functioning
items, where each item has a probability of r to function well. The expected number of
items that have to be produced such that exactly pj ones are okay is then equal to pj/r.
As r is equal for each job, the total processing time

∑
i∈S πi follows a negative binomial

distribution with parameters
∑

i∈S pi and r.

7

• The processing time πj of job Jj (j = 1, . . . , n) consists of a deterministic part pj and
a random disturbance, where the disturbances are independently, identically distributed
random variables.

• The processing time πj of job Jj (j = 1, . . . , n) follows a normal distribution with known
expected value pj and known variance σ2

j . Hence,
∑

i∈S πi follows a normal distribution
with expected value

∑
i∈S pi and variance

∑
i∈S σ2

i .

We will show in Subsection 3.1 that the first two classes in fact boil down to deterministic
problems. The other two classes require a more intricate approach, where we use the insight
gained in the previous section to solve these problems through dynamic programming; this is
described in the Subsections 3.2 and 3.3.

3.1 Gamma and negative binomial distributed processing times

We first describe our solution approach for the class of gamma distributed processing times;
this approach can be immediately carried over to the class of negative binomial distributed
processing times. We further indicate the properties that the distribution of the processing times
must possess such that the corresponding problem can be solved in O(n log n) time irrespective
of the minimum success probabilities.

Given an order of the jobs, the completion time of some job Jj is equal to the total processing
time of Jj and all its predecessors; from now on, we use Qj to denote this set of jobs (which
includes Jj). Since the processing times are independent random variables following a gamma
distribution, we know that Cj =

∑
i∈Qj

πi follows a gamma distribution as well, with parameters∑
i∈Qj

pi and β. Hence, we can compute P [Cj ≤ dj], if we know the value of p(Qj) =
∑

i∈Qj
pi,

since β and dj are known parameters; note that no knowledge of the set Qj is required except
for p(Qj). Given the minimum success probability of job Jj , which we denote by yj , we must
compare P [Cj ≤ dj] to yj , which results in a qualification of job Jj as on time or tardy. Since
P [Cj ≤ dj] is a monotone function in the value p(Qj), we can easily compute Dj as the largest
integral value of p(Qj) such that P [Cj ≤ dj] ≥ yj if Cj follows a gamma distribution with
parameters p(Qj) and β, for instance by applying binary search. This yields the following
equivalence.

Theorem 3.2 Let I be any instance of the problem of maximizing the number of stochastically
on time jobs, where each job Jj (j = 1, . . . , n) has processing time πj (j = 1, . . . , n), which is
gamma distributed with shape parameter pj and scale parameter β, due date dj, and minimum
success probability yj. Let I ′ be the instance of the deterministic problem of maximizing the
number of on time jobs, where each job Jj (j = 1, . . . , n) has processing time pj and due date
Dj, which is computed as described above. Then both problems are solved by the same set of on
time jobs.

Proof. The theorem is proved by showing that any set of on time jobs that is feasible for one
problem is also feasible for the other problem. But this is trivial, since p(Qj) ≤ Dj implies
P [Cj ≤ dj] ≥ yj , given that Cj follows a gamma distribution with parameters p(Qj) and β, and
vice versa.
Hence, we have converted our stochastic problem into an equivalent deterministic problem,

8

which can be solved to optimality by applying Moore-Hodgson’s algorithm in O(n log n) time.
Therefore, we have the following corollary.

Corollary 3.3 When the processing times are gamma distributed with shape parameter pj and
scale parameter β, the problem of maximizing the number of stochastically on time jobs is
solvable in O(n log n) time.

If we look at the weighted problem, where wj is the reward of completing Jj on time, then
we can again determine the adjusted due dates Dj , as these do not depend on the weights.
Hence, we can solve the weighted case in time O(n

∑
pj) through the algorithm of Lawler and

Moore (1969) or in time O(n
∑

wj) through the dynamic programming algorithm of Section 2,
given the values Dj (j = 1, . . . , n). By applying Karp’s reduction (Karp, 1972), we can show
that the weighted case is NP-hard in the ordinary sense.

Note that the on time jobs are executed according to the order of the adjusted due dates
Dj , which does not have to coincide with the order of the original due dates dj , as the minimum
success probabilities do not have to be equal.

The above approach worked for the gamma distribution, because of the following two rea-
sons:

• The completion time Cj of job Jj (j = 1, . . . , n) is fully specified by p(Qj).

