CodeBoost
A Framework for Transforming C++ Programs

Otto Skrove Bagge!, Magne Haveraaen!, and Eelco Visser?

! Institutt for Informatikk, Universitetet i Bergen,
N-5020 Bergen, Norway,
(ottolmagne)@ii.uib.no
% Instituut voor Informatica en Informatiekunde, Universiteit Utrecht,
P.O.Box 80089, NL-3508 TB Utrecht, The Netherlands,
visser@cs.uu.nl

Abstract. Often we are faced with the need to make trivial, albeit te-
dious, changes to program code. It may be things like making variable
names more readable, add code that will provide execution profile infor-
mation, or change the style of a program from from expression oriented
to object oriented in order to improve run-time efficiency. Such source-to-
source transformations can be aided by, or even completely automatised,
with the aid of a suitable program transformation tool. Here we present
the CodeBoost framework for the implementation of source-to-source
transformation of C++ programs. It is implemented using OpenC++ for
the syntax analysis and using Stratego for defining the program trans-
formations. Stratego allows for the easy expression of context sensitive
transformations, a central point when using transformations to improve
execution speeds of code. We also discuss two example applications.

1 Introduction

Source-to-source transformations can be used in various ways to increase pro-
grammer productivity. Source-to-source optimisation can be used to reduce the
overhead caused by an abstract, high-level style of programming, or to achieve
domain-specific optimisations using domain knowledge that the compiler does
not have access to [9]. Instrumentation can be used to systematically extend all
functions of a program to obtain profiling or debugging versions [2]. Refactor-
ing transforms a program to improve its design [10]. Specialisation transforms a
generic piece of code to a situation dependent program, e.g., instantiating type
declarations to taking into account knowledge of input data [4]. Also, (domain-
specific) language extensions can be implemented by means of transformations
to the core language supported by the compiler.

The implementation of such source-to-source transformations requires a con-
siderable language processing infrastructure capable of parsing and pretty-print-
ing programs, performing semantic analysis and implementing the transforma-
tions themselves. In particular for a complex language such as C++ [12] this
requires a large effort.

In this paper we describe CodeBoost, a framework for the implementation of
source-to-source transformations of C++ programs. CodeBoost was originally
motivated by the need of the Sophus numerical software library [11] to opti-
mise effects of using a very high-level style of programming when writing high
performance numerical code [9].

When doing source code optimisations, the transformations are very sensitive
to the context where they may be applied. The Stratego language for program
transformation [16] is well suited for this. In Stratego the description of the trans-
formations, which may become quite complex, are separated from the description
of the context in which they may be applied. Transformations are described by
a combination of concise rewrite rules and strategies specifying how and where
the rules are applied. The rules are independent of the overall transformation,
and can be reused for other transformations. Strategies can be parameterised
by transformations to apply, making it possible to develop libraries of reusable
transformations.

CodeBoost performs semantic analysis, and supports function and operator
overloading and templates. CodeBoost is extensible, supports cascading trans-
formations, and can be used for experimentation with optimisations, as well as
other kinds of transformations.

The paper is organised as follows: Section 2 describes the architecture of the
framework. In section 3 we discuss the implementation of two example applica-
tions with the framework: instrumentation and domain-specific optimisation. In
section 4 we present the specification of an optimising transformation.

2 Architecture

The CodeBoost framework consists of a parser, a semantic analyser, a library of
transformations, and a pretty-printer. Figure 1 illustrates the typical usage of
the components in the framework; the C++ code is first parsed, passed on to
semantic analysis, then on to user-defined transformations, which can be applied
as many times as necessary, before proper C++ code is produced by the pretty-
printer. The semantic analysis phase may be bypassed if the transformations do
not require semantic information.

2.1 Parsing

The CodeBoost front-end converts C++ code to the abstract syntax tree (AST)
format used internally. A combination of Perl and the preprocessor of a C++
compiler is used to preprocess the code. The preprocessor allows the user to
specify which parts of the code will be touched by CodeBoost. It is possible to
preserve sections of the code verbatim, or delay inclusion of header files.

