
A Survey on Embedding Programming Logics in
a Theorem Prover

A. Azurat and I.S.W.B. Prasetya
Institute of Information and Computing Sciences

Utrecht University
P.O.Box 80.089
3508 TB Utrecht
The Netherlands

{ade,wishnu}@cs.uu.nl

Abstract

Theorem provers were also called ’proof checkers’ because that is what
they were in the beginning. They have grown powerful, however, capable
in many cases to automatically produce complicated proofs. In particular,
higher order logic based theorem provers such as HOL and PVS became
popular because the logic is well known and very expressive. They are
generally considered to be potential platforms to embed a programming
logic for the purpose of formal verification. In this paper we investigate
a number of most commonly used methods of embedding programming
logics in such theorem provers and expose problems we discover. We will
also propose an alternative approach : hybrid embedding.

1 Introduction

Formal verification of a system starts from formal representations of (the im-
plementation of) the system and its requirements. One should be able to make
sure that the representations reflect the real systems and requirements and to
check whether the implementation matches the requirements. Despite the gen-
eral consensus that formal verification has great potential to help us produce
dependable software/hardware products, the processes involved in doing so are
difficult. The reasoning mechanism may not be obvious yet. The construction
of proofs is often expensive and requires high expertise which is difficult to get.
In the past the proofs themselves were also very error prone because they have
to be constructed by hand.

The emerging of theorem provers and model checkers gives some expecta-
tion that formal verification can be done, to some extent, automatically. The
two technologies have different approaches. A theorem prover is based on a
(relatively small) logic system. A program and its requirements are formulas of
the logic. Verifying a program amounts to using the inference rules of the logic
to prove some formulas. On the other hand a model checker represents a pro-
gram as an automaton. It simulates the automaton. As it generates all possible

1

states reachable by the program, it verifies if those states fulfil the program’s
requirements[6].

Model checkers are good in finding errors because they are highly automated,
but they tend to have problems in representing infinite state spaces and infinite
data structures (such as unbounded integers, strings, or lists). Theorem provers,
in particular those based on a rich expression language, have no problem with
infinite states and data structures. A theorem prover is also much more secure
as it is based on a relatively small core logic. Theorem provers basically pro-
vide no automation. Their primary function is to check proofs supplied by the
user rather than constructing the proofs themselves. Modern theorem provers,
however, come with meta languages which can be used to program automatic
proof generation. There are also some initiative to integrate theorem provers
and model checkers.

1.1 What this Paper is About

To do formal verification of a program we need a programming logic. To do so
with an existing theorem prover we usually need to embed the programming logic
first in the theorem prover1. This is because the logic used by the theorem prover
is typically not a programming logic. The purpose of this paper is to survey
commonly used techniques for such embeddings. We will focus on theorem
provers which are based on a higher order predicate logic. This class of theorem
provers seems to be very popular because the logic is well known and its higher
order feature makes it very expressive. Two embedding techniques are to be
distinguished known: shallow and deep embedding. Both turn to be problematic.
We will show the problems, by using concrete examples. In the examples we
will assume the use of the HOL theorem prover, which is representative for the
above mentioned class of theorem provers.

We will also explain an alternative approach, which we call hybrid embedding.
In this approach only the semantics of a programming logic is embedded in a
theorem prover. The syntactic machinery of the logic is implemented outside
the theorem prover.

1.2 A Note on Notation

In order to show concrete examples of embedding we assume the HOL system is
used as the host logic. We will however strip irrelevant HOL notational details
from the code to give minimum distraction to non-HOL readers.

1This is not to be confused with the term embedded system which means a piece of hardware
or software embedded as a component of an autonomous control system –such as the control
system of a steam boiler. While the term embedding in this paper refers to a logic embedded
inside another logic.

2

2 Embedding

In the formal verification community, mechanizing a logic means implementing
the logic in a computer. The intent is to get the computer to check the well
formedness of our formulas and the correctness of our proofs. This means,
among other things, that the inference rules of the logic have to be implemented
in the computer. Mechanization does not necessarily imply proof automation.

Embedding mechanizes a logic L by encoding L and its semantics inside
another, already mechanized logic L′, and in effect ’borrows’ the mechanization
of L′. We will call the logic L the guest logic and L′ the host logic.

Having the semantics represented in the host logic is what separates embed-
ding from ordinary mechanization. It allows the verification of the soundness of
the guest logic L in L′. The inference rules of L are represented as formulas of
L′, so they can be verified just like any other L′ formula.

Typically, we want a host logic to be expressive so that we can use it to
represent (embed) a wide range of guest logics. We also want it to be small:
it provides a minimum set of language constructs to express formulas and a
minimum set of inference rules. This is for security reasons. Its primitiveness
makes it much easier for us to convince ourselves of the soundness of the host
logic. Obviously it is not safe to build an embedding on a host logic with
questionable soundness. The HOL system [9] is an example of a theorem prover
based on a small, yet very expressive logic (a higher order, typed predicate
logic). Note that once proven, an embedded logic inherits the soundness of its
host.

Unfortunately a minimalistic host logic also creates another problem. A pro-
gramming logic is typically based on high level programming and specification
languages. Encoding sentences of these languages as sentences of a more prim-
itive language of the host logic can seriously reduce readability –an aspect that
makes formal methods, in particular theorem provers, not very welcome in the
industrial world[6].

Embedding also inherits the problem of formal semantics. The semantics of a
real programming language is very complicated, raising the issue of maintaining
the correctness and the reliability of the semantics itself. We quote here from
[23]:

”Our EML experience suggests that, at least at the present time,
tackling the problems of specification and formal development in a
real programming language at a fully formal level is just too difficult.
This seems to leave two ways forward: either remain fully formal but
focus on a smaller and simpler language, perhaps building up from
this gradually to something approaching a real language; or remain
with a real language, but give up trying to achieve full formality.”

In the theorem prover community, people often distinguish between so-called
shallow and deep embedding [3]. Shallow embedding of a logic L embeds the

3

semantics of L but does only a minimal effort to represent the grammar2 (syn-
tax) L in L′. Deep embedding embeds also the syntactic structures of the logic
completely. The exact representation (e.g. whether we represent states with
functions or records) may influence how much of the syntactic structures of the
formulas of the guest logic can be maintained in the embedding –so people also
speak of the depth of an embedding. Grammar is represented much better in
deep embedding, as it uses functional data types to represent the grammar –it
is known that there is strong correspondence between (context free) grammars
and recursive data types [8]. Because of the explicit representation of the gram-
mar, in deep embedding it is possible to encode and verify syntactic operations
and analyses made on the formulas of the guest logic. This is not possible with
shallow embedding. Unfortunately deep embedding has its own problems. For
example, it takes lots of effort to set up. Changing the syntax of the guest logic
may also incur lots of work.

In some theorem provers, such as COQ, there is no deep-shallow dichotomy
[16]. COQ is based on a type system, which is even more primitive than the
logic used by, for example, the HOL system. The disadvantage is that a guest
logic must now be represented in an even more primitive language, which will
further reduce the readability of the representations.

Lots of work has been invested in embedding in the past 10 years. We will
mention some achievements –there are too many to mention all of them.

In [2, 21, 25], Andersen, Prasetya and Vos reported the embedding of the pro-
gramming logic UNITY in HOL –UNITY is a simple logic [5] for reasoning about
temporal properties of distributed systems. Andersen, Prasetya and Vos have
used their embedding to mechanically verify non-trivial distributed algorithms.
Furthermore, Prasetya also uses embedding to verify a rich self-stabilization the-
ory, and Vos does the same for refinement theory. The embeddings are shallow,
though Vos has a deeper embedding by having typed program variables more
explicitly represented.

