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Abstract. The R-tree is a well-known bounding-volume hierarchy that
is suitable for storing geometric data on secondary memory. Unfortu-
nately, no good analysis of its query time exists. We describe a new algo-
rithm to construct an R-tree for a set of planar objects that has provably
good query complexity for point location queries and range queries with
ranges of small width. For certain important special cases, our bounds
are optimal. We also show how to update the structure dynamically, and
we generalize our results to higher-dimensional spaces.

1 Introduction

Researchers in computational geometry have developed data structures for many
types of queries on geometric data: point-location structures, range-searching
structures, nearest-neighbor searching structures, and so on. The asymptotic
worst-case behavior of these data structures is usually quite good|or at least
close to the theoretical lower bounds. In practice, however, other kinds of data
structures are often used. One reason is that in many applications storage is
a very critical issue: �(n logn) storage and even linear storage with a large
constant factor can already be too much. Another reason is that the structures
developed in computational geometry are usually dedicated to a very speci�c
setting: a structure for searching with rectangular ranges in a set of line segments
will not work for searching with rectangular ranges in a set of curve segments, or
for searching with circular ranges in a set of line segments. In a typical application
one needs to perform several di�erent types of queries, and it is desirable to have
a data structure that supports all, or at least many, of them.

An example of a versatile structure that is used in many applications is
the bounding-volume hierarchy. This is a tree structure, whose leaves store the
geometric data objects and whose internal nodes store a bounding box (or some
other bounding volume) for the objects in the subtree rooted at that node. A
bounding-volume hierarchy uses linear space and it can store any type of objects.
It can perform range queries with any type of range; this means it can also do
point location, since this is simply a range query with a point range.



The R-tree, which was proposed by Guttmann [7], is a bounding-volume hier-
archy that is suitable for storing data on secondary storage. It can be considered
a geometric version of a B-tree: all leaves are at the same depth, and all internal
nodes, except for the root, have degree between t and 2t, for a �xed parameter t
which we call the minimum degree of the R-tree.1 The root has a degree between
2 and 2t. An internal node stores a bounding box for each of its subtrees; these
bounding boxes are used to decide whether or not to visit a subtree when query-
ing with a query range. The depth of an R-tree storing n objects in its leaves
is �(log n= log t). The idea, like for B-trees, is to choose t as large as possible in
order to minimize the depth of the tree, while making sure that each internal
node still �ts into one page of external memory. The R-tree is one of the most
widely used geometric data structure in Geographic Information Systems|see
for example the survey articles by Nievergelt and Widmayer [9] or by Six and
Widmayer [11].

The key to the eÆciency of an R-tree is how the underlying objects are
grouped together in subtrees. Intuitively, for each subtree we would like the
objects in its leaves to be clustered, so that their bounding box does not have
too much empty space or overlap too many other bounding boxes. A number of
heuristics has been proposed to achieve this [2, 3, 5{7, 10]. To our knowledge no
construction algorithm has been described resulting in a structure with provably
eÆcient worst-case performance. The only analytic result that we know of is by
Faloutsos et al. [4]. Their setting is rather limited, however: they consider a
1-dimensional version of the R-tree, and assume that the input intervals have
only one or two di�erent sizes and that they are distributed uniformly. For this
case they bound the number of nodes visited when answering a point-location
query. They consider two heuristics to build the R-tree, and obtain bounds that
are roughly �(log n= log t). Another result is by Becker et al. [1], who gives an
optimal solution to a problem arising for some of the heuristics used to update
an R-tree dynamically. The goal of our paper is to describe an algorithm for
constructing R-trees whose worst-case query performance is good. We show this
for point-location queries and for range queries with ranges of small width. Next
we discuss our results in more detail.

Let S be a set of n objects for which we wish to construct an R-tree. A
range query on S asks for all objects in S intersecting a query range Q. A point-
location query is a range query where the query range is a point. Such queries
are performed by traversing the tree starting at the root, visiting only subtrees
whose bounding box is intersected by Q. The eÆciency of the query procedure is
determined by the number of nodes visited, since this number equals the number
of disc accesses.

