
Safe separators for treewidth

Hans L. Bodlaender

Arie M. C. A. Koster

institute of information and computing sciences, utrecht university

technical report UU-CS-2003-027

www.cs.uu.nl

Safe separators for treewidth∗

Hans L. Bodlaender† Arie M. C. A. Koster‡

Abstract

A set of vertices S ⊆ V is called a safe separator for treewidth, if S is a separator of G,
and the treewidth of G equals the maximum of the treewidth over all connected components
W of G − S of the graph, obtained by making S a clique in the subgraph of G, induced
by W ∪ S. We show that such safe separators are a very powerful tool for preprocessing
graphs when we want to compute their treewidth. We give several sufficient conditions for
separators to be safe, allowing such separators, if existing, to be found in polynomial time.
In particular, every minimal separator of size one or two is safe, every minimal separator of
size three that does not split off a component with only one vertex is safe, and every minimal
separator that is an almost clique is safe; an almost clique is a set of vertices W such that
there is a v ∈ W with W − {v} a clique. We report on experiments that show significant
reductions of instance sizes for graphs from probabilistic networks and frequency assignment.

1 Introduction

In several applications, it is of importance to determine the treewidth of a given graph and
find a tree decompositions of graphs of minimum or close to minimum treewidth. Having such
a tree decomposition allows the solution of various otherwise intractable graph problems, see,
amongst many others, [3, 8, 11, 13]. Experiments and applications show that this is also useful
in a practical setting. Koster et al. [18] used tree decompositions to solve instances of frequency
assignment problems. The algorithm of Lauritzen and Spiegelhalter [19] to solve the probabilis-
tic inference problem on probabilistic networks is the most commonly used algorithm for this
problem and uses tree decompositions. An important problem that arises in such applications
is to find a tree decomposition of the given graph of width as small as possible.

It is known that for each fixed k, there exists a linear time algorithm that checks if a given
graph has treewidth at most k, and if so, finds a tree decomposition of G of width at most k
[7]. Unfortunately, it appears that the constant factor of this algorithm is too big to make this
algorithm usable in practice. (See [23].) So, an important task is to design practically efficient
methods for finding tree decompositions of small width.

∗This research was partially supported by NWO-EW and partially by EC contract IST-1999-14186: Project
ALCOM-FT (Algorithms and Complexity - Future Technologies).

†Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, the
Netherlands. hansb@cs.uu.nl

‡Konrad-Zuse-Zentrum für Informationstechnik Berlin, Takustraße 7, D-14195 Berlin, Germany. koster@zib.de

1

In [10, 26], preprocessing methods based on graph reduction were studied. A number of ‘safe
reduction rules’ was proposed; each such rule rewrites the graph locally, thus decreasing the
number of vertices in the graph, such that a tree decomposition of optimal width for the smaller
reduced graph can be easily transformed to one for the original graph. When no reductions are
possible, another method must be used to solve the problem on the remaining graph. Experi-
ments on a set of graphs, taken from probabilistic networks applications, showed that sizes of
these remaining graphs were in general much smaller than the sizes of the original graphs. In
some cases, reduction was sufficient for finding the optimal solution to the problem.

In this paper, we study a different form of preprocessing. Here we propose to use separators.
A simple example is the following. The treewidth of a graph equals the maximum treewidth
over all its biconnected components. Thus, when computing the treewidth of G, we can split
G in its biconnected components, and solve every such biconnected component separately. In
the terminology of this paper: separators of size one are safe, and thus we can split G on these
separators. Each preprocessing step with safe separators takes a graph, and replaces it by two or
more smaller graphs. This way, we obtain a collection of graphs. Solving the treewidth problem
on the original instance is equivalent to solving the treewidth problem on each of the graphs
in the collection. However, the graphs in the collection are usually significantly smaller than
that in the original instance. We can repeat trying to find safe separators in the graphs in the
collection, replacing these again by even smaller graphs, until we do not find a safe separator
in any graph in the collection. Then, the treewidth of the graphs in the collection must be
established by other means: this may be trivial (e.g., when the graph is complete), can be done
by an exact method like branch and bound (which can be fast enough when the preprocessing
yielded only small graphs in the collection), or with an approximation algorithm.

After some preliminary definitions and results in Section 2, we establish our main graph theoretic
results in Section 3. In this section, we give several sufficient conditions for a separator to be safe
for treewidth. In Section 4, we discuss how the safe separators can be found. In Section 5, we
compare the use of safe separators with the use of graph reduction from [10, 26]. In Section 6, we
discuss on experiments that we have carried out. Some final conclusions are made in Section 7.

2 Definitions and preliminary results

In this section, we give a number of definitions and a few easy or well known lemmas. We assume
the reader to be familiar with standard graph terminology. In this paper, we assume graphs to
be undirected and without parallel edges or self loops. For a graph G = (V,E), let n = |V | be
the number of vertices and m = |E| be the number of edges. For a vertex set S ⊆ V , we denote
G−S as the subgraph of G, induced by V −S, G[V −S]. We denote G+clique(S) as the graph
(V,E ∪ {{v,w} | v,w ∈ S}).
A set of vertices S ⊆ V is a separator in G = (V,E) when G − S has more than one connected
component. S is a minimal separator, when it does not contain another separator as a proper
subset. S is a minimum separator, when G has no separator of size smaller than S. S is a clique
separator, when S forms a clique in G and S is a separator.

Definition 1 A tree decomposition of G = (V,E) is a pair ({Xi | i ∈ I}, T), where {Xi | i ∈ I}
is a collection of subsets of V and T = (I, F) is a tree such that:

2

(i).
⋃

i∈I Xi = V .

(ii). ∀{u,w} ∈ E,∃i ∈ I : u,w ∈ Xi.

(iii). ∀i, j, k ∈ I : if j is on a path in T from i to k then Xi ∩ Xk ⊆ Xj .

The width of a tree decomposition ({Xi | i ∈ I}, T) is maxi∈I |Xi| − 1. The treewidth of G is
the minimum width over all tree decompositions of G.

The third condition can be equivalently stated as: for all v ∈ V , the set Iv = {i ∈ I | v ∈ Xi} is
connected in T .

Treewidth can also be defined with help of triangulations. A graph G = (V,E) is triangulated if
in every cycle in G with length at least four there is a chord (i.e., two non-consecutive vertices
in the cycle that are adjacent). A graph H = (V,E′) is a triangulation of G = (V,E) when H
is triangulated and G is a subgraph of H (i.e., E ⊆ E′.) It is well known that the treewidth
of a graph G is exactly one smaller than the minimum over all triangulations H of G of the
maximum clique size of H. Moreover, when we have a triangulation H of G with maximum
clique size k, we can find a tree decomposition of G of width k − 1 in linear time (see e.g., [9]).
We will use the reverse step later: given tree decomposition ({Xi | i ∈ I}, T) of G = (V,E) of
width k, the graph H = (V,E′) with E′ = {{v,w} | v 6= w, ∃i ∈ I : v,w ∈ Xi} is a triangulation
of G with maximum clique size k + 1.