• P [Cj ≤ dj] does not increase when p(Qj) increases.

It is easily verified that these two conditions are sufficient: if for an instance of the stochastic
problem both conditions are satisfied, then the problem can be solved in O(n log n) time. The
first condition is satisfied if the probability distribution is described by only one job-specific pa-
rameter and if the probability distribution is additive, that is, if πi and πj follow this distribution
with specific parameters pi and pj , then πi +πj follows this distribution with specific parameter
pi + pj . Hence, we come to the following characterization of an ‘easy’ class of instances for this
problem, which we state without proof.

Theorem 3.4 A class of instances of the problem of maximizing the number of stochastically
on time jobs is solvable in O(n log n) time if the following conditions are satisfied:

• The processing times are independently distributed stochastic variables that are described
by one job-specific parameter pj.

• The probability distribution is additive in the job-specific parameter.

• P [Cj ≤ dj] ≥ yj does not increase when p(Qj) increases, irrespective of yj.

It is easily verified that the class of negative binomial distributed processing times satisfies the
conditions of Theorem 3.4, if the processing times are independent. Hence, the unweighted
problem is solved in O(n log n) time, and the weighted case is solved in time O(n

∑
pj) or

O(n
∑

wj).
Note that the same approach can be used for the normal distribution in the special case that

for each job the variance is equal to some constant times the expected value. In Subsection 3.3
we deal with the general case of this problem.

9

A similar approach can be used when we do not work with minimum success probabilities
but with some kind of reward function per job: a lower bound on the expected profit then leads
to an upper bound Dj on p(Qj), after which the resulting problem of deciding which tasks to
carry out can be solved by the algorithm of Moore-Hodgson with deterministic processing times
pj and due dates Dj .

3.2 Equally disturbed processing times

Again, we use Cj to denote the stochastic completion time of Jj (j = 1, . . . , n), and we let
Qj denote the set containing all jobs that have been accepted up to and including Jj . Hence,
we have that Cj =

∑
i∈Qj

πi, follows a distribution that is described by p(Qj) and the joint
disturbance of the jobs in Qj . This implies, however, that the second condition of Theorem 3.4
is not satisfied, as the number of jobs in Qj , which we denote by |Qj |, is crucial. Hence, we
return to the basics of our dynamic programming approach.

The crux behind the dynamic programming algorithm of Section 2 was that a fixed order
was known in which the jobs could be added without running the risk of missing the optimum,
namely the EDD-order based on the dj values. We will show in Theorem 3.5 below that adding
the jobs in EDD-order, where ties are settled according to non-increasing yj value, will permit
us to find an optimal solution if the minimum success probabilities are agreeable with the due
dates, with which we mean that the jobs can be numbered such that i < j implies that di ≤ dj

and yi ≥ yj , for all i, j = 1, . . . , n. We assume from now on that the jobs have been renumbered
in this way; with we a little abuse of notation, we call this order the EDD-order again.

Since all disturbances are independently, identically distributed, the composite disturbance
only depends on the number of jobs that belong to Qj . Hence, to compute the probability
P [Cj ≤ dj], which has to be compared to the minimum success probability, we need to know
p(Qj) and |Qj |. Obviously, if |Qj | is given, then P [Cj ≤ dj] is maximized by choosing for
Qj \ {Jj} the subset of {J1, . . . , Jj−1} of minimum total deterministic processing time from
among the sets with cardinality |Qj |−1 that is feasible; in this respect a subset is feasible if the
corresponding jobs can be scheduled such that each job is stochastically on time. Therefore, the
required knowledge to compute P [Cj ≤ dj] is captured by the information stored in the state-
variables fj(k) of the previous section. Hence, we can apply the analysis of the previous section,
which leads to Moore-Hodgson’s algorithm. Note that in the algorithm the checking of whether
Jj+1 is on time has to be modified from inspecting ‘fj(k) + pj+1 ≤ dj+1’ to inspecting whether
‘P [Cj+1 ≤ dj+1] ≥ yj+1’, that is, we have to check whether ‘P [Cj +πj+1 ≤ dj+1] ≥ yj+1’. What
is left to prove is the validity of the EDD-order.

Theorem 3.5 If di ≤ dj and yi ≥ yj, then there exists an optimal order for adding the jobs to
the dynamic programming algorithm in which Ji precedes Jj.