We de�ne the stabbing number of a set of rectangles in the plane as the
maximum number of rectangles stabbed by (that is, containing) any query point.
For example, a set of disjoint rectangles has stabbing number equal to one. The
worst-case number of nodes of the R-tree visited when answering a point-location

1 The original de�nition allows between t and s rectangles for some given s with s > 2t,
but for concreteness we assume s = 2t.



query corresponds to the stabbing number of the set of bounding boxes stored in
the tree. The stabbing number of RS , the set of bounding boxes of the objects in
S, may already be n|take a set of n diagonal line segments that are very close
together. Hence, we cannot achieve a sublinear bound on the number of visited
nodes for general scenes. Therefore we will express our bounds in terms of �, the
stabbing number of RS . A second parameter that we will use in our analysis is �,
the x-scale factor, or scale factor for short, of S. This is the ratio of the largest
x-extent to the smallest x-extent of the objects in S. (The x-extent of an object
is the length of its projection onto the x-axis.) The scale factor has also been
used by Zhou and Suri [12] for the analysis of a bounding-box heuristic, giving
bounds on the number of intersections among the bounding boxes as compared
to the number of intersections among the original objects.

We will prove that our construction algorithm produces an R-tree such that
any point-location visits O((� + dlog �e) logn= log t) nodes. When � and � are
constant, which we expect to be true in many applications, this is optimal.
In fact, our result is slightly more general than this|see the remark below
Theorem 1. We can get rid of the dependency of � at the expense of an extra
O(log n) factor, leading to an O(� log2 n= log t) bound on the number of visited
nodes. We also analyze the number of nodes visited by a range query. Here we
obtain a bound of O((� + dlog �e + w + k) logn= log t), where w is the ratio of
the x-extent of the query range to the smallest x-extent of any object in S and
k is the number of reported objects.

Finally, we generalize our results to higher dimensions, and show how to
update the R-tree dynamically.

2 The construction

Let S be a set of n disjoint objects in the plane, and let R = RS be the set
of bounding boxes of these objects. Let � be the stabbing number of R, that
is, the maximum number of rectangles in R containing any query point. For
convenience of presentation we shall sometimes pretend that R is the set for
which we want to construct an R-tree. Of course, the R-tree for R is exactly the
R-tree for S. Let � denote the scale factor of R as de�ned above, which is equal
to the scale factor of S.

Before we proceed, let's give a more precise de�nition of the R-tree and of
the terminology and notation that we will use. An R-tree for S is a tree T with
the following properties.

{ Each leaf node of T , except when it is also the root, contains between t and
2t rectangles from R. With each rectangle, a pointer to the corresponding
object in S is stored.

{ All leaves of T are at the same level.
{ Each internal node � of T stores for each of its subtrees the bounding box
of all the rectangles stored in the leaves of that subtree.
The bounding box of all bounding boxes stored at � is denoted by b(�). In
other words, b(�) is the bounding box of R(�), the set of rectangles stored in



the subtree rooted at �. We say that R(�) is the de�ning set of b(�). Notice
that b(�) is not stored at �, but that it will be stored at the parent of �.

{ The root node of T has between 2 and 2t children, unless it is also a leaf.
In the latter case it can contain between 1 and 2t rectangles from R, with
pointers to the corresponding objects in S.

Sets with scale factor at most two. When the scale factor of R is two or less, we
can proceed as follows. Assume without loss of generality that the smallest x-
extent of any rectangle in R is equal to one. We partition the plane into vertical
strips of unit width. We associate each rectangle in R with the strip containing
its left edge, where strips are closed to the left and open to the right. A strip that
has no rectangles associated with it is called empty, otherwise it is non-empty.
Let s1; : : : ; sk be the sequence of strips starting at the leftmost non-empty strip
and ending at the rightmost non-empty strip. Notice that the sequence can
contain empty strips|see Figure 1. Denote the set of rectangles associated to
si by R(si), and let ni := jR(si)j. We number the rectangles in R in a left-to-
right and bottom-to-top fashion, based on the strips: the rectangles associated to
the leftmost strip are numbered r1; : : : ; rn1 from bottom-to-top, the rectangles
associated to the second leftmost non-empty strip are numbered rn1+1; rn1+2; : : :
from bottom-to-top, and so on. We call the resulting ordering on the rectangles
the strip order. Figure 1 illustrates it. The following observation will be crucial;
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Fig. 1. The strip order.

it follows trivially from the fact that the x-extents of the rectangles are between
one and two.

