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Abstract

Evolutionary optimization based on proba-
bilistic models has so far been limited to the
use of factorizations in the case of continuous
representations. Furthermore, a maximum
complexity parameter k was required previ-
ously to construct factorizations to prevent
unnecessary complexity to be introduced in
the factorization. In this paper, we advance
these techniques by using clustering and the
EM algorithm to allow for mixture distribu-
tions. Furthermore, we apply a search metric
to eliminate the x parameter. We use these
techniques in the IDEA framework to obtain
new continuous evolutionary optimization al-
gorithms and investigate their performance.

1 Introduction

Most evolutionary algorithms (EAs) based on proba-
bilistic model building in the continuous case make use
of the normal probability density function (pdf) [5, 11,
16]. The normal pdf however is only suited to prop-
erly represent linear dependencies in the sample set.
To overcome this problem, the normal kernels pdf has
been investigated by Bosman and Thierens [6] which
places a normal pdf over every sample point. Unfor-
tunately, this pdf has been found to be quite hard to
handle. The normal mixture pdf represents a trade-
off between the normal pdf and the normal kernels
pdf. This pdf has been used successfully on two rela-
tively simple test functions by Gallagher, Fream and
Downs [9] using an adaptive estimation technique. In
this paper, we use two different approaches to con-
structing a normal mixture. One is by means of clus-
tering whereas the other is by means of the expectation
maximization (EM) algorithm. In a pilot study by Pe-
likan and Goldberg [13], clustering has previously been
successfully applied to binary representations.

In previous optimization algorithms that use continu-
ous probabilistic models, only little attention has been
paid to search metrics that guide the search for a good
probabilistic model. In this paper, we propose to use
a metric that effectively prefers simpler models. This
metric has previously been successfully applied to the
case of binary variables [10, 12, 15].

Our goal in this paper is to use the proposed tech-
niques to construct new continuous evolutionary opti-
mization algorithms and to get an indication of their
performance using a small set of test functions.

The remainder of this paper is organized as follows. In
section 2, we define the notion of probabilistic models
and point out how these can be used in an EA. In sec-
tions 3 and 4, we elaborate on the selection of factor-
izations and factorization mixtures as the structure of
the probabilistic model. Subsequently, we take a look
at what pdfs we can use in section 5 and thereby regard
the normal mixture distribution from a different per-
spective. OQur experiments are presented in section 6.
Topics for further research are discussed in section 7
and our final conclusions are drawn in section 8.

2 Probabilistic models and IDEASs

The IDEA is a framework for Iterated Density Esti-
mation Evolutionary Algorithms that use probabilistic
models in evolutionary optimization and has mostly
been used to focus on continuous representations and
techniques [5, 6, 7, 8]. We take the elementary build-
ing block of probabilistic models to be the probabil-
ity density function (pdf). We define a probabilistic
model M to consist of some structure ¢ that describes
a composition of pdfs, and a vector of parameters 6
for the pdfs implied by ¢. We write M = (¢,6). We
write the probability distribution that is described by
M as Ppq. The pdf to fit over every factor implied
by ¢ is chosen on beforehand. The way in which the



parameters @ are fit, is also predefined on beforehand.
We denote the parameter vector that is obtained in
this manner by 6 < ¢. With these assumptions, we
denote the resulting probability distribution by P..

We assume that the dimensionality of our problem is
l and write £ = (0,1,...,1 —1). We furthermore as-
sume that we have a continuous optimization problem
C(yo,y1,---5y1—1) = C(y{L)). In the framework, we
select |7n| samples (7 € [1,1]) in each iteration ¢
and let 8; be the worst selected sample cost. We then
estimate the distribution of the selected samples and
thereby find I:’ff ) = I:’ff (Yo,Y1,...,Y,_1) as an ap-
proximation to the true uniform distribution P% ()
over all points y(L£) with C(y(L)) < 6; (assuming
minimization). New samples can then be drawn from
ﬁ’ff (¥) and be used to replace some of the current
samples. If we draw n — |7n]| new samples, select by
taking the best |7n] vectors and finally replace the
worst n — |7n] samples by the new samples, we have
that 6441 = 6; — ¢ with € > 0. This assures that the
search for #* is conveyed through a monotonically de-
creasing series g > 61 > ... > atend' We call an
IDEA so constructed monotonic.

