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Abstract

A new method to pre-segment images by means of a hierar-
chical description is proposed. This description is obtained
from an investigation of the deep structure of a scale space
image – the input imageandthe Gaussian filtered ones si-
multaneously. We concentrate on scale space critical points
– points with vanishing gradient with respect to both spatial
andscale direction. We show that these points are always
saddle points. They turn out to be extremely useful, since
the iso-intensity manifolds through these points provide a
scale space hierarchy tree and induce a segmentation with-
out a priori knowledge. Moreover, together with the so-
called catastrophe points, these scale space saddles form
the critical points of the parameterised critical curves – the
curves along which the spatial saddle points move in scale
space. Experimental results with respect to the hierarchy
and segmentation are given, based on artificial images and
real MRI .

1 Introduction

One way to understand the structure of an image is to em-
bed it in a one-parameter family. If a scale-parametrised
Gaussian filter is applied, the parameter can be regarded as
the “scale” or the “resolution” at which the image is ob-
served. The resulting structure has become known aslinear,
or Gaussian, scale space. Main advantage is that this set of
filters enables one to take derivatives of a discrete image.
More detailed literature can be found ine.g.[2, 14, 15, 17].

In their original accounts both Koenderink [8] and
Witkin [20] proposed to investigate the “deep structure” of
an image,i.e. structure at all levels of resolution simultane-
ously. Encouraged by the results in specific image analy-
sis applications, an increasing interest has recently emerged
trying to establish a generic underpinning of deep structure.
Results from this may serve as a basis for a diversity of
multiresolution schemes. Such bottom-up approaches often
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rely oncatastrophe theory[4, 18], which is now fairly well-
established in the context of the scale-space paradigm. The
application of catastrophe theory in Gaussian scale space
has been studiede.g. by Damon [1]—probably the most
comprehensive account on the subject—as well as by oth-
ers [5, 6, 7, 9, 12, 13, 14].

The first stage in using the deep structure is to link image
properties of two subsequent resolution scales. Although
this may seem obvious, it is a non-trivial task in a discrete
scale space. For example, if extrema at different scales cor-
respond to an extremum at the input image, they should be
linked. However, extrema may be annihilated or created.
Tracking over scale therefore needs a cautious approach.
Koenderink [8] mentioned a possible linking strategy using
the properties of the Gaussian scale space. However, only a
few heuristic attempts have been made to build such multi-
scale datastructures,e.g. by Vincken [19]. Simmonset al.
[16] used the idea of Koenderink’s scheme for building a so-
called extremum stack. However, they ignored the generic
possibility of creations and only used the annihilation inten-
sity. Their work was an extension of the results by Lifshitz
and Pizer [12], who implemented Koenderink’s scheme,
mainly focusing on heuristics and the performance of the
algorithm. At the annihilation of a minimum and a saddle
point they noticed that the saddle point decreased in inten-
sity, but passing the zero-crossing of the Laplacean, close
to the annihilation, started to increase again. In response
to their research Koenderink [9] showed that this happens
generically for 2D saddles. Moreover, saddle points with
zero-Laplacean are saddle points in scale space.

Special behaviour of critical curves at scale space sad-
dles has been mentioned in literature by few other au-
thors. Griffin [5] pointed out that at a catastrophe the sad-
dle and the extremum necessarily have the same sign of
the Laplacean and distinguished between ridge and trough
saddles. Therefore saddles change from ridge to trough or
vice versa. Lindeberg [13, 14] investigated the locations
of Laplacean zero-crossings in combination with the (anni-
hilation of) critical points and concluded that “in two and
higher dimensions there is no absolute relation between lo-
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cations of the Laplacean zero-crossing curves and the local
extrema of a signal”.

The aim of this paper is to combine knowledge from
catastrophe theory, properties of scale space, particularly
with respect to the scale space saddles, and the multi-scale
linking strategy as suggested by Koenderink. In section 2
we explain basic principles and show that scale space sad-
dles are the key to explore the deep structure of scale space
images. They give rise to the unambiguous multi-scale hi-
erarchy describing the image presented in section 3. Images
in one dimension fundamentally differ from those in higher
dimensions, since only in 1D images the scale space saddles
coincide with the catastrophe points. Therefore both cases
are discussed separately. The results lead to a non-heuristic
hierarchical multi-scale data structure and a segmentation
of images without any a priori knowledge. Section 4 shows
results on simple images and a 2D MRI. Main conclusions
and results are given in section 5.