An example of deep embedding is the embedding of a simple imperative
programming language called Sunrise in HOL by Homeier and Martin [11]. A
Verification Condition Generator (VCG) is supplied, based on a method named
Diversion Verification Condition to provide total correctness of mutually re-
cursive functions. The VCG basically does a syntactic transformation on the
Sunrise’s programs and specification. It has been proven sound in HOL, which
is only possible because of the deep embedding of Sunrise. However, the ex-
tendibility issue was not covered yet. So far the language only has numeric
data type and list constructor, but even then the soundness proof of the VCG
already involves 8 new types, 217 definitions, and 906 major theorems, using
over 57,000 lines of proof, organized in 22 HOL theories.

An attempt to use embedding for a real programming language and logic
was recently reported by Huisman [12] who embeds Java (without threads) in
PVS and Isabelle. The embedding is part of a larger tool called LOOP. LOOP

2The grammar of a language is a set of rules specifying how the formulas of the language
are constructed.

4

features a specification language for Java, called JML [13], and compilers to
compile a Java program and its JML specifications to their embedded represen-
tations.

3 Shallow Embedding

Shallow embedding concentrates on how the semantics of the guest logic can
be represented in a theorem prover. It is less concerned with various syntactic
structures and constraints of the guest logic. Compared to deep embedding,
shallow embedding takes much less work to set up. It is suitable when used
in the initial phase of the development of a programming logic in which many
features are still experimental. The languages of the logic and its inference rules
are still unstable and we constantly need to verify the logic’s consistency after
each modification. It is still suitable for actual program verification work if the
language used by the guest logic is still simple, such as the case in [21] where
target programs are just flat structured UNITY programs.

To give a more concrete illustration of the approach, consider a very simple
programming logic –abbreviated VSPL– described in Figure 1. The logic is too
simple to be used in practice, but it will serve our purpose here. A shallow
embedding of this logic will be given later. We will assume the HOL system to
be used as the host logic.

A VSPL program is either a skip, an assignment, or a (possibly nested)
if-then-else statement. There are only two kinds of values in VSPL: booleans
and integers. VSPL expressions are very limited, with only =, +, ⇒, ∧, and
¬ as operators. Specifications are expressed in terms of Hoare triples with the
usual interpretation. We also add one more kind of specification, which is a
specification of the form [P] where P is a boolean expression (predicate). Such
a specification means that the predicate P is a tautology –so it holds on all
possible states of a program. When used exhaustively, the inference rules of
VSPL will reduce any Hoare triple specification into a specification of the form
[P]. Although not explicitly mentioned in its description in Figure 1, VSPL
assumes the availability of a mechanism to prove specifications of the latter
form.

Remember that in embedding we need to have a semantics of the guest logic.
This is because we basically embed a logic by writing its semantics as formulas
of the host logic. The steps we typically have to perform are:

1. Identifying various semantic domains of the guest logic.

2. Describing the semantics in detail and encoding it in the host logic.

3. Representing and verifying the inference rules of the guest logic.

The amount of detail we want to put in the semantics may depend on the
application of the guest logic. For example, the execution models of most imper-
ative programming language typically include a program counter to keep track

5

1. Grammar:
Stmt :: skip

| Identifier := Expr
| if Expr then Stmt else Stmt

Expr :: Expr = Expr
| Expr ∧ Expr
| Expr ⇒ Expr
| Expr + Expr
| ¬ Expr
| Bool
| Integer

Spec :: {Expr } Stmt {Expr }
| [Expr]

2. Inference rules:

Skip Rule
[P ⇒ Q]

{P} skip {Q}

Assignment Rule
[P ⇒ Q[E/x]]
{P} x := E {Q}

If-then-else Rule
{P ∧ g} A {Q} , {P ∧ ¬g} B {Q}
{P} if g then A else B {Q}

Figure 1: VSPL

6

of the control location of a program during its execution. In some setup, such
as when concurrency is an issue, we may have to explicitly include program
counters in the semantics. However if we only deal with sequential programs
specified by Hoare triples, such as in VSPL, we can hide the program counter
from the semantics.

There are many ways one can define the semantics of the same programming
logic. In some representations, programs variables are represented by first class
values in the host logic. Depending on the application this can be an important
aspect. We need first class representation of variables names in order to ex-
press syntactic constraints on the set of variables of a program. They are quite
useful and occur quite often as conditions in program transformations, compo-
sition, and refinements. On the other hand, approaches in which variables are
not represented as first class values typically produce cleaner representations
of programs and specifications. We will show examples of both approaches.
There are also approaches which are somewhat in between, e.g. Huisman uses
the combination of records and functions [12]. We will not cover this kind of
approach.

4 Shallow Embedding I

This section will show a shallow embedding of VSPL in HOL using an approach
where VSPL variables are represented by first class HOL values.

4.1 Step 1: Identifying Semantic Domains

A state of a program at a given moment describes the values of the program’s
variables at that moment. We can represent a state by a function from vari-
ables to values. We can use string to represent variables (actually, variables’
names)3. This representation is quite simple and is used by many others, e.g.
[2, 17, 21, 25]. Alternatively, one can also use lists to represent states.

Since VSPL only has two kind of values, booleans and integers, we can
represent VSPL values in HOL with the following HOL data type:

Code 4.1 :

datatype Value_IB = fromInt int | fromBool bool

2

However, if we use this specific data-type the resulting embedding of VSPL
inference rules will only work on that specific representation of data values: they
cannot be reused if one decides to extend VSPL with new types of data values.
To allow reuse, we can represent VSPL data values with a HOL type variable

3Although we will not do this here, for concrete applications it is typically useful to maintain
separate lists to keep track which variables a given program owns and what their access modes
are.

7

which can later be instantiated by some concrete HOL type. Alternatively,
we can represent VSPL data values by a specific HOL type whose property is
now left unspecified and later we provide injections to, for example, integers
and booleans. Both approaches are almost equivalent. The second approach is
slightly more flexible4, so we will focus on it.

So, assume an unspecified HOL type Value representing all possible data
values of VSPL programs. An expression is evaluated on a state and returns the
value of the expression in that state. So, a VSPL expression will be represented
by a function from state to value.

VSPL statements are deterministic. They can be represented by functions
that take an initial state and return a new state (in other settings where state-
ments are non-deterministic, or may block, relations can be used). Finally, a
VSPL specification will semantically be represented by a boolean value, since a
specification is either valid (true) or invalid (false).

To summarize, these are our semantic domains:

Definition 4.2 : Semantic domains of VSPL

type State = string -> Value
type Expr = State -> Value
type Pred = State -> bool
type Stmt = State -> State

2

4.2 Step 2: Specifying the Semantics

A semantics assigns meaning to each syntactic category of a language. For
example, the following gives the semantics of VSPL statements in terms of the
semantic domains given in Definition 4.2:

VSPL statements semantics
skip (\s. s)
if g then A else B (\s. if (g s) then A s else B s)
x=E (\s. (\v. if v=x then E s else s v))

where s is of type State.
This semantics can be directly translated to HOL. For each syntactic con-

struct of Stmt we introduce a new HOL constant to represent it. The semantics
is then assigned to each constant as its definition. So this is how VSPL state-
ments are represented in HOL:

4In both approaches the inference rules are reusable. However, in the first approach –
in which the space of VSPL data values is represented by a type variable, say, V – programs
verified based on a concrete instance T1 of V cannot be composed with programs verified based
on a different instance T2 of V . One will have to upgrade both programs using a common
and larger base T3. However, verification of both programs will have to be re-executed.
Alternatively, one can also provide mappings between T1, T2 and T3.