The following two lemmas are well known.

Lemma 2 Let S be a separator in G. S is a minimal separator, if and only if for every
component Z of G − S, and for every vertex v ∈ S, there is a vertex w ∈ Z that is adjacent to
v.

Lemma 3 Let W form a clique in graph G = (V,E), and let ({Xi | i ∈ I}, T = (I, F)) be a
tree decomposition of G. Then there is an i ∈ I with W ⊆ Xi.

Definition 4 A separator S in a graph G = (V,E) is safe for treewidth, or, in short: safe,
when the treewidth of G equals the maximum over all components Z of G − S of the treewidth
of G[S ∪ Z] + clique(S).

The proof of the following lemma uses standard techniques (compare e.g., [2]).

Lemma 5 For every graph G, and every separator S in G, the treewidth of G is at most the
maximum over all components Z of G − S of the treewidth of G[S ∪ Z] + clique(S).

Proof: Suppose the maximum over all components Z of G − S of the treewidth of G[S ∪
Z] + clique(S) is α. Let these components be Z1, . . . , Zr. Then, for 1 ≤ j ≤ r, we have a
tree decomposition ({Xj

i | i ∈ Ij}, T j) of G[S ∪ Zi] + clique(S) with treewidth of most α. By
Lemma 3, for each j, there is a node ij ∈ Ij with S ⊆ Xj

ij
. A tree decomposition of G can be

formed by taking the disjoint union of the tree decompositions ({Xj
i | i ∈ Ij}, T j), 1 ≤ j ≤ r,

3

and adding one new node i∗ with Xi∗ = S, and making i∗ adjacent to every node ij , 1 ≤ j ≤ r.
The treewidth of this tree decomposition is at most α. ut

Lemma 6 uses the same idea as Lemma 5, but now formulated in terms of triangulations.

Lemma 6 Let S be a separator in G = (V,E). Suppose W1, . . . ,Wr induce the components of
G−S, and let for each q ∈ {1, . . . , r} Hq = (Wq∪S,Eq) be a triangulation of G[S∪Wq]+clique(S),
each with maximum clique size at most k. Let H = (V, F) be the graph obtained from taking the
(non disjoint) union of the graphs Hq, i.e., F =

⋃
1≤q≤r Eq. Then H is a triangulation of G

with maximum clique size k.

Proof: Let Vq = Wq ∪ S for all q ∈ {1, . . . , v}. If v and w are adjacent, then there must be a q
with v,w ∈ Vq, 1 ≤ q ≤ r. If v,w ∈ Vq, and v,w ∈ Vq′ , q 6= q′, then v,w ∈ S. It follows that for
each clique Z in H, there is a Hq with Z a clique in Hq. So H has maximum clique size k.

Clearly, H contains G as a subgraph. H is triangulated: consider a cycle C with vertices
v1, . . . , vs, s > 3. If there is a q with v1, . . . , vs ∈ Vq, then Hq and hence H contains a chord of
C. Otherwise, suppose vi ∈ Vq, vj ∈ Vq′ , q 6= q′. As S separates vi and vj , S contains a vertex
vi′ on the path from vi to vj on the cycle, and a vertex vj′ on the other path from vi to vj on
the cycle. As S is a clique in H, {vi′ , vj′} is a chord of C. ut

The next lemma is also nothing more than a reformulation of known results, e.g., from [22].

Lemma 7 Let S be a separator in G that induces a clique in G. Then S is safe for treewidth.

Proof: Note that for every component Z of G−S, G[S∪Z]+clique(S) = G[S∪Z] is a subgraph
of G and hence its treewidth is at most the treewidth of G. Now the lemma follows with help
of Lemma 5. ut

Lemma 7 expresses a sufficient condition for a separator S to be safe. In the next section, we
give more general sufficient conditions. By this, classes of safe separators are defined. If a graph
cannot be decomposed any further by a class of safe separators, we call this decomposition final.

Definition 8 S is an almost clique, when there is a vertex v ∈ S, such that S − v forms a
clique. v is called the non-clique vertex of almost clique S.

S is an almost clique separator, when S is an almost clique and S is a separator. S is an minimal
almost clique separator, when S is an almost clique, and S is a minimal separator.

Definition 9 Graph H = (VH , EH) is a labelled minor of G = (VG, EG), when H can be
obtained from G by a sequence of zero or more of the following operations: deletion of edges,
deletion of vertices (and all adjacent edges), edge contraction that keeps the label of one endpoint:
when contracting the edge {v,w} the resulting vertex will be named either v or w.

The following lemma is a trivial modification of the well known fact that treewidth cannot
increase when taking minors.

4

Lemma 10 Let H be a labelled minor of G. Then the treewidth of H is at most the treewidth
of G.

3 Conditions for safeness

In this section, we give a number of sufficient conditions for separators to be safe.

Lemma 11 Suppose S is a separator in G = (V,E). Suppose for every component Z of G−S,
the graph G − Z contains a clique on S as a labelled minor. Then S is safe for treewidth.

Proof: By Lemma 5, it remains to show that the treewidth of G is at least the maximum over
all components Z of G−S of the treewidth of G[S∪Z]+clique(S), i.e., that for every component
Z of G − S, the treewidth of G[S ∪ Z] + clique(S) is at most the treewidth of G. Consider a
component Z. From the fact that G − Z contains a clique on S as a labelled minor, it follows
that G has G[S ∪Z] + clique(S) as a labelled minor: when applying the operations that yield a
clique on S from G−Z to G, we obtain G[S∪Z]+clique(S). Thus, by Lemma 10, the treewidth
of G[S ∪ Z] + clique(S) is at most the treewidth of G, and the lemma follows. ut

Corollary 12 Suppose S is a separator in G = (V,E). Suppose for every component Z of G−S,
the graph G[Z ∪ S] contains a clique on S as a labelled minor. Then S is safe for treewidth.

Proof: Let S be a separator, and suppose that for every component Z of G − S, the graph
G[Z ∪ S] contains a clique on S as a labelled minor. Consider a component Z ′ of G − S. Let
Z ′′ be another component of G − S. The graph G − Z ′ contains G[S ∪ Z ′′] as a subgraph, and
hence contains a clique on S as labelled minor. The result now follows from Lemma 11. ut

Theorem 13 If S is a minimal almost clique separator of G, then S is safe for treewidth.

Proof: Consider a minimal almost clique separator separator S in G. Let v be the non-clique
vertex in S. We show that for every component Z of G−S, the graph G[Z∪S] contains a clique
on S as a labelled minor; the lemma then follows from Corollary 12.