Proof. Consider the subsequence of the jobs corresponding to any optimal solution. If we
add the on time jobs in this order to the dynamic programming solution with the tardy jobs
interleaved, then the dynamic programming algorithm will come up with this solution or an
equivalent one, since our algorithm is guaranteed to find the best solution corresponding to
the order in which the jobs are fed into the algorithm. Hence, it suffices to show that there
exists an optimum subsequence in which Ji precedes Jj if both jobs are on time. We prove this

10

by a contradictory argument. If Jj precedes Ji in this scheduling order, then we modify it by
removing Jj from its current position and reinserting it immediately after Ji. Each job affected
by this move goes forward in the scheduling order (and hence remains on time), except for Jj ,
which gets some more predecessors. The completion time of Jj is equally distributed as the
completion time of Ji in the original scheduling order, as the same subset of jobs is involved,
and Ji was on time. Since di ≤ dj and yi ≥ yj , job Jj must be on time then, too, which implies
that this new scheduling order is at least as good as the previous one.
It is straightforward to solve the weighted case by using state-variables fj(k, W), where W
contains the additional information of the total weight of the current set of on time jobs. Note
that, in contrast to the deterministic case in Section 2, we now need both the total weight of
the current set of on time jobs and the cardinality of this set, since knowledge of the cardinality
is required for computing P [Cj ≤ dj]. Hence, the algorithm will then run in O(n2 ∑

wi) time.
Through a reduction like the one proposed by Karp to show NP-hardness of the deterministic
problem (which in fact belongs to this class) it is easily verified that pseudo-polynomial running
time is the best we can hope for in this case.

3.3 Normally distributed processing times

In this subsection we assume that the processing time πj of job Jj (j = 1, . . . , n) is a normally
distributed random variable with expected value pj and variance σ2

j , where the variance is so
small that the probability of getting a negative processing time is negligible. We further assume
that all πj variables are independent of each other. Since the variances can differ per job, this
problem is fundamentally more difficult than the previous ones, as we will show in Section 4.
Again, we define Cj as the stochastic completion time of Jj (j = 1, . . . , n), and we let Qj denote
the set containing all jobs that have been selected to complete on time up to and including
Jj . Hence, we have that Cj =

∑
i∈Qj

πi follows the normal distribution with mean
∑

i∈Qj
pi

and variance
∑

i∈Qj
σ2

i . If these two quantities are known, then we can immediately compute
the probability P [Cj ≤ dj] and compare this to the minimum success probability yj . Again,
we assume that the due dates and minimum success probabilities are agreeable; Theorem 3.5
shows that there exists an optimal schedule that starts with the on time jobs in EDD-order.

Obviously, not all possible combinations (
∑

i∈Qj
pi,

∑
i∈Qj

σ2
i) are of interest. If we look at

all feasible subsets Qj of {J1, . . . , Jj} with equal
∑

i∈Qj
σ2

i value and equal cardinality, then
our best chance to meet yj is offered by the subset with minimum

∑
i∈Qj

pi value. On the
other hand, if we can choose among all feasible subsets Qj of {J1, . . . , Jj} with equal

∑
i∈Qj

pi

value and equal cardinality, then we would like to have the one with smallest
∑

i∈Qj
σ2

i value if
yj > 0.5 and the one with maximum

∑
i∈Qj

σ2
i value if yj < 0.5; if yj = 0.5, then the variances

are irrelevant, which implies that the problem in which all minimum success probabilities are
equal to 0.5 can be solved by applying the algorithm by Moore-Hodgson to the instance with
deterministic processing times pj . Since we may expect that a customer is not satisfied with
a probability of less than 50% that the manufacturer completes his job on time, we assume
that yj ≥ 0.5 for all j = 1, . . . , n. Therefore, we work out the dynamic programming algorithm
by determining for each value t ∈ {0, 1, . . . ,

∑j
i=1 pj} and for each cardinality k = 0, . . . , zj

the feasible subset Qj with p(Qj) = t that has minimum total variance, if it exists. The
reason behind enumerating the total processing time and minimizing the total variance is that

11

presumably
∑n

i=1 σ2
i >

∑n
i=1 pi, which is advantageous for the running time of the algorithm.

If this is not the case, then we can reverse the role of the variance and the total processing time
in the dynamic programming algorithm.