8

Definition 4.3 : Semantics of Stmt

SKIP = (\s. s)
IF g THEN A ELSE B = (\s. if (g s) then A s else B s)
x ASG E = (\s. (\v. if v=x then E s else s v))

2

VSPL specifications can be represented as follows:

Definition 4.4 : Semantics of Spec

VALID P = (!s. P s)
HOA A P Q = (!s. P s ==> Q (A s))

2

where HOA A P Q represents a specification of the form {P} A {Q} and VALID
P represents a specification of the form [P].

Expressions, in particular boolean valued expressions (predicates) can be
represented as follows:

Definition 4.5 : Semantics of Expr

p AND q = (\s. p s /\ q s)
p IMP q = (\s. p s ==> q s)
NOT p = (\s. ~p s)

2

where AND, IMP, and NOT represent VSPL’s ∧, ⇒, and ¬. The bounded variable
s is of type State.

In shallow embedding we may not want to represent all syntactic structures
of the guest logic. Notice that the inference rules of VSPL only assumes the
existence of ∧, ⇒, and ¬ operators with their respective arities. The inference
rules do not care about other syntactic structures that Expr may have. So, for
the purpose of verifying the soundness of VSPL we do not need to represent
those other syntactic structures of Expr (such as the operators = and +) and
to provide their semantics.

4.3 Step 3: Representing and Verifying Inference Rules

VSPL’s inference rules can be represented by HOL formulas. Proving these
formulas essentially justifies the soundness of the inference rules they represent.
The formula representation may seem inadequate, since rules are computation
entities (they accept VSPL specifications and produce new specifications) and
formulas are plain data. However, once proven, the resulting theorems can be
’executed’ by applying them to some VSPL specifications. Applying a HOL
theorem is usually done by calling some combination of HOL’s own inference
rules for Modus Ponens and Substitution.

9

1. Skip-rule

|- (P ==> Q)
==>
HOA SKIP P Q

2. Cond-rule.

|- HOA A (P AND g) Q /\
HOA B (P AND NOT g) Q
==>
HOA (IF g THEN A ELSE B) P Q

3. Assign-rule

|- VALID (p IMP (q o (x ASG E)))
==>
HOA (x ASG E) p q

Figure 2: VSPL’s inference rules in HOL

Figure 2 shows the resulting HOL theorems, representing VSPL’s inference
rules.

Proving those inference rules in HOL is very easy. Essentially we just rewrite
them using their own definitions (using their own semantics) and then call HOL’s
simplifier and first order prover. As example, here is the proof code of the
Cond-rule:

prove
--‘

HOA A (P AND g) Q /\ HOA B (P AND NOT g) Q
==>
HOA (IF g THEN A ELSE B) P Q
‘--,
RW_TAC std_ss [HOA_def,IFTHENELSE_def,AND_def,NOT_def]
THEN PROVE_TAC[]
);

4.4 Representing Programs and Specifications

The shallow embedding of VSPL is now set. We can use it to represent and
verify concrete VSPL programs. Consider the following VSPL specification:

Example 4.6 :

{b ∧ ¬(x = y)}

10

if x=y then x=x+1 else y=y+1

{b ∧ ¬(x + 1 = y)}

2

One may expect to represent, for example, the post condition b∧¬(x+1 = y)
like this:

(\s. s "b") AND NOT(\s. s "x" + 1 = s "y")

However this is not type correct. It requires states to be functions returning
boolean values (as in s "b") as well as integers (as in s "x" + 1). This is
also not consistent with the typing of states: we have decided that they are
functions from State to Value. Fortunately we have left the property of Value
unspecified in the semantics. We can now say that it is at least large enough to
contain booleans and integers, and furthermore we also have constructors and
destructors to construct a Value from a boolean or integer vice-versa. We can
impose on the existence of the following functions:

Definition 4.7 : Constructors and Destructors of Value

fromInt : int->Value
fromBool : bool->Value
toInt : Value->Int
toBool : Value->Bool

with the expected property that each from- function forms an injection and
their respective from- counterparts form the inverses.
2

Now we can correctly represent the specification in the Example 4.6 as fol-
lows:

Code 4.8 :

HOA

(IF (\s. (toInt o s) "x" = (toInt o s) "y")
THEN ("x" ASG (fromInt o (\s. (toInt o s) "x" + 1)))
ELSE ("y" ASG (fromInt o (\s. (toInt o s) "y" + 1))))

((\s. (toBool o s) "b") AND
NOT(\s. (toInt o s) "x" = (toInt o s) "y"))

((\s. (toInt o s) "b") AND
NOT(\s. (toInt o s) "x" + 1 = (toInt o s) "y"))

2

11

The reader may notice that expressions at the right hand side of an assignment
is translated differently from the guard of an if-then-else, pre-condition, and
post-condition. The latter are always boolean typed expressions (predicates).
On the other hand, an expression at the right hand side of an assignment can be
of any type, which in this embedding is represented by a function that returns a
Value. Because, for example, (\s. (toInt o s) "x" + 1) returns an integer,
we still need the function fromInt to cast the result to Value.

4.5 Verifying Programs

Specifications such as the one in Example 4.6 are verified by successively apply-
ing the guest logic’s inference rules in a certain order. In the case of VSPL this
can be easily automated in HOL. We can write something like this:

(REPEAT o FIRST o map MATCH_MP_TAC)
[SKIP_thm, ASG_thm, IFTHENELSE_thm]

where, for example, SKIP_thm is the HOL theorem representing the inference
rule for the skip statement. The above HOL code will repeatedly apply VSPL
inference rules until no further application is possible. How much automation
we can get depends largely on the guest logic itself. In any case, HOL comes
with a powerful meta language.

In the case of VSPL, exhaustively applying the rules do not prove the spec-
ification, yet. Rather, this step produces a specification of the form VALID P.
After unfolding the definition of VALID we will get a verification ’goal’ of the
form P s which has to be proven for an arbitrary s. For example, for the
specification in Example 4.6 the following goal will be produced:

Code 4.9 :

((toBool o s) "b" /\
~((toInt o s) "x" = (toInt o s) "y") /\
((toInt o s) "x" = (toInt o s) "y")
==>
(toBool o s) "b" /\
~((toInt o s) "x" + 1 + 1 = (toInt o s) "y"))

/\

((toBool o s) "b" /\
~((toInt o s) "x" = (toInt o s) "y") /\
~((toInt o s) "x" = (toInt o s) "y")
==>
(toBool o s) "b" /\
~((toInt o s) "x" + 1 = (toInt o s) "y" + 1))

which has to be proven to hold for an arbitrary s.
2

12

The formula represents:

(b ∧ ¬(x = y) ∧ (x = y) ⇒ b ∧ ¬(x + 1 + 1 = y))
∧
(b ∧ ¬(x = y) ∧ ¬(x = y) ⇒ b ∧ ¬(x + 1 = y + 1))

The above can be easily proven in HOL. Note that from this point on the proof
no longer depends on the structure of the program. Instead, it depends on
the properties of the data values –in this case the properties of booleans and
integers.

There are also a number of subtle points about the to- and the from-
functions. Consider the specification:

Example 4.10 :

{ x=0 } x = x + 1 { x=1 }

which is represented by this HOL formula in the embedding:

HOA ("x" ASG (fromInt o (\s. (toInt o s) "x" + 1)))

(\s. (toInt o s) "x" = 0)

(\s. (toInt o s) "x" = 1)

2

After applying the ASG Rule to the specification above, and after some trivial
simplifications, we will get this as a goal:

Code 4.11 :

VALID
((\s. (toInt o s) "x" = 0)
IMP
(\s. toInt (fromInt ((toInt o s) "x" + 1)) = 1))

2

The goal above cannot be proven if we cannot reduce the expression at the
right hand side of the implication to (\s. (toInt o s) "x" + 1 = 1). The
following three properties are necessary to enable this reduction

1. The to- and the from- functions have to be distributive. For example,
we have to be able to reduce:

toInt (fromInt ((toInt o s) "x" + 1))

to:

toInt (fromInt (toInt o s) "x") + toInt (fromInt 1)

13

2. The fact that the to- functions are injections with their respective from-
counterparts as inverses is crucial, otherwise we cannot, for example, re-
duce toInt (fromInt 1) to 1.