Observation 1 Any rectangle intersecting a given strip si must be assigned to
si, to si�1, or to si�2.

The bounds (on the number of nodes visited by a query) we shall prove later
apply to any R-tree that respects the strip order, that is, any R-tree for which the



left-to-right order of the rectangles in the leaves corresponds to the strip order.
For concreteness we will describe a simple bottom-up procedure to construct
such an R-tree. An alternative way to construct the R-tree is by inserting the
rectangles one at a time, using the insertion algorithm described in Section 4.
Since the latter method already gives good behavior in terms of number of disc
accesses, namely �(n logn= log t), we do not analyze the number of disc accesses
for the bottom-up method.

The bottom-up construction works as follows. The bottom level of the R-tree
consists of leaf nodes whose de�ning set have between t and 2t rectangles. This
is achieved by simply letting the �rst (leftmost) leaf contain the �rst t rectangles
in the strip order, the second leaf the next t rectangles, and so on. This continues
until the number of remaining rectangles is at most 2t, which are then put into
the last (rightmost) leaf.

The level above the leaf level is built on the rectangles b(�) for the leaf
nodes �, in the same way as the level before: the rectangles are put into groups
of size t with the last group containing at most 2t rectangles. (Recall that the
notation b(�) is used to denote the bounding box of all rectangles in the subtree
rooted at �. Hence, for a leaf �, we have that b(�) denotes the bounding box of all
rectangles stored in �.) The ordering on the rectangles used to do the grouping
is the left-to-right ordering of the leaves corresponding to the rectangles.

The remaining levels of the R-tree are constructed in the same way, always
using the bounding boxes of the subtrees on the previous level. The process ends
when the number of rectangles we are dealing with falls below 2t. We then �nish
the R-tree by putting all rectangles into a single root node.

The method of constructing R-trees by �rst ordering the rectangles along
a 1-dimensional curve has also been used by other authors [3, 10]. It has been
observed that the main drawback of this method is that it disregards the sizes of
the rectangles. Therefore we developed a new method, presented below, to deal
with rectangles that di�er a lot in size. Our analysis of the query complexity
given in the next section is new as well.

The general case. So far we assumed that �, the scale factor of the set R of
rectangles, is at most two. The algorithm we developed can also be used for
larger �, but the dependency of the query complexity on � will be linear. We
now describe a method that reduces the dependency to logarithmic.

The idea is to partition R into m := dlog �e subsets, each with scale factor
at most two. Let R1; : : : ;Rm be these subsets. For each Ri we can construct
an R-tree with the algorithm described earlier. Since the depths of these R-trees
may be di�erent, however, we cannot simply merge them by constructing a tree
on top of these R-trees. Another problem arising with this approach is that we
may get internal nodes with too few children.

We therefore de�ne a new ordering on the rectangles, as follows: rectangles
are ordered by the index number of the set Ri they are in, and rectangles with
the same index number are ordered using the strip order, as above. In other
words, to obtain the sorted sequence of rectangles, we concatenate the sorted



sequences for R1; : : : ;Rm in that order. We call the new order the index-strip
order.

Now that we have a well-de�ned order on the rectangles, we can construct
the R-tree as before (either using the bottom-up procedure, or the insertion
algorithm described later).

Unbounded scale factors. When the scale factor gets really large, the method
above gives rise to many subsets Ri and the resulting query complexity will not
be very good (see below). We can overcome this problem with a simple trick:
we replace the x-coordinate of the vertical edges of the rectangles by their rank.
This way the x-`coordinates' that we are dealing with are integers between 1
and n, so the scale factor is bounded by n. We then apply our algorithm to these
normalized rectangles. Conversion of the resulting R-tree to an R-tree for the
original rectangles is trivial: simply replace the x-`coordinates' of the edges of the
bounding boxes by the original coordinates. The latter step does not in
uence
the query complexity. In the analysis given next, we can thus replace � by n if
that gives a better result.