To get the dynamic programming algorithm running, we introduce for each j = 1, . . . , n;
k = 1, . . . , zj ; and t = 0, 1, . . . ,

∑j
i=1 pj the state-variable fj(k, t), which is supposed to denote

the minimum variance
∑

i∈Qj
σ2

i over all feasible subsets Qj of {J1, . . . , Jj} with |Qj | = k and∑
i∈Qj

pi = t. Here zj is defined as the maximum cardinality over all feasible subsets Qj of
{J1, . . . , Jj}. As our initialization, we put z0 = 0 and define fj(k, t) = 0 if j = k = t = 0 and
∞, otherwise. As before, we add the jobs in EDD-order (where ties are settled according to
non-increasing yj value). When adding job Jj+1, we first determine zj+1. Thereto, we check
for each fj(zj , t) whether

P

z ≤ dj+1 − t− pj+1√
fj(zj , t) + σ2

j+1

 ≥ yj ,

where z denotes a standard normal variable. If this holds for none of the state-variables fj(zj , t),
then we put zj+1 = zj ; otherwise, we put zj+1 = zj + 1. As the check above indicates, we have
to be a bit cautious. The case that zj+1 = zj + 1 does not imply that adding Jj+1 behind
each feasible solution represented by fj(zj , t) results in Jj+1 being stochastically on time. If we
encounter a situation in which there is no feasible solution corresponding to fj(k, t), then we
give it the value INF (from ‘infeasible’). Given the correct values for fj(k′, t′), we compute the
values fj+1(k, t) as follows. We put fj+1(0, 0) = 0 and compute fj+1(k, t) for k = 1, . . . , zj+1

and t = 0, . . . ,
∑j+1

i=1 pi through the following recurrence relation

fj+1(k, t) = min{fj(k, t), fj(k − 1, t− pj+1) + σ2
j+1}.

The first term corresponds to including job Jj+1 in the set of late jobs, whereas job Jj+1 is
included in the on time set in the second case. We work with the special value INF in the
following way. If an entry has value INF , then this possibility is ignored by the minimand; if
both entries have value INF , then fj+1(k, t) gets the value INF . Furthermore, if the minimum
comes from the second term and the first term has value INF , then we check whether Jj+1 is
stochastically on time when Cj+1 has expected value t and variance fj(k − 1, t− pj+1) + σ2

j+1;
if this is not the case, then we set fj+1(k, t) equal to INF after all. Note that, if the minimum
comes from the second term and the first term is not equal to INF , then we know that Jj+1

will be stochastically on time, since Jj was stochastically on time in a comparable but less
favorable situation. The optimum value of the objective function is determined as n− zn, and
the corresponding on time set can be found through backtracking. This algorithm has running
time O(n2 ∑

pi).
The weighted case can be easily dealt with by a clone of the above algorithm. In that case,

we let k refer to the total weight of the on time jobs instead of the cardinality of the on time
set. Hence, the algorithm then runs in O(n

∑
pi

∑
wi) time.

3.4 The non-agreeable case

Suppose that the due dates and the minimum success probabilities are not agreeable. We start
with a two-job example, which belongs to both class three and four, that shows that the EDD-
order is not necessarily optimal then. Both jobs have a processing time that follows a normal

12

distribution with p1 = 12 and p2 = 8 and σ2
1 = σ2

2 = 1. The due dates are d1 = 20 and
d2 = 21, and the minimum success probabilities are y1 = 0.5 and y2 = 0.95. A straightforward
calculation shows that in the EDD-sequence job J2 is late, whereas in the reverse sequence both
jobs are on time.

This is bad news of course. On the bright side, for both our special classes it is possible
to check in O(n2) time whether all jobs in a given set can be stochastically on time simultane-
ously, even if the minimum success probabilities are unequal, through the following rule, which
resembles Lawler’s Least-cost-last-rule (Lawler, 1973): compute the probability distribution of
the, yet unknown, last job in the sequence, and determine whether there exists a job that can
be sequenced last without violating its minimum success probability. If there is no such job,
then clearly this set is not feasible. Otherwise, select any such job, sequence it last, and repeat
the procedure for the remaining jobs. The correctness of this rule is obvious, and therefore we
state it without proof.

