
Generalizing Hindley-Milner Type Inference
Algorithms

Bastiaan Heeren

Jurriaan Hage

Doaitse Swierstra

institute of information and computing sciences, utrecht university

technical report UU-CS-2002-031

www.cs.uu.nl

Generalizing Hindley-Milner Type Inference Algorithms

Bastiaan Heeren Jurriaan Hage Doaitse Swierstra
{bastiaan,jur,doaitse}@cs.uu.nl∗

July 8, 2002

Abstract

Type inferencing according to the standard algorithms W and M often yields unin-
formative error messages. Many times, this is a consequence of a bias inherent in the
algorithms. The method developed here is to first collect constraints from the program,
and to solve these afterwards, possibly under the influence of a heuristic. We show the
soundness and completeness of our algorithm. The algorithms W and M turn out to be
deterministic instances of our method, giving the correctness for W and M with respect
to the Hindley-Milner typing rules for free. We also show that our algorithm is more
flexible, because it naturally allows the generation of multiple messages.

1 Introduction

Type systems are indispensable in modern higher-order, polymorphic languages. An impor-
tant contribution to the popularity of Haskell and ML is their advanced type system, which
enables detection of ill-typed expressions at compile-time. Modern language processors use
type inference techniques that are derived from the algorithmW proposed by Milner [Mil78],
and are based on the unification of types.

Because the error messages of most compilers and interpreters are often hard to interpret,
programmer productivity is hampered. Also, programmers who are new to the language are
likely to be discouraged from using it. Unfortunately, it is not straightforward to change
unification-based systems to produce clear type error messages. One serious problem is that
type conflicts might be detected far away from the site of the error. Another problem is that
the location where an inconsistency is detected is influenced by the order in which types are
unified. Unification-based type systems have a bias to report type conflicts near the end of
the program. This left-to-right bias is caused by the way unification and substitution are
used. McAdam [McA98] proposes a modification of W in which substitutions are unified,
such that this bias is removed.

Consider the following program:

(λx→ x+ 1) ((λy → if y then True else False) False)

AlgorithmM, which is described in detail by Lee and Yi [LY98], will report that the expression
True is not compatible with the type Int. Following the advice of the report, a novice user
might change True into some integer resulting in another type error, because then the first
∗Inst. of Information and Computing Sci., Univ. Utrecht, P.O.Box 80.089, 3508 TB Utrecht, Netherlands

1

occurrence of False will be in error. Algorithm W will report that the argument to the
function (λx → x + 1) is of type Bool and not Int as expected. This does not help much in
finding out what exactly is wrong. In this paper we present an approach to type inferencing
to remedy this shortcoming.

In our method, a set of constraints on types is generated for an expression. These con-
straints are typically generated locally, although they can describe global properties. The
separation of constraint generation (the specification of the analysis) and constraint resolu-
tion (the implementation) is standard in this field of research [Aik99]. Since we are no longer
forced to solve the constraints while they are generated, the system does not necessarily have
a left-to-right bias: the order in which the constraints are solved is (almost) arbitrary. Sulz-
mann et al.[SMZ99] describe a different approach to express the Hindley-Milner type system
in constraint form.

Heuristics can be used to remove inconsistencies in the final set of constraints, or, viewed
in another way, heuristics can be used to determine the order in which the constraints are
solved. At the end of the paper we give an example of such a heuristic, which was inspired
by the approach of Johnson and Walz in [WJ86]. However, the larger part of the paper
concentrates on formally describing our method and proving it correct. We also indicate how
W andM can be understood as deterministic instances of our general method.

Several papers present algorithms to capture information about the deductive steps of a
type inference algorithm to construct a better explanation for a type conflict [Wan86, BS93,
DB96, McA00]. Tracing the reason for a deduction is similar to collecting constraints on
types.

In Section 6 we explain how to construct a type graph from the collected constraints.
Other techniques have been proposed to store type information in a graph [GVS96, Cho95].
However, these two systems cannot handle polymorphism. The graph presented by McAdam
[McA00] can contain let-expressions, but the polymorphic instances of a declaration are ob-
tained by duplicating parts of the graph. This approach can result in computing the type of
an expression exponentially many times.

This paper is organised as follows. In the next section, an expression and type language is
presented, for which we give the standard Hindley-Milner type inference rules and algorithm
W in Section 3. In Section 4 we give our Bottom-Up type inference rules for collecting
type constraints, and show how the latter can be solved. After proving the soundness and
completeness of our algorithm in Section 5, we give examples of heuristics for deciding which
constraints have to be removed in order to make a constraint set consistent in Section 6.
Finally, we summarize our findings and indicate where our research shall go in the future.

2 Preliminaries

We first introduce a small, let-polymorphic, functional language which is the core of popular
languages like Haskell and ML.

(expression) E := x | E1 E2 | λx→ E | let x = E1 in E2

To keep things simple, recursive declarations in a let-construct are not permitted. In other
words, the scope of a variable declared in a let expression is limited to the body and does
not include the definition part. We deliberately restrict ourselves to this small expression
language since extensions, such as recursion, patterns, and explicit type definitions, can be

2

added in a straightforward way. However, the expressions, that serve as example throughout
this paper, can contain literals. A literal is a value with its own constant type, e.g. True has
type Bool, and 1 has type Int. The syntax of types and type schemes is given by:

(type) τ := α | Int | Bool | String | τ1 → τ2

(type scheme) σ := ∀~α.τ

A type can be either a type variable, a type constant, or a function type. This rather basic
representation of types can easily be extended to include other types, such as lists and user
defined data types. However, these extensions do not touch the essence of the inference
algorithms.

A type scheme ∀~α.τ is a type in which a number of type variables ~α = α1, . . . , αn, the
polymorphic type variables, are bound to a universal quantifier. Although the type variables
have an implicit order in any given type scheme, the order itself is not important. For this
reason we may view the vector ~α as a set when the need arises.

The set of free type variables of a type τ is denoted by freevars(τ) and simply consists of
all type variables in τ . Additionally, freevars(∀~α.τ) = freevars(τ)− ~α.

A substitution, usually denoted by S, is a mapping of type variables to types. For a set of
type variables {α1, . . . , αn} we write [α1 := τ1, α2 := τ2, . . . , αn := τn]. When a substitution
is applied, the type variables that are not in the domain of the substitution are to remain
unchanged. Consequently, the empty substitution, written as [], behaves in a way similar
to the identity function. As usual, a substitution only replaces free type variables, so the
quantified type variables in a type scheme are not affected by a substitution.

We assume substitutions to be idempotent, which implies that S(Sτ) = Sτ . For instance,
[α1 := α2, α2 := Bool] is considered to be an invalid substitution. Every substitution can
be transformed into an equivalent idempotent substitution if it fulfils the occur check (see
[BN98]). For our purposes, substitutions that do not pass the occur check are defined to be
equal to the error substitution, denoted by >. We define >τ to be equal to the error type,
which we also denote by >. The composition of substitution S1 followed by substitution S2

is written as (S2 ◦ S1) and is again a substitution. If either of the two equals >, then the
composition equals > as well.

A type environment, usually denoted by Γ, maps variables to their corresponding type
schemes, and provides a context in which type inferencing takes place. By (Γ\x) we denote
the type environment Γ where the variable x is removed from the domain of Γ:

Γ\x =def {y :σ | y :σ ∈ Γ, x 6= y}

We lift the notion of free type variables to environments Γ, by taking the union of the set of free
type variables occurring in the type schemes, which are in the range of Γ. The environment
SΓ is equal to {x :Sσ | x :σ ∈ Γ}.

Generalizing a type τ with respect to a type environment Γ entails the quantification of
the type variables that are free in τ but do not occur in Γ:

generalize(Γ, τ) =def ∀~α.τ where ~α = freevars(τ)− freevars(Γ)

In the literature, generalization is sometimes referred to as determining the closure of a type.
In fact, these different notations, e.g. Γ(τ) in [DM82] and ClosΓ(τ) in [LY98], all express the

3

τ ≺ Γ(x)
Γ `HM x :τ

[Var]
HM

Γ `HM e1 :τ1 → τ2 Γ `HM e2 :τ1

Γ `HM e1 e2 :τ2
[App]

HM

Γ\x ∪ {x ::τ1} `HM e :τ2

Γ `HM λx→ e :τ1 → τ2
[Abs]

HM

Γ `HM e1 :τ1 Γ\x ∪ {x :generalize(Γ, τ1)} `HM e2 :τ2

Γ `HM let x = e1 in e2 :τ2
[Let]

HM

Figure 1: Hindley-Milner type inference rules

same. An instantiation of a type scheme is obtained by the replacement of the quantified
type variables by fresh type variables:

instantiate(∀α1 . . . αn.τ) =def [α1 := β1, . . . , αn := βn]τ where β1, . . . , βn are fresh

A type τ1 is a generic instance of a type scheme σ = ∀~α.τ2 if there exists a substitution S
with Sβ = β for all β ∈ freevars(σ) such that τ1 and Sτ2 are syntactically equal.

