
Hierarchical Decompositions and Circular Ray Shooting in

Simple Polygons

Siu-Wing Cheng1 Otfried Cheong2 Hazel Everett3 Ren�e van Oostrum2

Abstract

A hierarchical decomposition of a simple polygon is introduced. The hierarchy has depth
O(log n), linear size, and its regions have at most three neighbors. Using this hierarchy,
circular ray shooting queries in a simple polygon can be answered in O(log2 n) query time
and O(n log n) space. If the radius of the circle is �xed, the query time can be improved to
O(log n) and the space to O(n).

1 Introduction

Geometric problems lend themselves naturally to solution by divide-and-conquer algorithms. Sub-
problems can be identi�ed by partitioning space into regions, and the problem can be solved in
each region separately. Recursively continuing the partition leads to a hierarchical decomposition

of a geometric space or object. Many such decompositions have been introduced to solve a variety
of problems [5, 13]. Most data structures for geometric search problems are in fact hierarchical
decompositions.

Guibas and Hershberger [11] introduced a hierarchical decomposition of a simple polygon to
eÆciently answer shortest-path queries within the polygon. Their structure is a hierarchy of re-
gions, the root corresponding to the whole polygon, the leaves corresponding to triangles of a
�xed triangulation of the polygon, and every non-leaf region being split into two children using a
diagonal. Every region is thus an area of the polygon, connected to the remainder of the polygon
through a number of \doors." In Guibas and Hershberger's structure, a region can have �(logn)
doors, where n is the number of edges of the polygon.

We give a new hierarchical decomposition of a simple polygon where regions have at most three
doors. In other words, we make sure that when we split a region with three doors, both subregions
contain at least one of the original three doors. Our technique for achieving this is inspired by the
topology tree hierarchy of Frederickson [9, 10]. The decomposition can be based either on a �xed
triangulation or on the vertical decomposition (trapezoidal map) of the polygon.

We believe that this decomposition will prove useful in a number of applications in computa-
tional geometry that deal with problems involving paths in simple polygons. In this paper, we
concentrate on circular ray shooting, and use the decomposition based on the trapezoidal map.

A data structure for circular ray shooting problem in a simple polygon was given by Agarwal
and Sharir [1], achieving O(log4 n) query time with space O(n log3 n). We improve this result to

1Hong Kong University of Science & Technology, Dept. of Computer Science, Clear Water Bay, Kowloon, Hong
Kong. This research was supported by RGC Competitive Earmarked Grant HKUST650/95E.

2Institute of Information and Computing Sciences, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, Nether-
lands. This research was supported by the Netherlands' Organization for Scienti�c Research (NWO). A portion of
this research was done while O.C. and R.v.O. were at HKUST, and supported by the Research Grants Council of
Hong Kong.

3LORIA, 615 rue du Jardin Botanique, B.P. 101, 54602 Villers-l�es-Nancy, cedex, France. Part of this research
was done during a sabbatical spent at HKUST, and was supported by NSERC and the Research Grants Council of
Hong Kong.

1

O(log2 n) query time and O(n logn) space. If the radius of the query arc is �xed, that is, given
at preprocessing time, the query time can be improved to O(logn) and the space to O(n). This
matches the best known result for linear ray shooting in a simple polygon [12].

The hierarchical decomposition has other applications as well. Based on a triangulation, it can
be used to replace the decomposition in Guibas and Hershberger's structure (this does not lead
to an improvement of the asymptotic complexity). In forthcoming papers we will describe how
to perform ray shooting along parabolic and hyperbolic arcs, as well as �nding the largest empty
lune determined by two points, or the on-line computation of a circular visibility region in a simple
polygon.

2 The hierarchical vertical decomposition

The hierarchical vertical decomposition of a simple polygon P is based on its vertical decomposition

(or trapezoidal map) [6, 8]. Recall that the trapezoidal map is obtained by drawing a vertical line
segment through every vertex of P , cutting the interior of P into two parts. The result is a partition
of P into trapezoids (which can degenerate into triangles) separated by vertical sides. We call these
vertical sides separating two trapezoids doors. We assume general position, that is no two distinct
endpoints have the same x-coordinate. This can easily be simulated [2, Chapter 6]. Therefore a
trapezoid has at most four doors. We split trapezoids with four doors into two trapezoids using a
vertical door in the middle. The result is a vertical decomposition T of O(n) trapezoids with at
most three doors each. Its dual graph is a tree with maximum degree three.