Consider a component Z of G−S, and consider the graph G[Z ∪S]. As v is adjacent to a vertex
in Z (Lemma 2), we can contract all vertices in Z to v. The resulting graph G′ has vertex set
S, and is a clique: for w, x ∈ S − {v}, {w, x} is an edge in G and hence in G′; for w ∈ S − {v},
w is adjacent to a vertex y ∈ Z in G (Lemma 2), and hence after the contractions there is an
edge {v,w} in G′. ut

In the next section, we see that there is a polynomial time algorithm to find a minimal separator
that is an almost clique in a graph G when such a separator exists. Thus, Theorem 13 gives our
first new method to preprocess the graph with safe separators. We also can establish safeness
of some separators of small size.

5

Corollary 14 Every separator of size 1 is safe for treewidth. Every minimal separator of size
2 is safe for treewidth.

Proof: A vertex set of size 1 is a clique; a vertex set of size 2 is a clique or almost clique. ut

We now consider separators of size three. We first need the following lemma.

Lemma 15 Let S be a minimum separator of G with |S| = 3, and let W be the vertex set of a
connected component of G− S with |W | ≥ 2. Then G[W ∪ S] contains a clique on S as labelled
minor.

Proof: (The following short proof of this lemma is due to Gasper Fijavz.) First, we show that
G[W ∪ S] contains a cycle C. Suppose G[W ∪ S] is a forest. The vertices in W cannot have
degree less than three, as G does not have separators of size one or two. Thus forest G[W ∪ S]
has at least two vertices of degree at least three, so has at least four leaves. As only the vertices
in S can be a leaf and |S| = 3, this is a contradiction.

w

x

y

S S

Figure 1: Illustration to the proof of Lemma 15

Now, consider cycle C, and take three arbitrary vertices w, x, y on C. As the minimum
separators in G have size three, there are three vertices disjoint paths in G from w, x, y to S,
by the Menger theorem [21]. As S is a separator in G, these paths belong to G[W ∪S]. We can
now contract all edges on each of these three paths, and edges on C until we obtain a clique on
S. So, a clique on S is a labelled minor of G[W ∪ S]. See Figure 3. ut

Theorem 16 Let S be a minimum separator of size three in G. Suppose G−S has two connected
components, each with at least two vertices. Then S is safe for treewidth.

Proof: The theorem directly follows from Lemma 15 and Corollary 12. ut

As Theorem 16 asks for minimum separators of size three, we should first split G with help of
the separators of size one and two. Once we do not have such separators left, each separator
of size three is a minimum separator. Other safe separators of size three are implied by the
following lemma when k = 3.

6

Lemma 17 Let S be a minimal separator in G of size k, such that G−S has at least k connected
components. Then S is safe for treewidth.

Proof: Consider a component Z of G−S. Let Z1, . . . , Zk−1 be the components in (G−Z)−S,
and let S = {v1, . . . , vk}. By Lemma 2, for each i, 1 ≤ i ≤ k − 1, vi is adjacent to a vertex
in Zi, we can contract Zi to the vertex vi. The result will be a clique on S, as for each i, j,
1 ≤ i < j ≤ k, vj is adjacent to a vertex in Zi (Lemma 2), hence vi is adjacent to vj after the
contraction of Zi to vi. Safeness now follows by Lemma 11. ut

Together with the almost clique separators, these results are quite powerful. The only case
where a separator of size three is not necessarily safe is when it is the neighbourhood of a vertex
of degree three, it splits the graph into two components, and the vertices in the separator are
not adjacent. For separators of size four, we can derive some cases where they are safe as well,
but in this case, the result become less powerful.

Theorem 18 Let S = {v,w, x, y} be a separator of size four in G, with v adjacent to w, x, and
y. Suppose that G has no separator of size two, and no separator of size three that contains v.
If every connected component of G − S has at least two vertices, then S is safe for treewidth.

Proof: Consider G − v. {w, x, y} is a separator in G − v, and G − v has no separator of size
1 or 2. Hence, with the proof of Theorem 16, we have that for every connected component Z
of G − S = G − v − {w, x, y}, a clique on {w, x, y} is a labelled minor of G[{w, x, y} ∪ Z]. As
v is adjacent to w, x, and y, we hence have that a clique on S is a labelled minor of G[Z ∪ S].
Hence, S is safe. ut

4 Finding Safe separators

The results of Lemma 7, Theorem 13, Corollary 14, Theorem 16, and Theorem 18 can be used
as follows. Given the input graph G, we maintain a collection of graphs, initially, this collection
costs of G only. For each graph in the collection, we try to find safe separators, as indicated by
these results. Below in this section, we discuss algorithms to find such safe separators. If we
cannot find such a safe separator, the graph is not further processed. Otherwise, if safe separator
S is found in graph G, we replace G in the collection by the graphs G[S ∪Z] + clique(S), for all
connected components Z of G−S. We repeat this until we do not find a safe separator anymore
in any graph in the collection. One can observe that the treewidth of G equals the maximum
treewidth of a graph in the resulting collection.

We now discuss how to find safe separators for several types of separators discussed above. Some
types of separators are easy to handle. Using safe separators of size zero means splitting the
graph into its connected components. The use of separators of size one corresponds to splitting
the graph into its biconnected components; this can be done in O(n + m) time using depth first
search [24]. Splitting a graph into its triconnected components, and finding the separators of
size two can also be done in linear time [15]. Clique separators are well studied and can be found
in O(nm) time, see [25, 20, 5, 22].

7

The other types of safe separators require somewhat more discussion here. We first look to the
minimal separators that are an almost clique.

Lemma 19 Suppose G = (V,E) does not contain a clique separator. For every v ∈ V , S ⊆
V −{v}, S is a minimal clique separator in G−{v}, if and only if S ∪ {v} is a minimal almost
clique separator in G.

Proof: Clearly S is a clique separator in G − {v}, if and only if S ∪ {v} is an almost clique
separator in G.

Suppose W ⊂ S ∪ {v} and S ∪ {v} are two different almost clique separators in G. If v ∈ W ,
then W − {v} is a separator in G− {v}, and thus S is not a minimal separator in G. If v 6∈ W ,
then W is a clique, and hence G contains a clique separator, contradiction.

Suppose X ⊂ S and S are two different clique separators in G−{v}. Then X ∪{v} is an almost
clique separator in G, and hence S ∪ {v} is not a minimal separator in G. The lemma now
follows. ut

The lemma tells us that we can find the set of minimal almost clique separators of G = (V,E)
by finding the minimal clique separators in G − {v} for all v ∈ V .

Corollary 20 The set of all minimal almost clique separators of a graph G = (V,E) can be
found in O(n2m) time.