For two types τ1 and τ2, mgu(τ1, τ2) returns the most general unifier, which is a substitu-
tion. By definition, it holds for a unifier S that Sτ1 = Sτ2. Note that if the types τ1 and τ2

cannot be unified, mgu(τ1, τ2) = >.

3 The Hindley-Milner Type Inference Rules

Damas and Milner [DM82] present a set of inference rules, which is shown in Figure 1. There
is exactly one rule for each of the four language constructs in the expression language. These
rules deal with judgements of the form Γ `HM e : τ , expressing that expression e can be
assigned a type τ under the type environment Γ. However, given e and Γ, there may exist
multiple types that validate the assertion. Fortunately, there is exactly one type scheme of
which all valid types are generic instances, and this is referred to as the principle type scheme
of the expression. For instance, the identity function has the principle type scheme ∀α.α→ α,
and can therefore also be assigned the types Bool → Bool and (τ → τ) → τ → τ . The rules
provide an easy-to-use framework to construct a proof that a certain type can be assigned to
an expression, but they cannot classify a type as invalid for a given expression, nor do they
suggest an approach on how to find a valid judgement.

In the literature, several algorithms are discussed that compute the principle type (scheme)
of an expression under a type environment. The best known algorithm is the bottom-up
algorithm W shown in Figure 2. The correctness of this algorithm with respect to the type
inference rules is proven in [DM82]. A second implementation of the Hindley-Milner type
system is a folklore top-down algorithm named M. Algorithm M has the property that it
stops earlier for an ill-typed expression than W does. Earlier means that it has visited fewer

4

W :: TypeEnvironment× Expression→ Substitution× Type

W(Γ, x) = ([], instantiate(σ)), where (x :σ) ∈ Γ
W(Γ, λx→ e) = let (S1, τ1) = W(Γ\x ∪ {x :β}, e), fresh β

in (S1,S1β → τ1)
W(Γ, e1 e2) = let (S1, τ1) = W(Γ, e1)

(S2, τ2) = W(S1Γ, e2)
S3 = mgu(S2τ1, τ2 → β), fresh β

in (S3 ◦ S2 ◦ S1,S3β)
W(Γ, let x = e1 in e2) = let (S1, τ1) = W(Γ, e1)

(S2, τ2) = W(S1Γ\x ∪ {x :generalize(S1Γ, τ1)}, e2)
in (S2 ◦ S1, τ2)

Figure 2: Algorithm W

nodes in the abstract syntax tree, and does not refer to the amount of work that has been
done. The proof of this property and the correctness ofM is given in [LY98].

Although type inference algorithms are primarily designed to find the principle type
scheme of an expression, they are also used to detect ill-typed expressions. As a result,
the reported error message and its associated location strongly depend on the order in which
the type inference algorithm unifies types. Combining the error sites of W and M can lead
to more informative messages. In general, an analysis of contradicting sites provides a better
insight into what is the most likely origin of a type error. In the next section we introduce a
new set of typing rules that allows global type inferencing, providing even more flexibility.

4 Type Inferencing with Constraints

In this section we discuss a type inference algorithm that differs from algorithm W in two
aspects. First, a set of constraints on types is collected instead of constructing a substitution.
Postponing the unification of types paves the way for a more global approach to type infer-
encing allowing for a more finely tuned method of choosing the invalidating constraints. The
second difference is the absence of a type environment Γ under which the type inferencing
takes place. Instead, an assumption set is used to record the type variables that are assigned
to the occurrences of free variables. The bottom-up construction of both the constraint set
and the assumption set is a compositional computation that follows the shape of the abstract
syntax tree.

4.1 Type Constraints

A constraint set, usually denoted by C, is a multiset of type constraints. We introduce three
forms of type constraints:

(constraint) C := τ1 ≡ τ2 | τ1 ≤M τ2 | τ ¹ σ

An equality constraint (τ1 ≡ τ2) reflects that τ1 and τ2 should be unified at a later stage
of the type inferencing process. The other two sorts of constraints are used to cope with

5

{x :β}, ∅ `BU x :β [Var]
BU

A1, C1 `BU e1 :τ1 A2, C2 `BU e2 :τ2

A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} `BU e1 e2 :β
[App]

BU

A, C `BU e :τ
A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} `BU λx→ e : (β → τ)

[Abs]
BU

A1, C1 `BU e1 :τ1 A2, C2 `BU e2 :τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x :τ ′ ∈ A2} `BU let x = e1 in e2 :τ2
[Let]

BU

Figure 3: Bottom-Up type inference rules

polymorphism that is introduced by let-expressions. An explicit instance constraint (τ ¹ σ)
states that τ has to be a generic instance of σ. This constraint is convenient if we know the type
scheme before we start type inferencing an expression. In general, the (polymorphic) type of a
declaration in a let-expression is unknown and must be inferred before it can be instantiated.
To overcome this problem we introduce an implicit instance constraint (τ1 ≤M τ2), which
expresses that τ1 should be an instance of the type scheme that is obtained by generalizing
type τ2 with respect to the set of monomorphic type variables M , i.e., quantifying over the
polymorphic type variables.

4.2 The Bottom-Up Type Inference Rules

The Bottom-Up type inference rules (henceforth abbreviated as the Bottom-Up rules), given
in Figure 3, deal with judgements of the form A, C `BU e : τ . Assumption set A records
the type variables that are assigned to the free variables of e. Contrary to the standard type
environment Γ, as used in the Hindley-Milner inference rules, there can be multiple (different)
assumptions for a given variable. The rules are such that they allow for flexibility in coping
with unbound identifiers. Advantages of this property are discussed in Nikhil [Nik85] and
Bernstein [Ber95].

The inference rule for a variable is very straightforward: a fresh type variable β is in-
troduced and returned as the type. We assume that at any time there are infinitely many
fresh type variables available. The fact that β was assigned to the variable is recorded in the
assumption set. The constraint set is empty.

A new type variable β is introduced to represent the type of an application of two expres-
sions. An equality constraint ensures that the domain and the range of the type of the first
expression match with the type of the second expression and β respectively. Furthermore, the
collected constraints for the subexpressions are passed on unchanged, and the two assumption
sets are merged.

The fresh β in the inference rule for a lambda abstraction represents the type of the lambda
bound variable. An equality constraint is generated for each type variable in the assumption
set that is associated with the variable that is bound by the lambda. The assumptions that
concern this variable are removed from the assumption set.

6

LET

ABS APP

LET VAR VAR

VAR VAR

id id

yx

x

y

∅

{τ3}

{τ3}

{τ3}

∅ ∅

∅

M

∅ id

Figure 4: The top-down computation of the monomorphic sets

Unsurprisingly, it is the let-expression that introduces polymorphism and brings in some
difficulties. Inferring a type for a let-expression implies a specific order in which the types of
the two subexpressions have to be computed. This order is reflected in the Hindley-Milner
inference rules: the inferred type of the declaration is generalized before it is added to the type
environment under which the type of the body is inferred. An implicit instance constraint is
generated for each variable in the body that becomes bound. Although there is no order in
the set of constraints, an implicit instance constraint requires some constraints to be solved
before it becomes solvable. In Section 4.3 we discuss why this is necessary.

An implicit instance constraint depends on the context of the declaration. In particular, it
depends on the monomorphic type variables of unbound variables. Every node in the abstract
syntax tree has a set of monomorphic type variables M . To compute the monomorphic sets,
a single top-down computation is sufficient. For an arbitrary expression, the set M contains
exactly the type variables that were introduced by a lambda abstraction at a higher level in
the abstract syntax tree. We have left the distribution of M implicit in the Bottom-Up rules.
We confine ourselves to an example.

Example 1 Consider the following expression:

let id = λx→ let y = x
in y

in id id

In Figure 4 we have depicted the abstract syntax tree for this expression, and indicated the
top-down computation of the monomorphic sets. The type variable τ3 is introduced for the
variable x in the lambda abstraction rooted at the marked node in the tree. The type of the
declaration for id is polymorphic in τ3, whereas the type of y is monomorphic in τ3. This
follows from the fact that the set of monomorphic type variables is empty in the outer let,
whereas it contains τ3 in the inner let.