Since we are able to check for a given job set whether it is feasible, one approach might be
to use the dynamic programming algorithm of the previous subsections, where we use the above
algorithm to check whether adding the current job to a feasible subset yields a feasible subset
again. Unfortunately, this approach does not work, as follows from the following three-job
example: we add job J0 to our two-job example with p0 = 11, σ2

0 = 1, d0 = 15, and y0 = 0.5.
A quick computation shows that the only possibility of having two jobs on time is to put J2

first and J1 second. But when we apply our dynamic programming algorithm where we add
the jobs in EDD-order, then this solution is eliminated, as the feasible subset of cardinality one
from {J0, J1} with minimum processing time contains J0 and not J1. Note that the dynamic
programming algorithm works fine if we add the jobs in the order J0, J2, J1.

Therefore we now address the question: in which order should we add the jobs to the
dynamic programming algorithm? Finding an optimal one, that is, an order which leads to
the optimal solution, is a challenging open question. Below, we give a partial description of an
optimal order for adding the jobs to the dynamic programming algorithm. If the number of
possibly optimal orders is not too big, then one approach is to try them all and pick the best
solution.

Theorem 3.6 If di ≤ dj and yi ≥ yj, where at least one of the inequalities is strict, then we
can limit ourselves to orders in which Ji precedes Jj.

Proof. The proof follows immediately from the proof of Theorem 3.5.

4 NP-hardness

In this section we show that the problem with normally distributed processing times is funda-
mentally more difficult than the problem with deterministic processing times, which is solved
in polynomial time. We show that the problem with equal minimum success probabilities is
NP-hard in the ordinary sense through a reduction from the problem Partition, which is
known to be NP-complete in the ordinary sense. Partition is defined as follows:

13

Partition
Given t positive integers a1, a2, . . . , at with sum equal to 2A, does there exist a subset Q of the
index set {1, . . . , t} such that∑

i∈Q

ai = A?

Given any instance of Partition, we construct the following instance of the decision variant
of our problem. Each ai (i = 1, . . . , t) leads to two jobs: J2i−1 and J2i. Moreover, there is
a special job J2t+1. The data are found in the table below, where the index i runs from 1
to t. The symbols B, M , and Z stand for numbers. B is such that B(

√
A + 1 −

√
A) > A;

a straightforward computation shows that putting B equal to 2A
√

A + 1 rounded down does
the trick. The integer M is defined as A + 1 + B

√
A rounded down. The integer Z is chosen

such that
√

Z + B2A−
√

Z < 1; a straightforward computation shows that Z = A6(A + 1)2 is
sufficient. The minimum success probability y is set equal to 0.8413; this choice is motivated
by the fact that P (z ≤ 1) = 0.8413 for a standard normal variable z.

pj σ2
j dj

J2i−1 iM B2ai
∑i

h=1 hM + A + B
√

A

J2i iM + ai 0
∑i

h=1 hM + A + B
√

A

J2t+1 (t+1)M Z
∑t+1

h=1 hM + A +
√

Z + B2A

Table 1: Data for our instance

The decision variant of our problem is defined as the following question: does the instance
defined above have a solution in which no more than t jobs are not stochastically on time?
We will show that the answer to Partition is ‘yes’ if and only if the decision problem is
answered affirmatively. Before giving a formal proof, we will briefly sketch the outline of the
reduction. At most t of the first 2t jobs can be stochastically on time, and we need all of them
to get a ‘yes’ to the decision variant. Define the index set Q such that j ∈ Q if and only if
J2j belongs to the set of stochastically on time jobs, for j = 1, . . . , t. To let either J2t−1 or J2t

finish on time, we need that
∑

j∈Q aj ≥ A. Then J2t+1 comes into play; the instance is chosen
such that J2t+1 can be on time only if

∑
j∈Q aj ≤ A.

Now we come to the formal proof. First suppose that the answer to Partition is ‘yes’;
let Q denote the subset of {1, . . . , t} with

∑
j∈Q aj = A. Then we construct a ‘yes’ solution to

the decision variant as follows. We construct the set E of on time jobs such that it includes
J2j−1 if j /∈ Q and J2j if j ∈ Q, for (j = 1, . . . , t); the last job in E is job J2t+1. Let J[i]

(i = 1, . . . , t + 1) denote the i’th job in E when ordered according to the EDD-rule; define C[i],
p[i], and d[i] accordingly. It is easily verified that the expected value of C[i] is no more than∑i

h=1 hM + A for i = 1, . . . , t + 1, and that the variance of C[i] is at most equal to B2A, for
i = 1, . . . , t, whereas C[t+1] has variance Z + B2A. Note that the minimum success probability
is such that a job Jj (j = 1, . . . , 2t + 1) is on time if the expected value of Cj plus the standard
deviation (which is the square root of the variance) of Cj is no more than its due date. Hence,
all jobs in E are on time, which implies that no more than t jobs are late, which means ‘yes’.