3 Factorization selection

To estimate the probability distribution of the selected
samples in the IDEA, we first search for a model struc-
ture. In this section, we only focus on the specific
structure of a conditional factorization. We can state
that variable Y; is either conditionally dependent on
variables Y (a) with ¢ & a, or it is not. By identifying
a vertex with each variable Y; and an arc (V;,Y}) if
and only if Y; is conditionally dependent on Y;, we get
the conditional factorization graph. A conditional fac-
torization is valid if and only if its factorization graph
is acyclic. The resulting probability distribution is the
product of I conditional pdfs in which each variable is
conditioned on at most [ — 1 parents.

We have to learn such a conditional factorization from
the vector of selected samples. To this end, a variety
of approaches can be taken [14]. We use an incremen-
tal algorithm that starts from the empty graph with
no arcs. Each iteration, the arc to add is selected to
be the arc that increases some metric the most. If no
addition of any arc further increases the metric, the
final factorization graph has been found. In earlier
work on continuous models [5, 11], the entropy was
used as a metric. The entropy is however equal to the
average negative log-likelihood of the sample set if the
pdfs were fitted to be of a maximum likelihood [7].
As a result, this metric monotonically increases as the

Figure 1: A non-linear dependency in the sample set
(left) and the contour lines of the density estimation
using two normal pdfs after clustering (right).

complexity of the factorization increases. Therefore, a
maximum order of interaction x had to be used that
defines how many parents any variable may be de-
pendent on in a conditional factorization. To remove
this non—transparent parameter k, the negative log—
likelihood can be penalized as the complexity of the
factorization increases. The metric that we use in this
paper, is commonly known as the Bayesian Informa-
tion Criterion (BIC). For a derivation of this metric
in the IDEA context, we refer the reader to a more
detailed report [8]. Let S = (y°,4',...,y!SI=1) be
the selected vector of /-dimensional samples. The BIC
metric is parameterized by a regularization parameter
A that determines the amount of penalization:

~In(£(8|Pu(Y))) +  An(|S))]6]
N z —_—— (1)

Error(Pu(Y)|S)  Complexity(Pu (P)]S)

In equation 1, we have used the the likelihood of M:

|S|-1

SIPM) = T Prm)(H) (2)
i=0

4 Factorization mixture selection

The structure of the sample vector may be highly non—
linear. This non-linearity can force us to use proba-
bilistic models of a high complexity to retain some of
this non-linearity. However, especially using relatively
simple pdfs such as the normal pdf, the non—linear in-
teractions cannot be captured even with higher order
models. The use of clusters allows us to efficiently
break up non-linear interactions so that we can use
simple models to get an adequate representation of
the sample vector. An example of this is depicted in
figure 1. Furthermore, computationally efficient clus-
tering algorithms exist that provide useful results.



Each cluster is processed separately in order to have a
factorized probability distribution fit over it. By doing
so, we obtain a mixture distribution. We let k be the
amount of clusters and let I = (0,1,...,k—1). In
general, we write f for a factorization. For a mixture
of factorizations, we write f()C). The resulting proba-
bility distribution is a weighted sum of the individual
probability distributions over each cluster:

k—1
) =S BB ) 3)
=0

One way to set the mixture coefficients f3;, is to propor-
tionally assign larger coefficients to the clusters with
a better average cost. A simpler way is to set 3; pro-
portionally to the size of cluster ¢. In order to perform
clustering, different approaches can be taken. One of
the most well known algorithms is the £—means clus-
tering algorithm that constructs exactly k clusters.
First, k cluster centroids are picked at random. One
way to do this, is by randomly selecting k points from
the points that have to be clustered. Subsequently,
the algorithm iterates until the means do not change
to within a significance of ¢ anymore. One iteration
consists of assigning each point to the nearest cluster
based on the distance to the cluster centroid. Once all
points have been assigned, the means of the clusters
are recomputed. The distance measure that we have
used, is the Euclidic distance scaled by the variance of
the data points in each dimension.