The parsing is done by the parser of OpenC++. The parser has been modified
to output ATerms [13]. The ATerm library supports C and Java, but a parser can
easily be written for most languages. Because OpenC++ works on a concrete
syntax tree, a second pass is necessary to convert to AST format. The AST can

Semantic Analysis

Parser :
DTCDTOCESS - local variables

source] ——» — > | - name resolution
- openc++

Annotated

C++ AST | . overloading
- cst-to-ast AST
- templates, etc.
(AST++)
AST
Pretty-Printing Transformation
- - ast-to-box - optimisation
~| ~— | -
Ct+| ox-to-text AST++ | instrumentation
- postprocessing - etc.

Fig. 1. The Transformation Process

then be fed directly to a user-defined transformation component, or semantic
analysis can be performed, if that is required. A sample AST fragment is shown
in Figure 2.

2.2 Pretty-Printing

The pretty-printer converts the AST back to C++ code. The AST is first
transformed to Box, a device and language independent format for pretty-
printing [14]. We may use the GPP system pretty-printer 7], or a simpler ABox
formatter. The output is properly indented, and reasonably readable for humans.

In addition to plain text output, CodeBoost also provides facilities for high-
lighting parts of the code, and producing PostScript (with GNU a2ps). This is
useful for visualising properties of the code, such as execution profiling results.

if(a) If (Var(IdName("a"),AnyType,NoScope),
++b; — Expr(Prefix (Op("++",AnyFun),
Var (IdName ("b") ,AnyType,NoScope))))

(a) C++ (b) AST

Fig. 2. Example of C++ code, and the corresponding AST

2.3 Semantic Analysis

The semantic analyser consists of three parts. The first part uses a simple
environment-passing scheme to annotate local variables with their types. The
second part collects all non-local declarations into a symbol table and resolves
variable names. Function and operator applications are annotated with a list of
possible candidates. The last part performs overload resolution, computing the
type of all expressions and, for each application, selecting the correct function
from the list of candidates.

It is not always desirable to transform an entire program, especially since
CodeBoost does not support all C++ features (like namespaces and inheri-
tance). Typically, the standard library will be unsuitable for transformation,
or contain vendor-specific extensions that would disappear during parsing. In-
clusion of standard library header files will therefore often be postponed until
compilation time. CodeBoost has declarations for C++ built-in operators, and
some of the standard library functions, and will fall back on them if no other
declarations are found. Undeclared variables and functions are accepted, but
missing type information may cause trouble for later transformations.

After semantic analysis, variables will have type information attached (in-
stead of AnyType as the type information available for the variables a and b in
Figure 2), and function calls have been annotated with a copy of the declaration
of the function (replacing the generic AnyFun in Figure 2).

2.4 Transformation

User defined transformation plug-ins are separate components, connected to the
framework by pipes or intermediate files. The components are typically specified
in Stratego, which works directly on ATerms, but it is possible to use other
programming languages to specify transformations.

The CodeBoost framework contains a library of Stratego modules to ease the
implementation of C++ transformations. There are strategies for symbol table
lookups, type comparison, matching and conversion, various kinds of traversal,
and simple pretty-printing for error messages.

Stratego has a library of generic, language independent strategies, including
renaming of bound variables [15]. An instantiation of this for C++ is available
in CodeBoost. Optimisations such as inlining and loop fusion are implemented
as part of the Sophus optimiser project, but can be reused for other projects as
well.

The separation of traversals and transformations in Stratego makes it possible
to extract parts of a larger transformation and generalise them. Such transfor-
mations can then be added to the general CodeBoost library and reused for
other purposes.

3 Example Applications

3.1 Instrumentation: Path profiling

Instrumentation of a program is useful for investigating correctness, debugging
and learning about its run-time behaviour. A program may be instrumented to
check that data invariants hold at critical places in the code, or to produce a
stack trace if it crashes. Code can be added to a program for coverage analysis:
showing which parts of a program have been executed, so that testing code can
be improved. Performance profiling can identify bottlenecks, and give hints on
where to concentrate optimisation efforts.

Path profiling counts the number of times each of the possible execution
paths in a function is executed. This can be used for path coverage analysis,
where we check whether all paths are executed, or for program optimisations,
where we are interested in which paths are executed the most.

