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Abstract

Let A and B be two sets of n resp. m (m � n) disjoint unit disks in the plane. We consider
the problem of �nding a rigid motion of A that maximizes the total area of its overlap with
B. The function describing the area of overlap is quite complex, even for combinatorially
equivalent translations, and hence, we turn our attention to approximation algorithms. First,
we give a deterministic (1 � �)-approximation algorithm for the maximum area of overlap
under rigid motion that runs in O((n2m2=�3) logm)) time. If � is the diameter of set A,

we get an (1 � �)-approximation in O(m
2n4=3�1=3 logn logm

�3
) time. Under the condition that

the maximum is at least a constant fraction of the area of A, we give a probabilistic (1 � �)-
approximation algorithm that runs in O((m2=�4) log(m=�) log2m) time and succeeds with
high probability. Our algorithms generalize to the case where A and B consist of possibly
intersecting disks of di�erent radii provided that (i) the ratio of the radii of any two disks in
A[B is bounded, and (ii) within each set, the maximum number of disks with a non-empty
intersection is bounded.

Keywords: Geometric Optimization, Approximation Algorithms, Shape Matching, Area of Overlap,

Unions of Disks, Rigid Motion

1 Introduction

We study the following shape matching problem: given two sets A and B of disks in the plane,
we wish to �nd a rigid motion that maximizes their area of overlap. Our main goal is to match
two shapes, each being expressed as a union of disks; thus the overlap we want to maximize is the
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overlap between the two unions (which is not the same as the sum of overlaps of the individual
disks). In the most general setting we assume the following: (i) the largest disk is only a constant
times larger than the smallest one, and (ii) any disk in A intersects only a constant number of
other disks in A, and the same holds for B.

Motivated by applications in matching shapes that are `expressed' as unions of convex objects and
weighted point set matching, de Berg et al. [dBGK+03] examined the problem of maximizing the
area of overlap of two unions of either convex homothets or fat objects under translation. They
gave a (1 � �)-approximation algorithm that runs in O((nm=�2) log(m=�)) time, where n and m
are the sizes of the sets. One of the open problems they mentioned is that of extending the above
approximation results to other transformation groups, most notably, rigid motions.

Recently, Cheong et al. [CEHP04] presented a general and elegant technique for solving problems
where the goal is to maximize the area of some region that depends on a multi-dimensional
parameter. They observed that this technique can be directly applied to our problem, and gave an
almost linear, probabilistic approximation algorithm that computes the maximum area of overlap
under translations up to an absolute error with high probability. When the maximum overlap is
at least a constant fraction of the area of one of the two sets, the absolute error is in fact a relative
error. This is usually good enough for shape matching, since if two shapes are quite dissimilar we
usually do not care about how bad the match exactly is. A direct application of this technique to
rigid motions gives an O((m2=�6) log(m=�) log3m) time algorithm that requires the computation
of intersection points of algebraic curves of degree six, which is not very practical.

Our contributions are the following. First, in Section 2 ,we show that the maximum number of
combinatorially distinct rigid motions of A with respect to B is O(n3m2). Moreover, the function
describing the area of overlap is quite complex, even for combinatorially equivalent placements.
Therefore, we focus on approximation algorithms. Our algorithms are given in the remaining sec-
tions. For the sake of clarity we describe the algorithms for the case of disjoint unit disks. It is not
hard to adapt them to sets of disks satisfying assumptions (i) and (ii) above; the necessary changes
are described in Section 6. For any � > 0, our algorithms can compute a (1��)-approximation of the
optimum overlap. First, we present a deterministic algorithm which runs in O((n2m2=�3) logm)
time. If � is the diameter of set A|recall that we are dealing with unit disks|the running
time of the latter becomes O((m2n4=3�1=3=�3) logn logm), which yields an improvement when
� = o(n2= log3 n). Note that in many applications the union will be connected, which implies
that the diameter will be O(n). If the area of overlap is a constant fraction of the area of the
union of A, which is the same condition Cheong et al. need, we can get a probabilistic algorithm
that runs in O((m2=�4) log(m=�) log2m) time, and succeeds with high probability.

Our algorithms for rigid motion are based on a simple two-step framework in which an approxi-
mation of the best translation is followed by an approximation of the best rotation. This way, we
�rst achieve an absolute error on the optimum, which we then turn into a relative error using the
lower bound theorem by de Berg et al. [dBGK+03, Theorem 5]; for completeness This theorem,
which we reproduce in Section 2 for completeness, gives a lower bound on the maximum area of
overlap under translations, expressed in the number of pairs of disks that contribute to that area.
The deterministic algorithm employs a clever sampling of transformation space, directed by some
special properties of the function of the area of overlap of two disks. The probabilistic algorithm
is a combination of sampling of translation space using a uniform grid, random sampling of both
input sets, and the technique by Cheong et al.
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2 Basic properties of the overlap function

We start by introducing some notation. Let A = fA1; : : : ; Ang and B = fB1; : : : ; Bmg, be two
sets of disjoint unit disks in the plane, with n � m. We consider the disks to be closed. Both A
and B lie in the same two-dimensional coordinate space, which we call the work space; their initial
position is denoted simply by A and B. We consider B to be �xed, while A can be translated
and/or rotated relative to B.