3. We need to add an explicit assumption that s "x" is a Value within the
domain of toInt. This can also be seen as a requirement for the author of
the program to confirm to HOL that x is indeed an integer valued variable.
Without this assumption we cannot reduce:

toInt (fromInt (toInt o s) "x")

to (toInt o s) "x"

4.5.1 Syntax Extension

What if we want to extend the syntax of the guest logic? For example, let us
extend VSPL by adding the sequential composition operator ’;’ for statements.
So the syntax of the Stmt is now extended as shown below. We also need a new
inference rule to deal with the new operator.

Example 4.12 :

Stmt :: skip
| Identifier := Expr
| if Expr then Stmt else Stmt
| Stmt ; Stmt

Seq Rule:
{P} A {Q} , {Q} B {R}

{P} A ; B {R}

2

To represent ’;’ we need to add a new HOL constant and assign some mean-
ing to it:

Definition 4.13 : Semantics of ;

SEQ A B = B o A

2

The new inference rule can be represented in the same way existing VSPL
rules are represented in HOL, namely by the formula:

HOA A P Q /\ HOA B Q R
==>
HOA (SEQ A B) P R

which can be proven with as much ease as we prove the other rules.
Note that incrementally extending the syntax of the guest logic does not

require existing shallow embedding to be rebuilt. As we will see later, this
property does not hold for deep embedding.

14

4.5.2 Value Space Extension

VSPL only supports two kinds of data values: booleans and integers. What
if we want to add new types? As an example, let us add the type of lists of
integers. We also extend the syntax of Expr with a few list operators as shown
below. No new inference rule is introduced.

Example 4.14 :

Expr :: Expr = Expr
| Expr ∧ Expr
| Expr → Expr
| Expr + Expr
| ¬ Expr
| Expr :: Expr /* add a new element to a list */
| [] /* make an empty list */
| Bool
| Integer

2

Note that since we have no inference rules that require evaluation of a list
expression, there is no need to explicitly add the list operators in the embedding
(like we did to, for example, the ∧ and the ¬ operators).

To represent programs and specifications that contain list expressions we
need to extend our assumptions on Value. Recall that this is an unspecified
HOL type representing all possible data values of VSPL programs. Since we
now also have lists of integers we need to add an assumption that Value is also
large enough to include all lists of integers. We can do this by imposing the
existence of the following two functions:

Definition 4.15 : Value to List Injection

fromIntList : Int list->Value
toIntList : Value->Int list

with the property that toIntList is an injection and fromIntList is its inverse.
2

Here is an example of a program that does something with lists and its repre-
sentation:

Example 4.16 :
A VSPL program:

if z=[] then skip else z = 1 :: z

Its representation:

IF (\s. (toIntList o s) "z" = [])
THEN SKIP
ELSE ("x" ASG (\s. 1 :: (toIntList o s) "z"))

15

2

It would be nice to have other kind of lists, e.g. lists of booleans or nested
lists. The elegant way to get this is by adding polymorphic types to VSPL.
Unfortunately embedding polymorphism in a theorem prover such as HOL is
problematic. For example, suppose now we want to extend VSPL’s lists so that
their elements can have an arbitrary type (so we can have lists of booleans
too, and multi level lists). We will have to add the following constructor and
destructor to the type Value:

Code 4.17 :

fromList : ’a list->Value
toList : Value->’a list

2

where ’a denotes a type variable.
Since ’a is variable, it can be Value itself. No injective function fromList

can be provided without introducing the Russel paradox5.
This is very unfortunate. Polymorphism is very useful to specify general

properties of programs, or to specify programs that build sophicticated data
structures, e.g. distributed programs (building spanning trees) and database
programs (building tables). Note that the used programming language itself
does not need to support sophisticated expressions. Specifying programs on the
other hand, may require a powerful expression language.

We can propose a solution to this problem. The type Value has to be
introduced as a ’second order’ HOL type with an axiom stating that it is large
enough to provide an injection to any ’normal’ HOL type. To prevent the Russel
paradox, we put the restriction that type variables in HOL can only range over
normal HOL types. So they cannot be instantiated with Value.

The solution can be easily implemented if types are first class HOL objects so
we can freely manipulate them. Unfortunately, they are not. So, implementing
it will require some hacking into HOL implementation –not the kind of things
ordinary users can and want to do. People may also try other theorem provers,
such as the COQ system, where types are first class objects.

As a side note, one may point out this problem of embedding polymorphic
state space may be circumvented had we chosen to represent VSPL data values
with a polymorphic type V . Unfortunately this is not the case. For example, for
the program in Example 4.10 one may suggest to use the following instantiation
of V :

datatype ’a Value_IBL =
fromInt int

| fromBool bool
| fromList (’a list)

5Without restriction, Value can be extremely large that it contains everything. Such a set
leads to a certain paradox called Russel paradox. See [14]

16

Though the type system of HOL (and most type systems) will make sure we do
not run into the Russel paradox, the above type is actually not what we want.
Consider the (destructor) function toList which inverts fromList:

toList : ’a Value_IBL -> ’a list

Consider an expression a::b where a is of type int list and b is of type int
list list. The expression will be represented like this in the embedding:

(\s. (toList o s) a :: (toList o s) b)

The (intended) types of the first and second toList are respectively:

toList :: int Value_IBL -> int list
toList :: int list Value_IBL -> int list list

Consequently, the second s has the (intended) type int Value_IBL whereas the
third s has type int list Value_IBL. This is not type correct since both s’es
are bound to the same s!

4.6 Guest Logic Type Checking

Representing states as functions from variables to values raises a problem in
keeping the type of embedded expressions consistent. For example, the following
is not a type correct VSPL program:

Example 4.18 :

if x then x=false else x=x+1

2

Yet its representation in HOL:

IF (\s. (toBool o s) "x")
THEN ("x" ASG (fromBool o (\s. F)))
ELSE ("x" ASG (fromInt o (\s. (toInt o s) "x" + 1)))

is a well-typed HOL expression. An even simpler example is the following:

Example 4.19 :

"x" ASG (fromInt o (\s. (toInt o fromBool) T))

2

which is also a well-type HOL expression, but it has no VSPL counterpart.
The injection of VSPL’s data types into the HOL type Value ambiguates

the original VSPL typing information. So it is not a surprise that HOL’s type
system is having problems in type checking embedded VSPL programs.

17

As a rule of thumb, syntax analysis algorithms6 cannot be incorporated
inside a shallow embedding as they typically require the syntactic structure
of an embedded sentence to be explicitly represented. Some limited form of
syntactic analysis may still be possible. For example the embedding approach
described in this section allows the testing of constraints on the variables of a
program –see Subsection 4.7. Another approach uses records to represent states
–see Section 5– and with this approach it is possible to use HOL’s own type
checker to type check embedded VSPL sentences.

It is also a moot point whether one should build a syntax analysis algorithm
in HOL. It seems somewhat wasteful, since this kind of algorithms can often be
reliably implemented using high level programming languages, e.g. functional
languages such as ML or Haskell. In the case of VSPL type checking, an external
type checker can be easily writen. We can use it type check a VSPL program
before translating it in HOL, and hence making sure that HOL only recieves
type correct VSPL programs.