The code segment shown in Figure 3 has three possible paths, which are
enumerated 3 (a is true), 2 (a is false and b is true), and 0 (a and b are false).
On the right of the figure, path 3 has been shaded. In Figure 4 code has been
inserted to count the traversals of each path. The function P(p,n) sets bit n of
p, so at the end of the segment the integer variable p will identify which path
was executed. The tally of this path is then increased in the last statement.

An instrumentation tool for path profiling has to analyse the possible paths
through the code, identify each path, and then insert code which will tally the
execution of a path. In our implementation, a simple bit-numbering scheme is
used to number the paths: A single bit is assigned to each control-flow construct

if(a || b) if(a || b)
doIt; doIt();

else else
dontDoIt(); dontDoIt();

Fig. 3. Path Profiling. The right box shows how a single path or subpath can be
illustrated by shading the source code: The first part of the ||-expression, and the
then-part of the if are in path 3.

p=0;
if(a || b) if ((a&&P(p,1)) || b)
doIt(); {P(p,2); doIt);}
else else
dontDoIt(); dontDoIt();
paths [p]l++;

Fig. 4. Instrumentation for Path Profiling. The right box shows how the code segment
on the left has been modified to count how many times each path is executed.

(if, &%, ...) in a function. Together, the bits form a number uniquely identifying
a path through the function. This technique is simple to implement, but wastes
path numbers. Ball and Larus[2] have developed a more efficient scheme, which
also tries to place the instrumentation in the least executed paths.

Path profiling requires only syntactical information, so semantic analysis can
be skipped, see Figure 5. Instead we need to provide two kinds of output: the
instrumented code which goes to the compiler, and a visualised version where
each path through the code segment can be identified (the enhanced C++ text
that goes to the user). In our implementation we only shade one path at a time,
so the path number to be visualised is provided as an extra parameter to the
transformation unit. The CodeBoost path profiler is then run in one of two
modes: either as an instrumentation tool which adds the profiling code shown in
Figure 4, or as a visualisation tool which, depending on the path number given,
will provide a pretty-printed version of the code with one path shaded as shown
in Figure 3

The Stratego implementation of this consists of three parts: a generic traver-
sal strategy, control-flow rules, and instrumentation rules. The generic traver-
sal strategy does a top-down traversal of the program, carrying along the cur-
rent bit number. The traversal order is overridden by the control-flow rules.
For each node in the AST, the control-flow rules and then the instrumentation
rules are tried. If neither succeeds, traversal continues normally. The control-
flow rules specify the propagation of the bit number. For instance, the rule for
an if statement states that the incoming bit number, b;,, should be used for
instrumenting this statement. Each branch of the if should be traversed with
bthen;, = belse;;, = bin + 1. The outgoing bit number, to be used in the next

Parser I"Semantic Analysis !
- preprocess : :
-openc++ [T TTTTTTTTT
C++
- cst-to-ast

path number

AST Ny
Pretty-Printing 4
D ast-to-box Transformation
C++ - box-to-text (E - path profiling

- postprocessing

C++ postscript

Fig. 5. The Instrumentation Process. Semantic Analysis is bypassed, and the same
module is used for both instrumentation and presentation. The PostScript output fea-
tures of the postprocessor are used for visualisation.

statement, is by = max(bghen,,,, belse,,.)- Lhe rules for other statements are
similar.

The instrumentation rules differ depending on whether we are instrumenting
a program, or visualising a path. In the first case, for an if statement, instru-
mentation is added to the then-branch, setting bit b;,, of the path number in the
function to 1. Together with other rules, this results in code shown in Figure 4.
In the second case, we test bit b;, of the path number under consideration, and,
if set, a Mark node is added to the AST, giving output as in Figure 3.

The actual analysis of the path executing profile will be done on the data
gathered in the path array of Figure 4. Such analysis is not part of CodeBoost.

3.2 Optimisation: The Sophus project

The Sophus project [11] explores the use of high-level abstractions for numeri-
cal applications. This has great advantages in terms of programmer productivity
and program maintainability, but poor performance has hindered the adoption of
these techniques in high performance computing. Current compilers have proven
unable to sufficiently optimise programs in this style, partly due to low demand
for such optimisations, and partly because some of the most effective optimisa-
tions go beyond the C++ standard, such as extending the semantic relationship
between + and += from the built-in arithmetic types to all user-defined types and
classes. Building a domain-specific optimiser for Sophus allows us to experiment
with optimisations, and bridge the gap between the Sophus coding style and
current compiler technology.