Let I be the in�nite set of all possible rigid motions|also called isometries|in the plane; we
call I the con�guration space. We denote by R� a rotation about the origin by some angle
� 2 [0; 2�) and by T~t a translation by some ~t 2 R

2 . It will be convenient to model the space
[0; 2�) of rotations by points on the circle S1. For simplicity, rotated only versions of A are
denoted by A(�) = fA1(�); : : : ; An(�)g. Similarly, translated only versions of A are denoted by
A(~t) = fA1(~t); : : : ; An(~t)g. Any rigid motion I 2 I can be uniquely de�ned as a translation
followed by a rotation, that is, I = I~t;� = R� Æ T~t, for some � 2 S1 and ~t 2 R

2 . Alternatively,
a rigid motion can be seen as a rotation followed by some translation; it will be always clear
from the context which de�nition is used. In general, transformed versions of A are denoted by
A(~t; �) = fA1(~t; �); : : : ; An(~t; �)g for some I~t;� 2 I.

Let Int(C); V (C) be, respectively, the interior and area of a compact set C 2 R2 , and let Vij(~t; �) =
V (Ai(~t; �) \ Bj). The area of overlap of A(~t; �) and B, as ~t; � vary, is a function V : I ! R with
V(~t; �) = V ((

S
A(~t; �))\ (SB)). Thus the problem that we are studying can be stated as follows:

Given two sets A;B, de�ned as above, compute a rigid motion I~topt;�opt that maximizes V(~t; �).

Let dij(~t; �) be the Euclidean distance between the centers of Ai(~t; �) and Bj . For simplicity, we
write V(~t);Vij(~t); dij(~t) when � is �xed and V(�);Vij(�); dij (�) when ~t is �xed. Also, let ri be the
Euclidean distance of Ai's center to the origin. The Minkowski sum of two planar sets A and B,
denoted by A�B, is the set fp1+ p2 : p1 2 A; p2 2 Bg. Similarly the Minkowski di�erence A	B
is the set fp1 � p2 : p1 2 A; p2 2 Bg.

Theorem 1 Let A be a set of n disjoint unit disks in the plane, and B a set of m disjoint unit
disks, with n � m. The maximum number of combinatorially distinct rigid motions of A with
respect to B is O(n3m2).

Proof: Let us assume for a moment that A is �rst rotated about the origin by some �xed angle
� 2 [0; 2�). We de�ne Tij(�) = Bj 	 Ai(�); Vij(~t; �) > 0 if and only if ~t 2 Int(Tij(�)). Let
T (A;B)(�) = fTij(�) : Ai 2 A and Bj 2 Bg. Then, V(~t; �) > 0 if and only if ~t 2 Int(T (A;B)(�)).
The boundaries of the Minkowski di�erences Tij(�) 2 T (A;B)(�) induce a planar subdivision
T (�). Each cell in this arrangement is a set of combinatorially equivalent translations of A(�)
relative to B, that is, the set of all overlapping pairs (Ai(~t; �); Bj) is the same for all ~t in the cell.
T (�) can be non-simple and non-connected, and its maximum complexity is �(n2m) [dBGK+03].

As � varies, the combinatorial structure of T (�) changes: each Tij(�) rotates about the center of
Bj and, as a result, new cells are created or existing cells dissappear. Such a change occurs in one
of the following two cases: (i) when two arcs in T (�) become tangent at some � (double event) or
(ii) three arcs in T (�) intersect at a point (triple event). By the analysis of Chew et al. [CGH+97],
the number of double events is O(n2m2) and the number of triple events is O(n3m2). Thus, the
complexity of the con�guration space1 is O(n3m2) as well.

1Abusing the terminology slightly, we will sometimes use the term `con�guration space' when we are actually
referring to the decomposition of the con�guration space induced by the in�nite family of sets T (A;B)(�) for all
� 2 [0; 2�).
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This theorem implies that explicitly computing the subdivision of the con�guration space into cells
with combinatorially equivalent placements is highly expensive. Moreover, the computation for
rigid motions can cause non-trivial numerical problems since it requires the computation of inter-
section points between algebraic curves of degree six and circles [AG99]. Finally, the optimization
problem in a cell of this decomposition is far from easy: one has to maximize a function consisting
of a linear number of terms; see de Berg et al. for details. Therefore we turn our attention to
approximation algorithms. The following theorem, which gives a lower bound on the maximum
area of overlap, will be instrumental in obtaining a relative error; see de Berg et al. for a proof.

Theorem 2 Let A = fA1; : : : ; Ang and B = fB1; : : : ; Bmg be two sets of disjoint unit disks in
the plane. Let ~topt be the translation that maximizes the area of overlap V(~t) of A(~t) and B over
all possible translations ~t of set A. If kopt is the number of overlapping pairs Ai(~topt); Bj , then
V(~topt) is �(kopt).

3 The rotational case

This section considers the following restricted scenario: set B is �xed, and set A can be rotated
around the origin. This will be used in the next section, where we consider general rigid motions.

Observe that this problem has a one-dimensional con�guration space: the angle of rotation. Con-
sider the function V : [0; 2�)! R with

V(�) := V ((
[

A(�)) \ (
[

B)) =
X

Ai2A;Bj2B

Vij(�):

For now, our objective is to guarantee an absolute error on V rather than a relative one. We start
with a result that bounds the di�erence in overlap for two relatively similar rotations. Recall that
ri is the distance of Ai's center to the origin.

Lemma 3 Let Ai; Bj be any �xed pair of disks. For any given Æ > 0 and any �1; �2 for which
j�1 � �2j � Æ=(2ri), we have jVij(�1)� Vij(�2)j � 2Æ.