Example 2 To illustrate the application of the typing rules, we consider the type inferencing
problem for the following expression:

7

λm→ let y = m
in let x = y True

in x

The variable m is introduced in a lambda abstraction, and therefore all the occurrences of
m in the body must have the same monomorphic type. Although y is introduced in a let-
declaration, it is assigned the (monomorphic) type of m. Moreover, the application of y to the
literal True requires m to be a function of type Bool→ a for some a. The abstract syntax tree
determines which Bottom-Up rules should be applied. This results in the following deduction
tree:

{y :τ2}, ∅ `BU y :τ2
VAR

∅, ∅ `BU True :Bool
LIT

{y :τ2}, C1 `BU y True :τ3
APP

{x :τ4}, ∅ `BU x :τ4
VAR

{m :τ1}, ∅ `BU m :τ1
VAR

HH
H

©©

{y :τ2}, C2 `BU let x = y True in x :τ4
LET

{m :τ1}, C3 `BU let y = m in let x = y True in x :τ4
LET

∅, C4 `BU λm→ let y = m in let x = y True in x :τ5 → τ4
ABS

where the constraint sets are given as

C1 = {τ2 ≡ Bool→ τ3} C2 = C1 ∪ {τ4 ≤{τ5} τ3}
C3 = C2 ∪ {τ2 ≤{τ5} τ1} C4 = C3 ∪ {τ5 ≡ τ1}

The set at the root of the tree contains four constraints, among which are two implicit
instance constraints in which the type variable τ5 (assigned to the lambda bound variable m)
is monomorphic.

4.3 Solving Type Constraints

After the generation of a constraint set, a substitution is constructed that satisfies each
constraint in the set. Satisfaction of a constraint by a substitution is defined as follows:

S satisfies (τ1 ≡ τ2) =def Sτ1 = Sτ2

S satisfies (τ1 ≤M τ2) =def Sτ1 ≺ generalize(SM,Sτ2)
S satisfies (τ ¹ σ) =def Sτ ≺ Sσ

After substitution, the two types of an equality constraint should be syntactically equal. For
instance, the most general unifier can be chosen to satisfy an equality constraint. For an
implicit instance constraint, the substitution is not only applied to both types, but also to
the set of monomorphic type variables M . (In Example 3, presented later in this section,
it shall become clear why the substitution should also be applied to M .) The substitution
is applied to the type and the type scheme of an explicit instance constraint, where the
quantified type variables of the type scheme are untouched by the substitution. Since in
general generalize(SM,Sτ) is not equal to S(generalize(M, τ)), implicit and explicit instance
constraints really have different semantics.

Note that for two types τ1 and τ2

S satisfies τ1 ≡ τ2 ⇐⇒ S satisfies τ1 ¹ τ2 (1)
S satisfies τ1 ≡ τ2 ⇐⇒ S satisfies τ1 ≤freevars(τ2) τ2 (2)
S satisfies τ1 ≤M τ2 ⇐⇒ S satisfies τ1 ¹ generalize(SM,Sτ2) (3)

8

The first two properties show that every equality constraint can be written as an instance
constraint of either type. These properties hold because the only generic instance of a
type is the type itself, and because generalize(freevars(τ), τ) equals τ for all types τ . Prop-
erty (3) is justified by the fact that substitution S is idempotent, from which follows that
S(generalize(SM,Sτ)) is equal to generalize(SM,Sτ).

When applied to a constraint set, a substitution is simply applied to the types and type
schemes therein. For implicit instance constraints, we make note of the fact that the substi-
tution also has to be applied to the sets of monomorphic type variables:

S(τ1 ≤M τ2) =def Sτ1 ≤SM Sτ2

First, we define which type variables in a constraint set are active.

activevars(τ1 ≡ τ2) =def freevars(τ1) ∪ freevars(τ2)
activevars(τ1 ≤M τ2) =def freevars(τ1) ∪ (freevars(M) ∩ freevars(τ2))
activevars(τ ¹ σ) =def freevars(τ) ∪ freevars(σ)

Next, we present a function, which returns a substitution that satisfies a given a set of
constraints. As we shall explain later in more detail, the algorithm assumes that the constraint
set always contains a constraint which can be solved. In particular, if it contains only implicit
instance constraints, then there is one for which its condition is fulfilled.

Solve :: Constraints→ Substitution
Solve (∅) = []
Solve ({τ1 ≡ τ2} ∪ C) = Solve (SC) ◦ S

where S = mgu(τ1, τ2)
Solve ({τ1 ≤M τ2} ∪ C) = Solve ({τ1 ¹ generalize(M, τ2)} ∪ C)

if (freevars(τ2)−M) ∩ activevars(C) = ∅
Solve ({τ ¹ σ} ∪ C) = Solve ({τ ≡ instantiate(σ)} ∪ C)

Example 3 Consider the constraints that were collected for Example 2. We show how a
substitution is constructed from this set.

Solve ({τ2 ≡ Bool→ τ3, τ4 ≤{τ5} τ3, τ2 ≤{τ5} τ1, τ5 ≡ τ1})
= Solve ({τ4 ≤{τ5} τ3, Bool→ τ3 ≤{τ5} τ1, τ5 ≡ τ1}) ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ≤{τ1} τ3, Bool→ τ3 ≤{τ1} τ1}) ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ≤{τ1} τ3, Bool→ τ3 ¹ τ1}) ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ≤{τ1} τ3, Bool→ τ3 ≡ τ1}) ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ≤{τ3} τ3}) ◦ [τ1 := Bool→ τ3] ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ¹ τ3}) ◦ [τ1 := Bool→ τ3] ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve ({τ4 ≡ τ3}) ◦ [τ1 := Bool→ τ3] ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= Solve (∅) ◦ [τ4 := τ3] ◦ [τ1 := Bool→ τ3] ◦ [τ5 := τ1] ◦ [τ2 := Bool→ τ3]
= [τ4 := τ3, τ1 := Bool→ τ3, τ5 := Bool→ τ3, τ2 := Bool→ τ3]

Notice that the sets of monomorphic type variables are modified while the substitution is
constructed. Applying this substitution to τ5 → τ4 results in (Bool → τ3) → τ3, which is
the most general type for the expression. If the substitution had not been applied to the
monomorphic sets of the implicit instance constraints, an incorrect type would be returned.

9

The recursive definition of Solve consists of a basic case (the empty constraint set, for
which the empty substitution is returned), and a transformation for each of the three types of
constraints. Solve does not assume any ordering of the constraints. However, the condition
accompanying an implicit instance constraint imposes a certain ordering: all constraints that
involve type variables occurring in the right hand side of τ1 ≤M τ2, but that do not and
never will occur in M , should be handled before the implicit instance constraint itself can
be handled. Intuitively, this means that before inferring the body of a let, we ought to have
finished inferring the types of the let-definitions that are used in the body. As discussed in
Example 3, it would have been incorrect to solve the constraint τ2 ≤{τ5} τ1 before handling
τ5 ≡ τ1, because the semantics of τ2 ≤{τ5} τ1 and τ2 ≤{τ1} τ1 are quite different. Our side
condition prevents this from happening, by insisting that τ1 should not be active anymore.
This is the case after we have solved τ5 ≡ τ1.

It is possible that in a constraint set, two implicit instance constraints depend on each
other in this way. A simple example is C = {τ1 ≤∅ τ2, τ2 ≤∅ τ1}, because τ1 and τ2 are
both active. In this case, our algorithm blocks, because no constraint can be solved and the
set of constraints is not empty. Note, however, that the empty substitution satisfies C. It is
not difficult to see that for constraint sets generated by our Bottom-Up rules, this kind of
circularity is impossible:

Lemma 1 Let C be a set of constraints generated by the Bottom-Up rules. During the
execution of Solve(C), every non-empty constraint set passed to Solve contains a constraint
that can be solved.

Proof If there are still equality constraints or explicit instance constraints, then we can
solve these. Now consider all let-expressions which gave rise to implicit instance constraints
that we still have to solve. Among these let-expressions, we can always solve the implicit
instance constraints belonging to the outermost, leftmost let-expression. This holds for the
following reason: the Bottom-Up rules introduce disjoint sets of type variables in disjoint
trees (in particular, the one for the definition of the let and the one for the body of the let),
and the only way that these type variables can ever get related is through a type variable that
is introduced higher in the tree. This type variable is necessarily monomorphic and hence
present in the set of monomorphic type variables at that point. 2

Our method of solving the instance constraints introduces new constraints of another
type. However, it is easy to show that after solving a constraint the measure function
(n1, n2, n3), where n1, n2, and n3 are the number of implicit instance constraints, explicit
instance constraints, and equality constraints respectively, strictly decreases with respect to
the lexicographic order.

Lemma 2 The function Solve terminates for all inputs.