An experimental CodeBoost version [9], implemented in the abstract specifi-
cation formalism ASF+SDF [8], showed promising results, but without semantic
analysis, more advanced optimisations were difficult. The new CodeBoost frame-
work is a result of the effort to create a more advanced optimiser.

Sophus uses a coding style that is close to mathematical notation. Programs
are written in terms of non-updating functions; any updating is done with the
assignment operator. Functions that modify their arguments, updating (or mu-

Mesh a, b, c; Mesh a, b, c; Mesh a, b, c;
c=ax*x4.0+Db+ a; Mesh t0, t1, t2; c = a;
t0 = a * 4.0; c ¥= 4.0;
tl = t0 + b; c += b;
t2 = tl1 + a; c += a;
c = t2;
(a) (b) (c)

Fig. 6. The code in (a) would normally be evaluated as in (b), with three temporary
meshes. Mutification gives code as in (c), eliminating temporaries and copying.

Semantic Analysis

Parser :
Dreprocess - local variables

—> | openct+ — > | - name resolution
C++ P AST | . overloading

- templates, etc.

- cst-to-ast

AST++
Pretty-Printing Transformation
- - ast-to-box ——
compiler| --—| box-to-text -«—— | - optimisation
C++ . AST++ | - Sophus plug-in
- postprocessing

Fig. 7. The Optimisation Process

tating) functions, are forbidden in user code. For our purposes, operators are
considered functions.

This mathematical style causes certain inefficiencies in the generated code.
Since no Sophus function can update its arguments, the result is returned by
value, requiring an extra temporary. As Sophus uses large data structures (sev-
eral megabytes), the allocation, initialisation and copying of temporaries can
have a significant impact on performance. In addition, the heavy use of function
abstractions adds function call overhead. Mutification (see Figure 6) solves this
problem by converting Sophus-style expressions to expressions using only updat-
ing functions; the return value is written into an argument. In the Sophus code,
only the updating version of a function needs to be implemented, CodeBoost
will supply a declaration for the non-updating version.

C++ provides no way to specify the relation between user-defined updating
and non-updating functions, so the compiler can only do this for the built-
in operators. However, the domain-specific nature of Sophus allows CodeBoost
to safely apply this transformation to user-defined functions. Figure 7 shows
how this optimisation fits into the framework. The actual implementation of
mutification is described in Section 4.

Inlining a function eliminates the function-call overhead, and allows for fur-
ther optimisations—such as loop fusion. C++ provides the inline keyword as
a hint to the compiler that a function can be inlined, but this is merely a hint;
the compiler is free to ignore it. Depending on the compiler, seemingly easy-to-
inline code may run a lot slower than hand-inlined code. An inline component
for CodeBoost gives us fine-grained control over the inlining process, and can be
useful outside Sophus as well.

Many Sophus library functions iterate over large data structures. In a com-
plex expression, there will typically be many loops, each inside its own function.
Doing the computation this way, in several passes, leads to a lot of cache misses;

if we reduce this to a single pass, we can make better use of the cache. This can
be done by inlining each function, and then performing loop fusion — joining a
series of similar loops into one. Loop fusion requires, in addition to syntactic and
semantic analysis, data flow analysis to determine if code can be moved without
changing the meaning of a program. Loop fusion is already done by certain ex-
isting compilers, but they work at a low level, and do not seem able to handle
the interplay with inlining functional abstractions.

Further optimisations may also be feasible, such as applying algebraic laws
to computations, or taking advantage of known properties of objects (such as
matrix symmetry).

4 Specification of Mutification

In this section we illustrate the specification of a transformations in CodeBoost
by means of the specification of mutification.

The implementation of mutification consists of two parts. The first part is a
modification of the name resolution module: For each occurrence of an updating
function, a declaration for the corresponding non-updating ‘shadow’ function is
added to the symbol table. Furthermore, a table is kept, mapping shadow func-
tions back to real functions. No code is ever generated for the shadow functions,
so every occurrence must be eliminated before compilation.