3 Analysis of the query complexity

Point-location queries. Suppose we perform a point-location query in the R-tree
T with a point q. The number of nodes visited by the query procedure equals
the number of bounding boxes stored in T stabbed by q.

Let `i denote the left bounding line of the strip si. We say that a bounding
box b straddles `i if the de�ning set of b contains rectangles assigned to strips
to the left of `i as well as rectangles assigned to strips to the right of `i. The
following basic property of the construction will be important.

Lemma 1. Let T be an R-tree constructed using the index-strip order for a set
of rectangles with scale factor �. Let Bj(l) be the collection of bounding boxes of
all nodes at a given level l in T with the property that the de�ning set of the
bounding box has only rectangles from Rj . For each line ` bounding a strip, the
number of bounding boxes in Bj(l) straddling ` is at most one.

Proof. By construction, the de�ning sets of the bounding boxes stored at level
l form a disjoint partition of R. Moreover, the left-to-right order of the de�ning
sets of the nodes is consistent with the index-strip order. Consider all de�ning
sets containing only rectangles from Rj . Since we use the strip order within Rj ,
there is at most one such de�ning set that has both a rectangle whose left edge
is to the left of ` and a rectangle whose left edge is to the right of `. ut
We can now prove a bound on the complexity of a point-location query.

Theorem 1. Let S be a set of n objects in the plane such that the set of bounding
boxes of S has stabbing number � and scale factor �. For a given t, we can
construct an R-tree of minimum degree t for S such that the number of nodes
visited when answering a point-location query is O((� + dlog �e) logn= log t).



Proof. Let l be a �xed level in the R-tree T . De�ne m := dlog �e. We will show
that the stabbing number of B(l), the set of bounding boxes of the nodes at
level l, is at most 3� + 7m� 1.

Let q be a query point, and let si be the strip containing q. We consider three
categories of bounding boxes in B(l) stabbed by q.

{ category (i): bounding boxes whose de�ning subset has rectangles from more
than one of the subsets Rj .

Because in the index-strip ordering rectangles with the same index are con-
secutive, there can be at most m� 1 such bounding boxes.

{ category (ii): bounding boxes not in category (i) that straddle `i, `i�1, or
`i�2.

By Lemma 1 there are at most m such bounding boxes per bounding line (at
most one for each subset Rj), leading to at most 3m such bounding boxes
in total.

{ category (iii): bounding boxes not in category (i) whose de�ning set contains
only rectangles assigned to si, or only rectangles assigned to si�1, or only
rectangles assigned to si�2.

Consider the bounding boxes whose de�ning set has only rectangles assigned
to si. Such bounding boxes may have a de�ning set containing both a rectan-
gle with bottom edge below q and one with bottom edge above q, as shown in
Figure 2(a). Because of the ordering scheme within a strip, there are at most

`i `i+1si

q

(a) (b)

q

`i `i+1si

q

Fig. 2. Illustration for the proof of Theorem 1.

m such bounding boxes (at most one per subset Rj). Otherwise, the de�ning
set of the bounding box has a rectangle [x : x0]� [y : y0] with qy 2 [y : y0], as
in Figure 2(b). Because the x-extent of each rectangle is at least the width
of si, this means that such a rectangle must be stabbed by the orthogonal
projection of q onto `i+1. There can be no more than � such rectangles and,
consequently, no more than � such bounding boxes.



This shows that there are at most �+m bounding boxes stabbed by q whose
de�ning set has only rectangles assigned to si. A similar argument works for
bounding boxes stabbed by q whose de�ning set has only rectangles assigned
to si�1, or to si�2. The only di�erence is that we now need to consider the
projection of q onto `i, and onto `i�1 respectively.

Adding up the bounds for each of the cases, we get a total bound of 3�+7m�1.
Multiplying by the number of levels gives the desired bound. ut
By applying the normalization described in the previous section, we can replace
the factor � by n.

Corollary 1. Let S be a set of n objects in the plane such that the set of bound-
ing boxes of S has stabbing number � and scale factor �. For a given t, we can
construct an R-tree of minimum degree t for S such that the number of nodes
visited when answering a point-location query is O((� + logn) logn= log t).