Proof: Without loss of generality, we assume that �1 = 0 and that Ai is centered at (ri; 0) with
ri > 0; see Figure 1. We want to see that V (Ai\Bj)�V (Ai(�)\Bj ) � 2Æ for any 0 � � � Æ=(2ri).
Consider the function v(�) = V (Ai\Ai(�)) with � 2 [0; �=2]. We will prove that if 0 � � � Æ=(2ri)
then v(�) � �� Æ, and therefore V (Ai nAi(�)) = V (Ai(�) nAi) � Æ. Using that for any sets X;Y
we have V (X)� V (Y ) = V (X n Y )� V (Y nX), then for any 0 � � � Æ=(2ri) it holds

jV (Ai \Bj)� V (Ai(�) \ Bj)j
= jV ((Ai \ Bj) n (Ai(�) \ Bj))� V ((Ai(�) \ Bj) n (Ai \ Bj))j
� jV ((Ai \ Bj) n (Ai(�) \ Bj))j + jV ((Ai(�) \ Bj) n (Ai \ Bj))j
� V (Ai nAi(�)) + V (Ai(�) nAi)

� 2Æ;

and the lemma follows.

We will show that v(�) � � � Æ using the mean-value theorem. The center of Ai(�) is positioned
at (ri cos(�); ri sin(�)) and the distance between the centers of Ai and Ai(�) isq

r2i (1� cos �)2 + r2i sin
2 � = ri

p
2(1� cos(�)):
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(ri, 0)

(0, 0)

Ai

Ai(θ)

θ

(ri cos θ, ri sin θ)

Figure 1: Notation in Lemma 3. The area of the grey region corresponds to v(�).

The area of overlap of two unit disks whose centers are d apart is

2 arccos
d

2
� d

p
4� d2

2
;

and therefore we get

@v(�)

@�
=

@v(�)

@d
� @d
@�

= �
q
4� 2r2i (1� cos(�)) � ri sin(�)p

2(1� cos(�))

= �ri
q
2 + 2 cos(�)� r2i sin

2(�) � �2ri;

where in the last inequality we used 2 � 2 cos(�)� ri sin
2(�). We conclude that if 0 � � � Æ=(2ri)

then @v(�)=@� � �Æ=�.

Using the mean-value theorem we see that, for any � 2 [0; Æ=(2ri)] there exists �
0 2 [0; �] such that

v(�) � v(0)

� � 0
=

v(�)� �

�
=

@v(�0)

@�
:

Since, 0 � �0 � Æ=(2ri), we have @v(�
0)=@� � � Æ

� and so we conclude that v(�) � � � �Æ.

For a pair Ai; Bj , we de�ne the interval Rij = f� 2 [0; 2�) : Ai(�) \ Bj 6= ;g on S1, the circle of
rotations. We denote the length of Rij by jRij j. Instead of computing Vij(�) at each � 2 Rij , we
would like to sample it at regular intervals whose length is at most Æ=(2ri). At �rst, it looks as if
we would have to take an in�nite number of sample points as ri !1. However, as the following
lemma shows, jRij j decreases as ri increases, and the number of samples we need to consider is
bounded.

Lemma 4 For any Ai; Bj with ri > 0, and any given given Æ > 0, we have jRij j=(Æ=(2ri)) =
O(1=Æ).

Proof: Without loss of generality, we can assume that Ai is centered at (ri; 0) and Bj is centered
at (rj ; 0). Note that the distance between the center of Ai(�) and Bj is

dij(�) =
q
(ri cos � � rj)2 + (ri sin �)2 =

q
r2i + r2j � 2rirj cos �:

Under these assumptions, Rij is of the form [��ij ; �ij ], where �ij is the largest value for which

Ai(�ij) \ Bj 6= ;, that is, dij(�ij) = 2. We have �ij = arccos
r2i+r

2

j�4

2rirj
.
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(rj , 0)
(0, 0)

Bj

center of Ai(θij) in the worst case

C

p

Figure 2: Notation in Lemma 4. The center of Ai(�ij) is placed in the circle C. Therefore, �ij is
maximized for the dashed line through the origin and tangent to C.

As shown in Figure 2, the center of Ai(�ij) is always placed on C, the circle of radius two and con-
centric with Bj . Therefore, the value �ij is maximized when it equals the slope of the line through
the origin and tangent to C. Let p be the point of tangency. Since the triangle p; (0; 0); (rj ; 0) is

right on p, we conclude that �ij is maximized when rj =
p
r2i + 4. Therefore

jRij j = 2arccos
r2i + r2j � 4

2rirj
� 2 arccos

s
1� 4

r2i + 4
:

Using L'Hôpital's rule we can compute that

lim
ri!1

jRij j
1=ri

= lim
ri!1

4

1 + 4
r2i

= 4:

It follows that the function jRij j � ri is bounded for any ri > 0, and so
jRijj
Æ=(2ri)

= O(1=Æ).

This lemma implies that we have to consider only O(1=Æ) sample rotations per pair of disks.
Thus we need to check O(nm=Æ) rotations in total. It seems that we would have to compute all
overlaps at every rotation from scratch, but here Lemma 3 comes to the rescue: in between two
consecutive rotations �; �0 de�ned for a given pair Ai; Bj there may be many other rotations, but
if we conservatively estimate the overlap of Ai; Bj as the minimum overlap of � and �0, we do not

loose too much. In Figure 3, algorithm Rotation is described in more detail; the value ~V(�) is
the conservative estimate of V(�), as just explained.