The second part is a new transformation module, which is described below.
The code presented here is a special case that only deals with operators. The
code for the general case is similar, but more complex, because functions can
have any number of arguments.

Mutification of operators is defined by the following rules:

X = X Op e; = X Op= e; (1)
x = el op e2; =+ x = el; x op= e2; (2)
x opl= el op2 e2; -+t = el op2 e2; x opl= t; 3)

An example of the application of these rules to a C++ code fragment is shown
in Figure 8.

The Stratego specification of the mutification rules is shown in Figure 9. A
Stratego specification consists of a signature specifying sorts and constructors for
the terms to which it will be applied, rules that can be applied to the terms and
strategies that specify how the rules are to be applied. The signature for the AST
used to represent C++ is specified in a separate module which is imported into
all CodeBoost modules by means of the imports directive. The other modules
imported into the mutification module are the standard Stratego library and the
CodeBoost library.

In this example, a special constructor C(ds,es) has been added to the AST
signature which is used internally to store compound expressions. The first ar-
gument is a list of declarations for temporaries, the second argument is a list
of expressions. After mutification is complete, the compound expressions will be

transformed to lists of statements or blocks. The other constructors used are
Expr(e), which represents an expression as a statement; Infix(op, r, 1), an
infix operator op with arguments r and 1; and Op(o, d), the operator s, with
the declaration d.

Strategies are used to direct the application of rules. The mutification strat-
egy mutate specifies that a bottom-up traversal should be used and at every
node, one of the mut0-3 rules should be applied. If one of them succeeds, the
result is recursively mutified. The operators <+ and ; are used to compose strate-
gies: s1 <+ s2 means try sl, and if that fails, do s2. s1 ; s2 is sequential
composition.

Rules can have conditions; a where clause with a strategy that must succeed
before the rule is applied. Conditions are used here for finding the updating
version of a function (find-mutating-op) and for generating names and decla-
rations for new temporaries (make-temporary).

The rules mutl to mut3 implement rule (1) to (3) above. In rule mutl we
match against the pattern x = x o e. If a match is found, find-mutating-op
is applied to o in order to find an updating version of the operator. The term is
then rewritten as x o= e.

The second rule, mut2a, is similar: we match against x = el o e2. An extra
test is done to ensure that x is not used in e2. We use the C constructor to
make a compound assignment, which will later be flattened, to produce plain,
linear C++ code. In Sophus, the assignment operator (=), is assumed to have
its customary meaning, so we can ignore its declaration when we build a new
assignment.

(Mesh a, b, c;) (::Mesh a, b, c;)
c=ax*x4.0x (b+a)+c; {
::Mesh a 0;
(a0 =¢c);
(c = a);
(c *= 4.0);
{
::Mesh b_0;
(b0 = b);
(b0 += a);
(c *=b.0);
}

(c += a 0);

}

(. J _)

(a) (b)

Fig. 8. The code in (a) is shown after mutification in (b).

10

module mutification
imports lib cpp symtable names types cb sigs shadows
signature
constructors
C : List(SD) * List(SD) -> SD

strategies

mutate = bottomup (try((mutl <+ mut2a <+ mut2b <+ mut3); mutate))

rules
mutl:
Expr(Infix(QOp("=", _), x, Infix(o, x, e))) ->
Expr(Infix(Op(o’, d), x, e))
where <find-mutating-op> o => Op(o’, d)

mut2a:
Expr(Infix(Op("=", _), x, Infix(o, el, e2))) ->
C([1, [Expr(Infix(Op("=", AnyFun), x, el)),
Expr(Infix(Op(o’, d4), x, e2))])
where <not(used-in)> (x, e2);
<find-mutating-op> o => Op(o’, d)

mut2b:
Expr(Infix(Op("=", _), x, Infix(o, el, e2))) ->
C([tdecl], [Expr(Infix(Op("=", AnyFun), t, x)),
Expr (Infix (Op("=", AnyFun), x, el)),
Expr(Infix(Op(o’, d), x, e2’))])
where <used-in> (x, e2);
<make-temporary> x => (t, tdecl);
<replace-var> (x, t, e2) => e2’;
<find-mutating-op> o => Op(o’, d)

mut3:
Expr(Infix(Op(s, d), x, Infix(o, el, e2))) ->
C([tdecl],
[Expr(Infix(0p("=", AnyFun), t, Infix(o, el, e2))),
Expr(Infix(Op(s, d), x, t))1)
where <is-mutating-op> s;
<make-temporary> o => (t, tdecl)

find-mutating-op:
Op(s, d) -> Op(s’, d’)
where <shadow-get> d => (d’, u, ug);
<fun-get-name;get-name-as-string> d’ => s’;