Remark. The only way in which the scale factor � plays a role in the proof
of Theorem 1, is that it ensures that we can partition R into a logarithmic
number of subsets with scale factor at most two. In general, our method gives a
bound of O(�m logn= log t) for sets of rectangles that can be partitioned into m
such subsets, even when log � is larger than m. For instance, if R contains three
classes of rectangles|the large rectangles, the intermediate ones, and the small
ones|each with scale factor at most two, then our method will work well even
when the large rectangles are much larger than the small ones. Such a behavior
may well occur for practical inputs.

Range-searching queries. Now suppose we want to perform a range query with
an axis-parallel rectangular range Q. Let w denote the ratio of the x-extent of
Q to the smallest x-extent of any object in S. We call w the width of the range.
Furthermore, let k denote the number of objects reported by the range query. We
�rst analyze the number of nodes visited by the query procedure in terms of w,
k, and the parameters introduced earlier. Then we show that in general|that
is, for ranges that can be unbounded in both x- and y-direction|one cannot
obtain similar (logarithmic) bounds.

Theorem 2. The number of nodes visited when answering a range query with an
axis-parallel rectangular range of width w is O((�+ dlog �e+w+ k) logn= log t).

Proof. De�ne m := dlog �e. Let l be a �xed level in the R-tree T , and let B(l)
be the set of bounding boxes of the nodes at level l. We start by showing that
the number of bounding boxes in B(l) intersecting the query range Q is O(� +
m+ w + k).

We consider �ve categories of bounding boxes in B(l) intersecting Q.

{ category (i): bounding boxes whose de�ning set has rectangles in more than
one subset Rj .

There are at most m� 1 such bounding boxes.
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{ category (ii): bounding boxes not in category (i) containing a corner of Q.

From the proof of Theorem 1, it follows that there are at most 3�+6m such
bounding boxes per corner.

Fix a subset Rq . Let si; : : : ; sj be the strips de�ned for Rq that are inter-
sected by Q.

{ category (iii): bounding boxes not in category (i) straddling one of the lines
`i�2; : : : ; `j+1.

Note that j � i 6 wq + 1, where wq is the ratio of the width of Q and the
width of the strips de�ned for Rq . Illustrated in �gure 3. By Lemma 1 there
are at most (j +1)� (i� 2) 6 wq +4 such bounding boxes for a subset Rq .
Since wq 6 w=2q, the total number of all bounding boxes of category (iii) isP

16q6m wq + 4 = O(w +m).

{ category (iv): bounding boxes not intersecting the top or bottom edge of Q
and not in categories (i){(iii).

Such bounding boxes are either fully contained in Q or they intersect the
left or right edge of Q. In the former case we can charge the intersection to
one (in fact, many) object intersecting Q. In the latter case this is possible
as well: Consider for example a bounding box b intersecting the left edge, e,
of Q. Its de�ning set must have a rectangle whose right edge is to the right
of e and a rectangle whose left edge is to the left of e. Let r1 be a rectangle
in the de�ning set of b whose left edge coincides with the left edge of b, and
let r2 be a rectangle in the de�ning set of b whose right edge coincides with
the right edge of b. There are two cases. One is when e lies in the same strip
as b belongs to. In this case r1 must intersect e and, hence, we can charge
the intersection to r1, see �gure 4(a). In the other case e must lie to the right
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Fig. 4. Illustration for the proof of Theorem 2 (category (iv)).

of the strip that b belongs to, which implies that r2 must either lie entirely
within Q or intersect e, either way we may charge the intersection to r2, as
shown in �gure 4(b). In the case when b only intersects the right edge e0 of
Q it holds that r1 must lie entirely within Q or intersect e0, thus, we may
charge the intersection to r1.
The total number of bounding boxes of category (iv) is O(k).

{ category (v): bounding boxes intersecting the top or bottom edge of Q and
not in categories (i){(iii).

There are two cases. One is where the de�ning set of such a bounding box b
has one rectangle whose bottom edge is below the bottom edge of Q and one
rectangle whose bottom edge is above the top edge of Q. For each Rq , this
can happen only once for each of the strips de�ned for Rq and intersected
by Q, or two strips to the left of Q. Hence, there are at most wq + 3 such
bounding boxes for Rq , where wq is de�ned as in case (iii), giving O(w+m)
such bounding boxes in total. In the other case the de�ning set of b must
contain a rectangle whose top or bottom edge is contained fully in Q. This
means that the object contained in this rectangle intersects Q. The total
number of bounding boxes of category (v) is therefore O(w +m+ k).