4.4 Correctness of Algorithm Solve

Lemma 3 If Solve returns a substitution for a constraint set C, then each constraint in C
is satisfied by this substitution. Moreover, this substitution is the most general substitution
(up to type variable renaming).

10

#3#2

C SOLVE(C)

#1#3

#1#2#3

∅

#2#3 #2

#2#3

#1

#1#2

[]∅
#1

#1#2#3

#3
#1#2
#1#3

[v2 := v3 → v3]
[v3 := v1]
[v1 := Bool, v2 := v3 → v3]
[v1 := Bool, v3 := Bool]
[v2 := v1 → v1, v3 := v1]
[v1 := Bool, v2 := Bool→ Bool, v3 := Bool]

[v1 := Bool]

Figure 5: A partially ordered set on substitutions

Proof The empty substitution is the most general unifier that satisfies the empty constraint
set. If we restrict ourselves to equality and explicit instance constraints, then Solve returns
the most general substitution that satisfies the constraint set C. This is because we use the
most general unifier to solve equality constraints, and because of the fact that although we
use function composition to combine our separate substitutions, we apply S to the remaining
constraints before we continue the solving process. Furthermore, the following properties
hold:

S1 satisfies {τ1 ≡ τ2} ⇐⇒ for all S2: S2 ◦ S1 satisfies {τ1 ≡ τ2}
S1 satisfies {τ ¹ σ} ⇐⇒ for all S2: S2 ◦ S1 satisfies {τ ¹ σ}

The second, more tricky part of the problem concerns the solving of implicit instance
constraints. We have to show that solving such a constraint does not interfere with the solving
of the other constraints. We consider the situation C ∪{τ1 ≤M τ2} where (freevars(τ2)−M)∩
activevars(C) = ∅. In other words, the implicit instance constraint is now solvable. We claim
that (Solve(C′))(β) = β for all β ∈ freevars(τ2)−M , where C′ = C∪{τ1 ¹ generalize(M, τ2)}.
The reason for this is that if β still exists in C′, then it exists only in the right hand side of
another implicit instance constraint without being part of the corresponding monomorphic set.
In other words, β continues to be inactive until all the implicit instance constraints containing
it have been solved. Now it follows that β is mapped to β, because it is not anymore present in
the constraint set. Please note that type variables that have become inactive, i.e., elements of
freevars(C)−activevars(C), can never again become active. In general, the following property
is valid for generalization:

(freevars(τ)−M) ∩ dom(S) = ∅ =⇒ S(generalize(M, τ)) = generalize(SM,Sτ)

Consequently, as soon as the condition of an implicit instance constraint is met, we can
transform it into an explicit instance constraint. 2

Example 4 Consider the quasi-order . on substitutions as defined by Baader and Nipkow
[BN98], where S1 . S2 denotes that ∃S : S2 = S ◦ S1. If S1 . S2, we say that S1 is
more general than S2. Substitutions are considered to be equal under the renaming of type
variables. For instance, [τ1 := τ2] ∼ [τ2 := τ1]. This order describes a complete lattice on
substitutions, where the least element ⊥ is the empty substitution [] and the greatest element
> is a special case that represents the error substitution.

Consider the three constraints #1 : v1 ≡ Bool, #2 : v2 ≡ v3 → v3, and #3 : v3 ≡ v1. The
#n notation is only introduced to label the constraints for later reference. In Figure 5 we

11

have the part of the complete lattice of substitutions in which the various substitutions that
can arise by solving the constraints in any order, are given. Note that the part in question
forms a complete sublattice.

4.5 A Type Inference Algorithm

The algorithm Solve has now been proven to be correct. In this section we give an algorithm,
which can be more easily compared to W andM. In the latter cases, type inferencing takes
place in the context of a type environment, where variables are paired with a type scheme.
The same effect can be obtained by constructing an extra set of constraints based on the type
environment and the assumption set, and pass them on to Solve together with the set of
constraints collected by the Bottom-Up rules.

For this purpose, the definition of ¹ is lifted to sets:

A ¹ Γ = { τ ¹ σ | x :τ ∈ A, x :σ ∈ Γ }

Because the definition does not restrict the type environment Γ to have at most one type
scheme for a variable, the definition is more general than required.

Example 5 Let A be {id :τ6, id :τ7, f :τ8}, and let Γ be {id :∀α.α→ α, f :τ1 → τ1}. Then
A ¹ Γ is equal to {τ6 ¹ ∀α.α → α, τ7 ¹ ∀α.α → α, τ8 ¹ τ1 → τ1}. Note that the last
constraint is semantically equal to (τ8 ≡ τ1 → τ1).

The following properties can be derived from the definition of ¹.

(A1 ∪ A2) ¹ Γ = (A1 ¹ Γ) ∪ (A2 ¹ Γ) (4)
A ¹ (Γ1 ∪ Γ2) = (A ¹ Γ1) ∪ (A ¹ Γ2) (5)
A ¹ Γ\x = A\x ¹ Γ (6)
A ¹ {x :τ} = {τ ′ ≡ τ | x :τ ′ ∈ A} (7)

The first two properties express that ¹ distributes over union. Property (6) states that it is
irrelevant in which of the two sets an occurrence of a variable is removed. The last property
lifts Property (1) to sets.

With these ingredients, we present an algorithm to compute a type for an expression under
a type environment Γ.

InferType(Γ, e) =
A, C `BU e :τ
if dom(A) 6⊆ dom(Γ) then report undefined variables exist
else S = Solve(C ∪ A ¹ Γ)

return (S, Sτ)

Besides the inferred type, InferType also returns a substitution, which gives InferType

and W the same signature. An advantage of this is that the substitution reveals the types of
all expressions that were assigned a fresh type variable by the Bottom-Up rules. Because there
is no distinction between the type variables that were introduced while applying the inference
rules, and the (monomorphic) type variables that occur in the initial type environment Γ, a
substitution can change the types in Γ.

12

The choice which rule to apply in Solve is nondeterministic, and we have just proved
that all possible ways of solving the constraints result in the most general substitution that
satisfies the constraints.

We are now interested in comparing InferType with the algorithmsM andW and show
that these are in fact deterministic instances. For the moment we restrict ourselves toW and
show how each constraint generated by our Bottom-Up rules, can be mapped to a node in
the abstract syntax tree where W would “solve” it. Something similar can be done for M
and, in fact, could be done for algorithm G as defined in [LY00].

We consider the Bottom-Up rules one by one. The case for [Var]
BU

is trivial, because no
constraints are generated. For applications, the equality constraint generated in an application
node is solved by W in the same node by means of unification after the subexpressions have
been inferenced (note that W performs its unifications in postorder). Consider a lambda ab-
straction λx→ e. At this lambda, the bottom-up algorithm generates an equality constraint
for each occurrence of x in e. However, W solves these constraints not in the lambda node,
but at the moment that it reaches each of the occurrences of x: W passes, as it were, the
constraints down to the variables by means of the type environment. Hence the constraints
generated in the lambda node are mapped to the occurrence of the bound identifier that they
belong to. Similar to the lambda abstraction, we can pass the implicit instance constraints
generated for x defined by a let expression down to the uses of x in the body of the let.

It is easy to see that after W has finished inferencing the definition of a let, the condition
of each of the implicit instance constraints generated by the let is fulfilled. The line of
reasoning is similar to that in Lemma 1. Having mapped the constraints of the Bottom-Up
algorithm to (possibly other) nodes in the tree, a postorder traversal (as done by W), can
resolve the constraints in the order that it encounters them, where we may assume that the
implicit instance constraints are solved “directly”, i.e., we convert them to explicit instance
constraints, to equality constraints, and then use unification. As a result, we have

Theorem 4 Algorithm W is a deterministic instance of InferType.

5 Soundness and Completeness

In this section we consider the soundness and completeness of algorithm InferType with
respect to the Hindley-Milner inference rules. We start with a lemma on the relation between
the value of the type environment Γ in a given node of the abstract syntax tree on the one
hand, and the types in SM on the other (where S satisfies the collected constraints).

Lemma 5 (monomorphic type variables) For a type environment Γ and a typable ex-
pression e, let (Γ `HM e : τ) and (A, C `BU e : τ ′) be the corresponding deduction trees.
Let S be a substitution that satisfies C and (A ¹ Γ), and which unifies the types at cor-
responding nodes of the two deduction trees. Then for corresponding nodes, it holds that
freevars(SΓ) = freevars(SM).

Proof To simplify the proof, we assume that no shadowing occurs since it is straightforward
to rename variables. For example, (λx→ λx→ x) can be transformed into (λx→ λy → y).
At the root of the abstract syntax tree we choose M such that it contains exactly the free
type variables in SΓ. Each pair of deduction rules, i.e., a Hindley-Milner type rule and its

13

corresponding Bottom-Up deduction rule, preserves this invariant. Both the variable case
and the case of function application are trivial.