Conversely, suppose that the answer to the decision variant is ‘yes’. Let E denote the set of
on time jobs. We first show that then exactly one of each pair of jobs {J2i−1, J2i} (i = 1, . . . , t)

14

must belong to E. We prove this statement by showing that any set Ē containing t jobs from
J1, . . . , J2t for which the above does not hold is not feasible. To facilitate the proof, we alter
the instance by reducing the processing times and getting rid of the variances; obviously, if Ē
is not feasible for this instance, then Ē is also infeasible with respect to the original instance.
We put p2i = iM and σ2

2i−1 = 0 for i = 1, . . . , t; the other data remain unchanged. If we apply
Moore-Hodgson’s algorithm to this instance, then we find that at most i (i = 1, . . . , t) out of the
jobs J1, . . . , J2i can be on time, and that the minimum total processing time of such a subset
is equal to

∑i
h=1 hM , for i = 1, . . . , t. Now we take a closer look at the set Ē; we define the

sets Ēj (j = 1, . . . , t) as Ē ∩ {J1, . . . , J2j}. We first show that Ēt must contain exactly one job
from {J2t−1, J2t}. Since |Ēt| = t and at most t − 1 of the jobs from J1, . . . , J2t−2 can be on
time, at least one of the jobs J2t−1, J2t must belong to Ēt. If Ēt contains both, then Ēt contains
t − 2 jobs from {J1, . . . , J2t−2}, and applying Moore-Hodgson shows that the minimum total
processing time of such a set is at least

∑t−2
h=1 hM + 2tM . But then

p(Ēt) ≥
t−2∑
h=1

hM + 2tM =
t∑

h=1

hM + M >
t∑

h=1

hM + A + B
√

A = max{d2t−1, d2t},

which shows that such a set Ēt cannot be feasible. Hence, Ēt contains exactly one job from
J2t−1, J2t. We repeat this argument for Ēt−1, and find that Ēt−1 must contain exactly one job
from J2t−3, J2t−2, etc.

This implies that the set E corresponding to the ‘yes’ solution must contain exactly one of
each pair of jobs {J2i−1, J2i} (i = 1, . . . , t); hence, J2t+1 must then also be on time to get the
count right. Now that we have established this characteristic of E, we return to our original
instance. We define Q as the subset of {1, . . . , t} that contains index i if and only if J2i belongs
to the on time set. Let J[t] denote the job from the pair {J2t−1, J2t} that is on time. The
expected value of C[t] is equal to

∑t
h=1 hM +

∑
j∈Q aj , and the variance of C[t] is equal to

B2 ∑
j /∈Q aj . If

∑
j∈Q aj < A, then the variance of C[t] is at least equal to B2(A + 1). Hence,

the expected value of C[t] plus the standard deviation of C[t] is then at least equal to

t∑
h=1

hM + B
√

A + 1 >
t∑

h=1

hM + A + B
√

A = d[t],

where the ‘>’ sign comes from the choice of B. This result disqualifies job J[t] as on time, and
hence we must have

∑
j∈Q aj ≥ A.

From now on, we use a(Q) as a short-hand notation for
∑

j∈Q aj . Finally, job J2t+1 comes
into play; this job must be on time as well. The expected value of C2t+1 is equal to

∑t+1
h=1 hM +

a(Q), and the variance of C2t+1 is equal to Z+B2(2A−a(Q)) ≥ Z. Now suppose that a(Q) > A,
which implies that a(Q) ≥ A+1. Hence, the expected value of C2t+1 plus the standard deviation
of C2t+1 is at least equal to

t+1∑
h=1

hM + A + 1 +
√

Z >
t+1∑
h=1

hM + A + 1 +
√

Z + B2A− 1 = d2t+1,

where the ‘>’ sign comes from the choice of Z. But then J2t+1 is late. This contradiction shows
that a(Q) = A, and we have shown that the answer to Partition is ‘yes’ as well.

Since the decision variant of our problem clearly belongs toNP, we have proven the following
theorem.