Fig. 9. Stratego source code for mutification

11

Rule mut2b is used in the case where x is used in e2. An extra temporary is
used to preserve the value of x across the assignment of el to x. All instances
of x in e2 are replaced by the new temporary variable.

The last rule, mut3, further decomposes an already mutified expression. If
x ol= el 02 e2 matches, a temporary is introduced to hold el 02 e2; this
expression then becomes suitable for transformation by mut2a or mut2b. In this
way, all occurrences of non-updating operators are removed, and replaced by
updating operators.

The definition of find-mutating-op is also shown. It uses a simple table
look-up (with shadow-get) to map from non-updating to updating operators.

A further improvement is possible: if we allow the user to specify the math-
ematical properties of operators, we can take advantage of commutativity, and
dox = e op x in just a single step: x op= e.

Used together with the CodeBoost transformation library, the code in Fig. 9
is a complete implementation of the simplified mutification. The general case
needs to handle mutification of functions in addition to operators, and general
expressions for arguments instead of just simple variables or binary operator
expressions.

5 Conclusion

In this paper, we have presented a framework for the source-to-source transfor-
mation of C++ programs. The implementation of such source-to-source trans-
formations requires a considerable language processing infrastructure capable of
parsing and pretty-printing programs, performing semantic analysis and imple-
menting the transformations themselves. In particular, for a complex language
such as C++ [12] this requires a large effort.

The CodeBoost framework provides the basic infrastructure needed to apply
Stratego transformations to C++ programs. CodeBoost provides a parser and
pretty-printer for a considerable subset of C++, ensuring the production of syn-
tactically correct C++ programs. CodeBoost performs semantic analysis, and
supports function and operator overloading, and templates. CodeBoost is exten-
sible and can be used for experimentation with optimisations, as well as other
kinds of transformations. It supports cascading transformations; any number of
transformations can be applied in any order, in one or multiple passes over the
syntax tree, without having to pretty-print and reparse.

CodeBoost has been developed as part of the SAGA project, to support the
Sophus style of programming [11]. Sophus is a C++ library providing high-level
abstractions for implementing partial differential equation solvers. CodeBoost is
used to reduce the overhead caused by the abstract implementation style and
to implement optimisations that use knowledge of the mathematics behind the
library functions. CodeBoost has also been used to implement a path profiler for
coverage analysis.

Program transformations are often implemented using ad hoc tools. One
of the most commonly used basis for such tools is the general-purpose string

12

processing language Perl [17]. Although Perl is a powerful language, and has
excellent lexical rewriting features, it offers little support for syntactic analysis
(or even representing a syntax tree) and is not usable for complex transforma-
tions. Nevertheless, Perl has proven useful in pre- and postprocessing stages in
CodeBoost.

The algebraic specification formalism ASF+SDF [8] has strong syntactic ca-
pabilities, and supports rewriting with high-level transformation rules. It was
used in a first experimental version of CodeBoost [9]. One of the observations
in this project was that pure rewriting on constructors of abstract trees was not
sufficient for the context-sensitive application of transformation rules required
in program optimisation. Spelling out the traversals over the complex syntax
trees of C++ programs would be needed to get control over the application of
transformation rules, but proved cumbersome to specify. For the same reason,
specifying the complex semantics of C++4+ would be difficult. It is this aspect
where the generic traversals of Stratego provide an advantage.

OpenC++[5, 6] is an object-oriented C++ transformation tool. It satisfies
most of our requirements, but transformations are specified in low-level (from our
point of view) C++, declarator parsing is incomplete, and it does not support
cascading transformations. OpenC++ operates on a concrete syntax tree, and
the output of a transformation is simply a string representation of C++. For
cascading transformations, the output string would have to be reparsed, but due
to the ambiguous nature of the C++ grammar, parsing a code fragment without
its surrounding context is next to impossible. This would also be a problem for
ASF+SDF, where rewrite rules are specified in concrete syntax.