The randomized leader algorithm is one of the fastest
clustering algorithms. The first sample to make a new
cluster is appointed to be its leader. The leader algo-
rithm goes over the sample vector exactly once. For
each sample, it finds the cluster with the closest leader.
If this leader is closer than a given threshold ¥4, the
sample is added to that cluster. Otherwise, a new
cluster is created containing only this single sample.
To prevent the first clusters from becoming quite a lot
larger than the later ones, we randomize the order in
which the clusters are inspected. To avoid problems
with two clusters to which some samples are equally
close, the order in which the clusters are scanned is
randomized as well. The largest difference with the
k-means clustering algorithm is that because of the
threshold ¥4, we do not know in advance exactly how
many clusters will be created. In a previous study [8],
the variance scaled Euclidic distance was used. The
main problem with this distance measure is that the
maximum distance in an [ dimensional unit hypercube

1, so the range of ¥4 is not constant with respect
to . To ensure this, we propose to first compute the
bounding box of the data points by computing the

minimum coordinate y}'™ as well as the maximum co-
ordinate y}** in each dimension i and by scaling the
distance in each dimension by the range in that di-
mension. This ensures that all points are treated as
if inside the unit hypercube. To subsequently ensure
that T4 € [0,1], we could divide the distance by /I
as an approximation of the maximum distance in the
data set. However, depending on the form of the data
set and the dimensionality [/, this can be a bad es-
timate. To compute the exact maximum distance,
we require O(|S|?) computations, which is an order
of magnitude more than the actual clustering algo-
rithm itself. Therefore, we propose to approximate the
maximum distance by taking the maximum distance
over all points to the minimal and maximal points in
the bounding box respectively. This distance measure,
which we call the Bounding Box Euclidic Normalized
Distance (BEND), can be formalized as follows:

_(i-v)? i
Zk =0 (y\l\\ \11\1)2

APPROX Max. DisT.

dmenp (¥, y7) (4)
Since dgenp € [0, 1], we also have T, € [0, 1], regard-
less of . This makes the selection of an initial thresh-
old simpler. By limiting the maximum amount of clus-
ters to some value close to the desired average amount
of clusters, the BEND leader algorithm becomes a fast
and flexible adaptive clustering algorithm.

5 Probability Density Functions

A widely used parametric pdf is the normal pdf. The
|S|-1, 4
sample average in dimension j is Y; = |3‘ Yoo (YY)
The sample covariance matrix over varlables Y{a) is
S|l-1/ = i >

Ma) = & T (v (a) - V(@) (y'(a) - Y{(a))T. To
compute the BIC measure, we compute the entropy of
the normal pdf, since this is significantly faster than
evaluating the negative log-likelihood. The required
conditional pdf and the entropy are [5]:

1 —(vag—m>
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where - -
_ Yaua) ' (0,0)=F i (ya, ~Va,)Sa) "' (i,0)
H= =(a) T(0.0)
1 a

h(Y(a)) = 5(lal +1In((2) % det(S(a))))  (6)

So far, all continuous factorization selection ap-

proaches in probabilistic model building EAs have used



the normal pdf. The only exception is the use of the
normal kernels pdf [6]. However, this pdf has found to
be difficult to handle. By clustering the samples and
fitting a normal pdf in each cluster, we obtain a normal
mixture pdf. However, this is only an approximation
of the maximum likelihood fit since the clustering algo-
rithm only focuses on neatly partitioning the data set.
If we would see the normal mixture pdf as an elemen-
tary pdf, we look at fitting this pdf from a maximum
likelihood perspective. This leads to the expectation
mazimization (EM) algorithm [3] which is a general
approach to finding a maximum likelihood fit. Even
though the algorithm is theoretically rigorous, it can
easily get stuck in local minima, resulting in a sub op-
timal fit. This is especially true in higher dimensions.
By using this approach, we can no longer speak of
clusters that comprise the mixture model, but only of
a normal mixture pdf as a whole. Although formulas
exist to infer factorizations based on normal mixture
pdfs [8], such inference is far too time consuming to be
of practical use. Furthermore, since the EM algorithm
is itself computationally intensive, its only practical
use has been observed [8] to be when the univariate
factorization is used. In this case, each normal pdf in
the mixture has a diagonal covariance matrix.