15

Theorem 4.1 The problem of minimizing the number of late jobs on a single machine with
normally distributed processing times is NP-hard, even if all minimum success probabilities are
equal.

Until so far, we have not worried about the possibility that the actual processing time of a
job might become negative. This can virtually be avoided in the above NP-hardness proof by
adding to each processing time a huge constant and updating the due dates in a corresponding
fashion.

5 Maximizing the expected number of on time jobs

In Section 3 we introduced the concept of stochastically on time to be able to establish the
value of the objective function without waiting until the last job was finished. Another way to
circumvent this problem is to use as an objective function the expected number of on time jobs.
The quality of a sequence is then measured as

n∑
j=1

P (Cj ≤ dj),

which expression has to be maximized. Obviously, if not all jobs are equally important, then
we can add weights wj and maximize the total weighted probability.

The disadvantage, from our point of view, of working with this kind of objective function, is
that a job will always be included in the optimal order as long as there is a positive probability
of meeting the due date. Therefore, we use the minimum success probabilities in this setting,
too, and we only choose jobs that are stochastically on time. Hence, we are now looking for
a sequence in which each job is stochastically on time and by which the total probability of
meeting the due date is maximized. We solve this problem by applying dynamic programming
again. Since we consider a job only once in our dynamic programming algorithm, a job that is
rejected, although being stochastically on time, does not get a second chance. This approach is
correct only if adding this job to the final set of selected jobs cannot lead to a feasible subset,
which can be verified by the analogon of Lawler’s Least-cost-last-rule (Lawler, 1973) formulated
in Subsection 3.4.

Note that it may seem optimal to execute the accepted jobs in EDD-order, but this is clearly
not always true. Consider the following two-job example. Both jobs have a processing time
that follows a normal distribution. The data are p1 = 12, p2 = 2, σ2

1 = 16, and σ2
2 = 1. The

due dates are d1 = 14 and d2 = 15, and we choose y1 = y2 = 0.5. The expected number of
on time jobs is equal to almost 1.29 for the EDD-sequence and 1.5 for the reverse sequence.
Note that, if we would have y1 = y2 = 0.55, then the reverse sequence would be infeasible,
and the EDD-sequence would be optimal. This implies that we can only guarantee that an
optimum is found by feeding the jobs to our dynamic programming algorithms in all non-
dominated orders. Unfortunately, the above example also shows that a job with larger due date
and smaller minimum success probability should sometimes precede a job with a smaller due
date and a larger minimum success probability, which makes a partial description of the set
of optimal orders unlikely. Given that the jobs are added in order of index, where the initial
numbering is arbitrary, our algorithms below find the best solution in which the accepted jobs
are executed in order of index.

16

We start with the instance class with processing times that follow a gamma distribution; the
class of instances with processing times from a negative binomial distribution can be dealt with
in the same way. Given a sequence in which Jj is an accepted job, we use Qj to denote the set of
accepted jobs up to and including Jj . To compute P (Cj ≤ dj) we only need p(Qj). To measure
the quality of this solution, we need to know

∑
i∈Qj

P (Ci ≤ di), which we denote as Pr(Qj). We

can capture this information by using state-variables fj(t) (j = 0, . . . , n; t = 0, . . . ,
∑j

h=1 ph),
which denote the maximum value Pr(Qj) over all subsets Qj of {J1, . . . , Jj} with p(Qj) = t.
Working this out is standard, and therefore we omit it for reasons of brevity.

A similar algorithm can be used for the instance class with equally disturbed processing
times, but now we need to keep track of |Qj | as well. We therefore use state-variables fj(k, t)
(j = 0, . . . , n; k = 0, . . . , j; t = 0, . . . ,

∑j
h=1 ph), which again denote the maximum value Pr(Qj)

over all subsets Qj of {J1, . . . , Jj} with |Qj | = k and p(Qj) = t.
Finally, the instance class with normally distributed processing times can be dealt with by a

similar dynamic programming algorithm. We need to keep track of p(Qj), σ2(Qj), and Pr(Qj)
in each iteration. Therefore, we use state-variables fj(s, t) (j = 0, . . . , n; s = 0, . . . ,

∑j
h=1 σ2

h; t =
0, . . . ,

∑j
h=1 ph), which denote the maximum value Pr(Qj) over all subsets Qj of {J1, . . . , Jj}

with σ2(Qj) = s and p(Qj) = t.
The weighted versions can be dealt with through straightforward generalizations of the above

algorithms.