For a lambda abstraction, the set of monomorphic type variables M is extended with the
fresh type variable β that was introduced in [Abs]

BU
. Because S(β → τ) equals S(τ1 → τ2),

the set of free type variables in S(Γ\x∪ {x :τ1}) and S(M ∪ {β}) are the same. The removal
of x and its type from Γ does not alter the set of free type variables, since we do not allow
shadowing. For a let-expression, the type environment in which the type of the declaration is
inferred is unchanged, and so is the set of monomorphic type variables. The type environment
for the body is extended with the closure of the type of the declaration. However, this type
scheme cannot introduce free type variables, that is,

freevars(Γ) = freevars(Γ\x ∪ {x :generalize(Γ, τ1)}). 2

To prove that the combination of our Bottom-Up rules and the algorithm InferType

is sound, we show that if InferType(Γ, e) succeeds with (S,τ), then SΓ `HM e : Sτ can
be derived. In this proof we use properties of Solve and the Bottom-Up typing rules. An
alternative, more detailed proof of this theorem can be found in Appendix A.

Theorem 6 (Soundness) If A, C `BU e :τ , then for all Γ and S such that

• dom(A) ⊆ dom(Γ)

• S satisfies C

• S satisfies A ¹ Γ

it holds that SΓ `HM e :Sτ .

Proof A judgement A, C `BU e :τ can be found by applying the Bottom-Up rules to any
expression e, including ill-typed expressions. The assumption set A contains one variable-
type pair for each free occurrence of a variable in e. Consequently, a type environment
Γ should provide a type for each variable present in A. This is ensured by the condition
dom(A) ⊆ dom(Γ). The condition S satisfies C should be obvious: we can only expect a
typing according to the Hindley-Milner rules if the collected constraints are satisfied. The
third constraint ensures that the variables present in A have obtained a type (to be found
in S) that is consistent with the types in the type environment Γ. This condition restricts
the combinations of S and Γ for which the conclusion holds. Clearly, choosing S(τ1) = Bool
while x :τ1 ∈ A and Γ(x) = ∀a.a→ a is not a valid choice.

The theorem can be proved by induction on the structure of the expression. The base
case of the induction is a variable x, for which the judgement {x : β}, ∅ `BU e : β can be
derived. The empty constraint set does not impose any restriction on the substitution. Γ(x)
is defined because x is in the domain of the assumption set. Substitution S should satisfy
{x : β} ¹ Γ, which implies that Sβ is a generic instance of SΓ(x). As a result, judgement
SΓ `HM x :Sβ is derivable.

The inductive cases are application, lambda abstraction, and let-expressions. For a subex-
pression e1, the induction hypothesis states that there are an A1, C1, and τ1, such that
A1, C1 `BU e1 : τ1 is valid. In other words, a subexpression e1 can always be decorated
with an assumption set, a constraint set, and a type, using the Bottom-Up rules. Secondly,
the induction hypothesis expresses that for all pairs (S,Γ) that meet the three condition im-
posed by the theorem, the type Sτ1 can be derived with the Hindley-Milner inference rules

14

for expression e1 in type environment SΓ. The strategy to construct a proof for the three re-
maining inductive cases is as follows. Firstly, introduce an arbitrary substitution S, together
with a type environment Γ, for which we assume that the three conditions hold. Secondly,
fulfil the conditions for each of the subexpressions, where the same substitution is used, but
possibly a different type environment. Some planning is required to choose the right Γ. By
now, a Hindley-Milner judgement is obtained for each subexpression. Thirdly, combine the
judgements and apply the corresponding Hindley-Milner inference rule to get the desired
judgement.

If the expression at hand is a function e1 applied to an argument e2, we can assume that
A1, C1 `BU e1 :τ1 and A2, C2 `BU e2 :τ2. It follows from [App]

BU
that A, C `BU e1 e2 :τ

holds, where A is A1∪A2, C is C1∪C2∪{τ1 ≡ τ2 → β}, and τ is β. Consider each substitution
S and each type environment Γ such that S satisfies C ∪ A ¹ Γ and dom(A) ⊆ dom(Γ). In
general it is true that if S satisfies C, then S also satisfies each subset of C. As a result,
S satisfies C1 ∪ (A1 ¹ Γ). In addition dom(A1) ⊆ dom(Γ), and therefore by induction we
acquire the judgement SΓ `HM e1 :Sτ1. In a similar way SΓ `HM e2 :Sτ2 can be obtained.
Since S must satisfy the constraint τ1 ≡ τ2 → β, Sτ1 is syntactically equal to Sτ2 → Sβ.
From this observation we conclude that SΓ `HM e1 e2 :Sβ holds, which completes the proof
in case the expression is an application.

Decorating the body of a lambda abstraction with the bottom-up algorithm results in
the judgement A, C `BU e : τ . Applying the appropriate rule justifies A\x, C′ `BU

λx → e : β → τ , where C′ is C ∪ {τ ′ ≡ β | x : τ ′ ∈ A}. We consider each S and Γ such
that dom(A\x) ⊆ dom(Γ) and S satisfies C′ ∪ A\x ¹ Γ. The first assumption about Γ
implies that also dom(A) ⊆ dom(Γ\x ∪ {x : τ}) holds. Because S satisfies the constraints
{τ ′ ≡ β | x : τ ′ ∈ A}, the types associated with x in A are all equivalent after applying
the substitution. In other words, the types that were introduced at the variables, which are
bound by the lambda abstraction, are unified. S also satisfies A ¹ {x : β}, since τ1 ¹ τ2

(notice the monomorphic type on the right) is equal to τ1 ≡ τ2. Merging two environments
as in Property (5) yields that A ¹ Γ\x ∪ {x : β} is satisfied by S. By induction we get
S(Γ\x ∪ {x :β}) `HM e :Sτ , which implies SΓ `HM λx→ e :S(β → τ).

The judgement A, C `BU let x = e1 in e2 : τ2 can be inferred, where A is A1 ∪ A2\x,
C is C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x : τ ′ ∈ A2}, and assuming the declaration and the body of the
let-expression to have judgements A1, C1 `BU e1 : τ1 and A2, C2 `BU e2 : τ2 respectively.
Consider all substitutions S and all type environments Γ that fulfil the three conditions. By
induction we get SΓ `HM e1 :Sτ1. The essential step to prove the let-rule sound is to observe
that S satisfies A2 ¹ {x :generalize(SΓ,Sτ1)}. This holds because S satisfies C, and because,
according to Lemma 5, generalizing type τ1 with respect to the free type variables in SΓ is
the same as generalization with respect to the free type variables in SM . By induction we
get S(Γ\x∪{x :generalize(SΓ, τ1)}) `HM e2 :Sτ2, from which SΓ `HM let x = e1 in e2 :Sτ2

can be concluded. 2

We have shown that every satisfiable constraint set implies the existence of a Hindley-
Milner derivation with the same result type. We now turn to the complementary result where
we prove the completeness of our method: if there is a successful Hindley-Milner derivation,
then our method will infer a type that is at least as general as the type derived using the
Hindley-Milner rules. In Appendix B we present a more detailed proof of this theorem.

Theorem 7 (Completeness) If Γ `HM e : τ then A, C `BU e : τ ′ and there exists an S

15

such that

• S satisfies C

• S satisfies A ¹ Γ

• Sτ = Sτ ′

Proof Consider the collection of well-typed expressions under a type environment Γ. For
such an expression e, we can construct a derivation tree, where the type τ in the root of the
tree is an instance of the (unique) principle type scheme for the expression. Decorating the
expression according to the Bottom-Up rules, we obtain the judgement A, C `BU e : τ ′ for
some τ ′. The types τ and τ ′ are independent; τ is derived with Hindley-Milner, whereas a
substitution that satisfies each constraint in C still has to be applied to τ ′. In our proof, the
substitution S also bridges the gap between the fact that Sτ ′ is the principal type scheme of
e, whereas this is not necessarily the case for τ in the Hindley-Milner derivation.

The proof proceeds by induction on the structure of the expressions. Our induction
hypothesis is somewhat stronger than the statement of the theorem. The condition that
S satisfies A ¹ Γ is in fact [] satisfies (SA) ¹ Γ, in other words, S is not allowed to modify
Γ. The third condition similarly becomes τ = Sτ ′. This simplifies the proof.

If the expression is a single variable x, then the substitution that satisfies the three con-
ditions can be constructed in a straightforward way. Choose S to be [β 7→ τ], where β is the
fresh type variable assigned to x by the Bottom-Up rules, and τ is the type that is returned
by the Hindley-Milner rules, and which therefore is an instance of the type scheme that is
provided by Γ for x. Clearly, S satisfies the empty constraint set, S satisfies {x :β} ¹ Γ, and
Sβ = τ .