Proof: For every v, we can find the minimal clique separators in G− v in O(nm) time [25, 20,
5, 22]. ut

After we have split a graph on a minimal almost clique separator we should check the resulting
graphs again for having a minimal almost clique separator. Consider the graph in Figure 2. For
vertex v, there is no separator S such that S − {v} is a clique. However, after the graph has
been split on separator {w, x, y} with {w, x, y} turned into a clique, then the component with v
contains a minimal separator S′ = {v,w, x} with S′ − {v} a clique.

We now look to algorithms to find the safe separators of size three, indicated by Theorem 16.
There is an O(n2) algorithm to split a graph into its four-connected components and finding all
separators of size three [16]. We conjecture that this may lead to an O(n2) time algorithm to
make a decomposition of a graph with respect to safe separators of size one, of size two, and
minimum separators of size three whose components each contain at least two vertices, such that
each of the graphs in the resulting final decomposition does not contain such a safe separator.

In our experiments, we have used a simpler method, based on the vertex connectivity algorithm,
described in [14, Section 6.2]. We also just find one safe separator, and repeat the procedure all
over again on the new graphs in the collection. Using flow techniques, we can find for a pair of
vertices v, w if there is a separator of size at most k that separates v from w in O((n+m)k) time.
This can be used to check whether there is a separator S that separates v from w of size k such
that both v and w belong to a component of G − S with at least two vertices in O((n + m)k3)
time as follows. Of course, when v and w are adjacent, then no separator between v and w

8

v

w x

y
v

w x

y

w x

y

w x

y

v

w x

y

+ +

v

w x

v

w x

y+

Figure 2: New minimal almost clique separators can be formed

exists. Suppose both v and w have degree at most k. Then we look to all O(k2) graphs obtained
by contracting v to a neighbour, and contracting w to a neighbour, for all pairs of neighbours,
excluding contractions to a vertex that is adjacent to both v and w. One can see that the
required separator in G exists, if and only if there is a separator of size ≤ k in one of these
graphs obtained by contraction: if S separates v from w in the graph obtained by contracting v
to x and contracting w to y, then in G, S also separates v from w, and x belongs to the same
component as v in G − S, and w and y also belong to the same component in G − S. Thus,
we look to all O(k2) graphs obtained by the contractions for separators between v and w of size
at most k. (Actually, when the separators are found using an application of the Ford-Fulkerson
flow algorithm, we can see that it is not necessary to do the contractions to w; we omit here the
technical details.) When both v and w have degree at least k + 1, then for every separator S of
size at most k that separates v from w, both v and w have a neighbour that does not belong to
S and hence belong to a component of G − S of size at least two. So, in this case, we just look
for a separator of size at most k between v and w. If one of v or w has degree at most k and
the other has not, then we look to the O(k) graphs, obtained by contracting the small degree
vertex to one of its neighbours. Thus in O((n + m)k3) time, we can determine if the desired
separator between v and w exists, and if so, find one. We will apply this procedure for the case
that k = 3.

So far, we required the separator to separate a specific pair of vertices. To look for any separator
in the graph, we use the scheme of [14, p. 129]. Take an arbitrary vertex v. For all vertices w,
look if there is a separator of size at most k, with v and w in different components of size at
least two. If we find such a separator, we are done. If not, when the degree of v is at most k,
check if the neighbours of v split G into at least three components with two of them have size at
least two. Otherwise, we know that v must belong to any separator of size at most k that splits
G with at least two components of size at least two. Remove v from G, and look for a separator
of size at most k − 1 in G− v with at least two components of size at least two. This procedure
takes O(nmk4) time; we apply it with k = 3, so we have an O(nm) procedure to check if G has

9

a safe separator, indicated by Theorem 16.

Minimum separators of size three that split the graph into at least three components are also
safe (Lemma 17.) Most of these are already found by the procedure above; the remaining case is
when there are two vertices of degree three with the same set of neighbours. We can determine
in O(n) time if there are two vertices of degree three with the same neighbourhood: assume some
order on the vertices. Then, list all vertices of degree three with their neighbours in sorted order,
and then radix sort this list (see e.g., [12, Section 9.3]). Vertices with the same neighbourhood
will be on consecutive places in this list.

Thus, in O(nm) time, we find for a given graph G if it has a safe separator of size three of
the types, given in Theorem 16 or Lemma 17. Repeating this on newly formed graphs in the
collection gives a (conservative) time bound of O(n2m) to find all safe separators of size three.

5 Safe separators and graph reduction

In [10], a set of reduction rules was established that can be used for preprocessing a graph.
Generalizations of these (e.g., to the case of weighted treewidth) were considered in [26]. Several
of these rules can be seen to be special cases of the use of safe separators, while for some others,
there are small differences. However, it is still recommendable to use graph reduction besides
safe separators, as many of the graph reduction steps can be carried out much faster than the
more time consuming safe separators steps.

When applying preprocessing with the reduction rules, we maintain in a variable low a lower
bound on the treewidth of the initial graph G. The following rules were given in [10], using
results from [4] and others. For each rule, there is a method to ‘reverse it’, i.e., compute the
treewidth and an optimal tree decomposition for the graph before the rule from those for the
graph after the application of the rule.

• Simplicial rule. Remove a vertex v whose neighbours form a clique, and set low to the
maximum of low and the degree of v. Special cases are when the degree of v is zero (Islet
rule) or one (Twig rule).

• Almost simplicial rule. Suppose the neighbours of v form an almost clique. If low is at
least the degree of v, then turn the neighbours of v into a clique and remove v. Special
cases are when the degree of v is two (Series rule) or three (Triangle rule).

• Buddy rule. Suppose v and w have the same neighbours, and both have degree three.
Suppose low is at least three. Then turn the neighbours of v and w into a clique and
remove v and w.

• Extended cube rule. Suppose G contains the subgraph, shown in Figure 3. a, b, and c
have no neighbours that are not shown. If low ≥ 3, then turn v, w, x, and y into a clique,
and remove a, b, and c.

A generalisation of the Buddy rule is the Buddies rule from [26]: suppose v1, . . . , vk have the
same neighbours, and each of these has degree k + 1. Then, if low ≥ k, make the neighbours of
v1 into a clique, and remove v1, . . . , vk.

10

v

w
x w

v

x

a b

c

y y

Figure 3: The Extended Cube Rule

In each of these cases, we can observe that we can use safe separators that split the graph into
one or more cliques and one or more graphs that are either the same graph, obtained from
applying the reduction rule or a subgraph of this graph. The technical difference is that the
reduction rules check on the value of low, while the safe separators check on minimality of
certain separating sets. There are a few mostly trivial exceptions; see also the discussion on the
Extended Cube rule.

First, consider the simplicial rule, and suppose G is not a clique. The set of neighbours of v,
N(v) is a separator, separating v from the rest of the graph, and as it is a clique, it is safe.
Thus, splitting on N(v) replaces G by G − v and the clique formed by {v} ∪ N(v). The case
that G is a clique gives a trivial exception: in this case, no separator exists.