Adding up the bounds for each of the cases, we get a total bound of O(� +m+
w+ k) for the number of nodes visited on a �xed level l. Over all levels we thus
get a bound of O((� +m+ w + k) logn= log t). ut

Can we improve on this result? In particular, one would hope that it is possible
to get rid of the dependence on w. Unfortunately, the next theorem shows that
in this case one cannot get bounds close to the ones we just obtained.

Theorem 3. For any n, there is a set S of n disjoint unit squares such that for
any R-tree with minimum degree t on S, there is a rectangular query range for



which the query procedure will visit 
(
p
n=
p
t) nodes even though the range does

not intersect any of the squares.

Proof. Assume for simplicity that n is a perfect square. Consider a con�guration
of
p
n �p

n disjoint squares arranged in a regular grid. The shaded squares in
Figure 5 show the construction for n = 16. Let T be an R-tree for this collection

Fig. 5. The lower-bound con�guration for range searching.

of squares. Consider the collection of 
(
p
n) long thin ranges separating either

two consecutive columns or two consecutive rows of the set of squares. There
are 
(n=t) leaves in T . It is easy to see that for any leaf, the bounding box of
the squares stored at that leaf is intersected by 
(

p
t) ranges. Hence, the total

number of range-box intersections is 
(n=
p
t), which implies that there must be

a range intersecting O(
p
n=
p
t) bounding boxes. The number of leaves visited

by the query procedure for this range is O(
p
n=
p
t). ut

4 Dynamization

For the dynamic version, we assume that all coordinates are integers. Hence, the
smallest x-extent that can ever occur is equal to one. To de�ne the index-strip
ordering we used in the previous section more formally, we de�ne the following
functions for a rectangle r:

index-nbr(r) := dlog(x-extent(r))e
strip-width(r) := 2index-nbr(r)�1

strip-nbr(r) := d(x-coordinate of left edge of r)=strip-width(r)e
y-nbr(r) := y-coordinate of the bottom edge of r

We now de�ne the following representation for r:

rep(r) := (index-nbr(r); strip-nbr(r); y-nbr(r)):



If we are working in the real RAM model we cannot use ceil/
oor functions.
However, we can easily compute index-nbr(r) for a given r in O(log �) time,
where � is the scale factor. Similarly, we can compute strip-nbr(r) in O(log xmax)
time, where xmax is the maximum x-coordinate that ever occurs.

Observation 2 The ordering on the rectangles in R = fr1; : : : ; rng induced by a
lexicographical ordering on the representations rep(ri) is equal to the index-strip
ordering as used in Section 2.

This observation implies that if we augment the R-tree with some additional
information, we can use standard leaf-oriented B-tree algorithms for insertions
and deletions, as described in Chapter III.5.2 of Mehlhorns book [8]. The extra
information is needed to be able to walk down the tree in order to locate the
position of a new rectangle in the leaf-level of the R-tree. Recall that a bounding
box b stored in an internal node v is the bounding box for the set of rectangles
stored in the subtree of some child wb of v. The extra information we need to
store with b is the representation rep(rb), where rb is the minimum (according
to the index-strip order) rectangle stored in the subtree of wb. Now we can use
the B-tree update algorithms, which require O( log nlog t ) disk accesses per update.
We obtain the following theorem.

Theorem 4. The number of disc accesses for updates in the R-tree is O( log nlog t ).

Remark. The extra information will force us to choose the minimum degree
smaller, roughly by a factor of two, otherwise the information for a node would
no longer �t into one page of external memory. This implies that the depth will
increase by a factor of roughly (1 + log t)= log t.

It should also be noted is that the dynamization described above cannot be
used together with the normalization trick described in Section 2. The normaliza-
tion scales the input such that the x-coordinates of the corners of the rectangles
are between 1 and n. This implies that when inserting a new elements into the
R-tree the normalization will be a�ected. Some of the rectangles in Ri will then
have to be moved to Ri+1. The algorithm needs to remove the elements that
change sets and then insert them into the R-tree again, which means that one
cannot expect good worst-case update times.