The hierarchy H is a rooted binary tree. The nodes of the tree are called regions, and are
connected sets of trapezoids of T . The doors of a region are the doors of trapezoids of the region
that are shared with trapezoids outside the region. A remarkable property of our decomposition will
be that every region has at most three doors. Two regions consisting of disjoint sets of trapezoids
are called adjacent if they share a door.

The root of H is the region consisting of the whole polygon P . The leaves of H are regions
consisting of a single trapezoid of T . All non-leaf regions r have two daughter regions, obtained by
splitting the set of trapezoids of r into two connected subsets. We can visualize this as splitting
the region along an interior door.

The regions on each level of H form a decomposition of P . The adjacency relationship induces
a tree of maximum degree three on these regions. Figure 1 shows an example of a hierarchical
vertical decomposition for a polygon with 15 vertices.

Before we can prove that such a decomposition exists, we need a small lemma.

Lemma 1 Let T be a tree of m nodes of maximum degree three. There is a matching M of T of

size at least m=4 that does not match two nodes of degree three.

Proof: The statement is clearly true if T is a path, so assume there is at least one node of degree
three. Let this be the root of T , inducing a parent-child relationship on T .

Consider now a maximal chain of nodes of degree less than three. Its bottom node (that is,
the node furthest from the root) is either a node of degree one (a leaf) or degree two (whose child
is a node of degree three); the remaining nodes on the chain are of degree two. The parent of the
highest node in the chain is of degree three. If the total number of nodes on the chain is even,
we can match them to each other in pairs. If their total number is odd, we match them starting
from the bottom, and match the highest node with its parent, unless this parent (a node of degree
three) has already been matched. We do this for every such maximal chain.

We analyze the size of the matching. Let h be the number of nodes of degree three. Then
the sum of node degrees is at least 3h + (m � h) = 2h +m, and since T is a tree it follows that
2h+m � 2m�2 and therefore h � m=2�1. We now charge every unmatched node of T to a node
of degree three in the following way. An unmatched node of degree three is charged to itself. An
unmatched node of degree less than three is charged to its parent, necessarily a matched node of

2

a

b

c

d

e
f

h

i

j

k

l

m

g

1
2

3

4 5
6

7
8

9
10

11

12

13

14

a

l b

e c

g f
9

d

kh

i j m

13 12 11 10 1 2 14 4 5 6 7 8

3

Figure 1: A hierarchical decomposition H for a simple polygon P . Inner nodes of H are annotated
with the door splitting them, leaves with the trapezoid.

degree three. Except for the root, every node of degree three has two children, and can therefore
be charged at most once. The root has three children and can be charged at most twice. The total
charge is therefore at most h+ 1 � m=2, and the bound follows.

Theorem 2 Let P be a simple polygon with n vertices. Then there exists a hierarchical vertical

decomposition H of P with the following properties.

� Every region has at most three doors.

� The depth of the hierarchy is O(log n).

� The number of regions in H is O(n).

� The total size of all regions in H is O(n logn).

� H can be computed in time O(n log n).

Proof: We give an algorithm to construct H in time O(n logn). The properties will follow from
the construction. We start out with T , constructed in time O(n logn) from P [6, 8]. We create
the leaves of H from T .

The construction now proceeds in phases. In every phase, we merge adjacent regions in pairs.
Note that such a merge is admissible unless both regions have three doors (because that would
result in a region with four doors).

Assume we have m regions at the beginning of a phase. They partition P , and the adjacency
relationship between them induces a tree T withm nodes and maximum degree three. By Lemma 1,
there is a matching M of size at least m=4. We merge regions according to the matching M ,
resulting in at most 3m=4 regions at the end of the phase.

Finding the matching and merging the regions can be done in time O(m). Since the number of
regions decreases geometrically, the total merging time is O(n). The number of regions generated
is O(n), and the depth of the hierarchy is O(logn). Clearly every region created has at most three
doors.

Since the regions on a level of H form a partition of the trapezoids of T , the total size of all
regions on this level is O(n). Since the depth of the hierarchy is O(logn), the total size of all

3

regions is bounded by O(n log n).