Lemma 5 Let �opt be a rotation that maximizes V(�) and let kopt be the number of overlapping
pairs Ai(�opt); Bj . For any given Æ > 0, the rotation �apx reported by Rotation(A;B; Æ) satis�es
V(�opt)� V(�apx) = O(koptÆ), and can be computed in O((mn=Æ) logm) time.

Proof: First, we show that V(�) � ~V(�) � V(�) � 2k�Æ for any � 2 � where k� is the number of
overlapping pairs between A(�) and B. That is, ~V is a fair approximation of V from below for the
values in �.

By checking whether Vij increases or decreases at �sij and adding the appropriate value to ~V(�),
each pair Ai; Bj contributes Vij(�sij) � Vij(�) to ~V(�) for some �sij for which j� � �sij j � Æ=(2ri).

By Lemma 3 we have Vij(�)� Vij(�sij) � 2Æ. Thus, in total, 0 � V(�)� ~V(�) � 2k�Æ.
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Rotation(A;B; Æ):

1. For each pair of disks Ai 2 A and Bj 2 B, choose a set �ij := f�1ij ; : : : ; �
sij
ij g of rotations as

follows. First put the midpoint of Rij in �ij , and then put all rotations in �ij that are in Rij

and are at distance k � Æ=(2ri) from the midpoint for some integer k. Finally, put both endpoints
of Rij in �ij . In other words, �ij consists of rotations with a uniform spacing of Æ=(2ri)|except
for the cases of endpoints whose distance to their neighbor rotations is less than Æ=(2ri)|with
the midpoint of Rij being one of them.

2. Sort the values � :=
S

i;j
�ij , keeping repetitions and solving ties arbitrarily. Let �0; �1; : : : be

the ordering of �. In steps 3 and 4, we will compute a value ~V(�) for each � 2 �.

3. (a) Initialize ~V(�0) := 0.

(b) For each pair Ai 2 A;Bj 2 B for which �0 2 Rij do:

� If Vij is decreasing at �0, or �0 is the midpoint of Rij , then ~V(�0) := ~V(�0) + Vij(~�ij),
where ~�ij is the closest value to �0 in �ij with ~�ij > �0.

� If Vij is increasing at �0, then ~V(�0) := ~V(�0) + Vij(~�ij), where ~�ij is the closest value
to �0 in �ij with ~�ij < �0.

4. For each �l in increasing order of l, compute ~V(�l) from ~V(�l�1) by updating the contribution of
the pair Ai; Bj de�ning �l, as follows. Let �l be the s-th point in �ij , that is, �l = �sij

� If Vij is increasing at �sij , then ~V(�l) := ~V(�l�1)� Vij(�
s�1
ij ) + Vij(�

s
ij)

� If Vij is the midpoint of Rij , then ~V(�l) := ~V(�l�1)�Vij(�
s�1
ij ) + Vij(�

s+1
ij )

� If Vij is decreasing at �sij , then ~V(�l) := ~V(�l�1)� Vij(�
s
ij) + Vij(�

s+1
ij )

5. Report the �apx 2 � that maximizes ~V(�).

Figure 3: Algorithm Rotation(A;B; Æ).

In a similar fashion, consider now the kopt overlapping pairs of disks at �opt, and let AM be the
disk furthest from the origin that participates in the optimal solution, i.e. AM (�opt) \ (

S
B) 6= ;.

Let ~� 2 � be the closest value to �opt. We have

j~� � �optj � Æ=(2rM ) � Æ=(2ri)

for all Ai in the optimal solution. Again, according to Lemma 3, the loss per pair Ai; Bj is

Vij(�opt)� Vij(~�) � 2Æ. In total, V(�opt)� V(~�) � 2koptÆ.

Observe that since both endpoints of every interval Rij are in �, no new pairs with non-zero

overlap are formed when `moving' from �opt to ~�. Hence, for our purpose, we can assume that
k~� = kopt.

Putting it all together we get

V(�opt)� V(�apx) =
�V(�opt)� V(~�)�+ �V(~�)� ~V(~�)�+ �~V(~�)� ~V(�apx)

�
+
�
~V(�apx)� V (�apx)

�
� 2koptÆ + 2k~�Æ + 0 + 0 � 4koptÆ:

The running time is dominated by the time to sort the values in �. The set � consists of O(nm)
subsets �ij , which each have O(1=Æ) rotations by Lemma 4. Each subset �ij can easily be gener-
ated as a sorted sequence, so what remains is to merge the sorted sequences, which can be done
in O((nm=Æ) logm) time.

7



4 A (1� �)-approximation algorithm for rigid motions

As noted in the introduction, any rigid motion can be described as a translation plus a a rotation
about the origin. This is used in the algorithm RigidMotion given in Figure 4. First, we start
with the following lemma which implies that, in terms of absolute error, it is not too bad if we
choose a translation which is close to the optimal one.

Lemma 6 Let k be the number of overlapping pairs Ai(~t; �); Bj for some ~t 2 R2 ; � 2 [0; 2�). For
any given Æ > 0 and any ~t0 2 R2 for which j~t� ~t0j = O(Æ), we have V(~t0; �) = V(~t; �)�O(kÆ).