5 Higher-dimensional R-trees

The approach for the planar case extends easily into higher dimensions. For
instance, suppose we have a set S of n objects in 3-dimensional space. As before,
we let � denote the stabbing number of the setR of bounding boxes of the objects
in S. We let �x and �y denote the x-scale factor and the y-scale factor of R,
respectively.

First assume that �x 6 2 and �y 6 2. We partition space into three-
dimensional columns by planes orthogonal to the x-axis and planes orthogonal
to the y-axis, as in Fig. 6(a). The spacing of the planes equals the minimum
x-extent and y-extent, respectively, of the objects. We number the columns in



increasing order primarily with respect to their x-coordinates and secondarily
on their y-coordinates. Figure 6(b) shows an example of this in the projection.
We assign each box in R to the column containing its front left edge (that is, the
vertical edge with smallest x- and y-coordinate). We then number the boxes in
R according to the ordering of the columns, where within each column we order
the boxes based on the z-coordinate of their bottom facet. The latter ordering
is done in increasing order. Given this new de�nition of the strip ordering, the

(b) ordering of the columns
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Fig. 6. The ordering in 3-space.

construction proceeds in exactly the same way as in the planar case. Also the
construction for sets where the scale factors are more than two is similar: parti-
tion R into dlog �xe � dlog �ye subsets with scale factors at most two, compute an
order for each subset and concatenate the orders, and apply the standard con-
struction algorithm. A similar approach works in dimensions higher than three.
To describe this more precisely, we need to generalize the de�nition of the rep-
resentation, given in the previous section, of a d-dimensional input box r. After
that we will analyze the d-dimensional structures by showing the generalized
results of Observation 1, Lemma 1 and Theorem 1.

Assume that all coordinates are integers in d-dimensional space (x1; : : : ; xd).
Hence, the smallest xi-extent, 1 6 i 6 d, that can ever occur is equal to one. We
de�ne the following functions for a d-dimensional box r, where 1 6 i < d:

index-nbri(r) := dlog(xi-extent(r))e
strip-widthi(r) := 2index-nbri(r)�1

strip-nbri(r) := d(the smallest xi-coordinate of r)=strip-widthi(r)e
xd-nbr(r) := the smallest xd-coordinate of r

We now de�ne the following representation for r:

rep(r) := (index-nbr1(r); : : : ; index-nbrd�1(r);

strip-nbr1(r); : : : ; strip-nbrd�1(r); xd-nbr(r)):



Given a set of input boxes and the lexicographic ordering of the boxes de�ned
by the above function, the R-tree is constructed exactly in the same way as a
standard B-tree. The analysis of the number of nodes visited when answering a
point-location query is very similar to the planar case.

For simplicity we will �rst consider sets where all the input boxes have the
same index numbers, i.e. �xi 6 2 for all i < d. Note that if the index numbers
are the same for a set Rj then the strip widths will also be the same for all input
boxes in Rj . Since both the index numbers and the strip width are �xed we can
now de�ne a strip number for a single point q with respect to an input set Rj

to be strip-nbri(q) := d(xi-coordinate of q)=strip-widthie.

Observation 3 For every input box r 2 Rj that is stabbed by a point q it holds
that strip-nbri(q)� 2 6 strip-nbri(r) 6 strip-nbri(q), for every i < d.

The observation follows from the fact that the xi-extent for all boxes are between
one and two. The observation implies that the set of input boxes that may
intersect q can be divided into at most 3d�1 sets, one set for each strip number.

A bounding box b is said to straddle a strip number SN if b contains two
input boxes r1 and r2 of Rj such that strip-nbr(r1) 6 SN < strip-nbr(r2).

The following basic property of the construction will be important.

Lemma 2. Let T be an R-tree constructed using the index-strip order for a set
of rectangles with scale factor �1; : : : ; �d�1. Let Bj(l) be the collection of bounding
boxes of all nodes at a given level l in T with the property that the de�ning set
of the bounding box has only rectangles from Rj . For each strip number SN the
number of bounding boxes in Bj(l) straddling SN is at most one.