6 Concluding remarks

In this paper, we have addressed the accept/reject problem, where an accepted order represents
an amount of work, the exact value of which is unknown but that can be modelled through a
stochastic variable. When accepted, an order must be ready at a given time, which is called
the due date. Since the completion times are stochastic variables, it is hard to guarantee
beforehand that this due date will be met. Therefore, we have introduced the concept of the
minimum success probability, which gives to some degree a guarantee that an accepted order
will be ready on time. This concept is more general than the requirement that the expected
completion time is no more than the due date, and it offers the possibility to the client to ask
for a higher reliability of on time completion. Moreover, a similar approach can be used in the
situation that a penalty has to be paid for tardy completion, which may depend on the actual
completion time, and the manufacturer accepts a job only if the expected profit is large enough.

The deterministic problem can be solved by applying dynamic programming algorithms for
both the weighted and unweighted case. The question is whether this knowledge can be used
in the case of stochastic processing times. We have answered this question for four probabil-
ity distributions on the processing times; these reflect models that are frequently encountered
in practice. The four probability distributions are the gamma distribution, the negative bi-
nomial distribution, the normal distribution, and a general case with the characteristic that
all processing times are equally disturbed. In all cases we can express the completion times
as random variables with an accessible distribution. More importantly, we can transform the
question ‘is the probability that the job is completed on time at least equal to the minimum
success probability?’ into the question ‘is the sum of the parameters of the accepted jobs no
more than some upper bound’, which is straightforward deterministic. Hence, we are able to

17

remove the stochastic features of the problem, such that we can solve it by using the dynamic
programming algorithms that have been developed for the deterministic situations. This works
especially well for the gamma and negative distribution: we can solve these problems by the
deterministic algorithm of Moore and Hodgson, even if each job has its own specific minimum
success probability. We have further given a characterization that a probability distribution
must possess such that this approach can be used. The other two, equal random disturbance
and normal distribution, are much more difficult. Here, we need to know the order in which
to feed the jobs into the dynamic programming algorithm. We have identified conditions that
partly characterize this order; the problem is solvable if the due dates and minimum success
probabilities are agreeable. We further have discussed the problems that we face in case of
arbitrary minimum success probabilities or in case of maximizing the expected number of on
time jobs, where we work with a lower bound on the probability of being on time.

There are several open questions and directions for future research. The first one is to
derive more dominance rules that must be satisfied by an optimal order to add the jobs in
the dynamic programming algorithm. Another direction is to introduce a ‘look-forward’ time,
during which information can be gathered concerning the actual processing times of the first
jobs in the schedule. Closely related to this is to put the problem in an on line context.

We further want to point out that, whereas we have considered the single machine problem
only, a similar approach can be used to solve parallel machine problems with stochastic pro-
cessing times.

Acknowledgement.
The authors want to express their gratitude to Sem Borst for his helpful comments on an earlier
draft of the paper.

References

[1] J.M. van den Akker and J.A. Hoogeveen (2004). Minimizing the number of tardy
jobs. In: J.Y.-T. Leung (ed.), Handbook of Scheduling, Algorithms, Models, and Perfor-
mance Analysis, pp. 227–243, CRC Press, Inc. Boca Raton, Fl, USA.

[2] J.R. Jackson (1955). Scheduling a production line to minimize maximum tardiness. Re-
search Report 43, Management Science Research Project, University of California, Los
Angeles.

[3] R.M. Karp (1972). Reducibility among combinatorial problems, in: R.E. Miller and
J.W. Thatcher (eds.) (1972). Complexity of Computer Computations, Plenum Press,
New York, pp. 85-103.

[4] A.M. Law and W.D. Kelton (2000). Simulation modeling and analysis. McGraw Hill.

[5] E.L. Lawler (-). Scheduling a single machine to minimize the number of late jobs. Un-
published manuscript.

[6] E.L. Lawler and J.M. Moore (1969). A functional equation and its application to
resource allocation and sequencing problems. Management Science 16, 77-84.

18

[7] E.L. Lawler (1973). Optimal sequencing of a single machine subject to precedence con-
straints. Management Science 19, 544-546.

[8] J.M. Moore (1968). An n job, one machine sequencing algorithm for minimizing the
number of late jobs. Management Science 15, 102-109.

19