A substitution for an application is constructed by composing the substitutions of the two
subexpressions, and additionally map the fresh type variable β to the range of the function
type that was derived for the function expression. The domains of the substitutions are
independent because the type variables mentioned in the two subtrees are disjoint.

The fresh type variable β in the Bottom-Up rule for lambda abstractions is used to unify
several type variables that were assigned to the occurrences of the abstracted variable in
the scope of the lambda. Substitution S maps this type variable to the type τ1, which was
assigned to the variable x and used to extend Γ. For the other type variables we will use
the substitution obtained by induction. Because S satisfies A ¹ {x : τ1}, S also satisfies
{τ ′ ≡ β | x :τ ′ ∈ A}.

It is sufficient to combine the two substitutions that can be obtained from the declara-
tion and the body, also because no fresh type variables are introduced. The only interesting
condition to verify for this composed substitution S is to check whether S satisfies the cre-
ated implicit instance constraints. The induction hypothesis results in S satisfies A2 ¹ {x :
generalize(Γ, τ1)} for the body, and Sτ ′1 = τ1 for the declaration. Because generalizing over
SΓ and SM is equivalent (Lemma 5), we get that S satisfies {τ ′ ¹ generalize(SM,Sτ ′1) | x :
τ ′ ∈ A2}. Applying Property (3) results in satisfaction of {τ ′ ≤M τ ′1 | x :τ ′ ∈ A2} by S.

We conclude that if Γ `HM e : τ is derivable, then InferType(Γ, e) returns the most
general type for expression e under type environment Γ. 2

16

Bool Bool

→ →

→

τ1

(1)

(1) (1)

(2)

(2)(2)

Figure 6: Term graph for (τ1 → Bool)→ τ1 → Bool

6 Unbiased Constraint Solving

In Section 4 we presented a nondeterministic algorithm to solve a set of constraints that was
constructed according to the inference rules. The order in which the constraints are solved
determines the location where a type error is detected and reported. In the process of type
inferencing, this dependency can result in a bias. In this section we discuss an alternative
approach to solve a set of type constraints and for which there is no bias. The method is based
on the construction of a type graph inspired by the path graphs described by Port [Por88].

6.1 Construction of the Type Graph

We start with replacing explicit instance constraints by equality constraints. Each type
scheme is instantiated, which results in the introduction of new type variables in the constraint
set. Similar to algorithm Solve, an implicit instance constraint imposes a condition when
it can be dealt with. We will postpone discussing how these constraints are handled in the
graph. For now we consider solving a set of equality constraints.

First, each type that occurs in an equality constraint is added to a directed term graph.
Each vertex corresponds to a subterm of a type in the constraint set. A composed type has
an outgoing edge labelled with i to the vertex that represents the ith subterm. For instance,
a vertex that represents a function type has two outgoing edges. All occurrences of a type
variable in the constraint set share the same vertex. Figure 6 depicts the term graph for
(τ1 → Bool)→ τ1 → Bool.

In addition to the term graph, a second graph is constructed, which has the same set
of vertices, and which identifies the equivalence classes of types. This undirected graph
administrates why two (sub)terms are unified. For each equality constraint, an edge is added
between the vertices that correspond to the types in the constraint. Two types are in the same
equivalence class if their corresponding vertices are connected. Equivalence of two composed
types propagates to equality of the subterms. As a result, we add derived (or implied) edges
between the subterms in pairwise fashion. For example, the constraint τ1 → τ1 ≡ Bool→ τ2

enforces an equality between τ1 and Bool, and between τ1 and τ2. Therefore, we add a derived
edge between the vertex of τ1 and the vertex of Bool, and similar for τ1 and τ2. For each
derived edge we can trace the constraints responsible for its inclusion. Note that adding
an edge can result in the connection of two equivalence classes, and this might lead to the
insertion of more derived edges.

17

Int → Int

→

→

Bool

Bool

Bool

Boolτ3

τ6 τ2 τ1

τ7

Int

Int

→

τ5 τ4

Int Int

Int

→ Int

→

→

Bool

Bool

Bool

Bool

τ5

τ3

τ4

τ6 τ2 τ1

τ7

→Int Int

Int

→ → Int

→

→

Bool

Bool

Bool

Bool

τ5

τ3

τ4

τ6 τ2 τ1

τ7

#5

#4

#8

#6

#7

#3 #9

#1

#2

1

1

11

2

→

τ3

τ1

τ2

2

2

2

1

2

#1

#2

#3

(a) (b)

Figure 7: Two examples of a type graph

Example 6 Consider the following ill-typed expression that was mentioned in the introduc-
tion:

(λx→ x+ 1) ((λy → if y then True else False) False)

Extending the expression language and the typing rules to support + and conditionals results
in the assignment of the type τ7 to this expression, with the following constraints:

#1 τ1 ≡ τ2

#2 τ1 ≡ Int
#3 Int ≡ Int

#4 τ3 ≡ τ5

#5 τ3 ≡ Bool
#6 τ4 ≡ Bool

#7 τ4 ≡ Bool
#8 τ5 → τ4 ≡ Bool→ τ6

#9 τ2 → Int ≡ τ6 → τ7

Figure 7a shows the six equivalence classes for this constraint set, as indicated by the
shaded areas. The graph combines the term graph and the path graph, and contains three
kinds of edges. First, the directed edges are part of the term graph, and are labelled with
the child number. Second, the solid edges are the initial equalities that correspond to the
equality constraints in the set. These edges are annotated with the constraint number, where
each constraint number appears exactly once. Finally, the derived equalities are depicted as
dashed lines. For instance, the edge between the type variable τ5 and the type constant Bool
is the result of the two function types that are put in the same equivalence class by constraint
#8. The equivalence classes are the connected components when considering the initial and
the derived edges in the path graph.

We now discuss how the algorithm should deal with the implicit instance constraints.
Before we can deal with the constraint τ1 ≤M τ2, all the free type variables in τ2 that do not
occur in M (these are the type variables to be quantified) should be in a fixed equivalence
class, that is, a consistent equivalence class that is not going to change while handling the
remaining constraints. The implicit instance constraint is replaced by the explicit instance
constraint τ1 ¹ generalize(SM,Sτ2), where the substitution S maps each type variable to the
representative of its equivalence class. If an equivalence class contains a composed type, then
this is the representative of the class. If there are only type variables, then one is chosen to
represent the others.

18

The type graph can also be constructed for unsatisfiable constraint sets. This contributes
to the advantage of graph unification over algorithm Solve, and over traditional algorithms
such as W andM. Because the constraint set is solved as a whole, the bias that is the result
of an imposed order of the unifications is removed completely.

An inconsistency can show up in two ways. The most obvious case is when two different
type constructors end up in the same equivalence class, e.g., Bool and Int in Figure 7a. The
error path is the path that connects the incompatible types within an equivalence class. In
the other case, there is no topological ordering of the equality classes with respect to the
directed edges from the term graph, which indicates that there is an infinite type. Also an
directed edge between two vertices in the same equivalence class is erroneous. Consider the
ill-typed expression λx→ x x, and its constraint set

#1 : τ1 ≡ τ2 → τ3, #2 : τ1 ≡ τ3, #3 : τ2 ≡ τ3.

The graph for this constraint set, which is shown in Figure 7b, reveals an infinite type.

6.2 Heuristics to Report Inconsistencies

At least one constraint for each error path should be removed to restore the consistency in
an equality graph. Heuristics select the edges to be removed in the graph, and produce an
appropriate error message. Traditional algorithms only report the first unification error that
is detected, whereas the type graph allows reports of possibly independent errors.

We list a number of heuristics to report an inconsistency.

• Select an ordering of the constraints and report the location where the type inferencer
detects an inconsistency. For example, in Figure 7a there are two error paths: p1 = {#2,
#1, #9, #8, #6} and p2 = {#2, #1, #9, #8, #7}. The constraint orders associated
with the algorithms W and M report #9 and #6 respectively, since these are the
constraints that complete an error path. However, removing #6 does not break error
path p2, which is reflected by the fact that replacing True in the then-branch by a value
of type Int, as is suggested by the error message ofM, does not remove the type error.
If wanted, we can continue solving the ordered constraints after detecting and reporting
an inconsistency.

• Following the approach of Johnson and Walz in [WJ86], we can select the type equation
in a constraint set that is the most likely source of error by counting the number of
occurrences of each type constructor in an equivalence class. We assign a removal
cost (or a weight) to each constraint, and then compute the maximal consistent set of
constraints for which the total removal cost is minimal. Paths between compatible type
constructors should be preserved if possible.