6 Experiments

The continuous function optimization problems we
used for testing are the following:

Co | 1055 2izo(yi — 100)°— [=600, 600]
Mojeon (1) o

G _Z’L Osm yi)sin® ,17 f) [0, 7]

Cy | '22100(yit1 —y2)* + (1 —:)? | [-5.12,5.12]

All of the test functions should be minimized. Func-
tion Cy is Griewank’s function, C; is Michalewicz’s
function and Cs is Rosenbrock’s function. In all our
testing, we used a monotonic IDEA. We used the rule
of thumb by Miihlenbein and Mahnig [12] for FDA
and set 7 to 0.3. We ran tests so as to find the best
optimization results for n < 5000. We allowed each
run a maximum of 1-107 evaluations. If all of the so-
lutions differed by less than 5- 1077, termination was
enforced also. Note that this implies a maximum pre-
cision of 6 decimal digits. All results were averaged
over 10 runs. We tested both the normal pdf as well
as the normal mixture pdf. For the normal pdf, we
searched for conditional factorizations using the BIC
metric with A = % For the normal mixture pdf fitted
by the EM algorithm, we have fixed the factorization
structure to the univariate one. Furthermore, we have

Co
pdf | Thmin | C | evals | RT
Normal 150 | 0.000000 | 1403463 | 3.19
EM 1100 | 0.000000 51832 6.61
Leader 750 | 0.006705 | 7268071 | 19.47
k—Means | 2500 | 0.016360 | 2054672 | 23.03

Figure 2: Results on Griewank’s function.

Cy
pdf | Nmin | C | evals RT
Leader | 4000 | -4.687658 | 180813 | 0.42
EM 1800 | -4.687658 | 39756 | 1.61
Normal | 1700 | -4.654513 | 4088736 | 8.26
k—Means | 4250 | -4.637136 | 551834 | 2.35

Figure 3: Results on Michalewicz’s function.

used 10 normal pdfs in each mixture. We applied clus-
tering using both the BEND leader algorithm as well
as the k—means clustering algorithm. In the case of
the BEND leader algorithm, we set T4 to get approx-
imately 10 clusters. For the k—means algorithm we
used exactly 10 clusters. The mixture coefficients f3;
were set to the proportional cluster sizes.

We present the average best results over the 10 in-
dependent runs and sort the IDEA instances by this
index primarily. For all problems, the best perform-
ing algorithm reached the optimum. We also show the
minimum population size nny;, for the best obtained
result, the average amount of evaluations and the Rel-
ative Run Time RT. Let FT(z) be the time to per-
form z random function evaluations and let TRT be
the Total Run Time on the same processing system.
Then, RT (z) = TRT/FT(z). We determined RT as
RT (10%). The RT index is a processing system inde-
pendent fair comparison metric. We sort the results by
this index secondarily instead of the amount of evalu-
ations, as it truly reflects the required amount of time.
The results are shown in figures 2, 3 and 4.

Cy
pdf | Thmin | C | evals | RT
k—Means | 3000 | 0.000000 82575 3.65
Leader 5000 | 0.050435 | 646558 7.36
EM 4000 | 0.065469 | 341870 | 72.56
Normal | 2750 | 1.859228 | 2370574 | 19.30

Figure 4: Results on Rosenbrock’s function.



The first thing to note is that by using a single nor-
mal pdf, only the Cy function can be optimized with
n < 5000. Moreover, it has been empirically observed
that even for larger values of n, both C; and Cy are
not optimized. This means that solving these prob-
lems is not a matter of finetuning the parameters of
the IDEA using normal pdfs, but that it requires more
involved techniques. From figure 3 we see that by us-
ing a normal mixture model, the desired results can be
obtained. Using the EM algorithm even requires less
than 40 - 10% function evaluations. However, since the
computational requirements are quite high, the actual
running time is much larger than that of the efficient
leader clustering approach. The same can be observed
for Cy. Note that the clustering approaches are not
very successful in optimizing Cj, whereas they are the
most successful on Cy. Function C} is a very challeng-
ing one because of its non—linearity. It has a curved
valley along which the quality of the solutions is much
better than in its neighborhood. Furthermore, this
valley has a unique minimum of 0 itself. Finally, the
gradient along the bottom of the valley is only very
slight. Any gradient approach is therefore doomed to
follow the long road along the bottom of the valley.
For a density estimation algorithm, capturing the val-
ley in a probabilistic model is difficult, even if all of
the points within the valley are known. The reason
for this is that the valley is non—linear in the coding
space. Therefore, it is to be expected that in order to
get any reasonable results, we require clustering.