The proof is a straight-forward generalization of the proof of Lemma 1.
Note that the geometric interpretation of a strip number is a d-dimensional

column, denoted a strip column, as in the two and three dimensional case. An
input box r has strip number SN if and only if the point in r with lowest strip
number has strip number SN.

Theorem 5. Let S be a set of n objects in d-space such that the set of bounding
boxes of S has stabbing number �. Let �xi denote the xi-scale factor of R. For a
given t, we can construct in O(n logn) time an R-tree of minimum degree t for
S such that the number of nodes visited when answering a point-location query
is O((�+

Q
16i<ddlog �xie)3d logn= log t). Alternatively, we can obtain an R-tree

where O((3d�+logd�1 n) logn= log t) nodes are visited in a point-location query.

Proof. Let l be a �xed level in the R-tree T . De�ne m :=
Q

16i<ddlog �xie. We
will show that the stabbing number of B(l), the set of bounding boxes of the
nodes at level l, is at most (2 � 3d�1 + 1)m+ 3d�1� � 1.

Let q be a query point. We consider three categories of bounding boxes in
B(l) stabbed by q.

{ category (i): bounding boxes whose de�ning subset has boxes from more than
one of the subsets Rj .



Because in the index-strip ordering rectangles with the same index are con-
secutive, there can be at most m� 1 such bounding boxes.

{ category (ii): straddling bounding boxes not in category (i) stabbed by q.

By Observation 3 and Lemma 2 there are at most 3d�1 such bounding boxes
for each subset Rj leading to at most 3d�1m such bounding boxes in total.

{ category (iii): bounding boxes not in category (i) whose de�ning set all have
the same strip number.

Consider one of the subsetsRj and let SN be the strip number of q. Now, con-
sider the bounding boxes whose de�ning set has only boxes with strip-number
SN. Such bounding boxes may have a de�ning set containing both an input
box with minimum xd-coordinate smaller than the xd-coordinate of q and
one with minimum xd-coordinates greater than the xd-coordinate of q, see
Figure 2(a) for an illustration in two dimensions. Because of the ordering
scheme within a set of boxes with the same strip number, there are at most
one such bounding box of Rj . Hence, at most m in total. Otherwise, the
de�ning set of the bounding box has a box with xd-coordinates in the range
[x : x0] with qxd 2 [x : x0], as in Figure 2(b). Because the xi-extent of each
box is at least the width of the strip column with strip-number SN along
the xi-axis, this means that such a box must be stabbed by the orthogonal
projection of q onto an edge of the strip column. There can be no more than
� such rectangles and, consequently, no more than � such bounding boxes
in total.
This shows that there are at most �+m bounding boxes stabbed by q whose
de�ning set has only boxes with strip number SN. A similar argument works
for bounding boxes stabbed by q whose de�ning set has only boxes assigned
to any of the other strip boxes, and according to Observation 3 there are at
most 3d�1, such sets, hence, the total number of bounding boxes stabbed by
q, not in category (i) and whose de�ning set all have the same strip number
is 3d�1(� +m):

Adding up the bounds for each of the cases, we get a total bound of 3d�1��1+
(2 � 3d�1 + 1)m. Multiplying by the number of levels gives the desired bound.

When �xi is very large, we can again use normalization to improve the
bounds. ut

We cannot obtain bounds for range searching that are similar to the planar
case. The reason is that even when � = 1 it can happen that a range with
small width intersects many of the boxes in R without intersecting any of the
corresponding objects in S.

6 Concluding remarks

We have given an algorithm to construct R-trees for sets of n objects in the plane
and in higher dimensional spaces. We analyzed the number of nodes visited when



answering a point-location query in terms of n, and � (the stabbing number of
the initial bounding boxes), and � (the scale factor). When � and � are constant,
our results are optimal.

Our results might be improved in several ways. First of all, it would be
interesting to reduce the dependency on � in our bounds. Ideally, we would like
to replace � by d�=te. Another question is whether it is possible to improve the
O(log2 n= log t) bound that we get for constant � to O(log n= log t).

It would also be nice to �nd another way to deal with scale factors larger than
two. Our method of partitioning the set into subsets with scale factor two or less
works �ne in theory, but it is questionable whether it works well in practice.
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