Proof: Consider a pair of disks Ai(~t; �) and Bj for which Vij(~t; �) 6= 0. If Ai is translated
by ~t0, instead of ~t, then dij(~t

0; �) � dij(~t; �) = j~t � ~t0j. Observe that the biggest loss per pair,
Vij(~t; �) � Vij(~t0; �), occurs when Ai moves in the direction of the line connecting the centers of
Ai and Bj , and away from Bj . Since the diameter of both disks is equal to 2, we have that
Vij(~t; �)�Vij(~t0; �) < 2j~t�~t0j = O(Æ). We have k such pairs, hence2 , V(~t; �)�V(~t0; �) = O(kÆ).

RigidMotion(A;B; �):

1. Let G be a uniform grid of spacing c�, where c is a suitable constant. For each pair of disks
Ai 2 A and Bj 2 B do:

(a) Set the center of rotation, i.e. the origin, to be Bj 's center by translating B appropriately.

(b) Let Tij = Bj 	Ai, and determine all grid points ~tg of G such that ~tg 2 Tij . For each such
~tg do:

� run Rotation(A(~tg); B; c
0�), where c0 is an appropriate constant.

Let �gapx be the rotation returned. Compute V(~tg; �
g
apx).

2. Report the pair (~tapx; �apx) that maximizes V(~tg; �
g
apx).

Figure 4: Algorithm RigidMotion(A;B; �).

Theorem 7 Let A = fA1; : : : ; Ang and B = fB1; : : : ; Bmg, with n � m, be two sets of disjoint
unit disks in the plane. Let I~topt;�opt be a rigid motion that maximizes V(~t; �). Then, for any

given � > 0, RigidMotion(A;B; �) computes a rigid motion I~tapx;�apx such that V(~tapx; �apx) �
(1� �)V(~topt; �opt) in O((n2m2=�3) logm) time.

Proof: We will show that V(~tapx; �apx) approximates V(~topt; �opt) up to an absolute error. To
convert the absolute error into a relative error, and hence show the algorithm's correctness, we
use again Theorem 2.

Let Aopt be the set of disks in A that participate in the optimal solution and let jAoptj = �kopt.
Since the `kissing' number of unit open disks is six, we have that kopt < 6�kopt, where kopt is the
number of overlapping pairs in the optimal solution. Next, imagine that RigidMotion(Aopt; B; �)
is run instead of RigidMotion(A;B; �). Of course, an optimal rigid motion for Aopt is an optimal
rigid motion for A and the error we make by applying a non-optimal rigid motion to Aopt bounds
the error we make when applying the same rigid motion to A.

Consider a disk Ai 2 Aopt and an intersecting pair Ai(~topt; �opt), Bj . Since, at some stage, the
algorithm will use Bj 's center as the center of rotation, and I~topt;�opt = R�opt Æ T~topt , we have that

2Note that by translating A by ~t0 instead of ~t and then rotating it by �, new pairs might appear but this can
only decrease the total loss.
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Ai(~topt) \ Bj 6= ; if and only if Ai(~topt; �opt) \ Bj 6= ;. Hence, we have that ~topt 2 Tij and the
algorithm will consider some grid translation ~tg 2 Tij = Bj 	Ai, for which j~topt � ~tg j = O(�). By
Lemma 6 we have V(~topt; �opt)� V(~tg; �opt) = O(kopt�) = O(�kopt�).

Let �gopt be the optimal rotation for ~tg. Then, V(~tg ; �opt) � V(~tg; �gopt). The algorithm computes,

in its second loop, a rotation �gapx for which V(~tg; �gopt)�V(~tg; �gapx) = O(kgopt�), where k
g
opt is the

number of pairs at the optimal rotation �gopt of Aopt(~tg). Since we are only considering Aopt we

have that kgopt < 6�kopt, thus, V(~tg; �gopt)� V(~tg; �gapx) = O(�kopt�).

Now, using the fact that V(~tg ; �gapx) � V(~tapx; �apx) and that �kopt � kopt, and putting it all together
we get

V(~topt; �opt)� V(~tapx; �apx) =
�V(~topt; �opt)� V(~tg ; �opt)

�
+
�V(~tg ; �opt)� V(~tg ; �gopt)

�
+
�V(~tg ; �gopt)� V(~tg ; �gapx)

�
+
�V(~tg ; �gapx)� V(~tapx; �apx)

�
< O(�kopt�) + 0 +O(�kopt�) + 0 = O(kopt�):

Since the optimal rigid motion can be also de�ned as a rotation followed by some translation,
Theorem 2 holds for V(~topt; �opt) as well. Thus, V(~topt; �opt) = �(kopt) and the approximation
bound follows.

Finally, the running time of the algorithm is dominated by its �rst step. We can compute
V(~tg ; �gapx) by a simple plane sweep in O(m logm) time. Since there are �(��2) grid point in
each Tij , each execution of the loop in the �rst step takes O(m + 1=�2 + (1=�2)(nm=�) logm +
(1=�2)m logm) = O((nm=�3) logm) time. The step is executed nm times, thus the algorithm runs
in O((n2m2=�3) logm) time.

4.1 An improvement for sets with small diameter

We can modify the algorithm such that its running time depends on the diameter � of the set A.
The main idea is to convert our algorithm into one that is sensitive to the number of pairs of disks
in A and B that have approximately the same distance, and then use the combinatorial bounds
by Gavrilov et al. [GIMV03]. Namely, we will use the following result (note that an extra logn
factor is missing in the reference due to a typographic error).