Frameworks with similar aims for transformation of other languages exist. An
example is Compost [1], a transformation framework for Java written in Java.

For numerical software the TAMPR, program transformation system [3, 4]
has been used with remarkable success. Its main use has been the specialisa-
tion of numerical library code from generic code, but it has also been used for
optimisation of code.

So far, CodeBoost has been used for two projects; the implementation of a
path profiler, and the implementation of experimental domain-specific optimi-
sations for the Sophus project.

The development of CodeBoost is ongoing, and it will be expanded to cover
a larger part of the C++ language and with more program transformations.
Further, we are developing a larger base of examples showing the versatility and
usefulness of such a tool.

CodeBoost is Open Source, and can be freely modified and extended under
the GNU General Public License. For more information, see the CodeBoost web
page: http://wuw.stratego-language.org/codeboost/.

References

[1] Uwe Assmann. COMPOST. The software composition system.
http://i44www.info.uni-karlsruhe.de/~compost/.

13

(2]

[12]
[13]

[14]

[15]

[16]

[17]

Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of the
29th annual IEEE/ACM International Symposium on Microarchitecture, pages
46-57, Paris, France, 1996.

James M. Boyle. Abstract programming and program transformation—An ap-
proach to reusing programs. In Ted J. Biggerstaff and Alan J. Perlis, editors,
Software Reusability, volume 1, pages 361-413. ACM Press, 1989.

James M. Boyle, T.J. Harmer, and V.L. Winter. The TAMPR program trans-
formation system: Simplifying the development of numerical software. In Erlend
Arge, Are Magnus Bruaset, and Hans Petter Langtangen, editors, Modern Soft-
ware Tools for Scientific Computing, pages 353—-372. Birkhauser, Boston, 1997.
Shigeru Chiba. A metaobject protocol for C++. In Proceedings of the ACM Con-
ference on Object-Oriented Programming Systems, Languages, and Applications,
pages 285-299. ACM, October 1995.

Shigeru Chiba. Open C++ programmer’s guide for version 2. Technical Report
SPL-96-024, Xerox PARC, 1996.

Merijn de Jonge. A pretty-printer for every occasion. In Ian Ferguson, Jonathan
Gray, and Louise Scott, editors, Proceedings of the 2nd International Symposium
on Constructing Software Engineering Tools (CoSET2000), University of Wollon-
gong, Australia, 2000.

A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping: An Al-
gebraic Specification Approach, volume 5 of AMAST Series in Computing. World
Scientific Publishing Co., 1996.

T.B. Dinesh, Magne Haveraaen, and Jan Heering. An algebraic programming
style for numerical software and its optimization. Scientific Programming.
Martin Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999.

Magne Haveraaen, Helmer André Friis, and Tor Arne Johansen. Formal software
engineering for computational modeling. Nordic Journal of Computing, 6(3):241—
270, 1999.

Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading,
Massachusetts, USA, third edition, 1997.

M. G. J. van den Brand, H.A. de Jong, P. Klint, and P.A. Olivier. Efficient
annotated terms. Software, Practice & Ezperience, 30(3):259-291, 2000.

Mark van den Brand and Merijn de Jonge. Printing within the ASF+SDF Meta-
Environment: a generic approach. Technical Report SEN-R9911, CWI, Amster-
dam, The Netherlands, 1999.

Eelco Visser. Language independent traversals for program transformation. In
Johan Jeuring, editor, Workshop on Generic Programming (WGP2000), Ponte
de Lima, Portugal, July 2000. Technical Report UU-CS-2000-19, Universiteit
Utrecht.

Eelco Visser, Zine-el-Abidine Benaissa, and Andrew Tolmach. Building program
optimizers with rewriting strategies. ACM SIGPLAN Notices, 34(1):13-26, Jan-
uary 1999. Proceedings of the International Conference on Functional Program-
ming (ICFP’98).

Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl.
O’Reilly & Associates, Inc., Sebastopol, CA, USA, second edition, 1996.

14