• The expression that is reported in a type error message is the location where one expects
that the program should be modified. Consequently, replacing this expression by ⊥
should remove the type inconsistency, where ⊥ has the most general type ∀a.a. In
Example 6, this can be both x (represented by τ1) and the conditional (τ6).

• In [Wan86, BS93, DB96], all deductive steps are maintained and interpreted to construct
a sensible error message. Precisely the constraints that are mentioned in the error
paths contribute to the ill-typedness of an expression, and therefore we claim that the

19

information required for these analyses is captured in the type graph. McAdam [McA00]
describes a different graph to store the information.

• Yang [Jun00] claims that conflicting sites should be reported rather than a single loca-
tion. To incorporate this approach for a type graph only requires tracing the origin of
each type constructor.

7 Conclusion

In this paper we have described a method for collecting constraints for type inferencing and
have shown how to solve these. We have proved the method to be sound and complete with
respect to the inference rules of Hindley-Milner. An important aspect of our method is that it
encompasses the well-known algorithms W andM, corresponding to certain orders in which
the collected constraints are solved.

As an illustration of combining heuristics for generating suitable error messages with the
constraint collecting Bottom-Up rules, we showed how a type graph can be constructed for
an expression. This type graph can be used to generate multiple, independent error reports
that are in some sense optimal.

With the main formal algorithm proven correct we can investigate the quality of the
corresponding reported errors for various heuristics. We plan to do this by including our
type inference algorithms into a Haskell compiler developed in our group. This compiler
includes a large subset of Haskell (but excludes, e.g., type classes) and shall be used mainly
in courses which teach Haskell to novice functional programmers. As a result, we hope
to obtain a variety of programs reflecting the kind of type errors that are made by novice
functional programmers.

Another point of investigation is into the resources necessary for implementing a heuristic.
The ideal situation would be that the user can choose how many resources may be spent on
finding good error messages.

Finally, we are interested in extending our language. One important extension for the type
system is the introduction of type and constructor classes, which provide a way to overload
functions. Using type synonyms in reported error messages will increase understanding, but
also introduces new problems for the type system.

References

[Aik99] A. Aiken. Introduction to set constraint-based program analysis. In Science of
Computer Programming, 35(1), pages 79–111, 1999.

[Ber95] Karen Bernstein. Debugging type errors (full version). Technical report, State
University of New York at Stony Brook, November 1995. Technical Report.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, Cambridge, UK, 1998.

[BS93] M. Beaven and R. Stansifer. Explaining type errors in polymorphic languages. In
ACM Letters on Programming Languages, volume 2, pages 17–30, December 1993.

20

[Cho95] Venkatesh Choppella. Diagnosis of ill-typed programs, 1995.
http://citeseer.nj.nec.com/choppella95diagnosis.html.

[DB96] D. Duggan and F. Bent. Explaining type inference. In Science of Computer Pro-
gramming 27, pages 37–83, 1996.

[DM82] L. Damas and R. Milner. Principal type schemes for functional programs. In Prin-
ciples of Programming Languages (POPL ’82), pages 207–212, 1982.

[GVS96] M. Gandhe, G. Venkatesh, and A. Sanyal. Correcting errors in the curry system.
In Chandrum V. and Vinay, V. (Eds.): Proc. of 16th Conf. on Foundations of
Software Technology and Theoretical Computer Science, LNCS vol. 1180, Springer-
Verlag, pages 347–358, 1996.

[Jun00] Yang Jun. Explaining type errors by finding the sources of type conflicts. In Greg
Michaelson, Phil Trindler, and Hans-Wolfgang Loidl, editors, Trends in Functional
Programming, pages 58–66. Intellect Books, 2000.

[LY98] Oukseh Lee and Kwangkeun Yi. Proofs about a folklore let-polymorphic type in-
ference algorithm. ACM Transanctions on Programming Languages and Systems,
20(4):707–723, July 1998.

[LY00] Oukseh Lee and Kwangkeun Yi. A generalization of hybrid let-polymorphic type
inference algorithms. In Proceedings of the First Asian Workshop on Programming
Languages and Systems, pages 79–88, National university of Singapore, Singapore,
December 2000.

[McA98] Bruce J. McAdam. On the Unification of Substitutions in Type Inference. In
Kevin Hammond, Anthony J.T. Davie, and Chris Clack, editors, Implementation of
Functional Languages (IFL ’98), London, UK, volume 1595 of LNCS, pages 139–
154. Springer-Verlag, September 1998.

[McA00] B. McAdam. Generalising techniques for type debugging. In Phil Trinder, Greg
Michaelson, and Hans-Wolfgang Loidl, editors, Trends in Functional Programming,
pages 49–57. Intellect Books, March 2000.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Com-
puter and System Sciences, 17:348–375, 1978.

[Nik85] R. S. Nikhil. Practical polymorphism. In J.-P. Jouannaud, editor, Functional Pro-
gramming Languages and Computer Architecture, pages 319–333. Springer-Verlag,
Berlin, DE, 1985.

[Por88] Graeme S. Port. A simple approach to finding the cause of non-unifiability. In
Robert A. Kowalski and Kenneth A. Bowen, editors, Proceedings of the Fifth Inter-
national Conference and Symposium on Logic Programming, pages 651–665, Seatle,
1988. The MIT Press.

[SMZ99] Martin Sulzmann, Martin Müller, and Christoph Zenger. Hindley/milner style type
systems in constraint form. Research Report ACRC–99–009, University of South
Australia, School of Computer and Information Science, July 1999.

21

[Wan86] M. Wand. Finding the source of type errors. In 13th Annual ACM Symp. on
Principles of Prog. Languages, pages 38–43, January 1986.

[WJ86] J. A. Walz and G. F. Johnson. A maximum flow approach to anomaly isolation
in unification-based incremental type inference. In Conference Record of the 13th
Annual ACM Symposium on Principles of Programming Languages, pages 44–57,
St. Petersburg, FL, January 1986.

22

A Soundness

We present a detailed proof of Theorem 6, in which we claim that the Bottom-Up type
inference rules are sound with respect to the Hindley-Milner rules. We give the four cases for
a proof by induction on the structure of the expressions.

A.1 Variable

Consider the following Bottom-Up type inference rule:

{x :β}, ∅ `BU x :β [Var]
BU

Choose S and Γ such that:
1. dom({x :β}) ⊆ dom(Γ)
2. S satisfies ∅
3. S satisfies {x :β} ¹ Γ

Then the following holds:
4. S satisfies {β ¹ Γ(x)} (¹), (3)
5. Sβ ≺ SΓ(x) (¹), (4)
6. SΓ `HM x :Sβ [Var]

HM
, (5)

A.2 Application

Consider the following Bottom-Up type inference rule:

A1, C1 `BU e1 :τ1 A2, C2 `BU e2 :τ2

A1 ∪ A2, C1 ∪ C2 ∪ {τ1 ≡ τ2 → β} `BU e1 e2 :β
[App]

BU

Choose S and Γ such that:
1. dom(A1 ∪ A2) ⊆ dom(Γ)
2. S satisfies C1 ∪ C2 ∪ {τ1 ≡ τ2 → β}
3. S satisfies (A1 ∪ A2) ¹ Γ

Then the following holds:
4. dom(A1) ⊆ dom(Γ) (1)
5. S satisfies C1 (2)
6. S satisfies A1 ¹ Γ Property (4), (3)
7. SΓ `HM e1 :Sτ1 induction, (4, 5, 6)
8. S satisfies {τ1 ≡ τ2 → β} (2)
9. Sτ1 = S(τ2 → β) (≡), (8)
10. SΓ `HM e1 :Sτ2 → Sβ (7, 9)
11. dom(A2) ⊆ dom(Γ) (1)
12. S satisfies C2 (2)
13. S satisfies A2 ¹ Γ Property (4), (3)
14. SΓ `HM e2 :Sτ2 induction, (11, 12, 13)
15. SΓ `HM e1 e2 :Sβ [App]

HM
, (10, 14)

23

A.3 Lambda

Consider the following Bottom-Up type inference rule:

A, C `BU e :τ
A\x, C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} `BU λx→ e : (β → τ)

[Abs]
BU

Choose S and Γ such that:
1. dom(A\x) ⊆ dom(Γ)
2. S satisfies C ∪ {τ ′ ≡ β | x :τ ′ ∈ A}
3. S satisfies A\x ¹ Γ