Lemma 8 [GIMV03, Theorem 4.1] Given a S set of n points whose closest pair is at distance at
least 2, there are O(n4=3t1=3 logn) pairs of points in S whose distance is in the range [t� 4; t+4].

This lemma and a careful implementation of Rotation allows us to improve the analysis of
the running time of RigidMotion for small values of �. In many applications it is reasonable
to assume bounds of the type � = O(n) [GIMV03], and therefore the result below is relevant.
For example, if � = O(n) this result shows that we can compute a (1 � �)-approximation in
O((m2n5=3)=�3 logn logm) time.

Theorem 9 Let A = fA1; : : : ; Ang and B = fB1; : : : ; Bmg; n � m be two sets of disjoint unit
disks in the plane. Let � be the diameter of A, and let I~topt;�opt be the rigid motion maximizing

V(~t; �). For any � > 0, we can �nd in O((m2n4=3�1=3=�3) logn logm) time a rigid motion I~tapx;�apx
such that V(~tapx; �apx) � (1� �)V(~topt; �opt).
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Proof: Observe that when RigidMotion calls Rotation the origin is set at the center of some
Bj , and some Ai intersects Bj . We denote by cAi the center of Ai and similarly by cBj the center
of Bj . Inside Rotation, the pairs of disks Ai0 and Bj0 such that Ri0j0 6= ; must satisfy

d(cBj ; cBj0
)� 4 � d(cAi ; cAi0

) � d(cBj ; cBj0
) + 4

We store in a balanced tree the distances from the origin to the centers of A. This can be done in
O(n logn) time, and then we can report, for any given pair Bj ; Bj0 2 B and any Ai 2 A, all the
pairs Ai; Ai0 2 A satisfying the relation above in O(kj;j0 ;i+logn) time, where kj;j0;i is the number
of reported pairs. Therefore, when we have �xed ~tg 2 Tij in RigidMotion, we can implement

the call to Rotation(A(~tg); B; c�) in O(m logn+
P

j0 kj;j0;i
� logm) time.

If A has diameter �, then Lemma 8 implies
P

i kj;j0 ;i = O(n4=3�1=3 logn). This means that,
overall, RigidMotion can be implemented in

O

0
@ 1

�2

X
i;j

(m logn+

P
j0 kj;j0;i

�
logm)

1
A =

O

�
nm2 logn

�2
+

P
i;j;j0 kj;j0;i

�3
logm

�
=

O

�
nm2 logn

�2
+

P
j;j0
P

i kj;j0;i

�3
logm

�
=

O

�
nm2 logn

�2
+
m2n4=3�1=3 logn

�3
logm

�
= O

�
m2n4=3�1=3 logn logm

�3

�
time:

5 A Monte Carlo algorithm

In this section we present a Monte Carlo algorithm that computes a (1 � �)-approximation for
rigid motions in O((m2=�4) log(m=�) log2m) time. The algorithm works under the condition that
the maximum area of overlap of A and B is at least some constant fraction of the area of A.

The algorithm is simple and follows the two-step framework of Section 4 in which an approximation
of the best translation is followed by an approximation of the best rotation. However, now, the
�rst step is a combination of grid sampling of the space of translations and random sampling of
set A. This random sampling is based on the observation that the deterministic algorithm of
Section 4 will compute a (1 � �)-approximation kopt times, where kopt is the number of pairs of
overlapping disks in an optimal solution. Intuitively, the larger this number is, the quicker such a
pair will be tried out in the �rst step. Similar observations were made by Akutsu et al. [ATT98]
who gave exact Monte Carlo algorithms for the largest common point set problem.

The second step is based on a direct application of the technique by Cheong et al. that allows us
to maximize, up to an absolute error, the area of overlap under rotation in almost linear time, by
computing a point of maximum depth in a one dimensional arrangement.
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Rotations. For a given � > 0, we choose a uniform random sample S of points in A with
jSj = �(��2 logm). For a point s 2 S, we de�ne W (s) = f� 2 [0; 2�)js(�) 2 Bg where s(�)
denotes a copy of s rotated by �. Let �B(S) be the arrangement of all regions W (s); s 2 S; it is
a one-dimensional arragement of unions of rotational intervals.

Lemma 10 Let �opt be the rotation that maximizes V(�). For any given � > 0, let S be a uniform

random sample of points in A with jSj � c1
logm
�2 where c1 is an appropriate constant. A vertex

�apx of �B(S) of maximum depth satis�es V(�opt) � V(�apx) � �V (A) with probability at least
1� 1=m6.

Proof: The proof is very similar to the proofs of Lemma 4.1 and Lemma 4.2 by Cheong et
al. [CEHP04].

�B(S) has O((m=�2) logm) complexity and can be computed in O((m=�2) log(m=�) logm) time
by sorting. A vertex �apx of �B(S) of maximum depth can be found by a simple traversal of this
arrangement.

We could apply the idea above directly to rigid motions and compute the arrangement of all regions
W (s) with respect to rigid motions of S. Lemma 10 holds for this arrangement, and a vertex of
maximum depth gives an absolute error on V(~topt; �opt). This arrangement has O(jSj3m2) =
O((m2=�6) log3m) vertices [CGH+97] that correspond | in workspace | to combinations of
triples of points in S and triples of disks in B such that each point lies on the boundary of a
disk. All such possible combinations can be easily found in O((m2=�6) log(m=�) log3m) time.
However, computing the actual rigid motion for any such combination is not trivial, as already
explained in section 2. This complication is avoided by applying the technique to rotations only,
thus computing a one-dimensional arrangement instead.