The dual graph of T is a tree of degree at most three. For every pair of trapezoids there is a
unique sequence of trapezoids that connects them. The hierarchical decomposition H can be used
to retrieve this sequence in a compact form, as the following lemma shows.

We �rst introduce a bit of notation. A non-leaf region r 2 H has two daughter regions separated
by a door that we denote as dr. The level of a region is its distance from the root|the root has
level zero, its daughters have level one, and so on.

Lemma 3 Let P be a simple polygon with n vertices with hierarchical vertical decomposition H.
Given two query trapezoids �1 and �2, Algorithm FindSequence computes in time O(logn) a

sequence � = r1; : : : ; rk of regions of H such that r1 = �1, rk = �2, ri and ri+1 are adjacent for

1 � i < k, and k = O(log n).

Proof: We observe that the loop in line 5 maintains the following invariant: region r is adjacent
to the �rst region in �, and the common door is d. Furthermore, the level of r increases by one
in each iteration. Similarly, the loop of line 15 maintains the invariant that region r is adjacent
to the last region of �, the common door is d, and again the level of r increases in each iteration.
It follows that consecutive regions in � are disjoint and adjacent along a common door, implying
the correctness of the result. The running time and the length of the returned sequence is linear
in the depth of H, and therefore O(log n).

Algorithm FindSequence(�1;�2)
Input: Two trapezoids �1, �2 of T
Output: A sequence � = r1; : : : ; rk of regions of H.
1. Let r� be the the lowest common ancestor of �1;�2 in H.
2. Let r be the daughter of r� containing �1.
3. d dr� .
4. Let � be the empty sequence.
5. while r 6= �1

6. do Let r0 be the daughter of r containing �1.
7. Let r00 be the other daughter of r.
8. if d is a door of r00

9. then prepend r00 to �.
10. d dr.
11. r r0.
12. Prepend �1 to �.
13. Let r be the daughter of r� containing �2.
14. d dr� .
15. while r 6= �2

16. do Let r0 be the daughter of r containing �2.
17. Let r00 be the other daughter of r.
18. if d is a door of r00

19. then append r00 to �.
20. d dr.
21. r r0.
22. Append �2 to �.
23. return �

As an immediate application, we can precompute a set of O(n) subsequences of trapezoids,
and then express the sequence connecting two given trapezoids using O(logn) precomputed sub-
sequences.

4

Corollary 4 Let P be a simple polygon with n vertices. There is a data structure of size O(n logn)
that can be computed in O(n logn) time and that allows to return, in O(logn) time, the sequence

of trapezoids connecting two query trapezoids �1 and �2 as a sequence of O(logn) precomputed

subsequences.

Proof: The data structure consists of the hierarchical vertical decomposition H. A region r of H
has at most three doors. For each of the at most three pairs (d1; d2) of doors of r, we precom-
pute the sequence of trapezoids of r connecting d1 and d2. There are O(n) such precomputed
sequences, and by Theorem 2 their total size is O(n log n). To answer a query, we apply Algo-
rithm FindSequence to obtain a sequence of O(logn) regions �1 = r1; : : : ; rk = �2. For each region
ri, 1 < i < k, we have a precomputed sequence connecting the doors ri shares with ri�1 and ri+1.

We have based our description of the hierarchical decomposition on the trapezoidal map of P
because this version will be needed for our application to ray shooting in the following sections.
However, the decomposition can be built based on a �xed triangulation of P in exactly the same
way.

3 Ray shooting with the hierarchical vertical decomposition

Given a simple polygon P , we would like to build a data structure that stores P in such a way
that certain ray shooting queries can be answered quickly. A query consists of an x-monotone
curve with endpoints p and q, with p inside P , and the goal is to �nd the �rst intersection of
 with the boundary of P , or to determine that there is no such intersection. Semi-in�nite rays
can be simulated by choosing q far away outside P . The curve should be such that intersections
between and a line segment can be computed in constant time. (A data structure for queries
with starting point outside the polygon can be built in the same way by interpreting the exterior
of P as a \generalized" polygon.)

Our data structure is based on the hierarchical vertical decompositionH of P . We �rst compute
H and a point location structure for T [7]. A region r 2 H has at most three doors, and therefore
at most two pairs of doors through which an x-monotone path could traverse r. Let d1; d2 be such
a pair of doors. Let � be the set of trapezoids connecting d1 and d2. We suppose for the moment
that we have constructed a data structure that allows us to test, in time Q(j�j), whether a given
query curve known to intersect the doors d1 and d2 passes through all the trapezoids in � without
intersecting any of their bounding edges. That is equivalent to testing whether the curve, if it
passes through d1 also passes through d2 without intersecting the boundary of P in between.