Of course having a foreign type checker embedded in HOL opens a way
to verify properties about the type checker. It is also useful to, for example,
guard the type consistency of program transformations. A simple example of
a transformation is guard strengthening. The following law, for example, says
that we can strengthen the guard of a conditional statement:

Example 4.20 :

{P} if g ∧ h then A else B {Q}
{P ∧ g} A {Q}

{P} if g then A else B {Q}
2

Since program transformations change a program, we may want to make sure
that the resulting programs are type correct again. To verify this in HOL, we
will have to define in HOL what ’type correctness’ means, which essentially
amounts to encoding the type checking algorithm in HOL.

4.7 Program Transformations with Variable Constraints

The best way to model program transformations with variable constraints in
HOL is with deep embedding because checking a variable constraint is a syn-
tactic analysis operation. To verify the consistency of such a transformation we
still need a semantics. Because we have represented VSPL variables with (first
class) HOL values we can easily define the semantics of variable constraints.

Variable constraints are a useful kind of constraints occuring in many pro-
gram transformations. Think for example of the parallel composition of two
programs which are constrained to share no write variables. Another example
is adding assignments into a program where the new assignments should be
assignments to fresh variables.

6In addition to type checking, think also of recognizing nested loops, recognizing recursion,
recognizing unread variables, and so on.

18

As a concrete example, consider the following transformation which reverses
the transformation in Example 4.20. It states that we can also safely weaken
the guard g ∧ h of an if-then-else statement by dropping the h provided the
else branch can realize the post-condition if h does not hold:

Example 4.21 :

{P} if g then A else B {Q}
{P ∧ ¬h} B {Q}

{P} if g ∧ h then A else B {Q}
2

However we can also assert something stronger. The following rule states that
the constraint in Example 4.21 is implied if the else branch does not modify
any (free) variables of the post-condition Q if h does not hold:

Example 4.22 :

Q is confined by V
B preserves V when ¬h

[P ∧ ¬h ⇒ Q]
{P ∧ ¬h} B {Q}

2

Given a predicate Q and set of variables V , Q is confined by V means that V is
a subset of the free variables of V . This can be easily checked if the syntactic
structure of Q is also embedded in HOL. Unfortunately in shallow embedding we
do not have that. It is, however, possible to define confinement ’semantically’.

Given two functions f and g, they are partially equal over V if both return
the same value on all x ∈ V . This can be defined as follows in HOL:

Definition 4.23 : Partial Equality

s EQV t ON V = (!x. x IN V ==> (s x = t x))

2

Q is confined by V if for any state s on which Q is satisfied, then Q is also
sastisfied on all other states t which are partially equivalent to s on V . In HOL:

Definition 4.24 : Confinement

Q IS CONFINED BY V = (!s t. s EQV t ON V ==> (Q s = Q t))

2

Finally, a statement B preserves a set of variables V when h if when h holds
the statement preserves any predicate confined by V . In HOL:

Definition 4.25 : Preservation

19

Q PRESERVES V WHEN h
=
(!P. P IS CONFINED BY V ==> HOA B (h AND P) P)

2

The inference rules in Examples 4.21 and 4.22 can now be expressed by the
following theorems in HOL (they can be easily proven).

Theorem 4.26 :

|- HOA (IF g THEN A ELSE B) P Q /\
HOA B (NOT h AND P) Q
==>
HOA (IF (g AND h) THEN A ELSE B) P Q

2

Theorem 4.27 :

|- Q CONFINED BY V /\
Q PRESERVES V WHEN (NOT h) /\
VALID (P AND NOT h IMP Q)
==>
HOA B (NOT h AND P) Q

2

One may point out that using them on concrete programs may be problem-
atic because of the universal quantifications on potentially infinite domains in
the definition of partial equality and preservation. Fortunately, this is not the
case [22]. For confinement, consider as an example the predicate x = 0. This
predicate is confined by the set {x, y}. This is represented by the following in
HOL:

(\s. (toInt o s) "x" = 0) IS CONFINED BY {"x","y"}

After rewriting with the definition of confinement and partial equality we get
the following ’goal’:

(!s t. (!x. x IN {"x","y"} ==> (s x = t x))
==>
(((toInt o s) "x" = 0) = ((toInt o t) "x" = 0))

)

which can be easily proven.
Proving preservation properties is also not problematic. For VSPL, the

following theorems can be easily proven in HOL. They specify conditions on
which a preservation property of a VSPL statement can be proven without
having to quantify over all confined predicates.

20

Theorem 4.28 :

|- ~("x" IN V) ==> ("x" ASG E) PRESERVES V WHEN h

2

Theorem 4.29 :

|- A PRESERVES V WHEN h
==>
(IF g THEN A ELSE B) PRESERVES V WHEN (g AND h)

|- B PRESERVES V WHEN h
==>
(IF g THEN A ELSE B) PRESERVES V WHEN (NOT g AND h)

2

5 Shallow Embedding II

In the previous section we have shown an embedding of VSPL in which VSPL
program states are represented by functions from variables to values. This
section will briefly show another shallow embedding approach where (concrete)
states are represented by records (alternatively, although less sophisticated, one
can use tuples). For example, consider a program P with two variables, namely
b and x. A state of P in which the value of b is true and the value of x is 0 is
represented by the following record: <| b=T; x=0 |>.

The approach produces cleaner representations of programs and specifica-
tions. The approach is widely used, for example as in [24, 1, 19]. Unfortunately
the field names of a record are not first class values in HOL. This has certain
disadvantages.

5.1 Semantics

In this embedding we will use the following semantic domains. As in Section 4,
the type Pred represents predicates, and the type Stmt represents statements.
However, they are now parameterized by a type variable ’s which represents
the type of states of an arbitrary VSPL programs.

Definition 5.1 : Semantic domains

type ’s Pred = ’s -> bool
type ’s Stmt = ’s -> ’s

2

21

With the exception of assignment, VSPL statements and VSPL boolean
operators can be defined in the same way as in Section 4, though they should
now be defined in terms of the above semantic domains.

An assignment, for example, x = x + 1 can be represented by a state tran-
sition function: (\s. s with x := s.x + 1). So we (re-) define the HOL
constant ASG as follows:

Definition 5.2 : Semantics of Assignment

ASG f = f

2

And the inference rule for assignment now looks like this in HOL:

Definition 5.3 : Assign Rule

|- VALID (p IMP (q o f))
==>
HOA (ASG f) p q

2

5.2 Representing Program and Specification

Consider again the specification in Example 4.6. The program in this specifica-
tion has three variables: a boolean variable b, and two integer variables x and
y. The states of the program will now be represented by records of the following
type:

Code 5.4 :

datatype State_A = <| b:bool; x:int; y:int |>

2

The specification in Example 4.6 is now represented as follows:

Code 5.5 :

HOA

(IF (\s. s.x = s.y)
THEN (ASG (\s. s with x := (s.x + 1)))
ELSE (ASG (\s. s with y := (s.y + 1))))

((\s. s.b) AND NOT(\s. s.x = s.y))

((\s. s.b) AND NOT(\s. s.x + 1 = s.y))

2

Compared to the representation of the previous section, this one is apparently
cleaner.