Rigid motions. Since we assume that V(~topt; �opt) � �V (A), for some given constant 0 < � � 1,
we have that kopt � �n. Based also on the fact that the number of disks in A that participate in
an optimal solution is at least kopt=6, we can easily prove that the probability that �(��1 logm)
uniform random draws of disks from A will all fail to give a disk participating in an optimal
solution is at most 1=m6. Algorithm RandomRigidMotion is given in Figure 5.

RandomRigidMotion(A;B; �; �):

1. Choose a uniform random sample S of points in A, with jSj = �(��2 logm).

2. Let G be a uniform grid of spacing c�, where c is a suitable constant.

Repeat �(��1 logm) times:

(a) Choose a random Ai from A.

(b) For each Bj 2 B do:

i. Set the center of rotation, i.e. the origin, to be Bj 's center by translating B appropri-
ately.

ii. Let Tij = Bj 	Ai, and determine all grid points ~tg of G such that ~tg 2 Tij . For each
such ~tg do:

� Compute a vertex �gapx of maximum depth in �B(S(~tg)), and V(~tg; �
g
apx).

3. Report the pair (~tapx; �apx) that maximizes V(~tg; �
g
apx).

Figure 5: Algorithm RandomRigidMotion(A;B; �; �).
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Theorem 11 Let A = fA1; : : : ; Ang and B = fB1; : : : ; Bmg, be two sets of disjoint unit disks
in the plane and I~topt;�opt be a rigid motion that maximizes V(~t; �). Assume that V(~topt; �opt) �
�V (A), for some given constant 0 < � � 1. For any given � > 0, RandomRigidMotion(A;B; �;
�) computes a rigid motion I~tapx;�apx such that V(~tapx; �apx) � (1� �)V(~topt; �opt) in O((m2=�4)

log(m=�) log2m) time. The algorithm succeeds with probability at least 1� 2=m6.

Proof: Recall that �kopt is the number of disks Ai that participate in an optimal solution. Since
�kopt > kopt=6, we have that Pr[(Ai =2 Aopt)] < 1 � kopt

6n , for a random Ai 2 A. The probability
that all jRAj random draws from A will fail to give a disk that belongs to an optimal pair is

Pr[RA \ Aopt = ;] � (1� kopt
6n

)jRAj � e�koptjRAj=(6n) � e��jRAj=6:

By choosing jRAj � (36= log e)��1 logm, we have that Pr[RA \ Aopt = ;] � m�6.

Observe that if RA\Aopt 6= ;, then at least one intersecting pair Ai(~topt; �opt); Bj will be identi�ed
in the �rst loop. Then, in the second loop, the algorithm �nds a �gapx for which, by Lemma 10,

V(~tg ; �gopt)�V(~tg ; �gapx) � �V (A), for some ~tg 2 Tij with j~topt�~tgj = O(�), and with probability at

least 1�m�6. As in the proof of Theorem 7, we have that V(~topt; �opt) � V(~tg ; �opt) = O(kopt�),
V(~tg ; �opt) � V(~tg ; �gopt) and V(~tg ; �gapx) � V(~tapx; �apx). Hence

V(~topt; �opt)� V(~tapx; �apx) = O(kopt�) + �V (A):

Using that V(~topt; �opt) � �V (A) and V(~topt; �opt) = �(kopt), the approximation bound follows.
The algorithm fails to return such a pair ~tapx; �apx if and only if any of its two random sampling
steps fail. That is, the algorithm fails with probability at most 2m�6.

Regarding the running time, the random sampling of set A can be easily done in O((n=�2) logm)
time. In the second step, for each of the O(m=�2) logm grid translations ~tg , the one dimensional
arrangement �A(~tg)

(S) of O((m=�2) logm) complexity is computed, a vertex of maximum depth

�gapx is returned and V(~tg ; �gapx) is evaluated; this takes in O((m=�2) log(m=�) logm) + m logm)

time. In total the running time is O((m2=�4) log(m=�) log2m).

6 Sets of intersecting disks with di�erent radii

We can generalize our results to the case where A and B consist of possibly intersecting and
various size disks. Let rs and rl be the smallest, resp. largest disk radius among all disks in A[B.
We de�ne the depth of a point p 2 R2 with respect to a set of disks as the number of disks in the
set that contain it. Our algorithms work under the following two conditions: (i) rl=rs = �, for
some constant � > 0; without loss of generality we assume that rs = 1 and rl = �, and (ii) the
depth of any point p 2 R2 with respect to A and the depth of any point p 2 R2 with respect to B
are both bounded by some constant, �.

First, we show that the assumptions result in denser sampling of con�guration space with constants
that depend on the parameters � and � as well. Then, we discuss their algorithmic implications.

Translations. First, consider Lemma 6. The maximum loss per pair is now determined by
a pair of disks of radius � each: Vij(~topt; �opt) � Vij(~t; �opt) < 2�j~topt � ~tj = O(Æ). Therefore,
V(~topt; �opt)�V(~t; �opt) < 2kopt�j~topt �~tj = O(koptÆ) and the lemma holds. Moreover, Theorem 2
holds as well, with the constant in the �-notation depending on both � and �.
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Regarding the algorithmTranslation, special care needs to be taken to avoid overcounting V(~tg).
We can do this in the following way: Consider the arrangement A of all disks Ai 2 A in the work
space. Since the maximum depth in A is constant, A has O(n) complexity and can be computed
in O(n logn) time. Next, we compute a vertical decomposition VD(A) of A; VD(A) has O(n)
disjoint cells3 each of constant complexity and can be computed in O(n log n) time. Similarly, we
compute B and VD(B) both in O(m logm) time. The loop in step 2 is now executed for every pair
of cells ci 2 VD(A) and cj 2 VD(B) and instead of computing Vij(~tg), we compute V (ci(~tg)\ cj).
The voting scheme proceeds as before and runs within the same time bounds.