Our approach is to walk along through regions of H. When enters a region r, we use the
auxiliary data structure to test if it passes through r without intersecting the boundary of P . If
so, we continue the walking in the neighboring region. Otherwise, we know that the �rst point of
intersection between and P can be found in r.

Note that even if p and q both lie in P , but does not completely lie in P , then the �rst
intersection may occur in a trapezoid not in the sequence computed by Algorithm FindSequence.
This makes the search somewhat more complex.

Lemma 5 Let P be a simple polygon with n vertices with hierarchical vertical decomposition H.
Suppose that for each pair of doors of a region in H consisting of m trapezoids, a data structure of

size S(m) can be constructed in time P (m) that tests, in time Q(m), whether an x-monotone query

curve passes through the two doors without intersecting any edge of P in between. Then a data

structure of size O(S(n) logn) can be constructed in time O(P (n) logn) that answers ray-shooting
queries along x-monotone curves in time O(Q(n) logn).

Proof: The data structure consists of the hierarchical decomposition H, where each region r has
been augmented with at most two auxiliary structures to test the pairs of doors that can be

5

connected by an x-monotone path. Since we can assume P (m) and S(m) to be at least linear, the
total size is O(S(n) log n), and the total preprocessing time is O(P (n) logn).

The query procedure is given by Algorithm ShootRay . The loop in line 6 has the following
invariant: the curve does not intersect P before it reaches the door d, which is a door of r. If
flag = true, then the part of between p and d lies in r, otherwise enters r through d and
either ends in r or has an intersection point with P in r.

The level of the door d decreases in each iteration of the loop, and therefore it is executed
at most O(logn) times. The test in line 10 takes Q(m) = O(Q(n)) time, and so the loop takes
time O(Q(n) log n).

The loop in line 14 maintains the invariant that d is a door of r and either ends or has an
intersection with P in r. The level of r increases by one in each iteration, so the loop is executed
O(log n) times. Its running time is dominated by the query of the auxiliary data structure in
line 17, and so the total time for this loop is O(Q(n) logn).

The loop invariant guarantees that in line 20 the region r is in fact a trapezoid containing
either q or the intersection point we are searching for, and so the algorithm is correct.

Algorithm ShootRay()
Input: An x-monotone curve with endpoints p and q.
Output: The �rst intersection between and P .
1. Let � be the trapezoid containing p.
2. if intersects the top or bottom edge of � then return the intersection point.
3. if q 2 � then return nil.
4. Let d be the door through which exits �.
5. r �; f lag true.
6. while flag
7. do Let r� be the region with separating door d, that is dr� = d.
8. Let r0 be the daughter of r� not containing �.
9. Let d0 be the second door of r0 intersected by .
10. if d0 exists and passes through r0 from d to d0

11. then d d0

12. else flag false.
13. r r0

14. while r is not a trapezoid
15. do d0 dr
16. Let r0, r00 be the daughters of r, such that r0 has the door d.
17. if intersects d0 and passes through r0 from d to d0

18. then d d0; r r00.
19. else r r0

20. if intersects the top or bottom edge of r then return the intersection point.
21. return nil

4 Circular ray shooting

We will now see how to use our technique from the previous section to perform ray shooting along
circular arcs. Our data structure relies on the curve being x-monotone. We therefore partition
a query arc into at most �ve pieces, each of which lies on a quarter-circle. See Figure 2. In the
following, we explain how to perform a query with a query arc on the upper quarter-circle (where
the slope of the arc is between 1 and �1). The other cases are handled symmetrically.

6

p

q

a b

cd

�=4

Figure 2: The query arc pq is split into �ve pieces pa, ab, bc, cd and dq so that each lies on a
quarter-circle.

By Lemma 5 we only have to provide a data structure that can store a sequence of m trape-
zoids � connecting two doors d1; d2 in such a way that we can quickly decide whether a query arc
that intersects d1 and d2 passes through the trapezoids.