We now consider the buddy rule. Suppose the buddy rule can be applied in graph G = (V,E),
with v and w the vertices of degree three with the same set of neighbors N(v). There are a
few cases. The trivial case, where G contains only the five vertices in {v,w} ∪ N(v) is not very
interesting. Suppose G has more than five vertices. Write H = G − {v,w} − N(v). N(v) is a
separator that splits G in at least three components: one component consisting of the vertex
v only, one component with vertex w only, and one or more components for each connected
component of H. If N(v) is a minimal separator, then it is safe, by Lemma 17, as it has size
three and splits G into at least three components. In this case, using N(v) as safe separator yields
the following graphs: a clique on {v} ∪ N(v), a clique on {w} ∪ N(v), and for each connected
component of H, the subgraph induced by the component and N(v), with edges added between
the vertices in N(v). Note that each of these latter graphs is an induced subgraph of the graph
obtained by applying the buddy rule with v and w. If N(v) is not a minimal separator, then
there exists a subset S of N(v) that is a minimal, and hence safe separator. Using S as safe
separator splits off at least one connected component of H from G. This step can be repeated
with other safe separators that are a subset of N(v) until the graph has only five vertices or N(v)
is a minimal (hence safe) separator. We can observe that every graph yielded by the procedure
is either a clique, or an induced subgraph of the graph obtained by applying the buddy rule
with v and w to G.

The analysis for the Almost Simplicial rule is similar. When v is almost simplicial, then N(v)
is an almost clique. Now, we can always split on safe separators that are N(v) or a subset
of N(v), and this yields a number of graphs, each either a clique, an induced subgraph of the
graph obtained by applying the rule to almost simplicial vertex v, or a graph with at most four
vertices.

11

Finally, we consider the Extended Cube rule. Suppose the rule can be carried out in G. We
name the participating vertices as in Figure 3. {v,w, x, y} is a separator. A somewhat tedious
case analysis shows that {v,w, x, y} is a safe separator or contains a safe separator as subset,
allowing to repeat splitting of graphs until/unless we are left with a graph containing at most the
seven vertices in {a, b, c, v, w, x, y}. However, in some cases, safeness is implied by Lemma 11 but
not by any of the later given lemmas, and hence the separator is not found by our experiments.
This happens e.g., when G − {a, b, c, v, w, x, y} is connected. Our experiments however showed
that graphs where the Extended Cube rule can be applied hardly appear in practice [10].

While most of the power of the reduction rules is also captured by the safe separators, the
reduction rules have the advantage that it is much faster to find vertices in the graph where
they can be applied. Thus, for a faster algorithm, one would first reduce the graph with help
of the reduction rules, and when such reductions cannot be found anymore, then one can try to
split the graph with help of safe separators.

6 Experiments

The study of safe separators has been initiated by our research series to efficient algorithms for
determining the treewidth of graphs [10, 17, 26]. Therefore, in this section we not only discuss
the direct impact of safe separators on graphs from various applications, but also their impact on
the performance of other methods (e.g., heuristics) for computing treewidth. In Section 6.1, we
discuss the results for applying different sets of safe separators, whereas Section 6.2 is devoted
to a comparison of some heuristics before and after safe separator decomposition.

For all algorithms it holds that they have been implemented in C++, and that the computations
have been carried out on a Linux-operated PC with a 2.53 GHz Intel Pentium 4 processor. For
our computational studies, we used two sets of graph instances. The first set consists of the
moralised graphs for probabilistic networks. Probabilistic networks are used as underlying tech-
nology in several decision support systems; the networks come from medical, agricultural, and
other applications. The second set is taken from the CALMA project on frequency assignment
problems [1]. In total, 15 graphs from probabilistic networks and 25 from frequency assignment
are considered.

6.1 Finding safe separators

Before applying the safe separators the graphs are preprocessed by the reduction rules presented
in [10]. As pointed out in Section 5, this reduces the time for the preprocessing, and we avoid
the detection of trivial separators, i.e., separators that can also be interpreted as one of the
preprocessing rules. Such separators generate lots of small graphs that can be neglected anyway.

We carried out three experiments on these instances: the effect of (i) clique separators, (ii)
clique and almost clique separators, and (iii) clique and almost clique separators as well as
separators of size three. For the first experiment, Table 1 shows the results for those graphs
that contain clique separators. The graphs not reported on do not contain clique separators.
This in particularly holds for the ‘graph*’ frequency assignment instances. These instances are
generated according to some criteria and seem not to contain clique separators. The column

12

instance size Output Sizes of output graphs CPU
|V | |E| cs #G low clq todo #vertices (# graphs) time

munin2-pp 167 455 6 7 4 0 7 95(1), 18(2), 17(2), 8(2) 0.05
munin3-pp 96 313 2 3 4 0 3 82(1), 9(2) 0.02
munin4-pp 217 646 2 3 4 0 3 177(1), 23(2) 0.07
munin-kgo-pp 16 41 1 2 5 0 2 9(2) 0.00
celar01-pp 157 804 1 2 6 0 2 110(1), 47(1) 0.03
celar03-pp 81 413 5 6 8 3 2 63(1), 10(1), 7(1), 5(1), 4(1),

2(1)
0.03

celar07-pp 92 521 3 4 9 1 2 71(1), 16(1), 8(1), 3(1) 0.03
celar08-pp 189 1016 3 4 9 0 3 120(1), 53(1), 16(1), 8(1) 0.07
celar09-pp 133 646 1 2 9 0 2 120(1), 16(1) 0.05
celar10-pp 133 646 1 2 9 0 2 120(1), 16(1) 0.05
celar11-pp 96 470 1 2 7 0 2 80(1), 19(1) 0.03

Table 1: The effect of clique separators

‘cs’ gives the number of clique separators found. The column #G denotes the number of output
graphs. The column ‘clq’ tells how many of the output graphs are cliques (and hence, the
treewidth of these is trivial to determine; the column ‘todo’ gives the number of output graphs
that are not a clique and whose size is larger than the lower bound low, and hence their treewidth
must still be determined in some way. In low, the lower bound on the treewidth obtained is
given. This value is the maximum of (i) the lower bound provided by the graph reduction rules,
(ii) the sizes of the (minimal almost) clique separators, and (iii) the sizes of the output graphs
that are cliques. The column ‘Sizes of output graphs’ reports on the number of vertices in the
graphs obtained by the decomposition and the number of graphs of that size. For example,
the graph munin3-pp is decomposed in one graph of 82 vertices and 2 of 9 vertices. Note that
by each decomposition the total number of vertices (over all graphs) increases by at least one.
Table 1 shows that sometimes large components are decomposed from the rest of the graph;
by that reducing the size of the largest component significantly. The computation times (in
seconds) for this separation are very small.

In our second experiment we added the almost clique separators. Table 2 reports on the results
achieved by the application of both safe separators. The column ‘acs’ reports the number of
almost clique separators found. Again, instances that are not decomposed are left out.