Rotations. Consider Lemma 3 and its proof: the length of sampling intervals is now determined

by a pair of disks of radius � each. For such a pair Ai; Bj we have
@v(�)
@� � �2ri�. Therefore, for

any pair of disks Ai 2 A and Bj 2 B, we can sample Vij(�) at regular intervals whose length is at
most Æ=(2ri�) assuring that the loss per pair is at most 2Æ. We also have to make sure that the
number of samples per pair remains bounded, see Lemma 4. Indeed, jRij j is maximized for the
`worst case' pair of disks of radius � each; this is a scaled, by �, version of the original problem.

Regarding algorithmRotation(A;B; Æ), we use spacing of Æ=(2ri�) in its �rst step. Unfortunately,
the simple technique used in the algorithm of Figure 3 to approximate V(�) for all the values � 2 �
does not work here since the disks in each set are possibly intersecting and the area of overlap
accumulated in ~V(�) can be a bad approximation of V(�). We can overcome this problem in the
following way. We compute VD(A) and VD(B) as before. Observe that every cell ci 2 VD(A)
is fully contained in some disk in A; similarly, every cell cj 2 VD(B) is fully contained in some
disk in B. Consider the function V (ci(�) \ cj), � 2 [0; 2�); for every pair (ci; cj), the error in
V (ci(�) \ cj) is bounded by the error in the pair of their corresponing disks. Since each cell in
both decompositions has at most two vertical walls and at most two circular segments, the function
has a bounded number of local minima/maxima. We insert all these values, for every pair of cells,
in set �. The algorithm proceeds as before by considering whether V (ci(�)\cj ) increases, decreases
or reaches an optimum at each � 2 �. Rotation now runs again in O((mn=Æ) logm) time and
its correctness can be shown as in the proof of Lemma 5.

Rigid Motions. In addition to the relevant changes mentioned in the previous paragraphs,
observe that a simple volume argument shows that any disk Ai(~t; �) cannot intersect more than
9�2� disks Bj for any ~t; �. Thus, jAoptj > kopt=(9�

2�).

In RigidMotion, we compute V(~tg ; �gapx) for each pair (~tg ; �
g
apx) in a straightforward way as

follows: we compute V (
S
A) in O(n logn) time, by computing VD(A) and summing up the

areas of all its O(n) cells. Similarly, we compute V (
S
B) in O(m logm) time and, for each pair

(~tg ; �
g
apx), V ((

S
A(~tg ; �

g
apx))[(

S
B)) in O(m logm) time. It follows that for each pair (~tg ; �

g
apx) we

can compute V ((
S
A(~tg ; �

g
apx)) \ (

S
B)) in O(m logm) time. By incorporating all these changes,

we can prove Theorem 7 as before.

Regarding the extension of Theorem 9, we apply the same method that we use in its proof,
namely computing in Rotation the disks Ai0 ; Bj0 such that Ri0j0 is not empty. Then, for each
cell ci0 2 Ai0 \VD(A) and each cell cj0 2 Bj0 \VD(B) we proceed like before. We also need to keep
track of the pairs ci0 ; cj0 that have been already added to avoid overcounting them. To show that
the same time bound holds, we need to arguee that there are assymptotically the same number of
pairs ci0 2 VD(A) and cj0 2 VD(B) with Ri0j0 6= ; than we had for the case of disjoint unit disks.
For this, we �rst observe that each disk Ai0 is decomposed into O(1) cells in VD(A) because it
intersects at most 9�2� other disks of A. The same holds for any Bj0 . Therefore, each pair of disks
Ai0 ; Bj0 that we need to consider, gives rise to O(1) pairs of cells ci0 ; cj0 .

3For our purpose, we only consider cells that are inside
S
A.
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It remains to bound the number of pairs Ai0 ; Bj0 such that Ri0;j0 6= ;. For this, observe that set A
can be decomposed into O(1) disjoint groups of disjoint disks. This can be shown using a greedy
procedure: compute a maximal set of disjoint disks ~A � A, that is, any disk in A intersects some
disk in ~A; then take ~A as a disjoint group and proceed recursively with A n ~A. After 9�2� + 1
steps all the disks must be in some group, as any remaining disk must intersect a disk in each of
the 9�2� + 1 groups, which is not possible. We can then apply Lemma 8 to each of the disjoint
groups, and because there are a constant number of groups, we get the same assymptotic value
for
P

i kj;j0;i as we had for the case of disjoint, unit disks. The result follows.

In RandomRigidMotion the size of RA has to be at least (54�4�= log e)��1 logm since the
condition V(~topt; �opt) � �V (A) now gives that kopt � �n=�2. Note that Lemma 10 holds for any
two planar regions A and B and thus for the two unions

S
A and

S
B as well. We can compute

the sample points in A using VD(A). Last we compute each W (s) by checking all disks in B in
O(m logm) time. The running time of the algorithm stays the same and Theorem 11 can now be
proven as before.
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