The obtained results indicate that the single normal
pdf is no longer adequate when the epistasis or the
non-linearity of the landscapes increases. Epistasis as
encountered in Cy and even more in C; can be effi-
ciently tackled using the EM algorithm. Clustering on
the other hand seems to only partly be able to resolve
this problem. Non-linearity as encountered in Cs can
be efficiently tackled using clustering. The EM algo-
rithm seems less well suited to this end. We note at
this point that it has been empirically verified that for
a lower threshold, the leader algorithm is able to op-
timize C within 161017 evaluations on average. We
can therefore state that mixture distributions are use-
ful in continuous optimization by IDEAs especially for
non-linear and highly epistatic problems.

Note that the amount of dimensions is only very small.
If the amount of dimensions goes up, the amount of
clusters will have to increase accordingly. However, by
doing so, the amount of samples will have to increase
as well to ensure a large enough cluster size. There-
fore, the sole use of density estimation on smooth but
strongly non-linear search spaces such as Cs is not ef-
fective enough to compete with approaches that use

gradient information. However, gradient based algo-
rithms are known to have difficulties with epistatic
search spaces such as Cy and C;. Therefore, a hybrid
combination of both approaches will most likely result
in very effective continuous optimization techniques.

7 Discussion

Next to being a useful tool for improving density es-
timation in IDEAs, clustering is also useful for other
purposes. One of these is multimodal optimization
where we want to find multiple global optima or even
some additional good local optima [13]. By setting
the mixture coefficients ; to the relative average so-
lution quality, the solutions can be distributed among
the different peaks. Clustering also has an application
in multi-objective optimization where an optimization
problem consists of multiple objectives that are equally
important [17]. By clustering in the objective space,
a good distribution of the points along the optimal
front can be found. An important question is whether
and how the added effort of clustering is affected by
the increase of the dimensionality. A study in which
the scaling behavior is investigated, would therefore be
most interesting.

Approaches such as the IDEA that build and use prob-
abilistic models in evolutionary optimization were first
proposed as an improvement over binary GAs [2, 4].
The IDEA framework itself has been used to focus
on continuous models for problems with real valued
variables. This has resulted in a new line of continu-
ous evolutionary algorithms. However, for continuous
optimization, evolutionary algorithms have been pro-
posed almost as long ago as the original simple binary
GA [1]. Currently, we can identify two variants of this
continuous evolutionary algorithm, namely Evolution-
ary Programming (EP) and Evolution Strategies (ES).
Both make use of normal pdfs. For this reason, it is
important to question the relevance of a new approach
such as the IDEA instances presented so far. In ES,
mutation is the most important operator. It is based
on normal pdfs. Each solution has a normal pdf asso-
ciated with it. The parameters of this normal pdf are
subject to mutation themselves. The main idea is that
a solution is mutated by adding a value drawn from the
normal pdf that is associated with the solution. The
IDEA approach is a global procedure that attempts
to use the structure of the problem landscape to ex-
plore the most promising regions. On the other hand,
mutation based ES approaches are local procedures
that use evolution to explore the inside of promising
regions. The two approaches are therefore fundamen-
tally different. For example on Rosenbrock’s function,



an IDEA based approach will quite easily find the val-
ley itself, but will by no means be able to traverse the
valley to find the global minimum unless points were
sampled near the global minimum. The reason for this
is that density estimation converges on a certain part
of the valley since samples are only available in that
part of the search space. On the other hand, once the
ES is inside the valley, it can adapt its mutation direc-
tion and stepsize to follow the valley to its minimum
in a gradient descent fashion. Even though this is a
time consuming process, the ES is not as likely to pre-
maturely converge on such a problem as is the IDEA
approach. Hybridizing the IDEA to exploit gradient
information for pure continuous optimization therefore
appears to be a good idea.

8 Conclusions

In this paper we have extended the set of available
tools for IDEAs to perform continuous optimization
with, by advancing to mixture modeling. Furthermore,
we have done away with the maximum interaction pa-
rameter k for conditional factorizations by using the
BIC metric. These extensions provide new and more
complex tools that allow for a better performance of
IDEAs on epistatic and non-linear continuous opti-
mization problems.
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