In our final experiment we included the safe separators of size three as well. Table 3 shows the
results in this case. The column ‘s3’ gives the number of safe separators of size three that are
found. This time we report on all instances, regardless whether the separators decompose the
graph or not, in order to provide an impression on the computation times for those instances
where no decomposition is achieved.

Table 3 shows that both the almost-clique separators and safe separators of size three are effective
in preprocessing the graph. In particular, the minimal almost clique separators turned out to be
very effective. For instance celar01-pp and celar07-pp an additional clique separator could be
found after application of the almost-clique separators as described in Section 4. Separators of
size 3 are found rarely but in some cases they indeed exist. Very succesfull applications of safe
separators are for instance munin2-pp, munin4-pp, celar01-pp, and celar04-pp. On the other
hand, the tested safe separators did not have any effect on the instances celar02-pp, graph14-
pp, oesoca+-pp, ship-ship-pp, and pignet2-pp. In particular for pignet2-pp this is a pity since
this graph is the largest of all test instances. For this graph and several ‘graph*’ instances the

13

instance size Separators Output Sizes of output graphs CPU
|V | |E| cs acs #G low clq todo #vertices (# graphs) time

barley-pp 26 78 0 7 8 5 7 1 16(1), 6(3), 5(3), 4(1) 0.05
diabetes-pp 116 276 0 85 86 4 84 2 8(1), 6(1), 5(84) 5.09
munin1-pp 66 188 0 2 3 4 2 1 63(1), 5(2) 0.39
munin2-pp 167 455 6 13 20 4 8 12 18(4), 17(4), 16(2), 8(2),

5(6), 4(2)
0.33

munin3-pp 96 313 2 2 5 4 2 3 79(1), 9(2), 5(2) 0.49
munin4-pp 217 646 3 4 8 4 2 6 55(2), 38(2), 23(2), 5(2) 0.70
munin-kgo-pp 16 41 1 0 2 5 0 2 9(2) 0.01
pathfinder-pp 12 43 0 5 6 6 6 0 7(5), 6(1) 0.01
pigs-pp 48 137 0 1 2 5 1 1 47(1), 6(1) 0.21
water-pp 22 96 0 1 2 6 1 1 21(1), 7(1) 0.04
celar01-pp 157 804 2 19 22 8 18 3 61(1), 47(1), 19(1), 9(1),

8(3), 7(5), 6(1), 5(6), 4(3)
4.38

celar03-pp 81 413 5 17 23 10 21 1 38(1), 11(1), 10(2), 9(2),
8(1), 7(1), 6(2), 5(7), 4(4),
3(1), 2(1)

0.54

celar04-pp 114 524 0 22 23 8 19 2 65(1), 16(1), 9(2), 8(3),
7(1), 6(3), 5(7), 4(4), 3(1)

5.75

celar05-pp 80 426 0 13 14 8 12 2 47(1), 19(1), 9(1), 8(1),
6(2), 5(4), 4(4)

0.84

celar06-pp 16 101 0 1 2 11 2 0 12(2) 0.01
celar07-pp 92 521 4 12 17 11 14 2 45(1), 16(1), 12(2), 7(2),

6(6), 5(2), 4(1), 3(2)
0.78

celar08-pp 189 1016 4 28 33 11 28 3 82(1), 39(1), 16(1), 12(3),
10(2), 8(2), 7(1), 6(2),
5(15), 4(5)

3.72

celar09-pp 133 646 2 20 23 11 21 2 82(1), 16(1), 12(2), 6(1),
5(13), 4(5)

3.08

celar10-pp 133 646 2 20 23 11 21 2 82(1), 16(1), 12(2), 6(1),
5(13), 4(5)

3.07

celar11-pp 96 470 1 8 10 7 7 3 61(1), 19(1), 13(1), 5(3),
4(4)

2.58

graph01-pp 89 332 0 4 5 9 4 1 85(1), 10(4) 4.95
graph02-pp 179 659 0 3 4 7 3 1 176(1), 8(3) 68.83
graph03-pp 79 293 0 8 9 6 8 1 71(1), 7(8) 4.94
graph04-pp 179 678 0 6 7 7 6 1 173(1), 8(6) 89.38
graph05-pp 91 394 0 4 5 9 4 1 87(1), 10(4) 5.49
graph06-pp 180 790 0 3 4 9 3 1 177(1), 10(3) 58.68
graph07-pp 180 790 0 3 4 9 3 1 177(1), 10(3) 52.82
graph08-pp 314 1173 0 18 19 8 18 1 296(1), 9(18) 1968.30
graph09-pp 405 1525 0 7 8 9 7 1 398(1), 10(7) 1932.64
graph10-pp 328 1253 0 22 23 7 22 1 306(1), 8(11), 7(5), 6(6) 1854.44
graph11-pp 307 1338 0 18 19 8 18 1 289(1), 9(18) 1912.87
graph12-pp 312 1177 0 64 65 6 64 1 248(1), 7(64) 3697.39
graph13-pp 420 1772 0 44 45 7 44 1 376(1), 8(44) 12209.73

Table 2: The effect of clique and almost-clique separators

14

instance Size Separators Output Sizes of output graphs CPU
|V | |E| cs acs s3 #G low clq todo #vertices (# graphs) time

barley-pp 26 78 0 7 0 8 5 7 1 16(1), 6(3), 5(3), 4(1) 0.06
diabetes-pp 116 276 0 85 0 86 4 84 2 8(1), 6(1), 5(84) 5.37
link-pp 308 1158 0 0 0 1 4 0 1 36.60
munin1-pp 66 188 0 2 0 3 4 2 1 63(1), 5(2) 0.80
munin2-pp 167 455 6 13 4 24 4 12 12 18(2), 17(4), 16(4), 6(2),

5(10), 4(2)
0.54

munin3-pp 96 313 2 2 2 7 4 4 3 79(1), 7(2), 5(4) 1.17
munin4-pp 217 646 3 4 0 8 4 2 6 55(2), 38(2), 23(2), 5(2) 1.65
munin-kgo-pp 16 41 1 0 2 4 5 2 2 7(2), 5(2) 0.01
oesoca+-pp 14 75 0 0 0 1 9 0 1 0.01
oow-trad-pp 23 54 0 0 1 2 4 1 1 21(1), 5(1) 0.07
oow-solo-pp 27 63 0 0 1 2 4 0 2 16(1), 14(1) 0.07
pathfinder-pp 12 43 0 5 0 6 6 6 0 7(5), 6(1) 0.01
pignet2-pp 1024 3774 0 0 0 1 4 0 1 3824.53
pigs-pp 48 137 0 1 0 2 5 1 1 47(1), 6(1) 0.39
ship-ship-pp 30 77 0 0 2 3 4 0 3 24(1), 6(2) 0.18
water-pp 22 96 0 1 0 2 6 1 1 21(1), 7(1) 0.08

celar01-pp 157 804 2 19 1 23 8 18 3 58(1), 47(1), 19(1), 9(1),
8(3), 7(5), 6(2), 5(6), 4(3)