Let �� be the parts of polygon edges bounding � from above. Let �� be the parts of polygon
edges bounding � from below. �� and �� lie in the vertical strip bounded by the vertical lines
through d1 and d2. Since is x-monotone, passes through � if and only if lies completely
below ��, and completely above ��.

To test whether lies below ��, we build a point-location data structure for the Voronoi
diagram of the line segments in ��, and we also store the point m(��) 2 �� with the smallest
y-coordinate. The Voronoi diagram of �� can be computed in O(j��j log j��j) time [14]. One can
then break up the curved edges into x-monotone pieces and compute a vertical decomposition using
plane-sweep in O(j��j log j��j) time. Afterwards, we build a point-location structure for monotone
subdivisions with curved edges [7]. To perform the query, we �rst test whether lies below m(��).
If that is the case, we then locate the center x of our query arc in the Voronoi diagram, and thus
obtain the segment s 2 �� closest to x. If and only if lies below m(��) and the distance of s to
x is larger than the radius of the query circle, then lies below ��.

To test whether lies above ��, we make use of the furthest point Voronoi diagram of the
vertices in ��. Let w be the width of the vertical strip bounding ��. Let v(��) be the highest
vertex of ��. Pass a horizontal line through v(��) and insert another horizontal line at distance
w below. See Figure 3. Let S be the square enclosed between these two horizontal lines within
the vertical strip bounding ��. We construct the furthest point Voronoi diagram for the vertices
of �� inside S and a point-location data structure for the diagram. To perform the query, we �rst
test whether lies above v(��). If that is not the case, then intersects ��. Otherwise, we check
whether lies completely above the square S. If so, then lies above ��. In the remaining case,
we locate the center x of our query arc in the furthest point Voronoi diagram. Let s be the furthest
vertex reported. We claim that lies completely above �� if and only if the distance between s
and x is smaller than the radius of . This follows from the fact that, since is on the upper
quarter-circle and contains points both in and above S, a point of �� lies above if and only if it
lies in S outside the disc supporting the query arc.

We have thus shown how to implement the auxiliary data structure for a region of size m using
S(m) = O(m) space, P (m) = O(m logm) preprocessing tim, and Q(m) = O(logm) query time.
We have the following theorem.

Theorem 6 Given a simple polygon P with n vertices. There is a data structure of size O(n logn)
that can be computed in time O(n log2 n) that allows to perform circular ray shooting queries with

origin inside P in time O(log2 n).

7

v(��)

d1

d2

x

Figure 3: �� is shown in solid segments. The curve is shown in bold. The part of the square S
lying below is the same as the part of S lying inside the circle supporting the query arc.

5 Fixed-radius circular ray shooting

We now consider the problem of ray shooting along circular arcs with �xed radius (that is, the
radius is known at preprocessing time). This is also a case study: the same technique works for
linear ray shooting, and ray shooting along parabolic or otherwise algebraic arcs, as long as the
actual arcs are parts of translates of a curve given at preprocessing time. The data structure we
obtain in this section does not improve on the more general structure of Theorem 6. It does,
however, replace the use of a two-dimensional point location structure with a simple binary search,
and that will allow us to obtain a data structure with optimal query time and storage in the
following section.

We partition a circular ray shooting query into at most three queries, each of which lies on an
x-monotone semi-circle. In the following, we describe how to perform a query when the query arc
lies on an upper semi-circle. The other case is handled symmetrically. By scaling, we also assume
that the query arc lies on a unit circle.

Again we use the basic approach from Section 3. Given a sequence � ofm trapezoids connecting
two doors d1 and d2, we want to build a data structure that allows to test whether a circular arc
(known to lie on an upper quarter-circle, to enter at d1, and to leave at d2) passes through all the
trapezoids. As we saw in the last section, this is equivalent to testing whether lies completely
below �� and completely above ��.

We precompute the set L of points x such that an upper semi-circle of unit radius and center x
touches �� from below. This is done by computing the Minkowski sum of a unit circle with each
segment in ��, and taking L as the lower envelope of these Minkowski sums. See Figure 4.

Lemma 7 Let s1; s2; : : : ; sk be the segments of �� in order from left to right. When walking along

L from left to right, we encounter pieces induced by the segments in this order.