22

5.3 Value Space Extension

Unlike in the functional model of states, using records we can easily represent
programs with different value spaces (different set of variables). For example,
the program in Example 4.10, unlike the one in Example 4.6, has only one
variable z of type int list. To represent this in HOL we simply construct a
new record type to represent its states:

Code 5.6 :

datatype State_B = <| z : int list |>

2

The program can now be represented as follows:

Code 5.7 :

IF (\s. s.z = [])
THEN SKIP
ELSE ASG (\s. s with z := 1 :: s.z)

2

Unfortunately, combining programs with different value spaces is problem-
atic. Consider the programs in Examples 4.6 and 4.10. Let us call the first A
and the second B. Notice that in HOL their types are:

A : State_A Stmt
B : State_B Stmt

where State_A and State_B are defined in Codes 5.4 and 5.6. So both programs
have different(HOL) types! Composing them, for example like this:

Example 5.8 :

IF (\s. s.x=s.y) THEN A ELSE B

2

cannot be done because IF-THEN-ELSE expects two programs of the same type.
A possible solution is to upgrade A and B so that they are based on a record

type which is big enough to represent the union of their variables, for example:

datatype State_C
=
<| b : bool; x : int; y : int; z : int list |>

The drawback is that all previous HOL proofs about A and B have to be re-built.
Another option is to use injections from State_C to the old value space of

A and B into State_C. For example, if toA and toB are two such functions, and
fromA and fromB are their inverses:

23

toA : State_C -> State_A
toB : State_C -> State_B
fromA : State_A -> State_C
fromB : State_B -> State_C

The program in Example 5.8 can now be represented as follows:

IF (\s. s.x=s.y)
THEN (fromA o A o toA)
ELSE (fromB o B o toB)

Old proofs do not have to be rebuilt, but the representation becomes more
cluttered7.

5.4 Guest Logic Type Checking

In Subsection 4.6 we have seen that type checking the guest logic cannot be done
if we use the functional representation of states. With deep embedding (Section
6) this becomes possible, though it will require the type checker of the guest
logic to be embedded in HOL too. The advantage of record representation is
that we can simply use HOL’s own type checker to type check the guest logic’s
sentences. For example, the type incorrect VSPL program in Example 4.18 is
now represented like this:

IF (\s. s.x)
THEN (ASG (\s. s with x := F))
ELSE (ASG (\s. s with x := s.x + 1))

which will be rejected by HOL’s type checker because (assuming we use State_A
to represent states) the first assignment tries to assign a boolean value to an
integer record field.

5.5 Program Transformation with Variable Constraints

Program transformations such as those in Examples 4.20 and 4.21 can still
be expressed, however transformations as the one in Example 4.22 cannot be
expressed because they contain a constraint on the set of variables used by the
program in question. In a record representation of program states the set of
variables of a program is specified by the set of field names of some record.
However, this information cannot be retrieved from HOL’s logic because field
names of HOL records are not first class HOL values.

6 Deep Embedding

Deep embedding extends shallow embedding by representing the grammar of
the guest logic in the host logic. It is known that a context free grammar can

7The use of extendible record may solve the problem. Reader may refer to [19].

24

be represented by a set of (typically mutual recursive) functional data types
[8]. This kind of data types are available in HOL. Values of those data types
fully represent the syntactic structures of sentences of the represented grammar.
This allows us to analyze the syntactic structures of the guest logic from HOL
and proves various property about the analysis itself.

As an example, we will show a deep embedding of the logic VSPL from
Figure 1. We will assume that the deep embedding will be built on top of the
functional state semantics given in Section 4. Record based semantics (Section
5) gives a problem –we will say more about this later.

The following definition provides the definition of the HOL data types we
use to represent VSPL sentences. Notice the similarity in the structure of the
data types and that of VSPL grammar. Because of the similarity, these data
types representation is also called abstract syntax in literature [8].

Definition 6.1 : VSPL’s Abstract Syntax

datatype A_expr
=
Add of A_expr => A_expr

| Equal of A_expr => A_expr
| Conj of A_expr => A_expr
| Imp of A_expr => A_expr
| Not of A_expr
| Boolean of bool
| Integer of int
| Var of string

datatype A_stmt
=
Skip

| Asg of string => A_expr
| IfThenElse of A_expr => A_stmt => A_stmt

datatype A_spec
=
Hoare of A_stmt => A_expr => A_expr

| Pred of A_expr

2

VSPL grammars have three syntactic categories, namely Expr, Stmt, and
Spec, each is represented by a HOL data type. For each category we will have
to define a semantic function that assign a semantics to a given sentence of
the category. The semantics is a value from the semantic domain specified in
Definition 4.2. We provide three functions:

MEx : A_expr -> Expr

25

MSt : A_stmt -> Stmt
MSp : A_spec -> Spec

Those are, respectively, the semantic function for VSPL expressions, statements,
and specifications. They are defined as follows:

Definition 6.2 : VSPL Semantics

MEx (Add e f) = fromInt o (\s. (toInt o MEx e) s + (toInt o MEx f) s)

MEx (Equal e f) = fromBool o (\s. MEx e = MEx f)

MEx (Conj e f) = fromBool o ((toBool o MEx e) AND (toBool o MEx f))

MEx (Imp e f) = fromBool o ((toBool o MEx e) IMP (toBool o MEx f))

MEx (Not e) = fromBool o (NOT (toBool o MEx e))

MEx (Boolean b) = fromBool o (\s. b)

MEx (Integer i) = fromInt o (\s. i)

MEx (Var x) = (\s. s "x")

MSt Skip = SKIP

MSt (Asg x e) = x ASG (MSt e)

MSt (IfThenElse g A B) = IF (toBool o MEx g) THEN MSt A ELSE MSt B

MSp (Hoare A P Q) = HOA (MSp A) (toBool o MEx P) (toBool o MEx Q)

MSp (Pred P) = VALID (toBool o MEx P)

2

Notice that had we used record representation of states –as in Section 5–
defining the meaning of Var x and Asg x e would be problematic.

6.1 Syntax Extension

Changing the syntax of the guest logic means that we have to change it’s HOL
data type representation. For example, extending the syntax of VSPL with
sequential composition as in Example 4.12 has to be matched by the following
change in the HOL representation of statements:

datatype A_stmt
=
Skip

| Asg of string => A_expr
| IfThenElse of A_expr => A_stmt => A_stmt
| Seq of A_stmt => A_stmt

The semantic function for statements has to be extended too:

MSt Skip = ... /* as before */
MSt (Asg x e) = ... /* as before */
MSt (IfThenElse g A B) = ... /* as before */
MSt (Seq A B) = SEQ (MSt A) (MSt B)

26

Unfortunately because some definitions are changed, older proofs are no
longer valid in HOL. They have to be re-executed. Some proofs may even have
to be re-coded. For example, if a proof involves an induction over the structure
of A_stmt, then adding a new alternative into the data type will cause the
generation of an extra sub-goal at the induction.

6.2 Extending Value Space

Adding new types of guest logic’s values, e.g. adding floats or lists, is already
problematic in the shallow embedding level (Subsection 4.5.2). This problem is
passed on to the deep embedding extension. Adding new types may also require
some extension of the guest logic’s syntax, in which case we are also confronted
with the problem mentioned in the previous subsection.

6.3 Guest Logic Type Checking

Recall that in functional state representation HOL’s own type checker cannot
be reused to type check the guest logic’s sentences (Subsection 4.6). With deep
embedding we can, if we decide to, implement the guest logic’s type checker in
HOL.

Figure 3 shows a type chekcer for VSPL. A_type represents the type language
of VSPL. tiEx is a function that infers the type of a VSPL expression. The
tc- functions are functions to type check VSPL expressions, statements, and
specifications. Those functions are coded as HOL definitions, but they can be
executed like normal functions by repeatedly calling HOL rewrite mechanism.
However, this way of doing a syntax analysis is somewhat overkill, since we can
simply code those functions in, say, ML and have the ML interpreter execute
them much more efficiently. The necessity to embed a type checker, or other
kinds of syntax analysis, in HOL comes, for example, when:

• We want to prove properties about the checker itself.

• We want to prove that a given program transformation preserves type
correctness.