5.84

celar02-pp 19 115 0 0 0 1 6 0 1 0.03
celar03-pp 81 413 5 17 0 23 10 21 1 38(1), 11(1), 10(2), 9(2),

8(1), 7(1), 6(2), 5(7), 4(4),
3(1), 2(1)

0.74

celar04-pp 114 524 0 22 1 24 8 19 2 62(1), 16(1), 9(2), 8(3),
7(1), 6(4), 5(7), 4(4), 3(1)

6.92

celar05-pp 80 426 0 13 0 14 8 12 2 47(1), 19(1), 9(1), 8(1),
6(2), 5(4), 4(4)

1.18

celar06-pp 16 101 0 1 0 2 11 2 0 12(2) 0.01
celar07-pp 92 521 4 12 0 17 11 14 2 45(1), 16(1), 12(2), 7(2),

6(6), 5(2), 4(1), 3(2)
1.10

celar08-pp 189 1016 4 32 1 38 11 33 3 76(1), 39(1), 16(1), 12(3),
10(2), 8(2), 7(1), 6(2),
5(19), 4(6)

6.02

celar09-pp 133 646 2 24 1 28 11 26 2 76(1), 16(1), 12(2), 6(1),
5(17), 4(6)

5.22

celar10-pp 133 646 2 24 1 28 11 26 2 76(1), 16(1), 12(2), 6(1),
5(17), 4(6)

5.22

celar11-pp 96 470 1 8 1 11 7 7 4 48(1), 19(1), 16(1), 13(1),
5(3), 4(4)

3.11

graph01-pp 89 332 0 4 0 5 9 4 1 85(1), 10(4) 5.68
graph02-pp 179 659 0 3 0 4 7 3 1 176(1), 8(3) 71.63
graph03-pp 79 293 0 8 0 9 6 8 1 71(1), 7(8) 5.63
graph04-pp 179 678 0 6 0 7 7 6 1 173(1), 8(6) 92.53
graph05-pp 91 394 0 4 0 5 9 4 1 87(1), 10(4) 6.56
graph06-pp 180 790 0 3 0 4 9 3 1 177(1), 10(3) 63.62
graph07-pp 180 790 0 3 0 4 9 3 1 177(1), 10(3) 63.54
graph08-pp 314 1173 0 18 0 19 8 18 1 296(1), 9(18) 1960.48
graph09-pp 405 1525 0 7 0 8 9 7 1 398(1), 10(7) 1942.06
graph10-pp 328 1253 0 22 0 23 7 22 1 306(1), 8(11), 7(5), 6(6) 1859.36
graph11-pp 307 1338 0 18 0 19 8 18 1 289(1), 9(18) 1896.00
graph12-pp 312 1177 0 64 0 65 6 64 1 248(1), 7(64) 3619.29
graph13-pp 420 1772 0 44 0 45 7 44 1 376(1), 8(44) 12381.94
graph14-pp 395 1325 0 0 0 1 4 0 1 410.75

Table 3: The effect of clique, almost clique, and size three separators for preprocessed frequency
assignment instances

15

computations times are quite large, mainly due to the almost-clique separators that have to be
repeated for all newly constructed graphs. In some cases, like barley-pp and munin2-pp, the
sizes of the output graphs are small enough to expect that finding an exact solution with branch
and bound can be done efficiently.

6.2 Heuristics and safe separator decompositions

For the graphs that cannot be split anymore with help of the studied safe separators, other
methods have to be applied to find the treewidth. These can be exact methods, like branch and
bound, or heuristics. In [17, revised version], we have compared several heuristics for approx-
imating treewidth. The most promising are based on the triangulation algorithms minimum
fill-in (MINFIL, MINFIL+MC), minimum degree (MINDEG, MINDEG+MC), Maximum Car-
dinality Search (MCS, MCS+MC), and Maximal Cardinal Search Minimal (MCS-M). Here, the
annex +MC denotes that a chordal minimization algorithm [6] is run afterwards.

In Table 4 we compare the values and computation times of the MCS-M heuristic for the original
graphs, the graphs preprocessed by the graph reduction rules, and the graphs decomposed by
safe separators. Moreover, we report on the lower bound provided by the graph reduction
rules [10] and the one that results from the safe separator decomposition, as already listed in
the previous tables.

The results show that an additional significant time reduction can be achieved by the safe
separators for most instances. Only for the ‘graph*’ the reductions are marginal since the size
of the largest graph is reduced only marginal, cf. 3. In addition, better widths and better lower
bounds are derived occasionally. Most remarkable in this context is the instance diabetes, where
the width is reduced from 35 via 20 to 4, the treewidth for this instance.

We have carried out a similar experiment for the MINFIL, MINFIL+MC, MINDEG, and MIN-
DEG+MC heuristics. As these heuristics are much faster than the MCS-M heuristic, the savings
in the time for applying the heuristic were often less than the time needed for the preprocess-
ing with safe separators. However, also here there were several cases where a reduction on the
treewidth was obtained with help of safe separators.

7 Conclusions

In this paper, we introduced the notion of separators that are safe for treewidth. It was known
that clique separators are safe, in our terminology. We have established a number of sufficient
conditions for separators to be safe. Experiments show that such safe separators can be efficiently
found, and help to reduce the problem size when we want to compute the treewidth and optimal
tree decompositions for many graphs coming from practical applications. In many cases, safe
separators help to reduce the instances to sizes that are small enough to make it feasible to solve
the treewidth problem approximately or even exactly with a method like branch and bound.
Thus, safe separators are a useful tool when preprocessing graphs for treewidth.

In an earlier paper, graph reduction was used for preprocessing [10], see also [26]. A comparison
shows that most reduction rules can be obtained as a special case of applying safe separators.