Proof: Let pi and pj be points on L induced by si and sj , with pi left of pj . We need to show

8

d1 d2

Figure 4: The dashed line segments show the sequence � of trapezoids connecting the doors d1
and d2.

that i < j. Let Ci (resp. Cj) be the region consisting of the unit circle centered at pi (resp. pj)
and all points below it. If Ci and Cj do not intersect, then clearly i < j. If they do intersect, their
boundaries intersect in a single point q. The part of the boundary of Ci [Cj left of q belongs to
Ci, the part right of q to Cj . Since si touches Ci[Cj outside of Cj , and sj touches Ci [Cj outside
of Ci, we have i < j.

Lemma 7 implies that each segment of �� induces at most one piece of the lower envelope L,
so L can be stored as a sorted array of the at most m � 1 break points, with a pointer to the
inducing segment of �� for each interval. If the segments �� are given in left-to-right order, L can
be constructed incrementally in linear time. To add the next segment s, we compute the lower
envelope l of the Minkowski sum of s and a unit disk. There is at most one intersection point x
between the current envelope L and l. We update L by removing the part of L lying to the right
of x, and then append the break point x and a pointer to the segment s.

To determine whether a query arc lies completely below ��, we look up the x-coordinate of
the center p of the query arc in L using binary search in time O(logm). This returns the segment s
of �� inducing the part of L intersected by the vertical line through p. We then test whether
lies below s in O(1) time. The query arc lies completely below �� if and only if this is the case.

We build a symmetric structure for �� that allows us to decide in O(logm) time whether lies
completely above ��.

Applying Lemma 5 with P (m) = S(m) = O(m) and Q(m) = O(logm) gives us the following
result.

Lemma 8 Given a simple polygon P with n vertices, and a radius r > 0. There is a data structure

of size O(n logn) that can be computed in time O(n logn) such that circular ray shooting queries

of radius r with origin inside P can be performed in time O(log2 n).

6 An optimal data structure for �xed-radius ray shooting

The query time and the space needed by the data structure of Lemma 8 is sub-optimal by a logn-
factor. We can obtain an optimal data structure by avoiding the duplication in the storage of lower
envelopes, and by using fractional cascading [3, 4].

Consider a region r. It has at most three doors d1, d2, and d3. At most two of the three possible
pairs of doors permit an x-monotone path, so there are at most two auxiliary data structures
associated with r. Consider one of these structures, say, for d1 and d2. Either d1 and d2 are both
doors of one child r1 of r, or the door dr splits the sequence of trapezoids connecting d1 and d2. In
the �rst case we can reuse the auxiliary data structure in r1|in other words, we store the structure
for the pair of doors (d1; d2) only at the highest node in H that contains both doors. In the latter
case, the child r1 will contain an auxiliary data structure for the pair of doors (d1; dr), and the child
r2 will contain the auxiliary structure for the pair (dr; d2). Let �

�

1 be the segments bounding the

9

trapezoids between d1 and dr from above, and let ��

2 be the segments for the trapezoids between
dr and d2. Let �

� := ��

1 [�
�

2, and let L, L1, and L2 be the lower envelopes for ��, ��

1, and ��

2,
respectively. Since ��

1 and ��

2 are separated by the vertical line through dr, Lemma 7 implies that
L contains a breakpoint x such that the part of L left of x is a pre�x of L1, and the part of L right
of x is a suÆx of L2. We can therefore modify our original data structure as follows: in r1 we only
store x, the suÆx of L2 not part of L, and a pointer to the auxiliary structure for the pair (d1; d2),
which is stored at some ancestor further up in the hierarchy.

Sometimes there is a choice as to which parent structure to refer to. In Figure 5, for instance,
the structure for the pair (d1; dr) could refer to either the structure for (d1; d2), or the one for
(d1; d3). In this case we make the choice so that the length of the suÆx of L1 that has to be stored
is smaller.

d1

dr

d2

d3
�1

�2

�3

Figure 5: The region shown has two daughter regions separated by the door dr. The doors are
shown in bold dashed segments, the trapezoids are shown in dashed segments, and the polygon
boundary is shown in solid line segments. The dotted lines indicate the sequences �1, �2, and �3.
Note that �2 and �3 share a trapezoid.