7 Hybrid Embedding

We have seen that embedding in higher order logic, despite various approaches,
remains problematic. To circumvent the problems we are currently experiment-
ing with an alternative approach which we call hybrid embedding. It is actually
not a pure embedding. In (pure) embedding, a logic is mechanized by represent-
ing it as formulas of some already mechanized host logic. In hybrid embedding
of a logic, the semantics of the logic is embedded in some host logics. How-
ever, the syntactic structure of the logic and the semantic functions translating

27

datatype A_type = TyCons of string

tiEx _ (Add _ _) = TyCons "int"

tiEx _ (Equal _ _) = TyCons "bool"

tiEx _ (Conj _ _) = TyCons "bool"

tiEx _ (Imp _ _) = TyCons "bool"

tiEx _ (Not _) = TyCons "bool"

tiEx _ (Boolean _) = TyCons "bool"

tiEx _ (Integer _) = TyCons "int"

tiEx c (Var x) = (getType c x)

isInt (TyCons t) = (t = "int")

isBool (TyCons t) = (t = "bool")

tcEx c (Add e f) = isInt (tiEx c e) /\ isInt (tiEx c f)

tcEx c (Equal e f) = (tiEx c e = tiEx c f)

tcEx c (Conj e f) = isBool (tiEx c e) /\ isBool (tiEx c f)

tcEx c (Imp e f) = isBool (tiEx c e) /\ isBool (tiEx c f)

tcEx c (Not e) = isBool (tiEx c e)

tcEx _ _ = true

tcSt _ Skip = true

tcSt c (Asg x e) = tcEx c e /\ (getType c x = tiEx c e)

tcSt c (IfThenElse g A B) = tcEx c e /\ tcSt c A /\ tcSt c B

tcSp c (Hoare A P Q) = tcSt c a /\ tcEx c P /\ tcEx c Q

/\

isBool (tiEx c P) /\ isBool (tiEx c Q)

tcSp c (Pred P) = tcEx c P /\ isBool (tiEx c P)

Figure 3: VSPL Type Checker

28

sentences of the logic into their semantics are directly implemented (without
embedding).

For example, consider again the VSPL logic given in Figure 1. Subsection
4.2 gives a functional state semantics of VSPL, embedded in HOL. Section 6
shows a deep embedding of VSPL. It provides a set of HOL datatypes rep-
resentating VSPL grammar (Definition 6.1) and the corresponding semantic
functions (Definition 6.2) to translate VSPL sentences to their semantics. In
an hybrid embedding, the data types in Definition 6.1 and the semantic func-
tions in Definition 6.2 are not written in HOL. Rather they are coded directly
in an ordinary programming language. For example, we use ML whose style of
definition resembles that of HOL.

Section 6 shows a combination of deep embedding and functional state se-
mantics. This is a powerful combination, but recall that they have problems.
These problems are solved in hybrid embedding:

1. Readability

Problem Embedded sentences of a language L tend to be cluttered since
they are encoded as sentences of another language. Large sentences
can be quite unreadable. This is actually a problem of all (pure)
embedding approaches. This can be solved by providing a set of
translators between L and embedded L, but this means that we still
need this intermediate layer, not to mention that making such trans-
lators may require in-depth knowledge of the implementation of the
host logic.

Solution In hybrid embedding, sentences of the guest logic are not em-
bedded, so there is no readability problem8 and there is also no need
for any intermediate layer.

2. Syntax Update

Problem In deep embedding, changing the syntax of the guest logic also
changes the HOL data types representing it, along with its semantic
functions This may invalidate some proofs, so they have to be rebuilt.
Some may even need recoding.

Solution The syntax and the semantic functions are not embedded in
HOL, consequently updating them has no impact on the existing
HOL proofs.

3. Value space extension

Problem In HOL, the functional state semantics cannot represent poly-
morphism in the guest logic.

8Well, we represent those sentences as values of functional data types. For reading or
producing the actual sentences one still need to write a set of parsers and pretty printers. We
will not go into this, but the required techniques are well known –see for example [8]. There
are also tools that greatly simplify the task of writing them.

29

Solution Subsection 4.5.2 mentions that the problem can be solved if we
can treat the types of the host logic as first class values, and hence
they can be freely manipulated. Unfortunately, types are not first
class in HOL. However HOL is implemented in ML. We can build
a hybrid embedding on ML too, hence representing, for example,
VSPL grammar, including its type system, in ML. It follows that
HOL values, VSPL values, HOL types, and VSPL types are all just
plain ML values. So in ML they are all first class, and hence we are
saved from the problem mentioned above.

In addition to solving the above mentioned problems, the decision not to em-
bed the grammar of the guest logic makes mechanization by hybrid embedding
considerably more programable:

1. We have the option to implement a proof strategy directly rather than em-
bedding it in a host logic. This is unsafe. Left unembedded the correctness
of the strategy cannot be verified. On the other hand the soundness of the
strategy may be difficult (expensive) to prove and we may want to delay
its actual verification until we have enough resources to do so.

Another point is that a directly implemented proof runs much faster. So
we may even want to keep using them even after it has been succesfully
embedded and verified in the host logic.

2. For real examples, syntax directed analyses and transformations are very
helpful. Think of things like type checking, invariant generation, or adding
auxiliary variables. Since the syntax of the guest logic is directly imple-
mented, syntax driven operations have to be directly implemented too
(with some exceptions –Subsection 4.7). Although embedding them has
an advantage (will be elaborated later), there are also a number of serious
objections:

(a) Embedding them (semantically) is very complicated –see for example
an attemp to encode program refinement in shallow embedding by
Vos [25].

(b) They typically are not really where we want the logic to be focuses on.
So, including them in the semantics (in the embedding) can seriously
clutter the logic.

(c) As remarked earlier, embedded analyses or transformations run suf-
ficiently slower.

(d) Some analyses or transformations are either trivial enough or well
known that they can be directly and reliably implemented.

3. We can interface to different host logics. Even in a simple case, this is very
useful. Consider again the VSPL specification in Example 4.6. Repeatedly

30

applying VSPL rules will reduce the specification to the following:

(b ∧ ¬(x = y) ∧ (x = y) ⇒ b ∧ ¬(x + 1 + 1 = y))
∧
(b ∧ ¬(x = y) ∧ ¬(x = y) ⇒ b ∧ ¬(x + 1 = y + 1))

To prove this we translate the formula to HOL. The translation is carried
out by the semantic functions given in Definition 6.2 (though in hybrid
embedding these functions are directly implemented rather than embed-
ded). The result is an embedded representation of the above formula –see
Code 4.9. However we can also use another set of semantic functions that
translate the above formula to a plain HOL formula (one without any
embedding information), which is:

(b /\ ~(x=y) /\ (x=y) ==> b /\ ~(x+1+1=y))
/\
(b /\ ~(x=y) /\ ~(x=y) ==> b /\ ~(x+1=y+1))

which looks much cleaner, and more importantly, can be proven with-
out having to resolve the state abstraction and the to- and the from-
functions.

Though both translations targets HOL, we actually target different logics
embedded in HOL. Targeting an entirely new host logic can be done in
the same way, namely by defining a new set of semantics function.

For all the advantages of hybrid embedding mentioned above, some price
has to be paid. Because the grammar and the semantics functions of a guest
logic are not embedded, it means that properties about them are left unverified.
Syntax driven operations are also not embedded, so they are left unverified too.
As remarked above, this does not mean that they cannot be verified, since once
embedded, they can be verified too. However, we have the option to delay
the verification. In an industrial setup this can be an advantage since one
does not always have the resources available to do a total verification. Hybrid
embedding is also not totally unsafe, since the semantic part of the guest logic
is still embedded. For many logics, the semantics is the most delicate part, and
hence its embedding is urgent.

8 Conclusion

We have shown how embedding can be done using several methods. Each
method has it own weaknesses and strengths. Table 1 summaries those9.

The shallow and deep embedding approaches have their own limitations.
The weakest point of both is the lack of the extension features (i.e. syntax

9The symbol ’-’ and ’+’ indicate the weak point and the strong point. The double symbol
’--’ and ’++’ indicate weaker and stronger point.