16

instance Original with Graph Red. with Safe Sep.
width CPU time low width CPU time low width CPU time

barley 7 0.16 4 7 0.04 5 7 0.01
diabetes 35 182.77 4 20 5.00 4 4 0.00
link 37 857.43 4 36 117.83 4 36 117.83
munin1 15 8.27 4 13 0.89 4 13 0.83
munin2 16 444.31 4 8 4.29 4 7 0.13
munin3 15 662.03 4 13 2.49 4 13 1.60
munin4 28 431.79 4 15 12.05 4 11 1.13
munin-kgo 13 335.74 5 5 0.01 5 5 0.00
oesoca+ 11 0.31 9 11 0.01 9 11 0.01
oow-trad 6 0.07 4 6 0.04 4 6 0.03
oow-solo 6 0.12 4 6 0.05 4 6 0.02
pathfinder 6 0.43 5 6 0.00 6 - -
pignet2 239 77479.39 4 230 9758.43 4 230 9758.43
pigs 18 50.88 4 11 0.28 5 11 0.26
ship-ship 9 0.18 4 9 0.08 4 9 0.04
water 10 0.06 5 10 0.04 6 10 0.03

celar01 17 71.73 6 17 7.31 8 16 1.12
celar02 10 1.00 6 10 0.01 6 10 0.01
celar03 16 9.11 8 16 1.15 10 16 0.20
celar04 16 41.65 6 16 4.04 8 16 0.88
celar05 15 8.78 6 15 1.44 8 16 0.40
celar06 11 1.16 9 11 0.01 11 - -
celar07 18 10.21 9 18 1.91 11 18 0.37
celar08 19 81.76 9 19 11.31 11 18 1.76
celar09 18 48.23 9 19 6.34 11 18 1.55
celar10 18 49.35 9 19 6.34 11 18 1.55
celar11 16 40.29 7 16 2.26 7 16 0.45
graph01 27 4.12 8 27 3.17 9 27 2.84
graph02 57 43.76 6 55 34.92 7 56 34.12
graph03 24 3.72 5 25 2.26 6 23 1.66
graph04 61 45.17 6 59 35.94 7 58 33.45
graph05 28 4.42 8 29 3.60 9 30 3.21
graph06 60 47.06 8 58 37.72 9 58 36.60
graph07 60 47.21 8 58 37.71 9 58 36.90
graph08 104 276.65 7 103 234.95 8 103 203.66
graph09 128 706.53 8 128 551.76 9 125 530.38
graph10 105 292.78 4 105 274.94 7 105 231.02
graph11 106 295.77 7 104 239.45 8 104 206.22
graph12 99 267.72 5 99 227.94 6 94 131.22
graph13 146 817.39 6 143 681.38 7 140 523.76
graph14 145 770.40 4 139 547.31 4 139 547.31

Table 4: Maximum Cardinality Search-Minimal for instances

Safe separators thus are a more powerful tool, as there are many graphs that cannot be reduced
with the reduction rules, but contain safe separators. However, the algorithms for applying graph
reduction are much faster than those for finding safe separators, and thus the best practice seems
to be to first apply graph reduction until this is not possible, and then look for safe separators
in the graph.

An open problem is to obtain faster algorithms to find the safe separators, especially the minimal
almost clique separators and/or safe separators of size three (or four), and to find safe separator
decompositions that are final for the given types of safe separators.

17

References

[1] K. I. Aardal, C. A. J. Hurkens, J. K. Lenstra, and S. R. Tiourine. Algorithms for radio link
frequency assignment: The CALMA project. Operations Research, 50(6):968 – 980, 2003.

[2] S. Arnborg, D. G. Corneil, and A. Proskurowski. Complexity of finding embeddings in a
k-tree. SIAM J. Alg. Disc. Meth., 8:277–284, 1987.

[3] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. J.
Algorithms, 12:308–340, 1991.

[4] S. Arnborg and A. Proskurowski. Characterization and recognition of partial 3-trees. SIAM
J. Alg. Disc. Meth., 7:305–314, 1986.

[5] A. Bery and J.-P. Bordat. Decomposition by clique minimal separators. Research report,
LIM, Marseiller, 1997.

[6] J. R. S. Blair, P. Heggernes, and J. Telle. A practical algorithm for making filled graphs
minimal. Theor. Comp. Sc., 250:125–141, 2001.

[7] H. L. Bodlaender. A linear time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Comput., 25:1305–1317, 1996.

[8] H. L. Bodlaender. Treewidth: Algorithmic techniques and results. In I. Privara and P. Ruz-
icka, editors, Proceedings 22nd International Symposium on Mathematical Foundations of
Computer Science, MFCS’97, Lecture Notes in Computer Science, volume 1295, pages 19–
36, Berlin, 1997. Springer-Verlag.

[9] H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor. Comp.
Sc., 209:1–45, 1998.

[10] H. L. Bodlaender, A. M. C. A. Koster, F. van den Eijkhof, and L. C. van der Gaag. Pre-
processing for triangulation of probabilistic networks. In J. Breese and D. Koller, editors,
Proceedings of the 17th Conference on Uncertainty in Artificial Intelligence, pages 32–39,
San Francisco, 2001. Morgan Kaufmann.

[11] R. B. Borie, R. G. Parker, and C. A. Tovey. Automatic generation of linear-time algorithms
from predicate calculus descriptions of problems on recursively constructed graph families.
Algorithmica, 7:555–581, 1992.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. MIT Press,
Cambridge, Mass., USA, 1989.

[13] B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theor. Comp. Sc., 109:49–82, 1993.

[14] S. Even. Graph Algorithms. Pitman, London, 1979.

[15] J. E. Hopcroft and R. E. Tarjan. Dividing a graph into triconnected components. SIAM J.
Comput., 2:135–158, 1973.

18

[16] A. Kanevsky and V. Ramachandran. Improved algorithms for graph four-connectivity. J.
Comp. Syst. Sc., 42:288–306, 1991.

[17] A. M. C. A. Koster, H. L. Bodlaender, and S. P. M. van Hoesel. Treewidth: Computational
experiments. In H. Broersma, U. Faigle, J. Hurink, and S. Pickl, editors, Electronic Notes
in Discrete Mathematics, volume 8. Elsevier Science Publishers, 2001. Revised version in
preparation.

[18] A. M. C. A. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. Solving partial constraint
satisfaction problems with tree decomposition. Networks, 40:170–180, 2002.

[19] S. J. Lauritzen and D. J. Spiegelhalter. Local computations with probabilities on graphical
structures and their application to expert systems. The Journal of the Royal Statistical
Society. Series B (Methodological), 50:157–224, 1988.

[20] H.-G. Leimer. Optimal decomposition by clique separators. Disc. Math., 113:99–123, 1993.

[21] K. Menger. Zur allgemeinen kurventheorie. Fund. Math., 10:96–115, 1927.

[22] K. G. Olesen and A. L. Madsen. Maximal prime subgraph decomposition of Bayesian
networks. Technical report, Department of Computer Science, Aalborg University, Aalborg,
Denmark, 1999.

[23] H. Röhrig. Tree decomposition: A feasibility study. Master’s thesis, Max-Planck-Institut
für Informatik, Saarbrücken, Germany, 1998.

[24] R. E. Tarjan. Depth first search and linear graph algorithms. SIAM J. Comput., 1:146–160,
1972.

[25] R. E. Tarjan. Decomposition by clique separators. Disc. Math., 55:221–232, 1985.

[26] F. van den Eijkhof, H. L. Bodlaender, and A. M. C. A. Koster. Safe reduction rules
for weighted treewidth. ZIB-report 02–49, Konrad-Zuse-Zentrum für Informationstechnik
Berlin, Berlin, Germany, 2002.

19