To analyse the space required by the modi�ed data structure, consider a trapezoid �. We
say that � appears weakly in a region r if there are doors d1 and d2 of r such that there is an
x-monotone path � from d1 to d2 passing through �. Furthermore, � appears strongly if the
segment s bounding � from above induces a piece of the lower envelope for ��. Clearly all regions
r that � appears in are ancestors of �. If � appears weakly in a region r1, it also appears weakly
in the child r2 of r1 containing �. Furthermore, by the discussion above, if � appears strongly
in r1, it also appears strongly in r2. This implies that the path from the root of H to � consists
of three intervals: �rst � does not appear at all, then it appears weakly, and �nally it appears
strongly. The construction of our modi�ed data structure implies that the segment s is stored at
the node for a region r if and only if � appears strongly at r, but does not appear strongly at the
parent of r. By the observation above, there is exactly one such node. It follows that our modi�ed
data structure takes O(n) space.

We apply the same optimization to the auxiliary data structure for searching in ��. All auxiliary
data structures are based on lists of breakpoints, sorted by x-coordinate. All the lists being searched
during a query are searched with the same search key, namely the x-coordinate of the query arc
center. We can therefore apply fractional cascading [3, 4]. This adds additional keys to the lists, as
well as cross pointers between the list stored in a node and the one stored in the parent node. As
this is a standard application of fractional cascading on a tree, we do not discuss the details, and
observe only that the space requirement increases by a constant. The e�ect of fractional cascading
is the following: once we have performed a search in the list stored at a node, we can perform the
search in a daughter node in constant time.

It remains to describe how to perform circular ray shooting queries in the modi�ed structure.
We �rst locate the trapezoid � containing the starting point of the ray. We then follow the path

10

from the root of H to �. In each node, we search all the lists stored at that node, using the
x-coordinate of the query arc as the key. First, we test whether the key lies in the pre�x or suÆx
stored higher up in the tree|if so, we reuse the search result obtained there earlier. Otherwise,
we search the list stored at the node. Using fractional cascading, all this takes time O(log n).

We now proceed with the \ascending phase" of Algorithm ShootRay . The region r0 tested in
line 10 is a daughter of r�, which is an ancestor of �. As we already have the search results for r�,
the auxiliary data structure for r0 can be queried in constant time.

Finally, we descend in H until we �nd the leaf containing the answer to the ray shooting query.
As this descent follows a path in H, we can perform each step in constant time.

It follows that the total query time is O(logn). We summarize the result in the following
theorem.

Theorem 9 Given a simple polygon P with n vertices, and a radius r > 0. There is a data

structure of size O(n) that can be computed in time O(n logn) such that circular ray shooting

queries of radius r with origin inside P can be performed in time O(logn).

Acknowledgments

We gladly acknowledge helpful discussions with Mordecai Golin and Giuseppe Italiano.

References

[1] P. K. Agarwal and M. Sharir. Circle shooting in a simple polygon. J. Algorithms, 14:69{87,
1993.

[2] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 1997.

[3] B. Chazelle and L. J. Guibas. Fractional cascading: I. A data structuring technique. Algo-

rithmica, 1:133{162, 1986.

[4] B. Chazelle and L. J. Guibas. Fractional cascading: II. Applications. Algorithmica, 1:163{191,
1986.

[5] B. Chazelle and L. J. Guibas. Visibility and intersection problems in plane geometry. Discrete
Comput. Geom., 4:551{581, 1989.

[6] B. Chazelle and J. Incerpi. Triangulation and shape-complexity. ACM Trans. Graph., 3:135{
152, 1984.

[7] H. Edelsbrunner, L. J. Guibas, and J. Stol�. Optimal point location in a monotone subdivision.
SIAM J. Comput., 15:317{340, 1986.

[8] A. Fournier and D. Y. Montuno. Triangulating simple polygons and equivalent problems.
ACM Trans. Graph., 3:153{174, 1984.

[9] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge-connectivity and k smallest
spanning trees. SIAM J. Comput., 26:484{538, 1997.

[10] G. N. Frederickson. A data structure for dynamically maintaining rooted trees. J. Algorithms,
24:37{65, 1997.

[11] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a simple polygon. J.

Comput. Syst. Sci., 39:126{152, October 1989.

11

[12] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray, take a walk.
J. Algorithms, 18:403{431, 1995.

[13] D. G. Kirkpatrick. Optimal search in planar subdivisions. SIAM J. Comput., 12:28{35, 1983.

[14] C. K. Yap. An O(n log n) algorithm for the Voronoi diagram of a set of simple curve segments.
Discrete Comput. Geom., 2:365{393, 1987.

12