31

Criteria Shallow I Shallow II Deep Hybrid
Readability −− − + ++
Soundness + + ++ −
Syntax Extension − − −− ++
Value Space Extension − − − +
Type check − ++ + +
Program Transformation + − ++ ++

Table 1: Comparison of the embedding methods

extension and value space extension) that allow models and theories to be re-
used easily when we add some new parts to them. Readability is also important
because less readable models will give less confidence to the user when proving
them. Hybrid embedding shows a better result on those criteria since it does
not embed all in the theorem prover.

Embedding actually specializes the theorem prover. It is built as a part
of the theorem prover and does not modify the theorem prover in any way.
Hybrid embedding provides another layer between the user and the theorem
prover in order to do the embedding. It forms an interface between a host logic
and a guest logic. It is also possible to have several (guest) logics implemented
in the hybrid embedding which interface with multiple host logics. Therefore,
hybrid embedding combines not only the capability of several computer aided
verification tools, but it can also enhance the tactical capability of its basic
theorem prover.

There are choices to make in representing a formal semantic, such as trad-
ing between completeness and elegance, and trading between completeness and
practicality. Hybrid embedding comes from a pragmatic point of view. In
favour of practicality, it chooses not to define the complete formal semantic of
the programming logic in the theorem prover. The soundness check of the used
tools is postponed to provide a clear separation between proving the core prob-
lem (input program) and proving the reliability of the used tools. This helps
the developer to concentrate on the issues which are directly related to his/her
products.

8.1 Future work

This paper reports on a preliminary investigation on embedding. The proposed
method of Hybrid Embedding still needs to be improved and used in handling
concrete industrial cases to have a better experience. Below are some interesting
directions for future research.

• Framework. On verifying a system, a methodological-support is also an
important issue beside the basic prover engine [18]. Therefore, having
a complete framework that uses hybrid embedding will show how the
approach can fit into the current methodology in order to be used in
the industrial world.

32

• Tools combination. We believe that there is no panacea on verification
tools. Therefore having a framework that allows the combination of many
specific tools would be an advantage. Hybrid embedding allows us to link
to several host logics. However, how different results can be composed
still requires deeper investigation.

• Reliability. Hybrid embedding is more secure than mechanization without
embedding at all, but it is still less secure than pure embedding. There
are at least three alternatives to improve the security. The first one is to
generate un-embedded simplifiers and transformations from some higher
level specification (rather than writing them by hand). The second one
is to extend un-embedded functions with some codes that generate proof
steps whenever the functions are executed. The generated proof steps can
be examined to validate the execution. The third way, and the most dif-
ficult one, is to formally specify those functions and then verify them by
other tools. We may also want to borrow the idea of reflection in theo-
rem prover community[10] while keeping aware not to violate the Gödel’s
Second Incompleteness Theorem[7].

• Case study. Realistic case study will raise confidence. There are several
case studies formulated as challenges to the formal method community.
In [20] a verification of cache buffer algorithm using PVS is presented.
This is a sub part of an Operating system module. In [15] a description of
’production cell’ as one of the manufacturing system is presented. Another
known case study for formal method is the RPC memory specification
problem, as presented in [4].

References

[1] Sten Agerholm.
Mechanizing program verification in HOL.
Master’s thesis, Computer Science Department Aarhus University, 1992.

[2] Flemming Andersen.
A Theorem Prover for UNITY in Higher Order Logic.
PhD thesis, Technical University of Denmark, 1992.

[3] R. Boulton, A. Gordon, M.J.C. Gordon, J. Herbert, and J. van Tassel.
Experience with embedding hardware description languages in HOL.
In Proc. of the International Conference on Theorem Provers in Circuit

Design: Theory, Practice and Experience, pages 129–156, Nijmegen,
1992. North-Holland.

[4] M. Broy and L. Lamport.
The RPC-Memory specification problem — problem statement.
Lecture Notes in Computer Science, 1169:1–??, 1996.

[5] K.M. Chandy and J. Misra.
Parallel Program Design.

33

Addison-Wesley, Austin, Texas, May 1989.

[6] Edmund M. Clarke and Jeannette M. Wing.
Formal methods: State of the art and future directions.
Technical Report CMU-CS-96-178, Carnegie Melon University, Pittsburgh,

USA, September 1996.

[7] Martin Davis.
Computability and Unsolvability.
McGraw-Hill, 1958.

[8] J. Fokker.
Functional parsers.
Lecture Notes in Computer Science, 925, 1995.

[9] M.J.C. Gordon and T.F. Melham.
Introduction to HOL.
Cambridge University Press, 1993.

[10] John Harrison.
Metatheory and reflection in theorem proving: A survey and critique.
Technical Report CRC-053, SRI Cambridge, UK, February 1995.

[11] Peter V. Homeier and David F. Martin.
Mechanical verification of total correctness through diversion verification

conditions.
In International Conference on Theorem Proving in Higher Order Logics

(TPHOLs’98), 1998.

[12] Marieke Huisman.
Java Program Verification in Higher-Order Logic with PVS and Isabelle.
PhD thesis, University of Nijmegen, The Netherlands, 2001.

[13] Bart Jacobs and Erik Poll.
A logic for the Java Modelling Language (JML).
Technical Report CSI-R0018, Catholic University of Nijmegen, November

2000.

[14] Twan Laan.
The Evolution of Type Theory In Logic And Mathematics.
PhD thesis, Technische Universiteit Eindhoven, 1997.

[15] T. Lindner.
Task description.
Lecture Notes in Computer Science, 891:7–??, 1995.

[16] Savitri Maharaj.
A Type-Theoretic Analysis of Modular Specifications.
PhD thesis, University of Edinburgh, 1996.

[17] M.J.C. Gordon.
Mechanizing programming logics in Higher-order logic.
In G.M. Birtwistle and P.A. Subrahmanyam, editors, Current Trends in

Hardware Verification and Automatic Theorem Proving (Proceedings

34

of the Workshop on Hardware Verification), pages 387–439, Banff,
Canada, 1988. Springer-Verlag, Berlin.

[18] César Mu noz and John Rushby.
Structural embeddings: Mechanization with method.
In Jeannette Wing and Jim Woodcock, editors, FM99: The World Congress

in Formal Methods, volume 1708 of Lecture Notes in Computer Science,
pages 452–471, Toulouse, France, sep 1999. Springer-Verlag.

[19] Lawrence C. Paulson.
Mechanizing UNITY in Isabelle.
ACM Transactions on Computational Logic, 1(1):3–32, July 2000.

[20] N. S. Pendharkar and K. Gopinath.
Formal verification of an O.S. submodule.
Lecture Notes in Computer Science, 1530:197–??, 1998.

[21] I.S.W.B. Prasetya.
Mechanically Supported Design of Self-stabilizing Algorithms.
PhD thesis, Utrecht University, 1995.

[22] I.S.W.B. Prasetya, T. Vos, S.D. Swierstra, and B. Widjaja.
A theory for composing distributed components, based on mutual exclu-

sion.
Draft. Presently available via : www.cs.uu.nl/people/wishnu.

[23] Donald Sannella and Andrzej Tarlecki.
Algebraic methods for specification and formal development of programs.
ACM Computing Surveys, 31(3es), 1999.

[24] J. von Wright and K. Sere.
Program transformations and refinements in HOL.
In Myla Archer, Jennifer J. Joyce, Karl N. Levitt, and Phillip J. Windley,

editors, Proceedings of the International Workshop on the HOL Theo-
rem Proving System and its Applications, pages 231–241, Los Alamitos,
CA, USA, August 1992. IEEE Computer Society Press.

[25] Tanja Vos.
Unity in Diversity: A Stratified Approach to the Verification of Distributed

Algorithm.
PhD thesis, Utrecht University, 2000.

35