Then the following holds:
4. dom(A) ⊆ dom(Γ\x ∪ {x :Sβ}) (1)
5. S satisfies C (2)
6. S satisfies A ¹ Γ\x Property (6), (3)
7. S satisfies {τ ′ ≡ β | x :τ ′ ∈ A} (2)
8. S satisfies A ¹ {x :Sβ} Property (7), (7)
9. S satisfies A ¹ (Γ\x ∪ {x :Sβ}) Property (5), (6, 8)
10. S(Γ\x ∪ {x :Sβ}) `HM e :Sτ induction, (4, 5, 9)
11. (SΓ)\x ∪ {x :Sβ} `HM e :Sτ (10)
12. SΓ `HM λx→ e :Sβ → Sτ [Abs]

HM
, (11)

13. SΓ `HM λx→ e :S(β → τ) (12)

A.4 Let expression

Consider the following Bottom-Up type inference rule:

A1, C1 `BU e1 :τ1 A2, C2 `BU e2 :τ2

A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x :τ ′ ∈ A2} `BU let x = e1 in e2 :τ2
[Let]

BU

Choose S and Γ such that:
1. dom(A1 ∪ A2\x) ⊆ dom(Γ)
2. S satisfies C1 ∪ C2 ∪ {τ ′ ≤M τ1 | x :τ ′ ∈ A2}
3. S satisfies (A1 ∪ A2\x) ¹ Γ

24

Then the following holds:
4. dom(A1) ⊆ dom(Γ) (1)
5. S satisfies C1 (2)
6. S satisfies A1 ¹ Γ Property (4), (3)
7. SΓ `HM e1 :Sτ1 induction, (4, 5, 6)
8. dom(A2) ⊆ dom(Γ\x ∪ {x :generalize(SΓ,Sτ1)}) (1)
9. S satisfies C2 (6)
10. S satisfies A2 ¹ Γ\x Property (6), (3)
11. S satisfies {τ ′ ≤M τ1 | x :τ ′ ∈ A2} (2)
12. S satisfies {τ ′ ¹ generalize(SM,Sτ1) | x :τ ′ ∈ A2} Property (3), (11)
13. S satisfies {τ ′ ¹ generalize(SΓ,Sτ1) | x :τ ′ ∈ A2} Lemma 5, (12)
14. S satisfies A2 ¹ {x :generalize(SΓ,Sτ1)} (¹), (13)
15. S satisfies A2 ¹ (Γ\x ∪ {x :generalize(SΓ,Sτ1)}) Property (5), (10, 14)
16. S(Γ\x ∪ {x :generalize(SΓ,Sτ1)}) `HM e2 :Sτ2 induction, (8, 9, 15)
17. (SΓ)\x ∪ {x :generalize(SΓ,Sτ1)} `HM e2 :Sτ2 (16)
18. SΓ `HM let x = e1 in e2 :Sτ2 [Let]

HM
, (7, 17)

B Completeness

We present a detailed proof of Theorem 7, in which we claim that the Bottom-Up type
inference rules are complete with respect to the Hindley-Milner rules. We give the four cases
for a proof by induction on the structure of the expressions.

B.1 Variable

Consider the following Hindley-Milner type inference rule:

τ ≺ Γ(x)
Γ `HM x :τ

[Var]
HM

We assume that:
1. τ ≺ Γ(x)

Then the following holds:
2. {x :β}, ∅ `BU x :β [Var]

BU

3. We choose S to be [β 7→ τ]
4. S satisfies ∅
5. Sτ ≺ SΓ(x) (1)
6. Sβ ≺ SΓ(x) (3, 5)
7. S satisfies {β ¹ Γ(x)} (¹), (6)
8. S satisfies {x :β} ¹ Γ (¹), (7)
9. Sβ = τ (3)

Proof completed by (2, 4, 8, 9)

B.2 Application

Consider the following Hindley-Milner type inference rule:

Γ `HM e1 :τ1 → τ2 Γ `HM e2 :τ1

Γ `HM e1 e2 :τ2
[App]

HM

25

Induction results in:
1. A1, C1 `BU e1 :τ ′1, S1 satisfies C1,

S1 satisfies A1 ¹ Γ, and S1τ
′
1 = τ1 → τ2

(for some S1)

2. A2, C2 `BU e2 :τ ′2, S2 satisfies C2,
S2 satisfies A2 ¹ Γ, and S2τ

′
2 = τ1

(for some S2)

Then the following holds:
3. A1 ∪ A2, C1 ∪ C2 ∪ {τ ′1 ≡ τ ′2 → β} `BU e1 e2 :β [App]

BU
, (1, 2)

4. We choose S to be [β 7→ τ2] ◦ S2 ◦ S1

5. S satisfies A1 ∪ A2 ¹ Γ Property (4), (1, 2, 4)
6. Sτ ′1 = τ1 → τ2 (1, 4)
7. S(τ ′2 → β) = τ1 → τ2 (2, 4)
8. S satisfies {τ ′1 ≡ τ ′2 → β} (≡), (6, 7)
9. S satisfies C1 ∪ C2 ∪ {τ ′1 ≡ τ ′2 → β} (1, 2, 8)
10. Sβ = τ2 (4)

Proof completed by (3, 5, 9, 10)

B.3 Lambda

Consider the following Hindley-Milner type inference rule:

Γ\x ∪ {x ::τ1} `HM e :τ2

Γ `HM λx→ e :τ1 → τ2
[Abs]

HM

Induction results in:
1. A, C `BU e :τ , S1 satisfies C,

S1 satisfies A ¹ Γ\x ∪ {x :τ1}, and S1τ = τ2

(for some S1)

Then the following holds:
2. A\x, C∪{τ ′ ≡ β | x :τ ′ ∈ A} `BU λx→ e :β → τ [Abs]

BU
, (1)

3. We choose S to be [β 7→ τ1] ◦ S1

4. S satisfies A\x ¹ Γ Property (6), (1, 3)
5. S satisfies C (1, 3)
6. S satisfies A ¹ {x :τ1} Property (5), (1, 3)
7. S satisfies {τ ′ ≡ τ1 | x :τ ′ ∈ A} Property (7), (6)
8. S satisfies {τ ′ ≡ β | x :τ ′ ∈ A} (≡), (3, 7)
9. S satisfies C ∪ {τ ′ ≡ β | x :τ ′ ∈ A} (5, 8)
10. S(β → τ) = τ1 → τ2 (1, 3)

Proof completed by (2, 4, 9, 10)

B.4 Let expression

Consider the following Hindley-Milner type inference rule:

Γ `HM e1 :τ1 Γ\x ∪ {x :generalize(Γ, τ1)} `HM e2 :τ2

Γ `HM let x = e1 in e2 :τ2
[Let]

HM

26

Induction results in:
1. A1, C1 `BU e1 :τ ′1, S1 satisfies C1,

S1 satisfies A1 ¹ Γ, and S1τ
′
1 = τ1

(for some S1)

2. A2, C2 `BU e2 :τ ′2, S2 satisfies C2,
S2 satisfies A2 ¹ (Γ\x ∪ {x :generalize(Γ, τ1)}),
and S2τ

′
2 = τ2

(for some S2)

Then the following holds:
3. A1 ∪ A2\x, C1 ∪ C2 ∪ {τ ′ ≤M τ ′1 | x :τ ′ ∈ A2}

`BU let x = e1 in e2 :τ ′2 [Let]
BU

, (1, 2)
4. We choose S to be S2 ◦ S1

5. S satisfies (A1 ∪ A2\x) ¹ Γ Property (6), (1, 2, 4)
6. S satisfies A2 ¹ {x :generalize(Γ, τ1)} Property (5), (2, 4)
7. S satisfies {τ ′ ¹ generalize(Γ, τ1) | x :τ ′ ∈ A2} (¹), (6)
8. S satisfies {τ ′ ¹ generalize(SM,Sτ ′1) | x :τ ′ ∈ A2} Lemma 5, (1, 4, 7)
9. S satisfies {τ ′ ≤M τ ′1 | x :τ ′ ∈ A2} Property (3), (8)
10. S satisfies C1 ∪ C2 ∪ {τ ′ ≤M τ ′1 | x :τ ′ ∈ A2} (1, 2, 4, 9)
11. Sτ ′2 = τ2 (2, 4)

Proof completed by (3, 5, 10, 11)

27

	Introduction
	Preliminaries
	The Hindley-Milner Type Inference Rules
	Type Inferencing with Constraints
	Type Constraints
	The Bottom-Up Type Inference Rules
	Solving Type Constraints
	Correctness of Algorithm Solve
	A Type Inference Algorithm

	Soundness and Completeness
	Unbiased Constraint Solving
	Construction of the Type Graph
	Heuristics to Report Inconsistencies

	Conclusion
	Soundness
	Variable
	Application
	Lambda
	Let expression

	Completeness
	Variable
	Application
	Lambda
	Let expression