2 Theory

2.1 Deep Structure in Gaussian Scale Space

Given an arbitraryn-dimensional imageL(x), we denote
its Gaussian scale space image byL(x; t). Spatial critical
points (extrema, saddles) ofL(x; t) at certain scalet0 are
defined as the points whererL(x; t0) = 0. The behaviour
of spatial critical points as the (scale) parameter changes is
described by catastrophe theory. As the parameter continu-
ously changes, the critical points move along critical curves,
defined as a one dimensional manifold in scale space on
which rL(x; t) = 0. If the determinant of the Hessian
does not become zero, these critical points are calledMorse
critical points. In a typical image these points are extrema
(minima and maxima) or saddles.The Morse lemmastates
that the topology of a neighbourhood of a Morse critical
point can essentially be described by a second order poly-
nomial. At isolated points on a critical curve the determi-
nant of the Hessian may become zero. These points are
callednon-Morse points. Neighbourhoods of such points
need a third or higher order polynomial, as described by
Thom’s theorem[18]. If an image is slightly perturbed, the
Morse critical points may undergo a small displacement, but
qualitatively nothing happens to them. A non-Morse point,
however, will change. In general it will split into a num-
ber of Morse critical points. This event is calledmorsifica-
tion. Thom’s theorem provides a list of elementary catas-
trophes with canonical formulasfor the catastrophe germs
and the perturbations. The Thom splitting lemma states that
canonical coordinatesexist in which these events can be
described. In general, these ‘curved’ coordinates do not
coincide with the user-defined (usually Cartesian) coordi-
nates, but are used for notational convenience. In Gaussian

scale space the only generic events areannihilationsand
creationsof a pair of Morse points: an extremum and a sad-
dle in the 2D case. All other events can be split into a com-
bination of one of these events and one ‘in which nothing
happens’. See Damon [1] for a proof. Canonical descrip-
tions of these events are given by the following formulae:

f A(x; t)
def
= x31 + 6x1t+Q(x2; : : : ; xn; t) (1)

f C(x; t)
def
= x31 � 6x1(x

2

2 + t) +Q(x2; : : : ; xn; t); (2)

where for allai 6= 0, Q is defined by

Q(x2; : : : ; xn; t)
def
=

nX
i=2

ai
�
x2i + 2t

�

with
Pn

i=2
ai 6= 0 andai 6= 0; 2 � i � n. Note that

Eq. (1) and Eq. (2), describing annihilation and creation
respectively, satisfy the diffusion equation

@L

@t
= �L : (3)

It can be verified that the the formf A(x; y; t) corre-
sponds to an annihilation at the origin via the critical path
(
p�2t ; 0 ; t) ; t � 0, andf C(x; y; t) to a creation via the

critical path(
p
2t ; 0 ; t) ; t � 0.

Note that creations are generic. They are not some-
times temporarily created, nor false extrema, nor patholog-
ical cases, nor only rarely created, although it is true that
they are not as frequently encountered as annihilations.

In 1-D images only annihilations occur. Then Eq. (1)

becomesf A(x; t)
def
= x3 + 6xt. Seee.g.Lindeberg [14] for

a proof.
A consequence of the Gaussian scale space representa-

tion is the strong smoothing property, usually mentioned
for its non-enhancement of local extrema. It corresponds
to the extremum principlefor parabolic differential equa-
tions: If at a certain scalet0 > 0 a pointx0 is a local
maximum (minimum) of the functionL(x; t0), then the
Laplacean�L(x0; t0) at this point is negative (positive).
This means that@tL(x0; t0) is strictly negative (positive).
In other words, small local variations will be suppressed.
Seee.g.Lindeberg [14] for more details.

As a result, the structure of iso-intensity manifolds in
scale space close to an extremum is umbrella-shaped: At
some scale an iso-intensity manifold (an isophote in 2D) en-
capsulates an extremum,e.g.a maximum. The intensity of
this iso-intensity manifold is smaller than that of the max-
imum. Due to the extremum principle the intensity of the
maximum decreases and at a certain scale it equals the in-
tensity of the manifold when it reaches the top of the um-
brella. At coarser scales the iso-intensity manifold around
this extremum has disappeared.

Thus the evolution of extrema induce a family of iso-
intensity umbrellas, nested like union peels.
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2.2 Scale Space Critical Points

Scale space critical points ofL(x; t) are defined as the
points with zero gradient and zero Laplacean:rL(x; t) =
0 ^ �L(x; t) = 0, since@tL(x; t)

def
= �L(x; t) by defini-

tion. The type of these critical points is determined by the
eigenvalues of the matrix of second order derivatives,H.
We call this matrix theextended Hessian:

H =

�
H �rL
(�rL)T ��L

�
: (4)

HereH is the spatial Hessian defined byHi;j = Li;j ,
all evaluated at the location of the critical point of interest.
Points are maxima (minima) if all eigenvalues are all neg-
ative (positive). If at least two eigenvalues have a different
sign, the point is a saddle. SinceH is symmetric, all eigen-
values are real.

Theorem 1 The matrixH has both positive and negative
eigenvalues if�L = 0.

Proof 1 Let the point(x0; t0) be a critical point of the func-
tion L(x; t). Then(x0; t0) is also a critical point of the
functionL(x; t0) at scalet0. If (x0; t0) is an extremum of
L(x; t), it is also an extremum ofL(x; t0). But then the ex-
tremum principle states that the Laplacean is non-zero. So
(x0; t0) is a saddle point.2

As a consequence, critical points in scale space areal-
wayssaddle points. These scale space saddle points form a
subset of the spatial saddles, since critical points with van-
ishing Laplacean in spatial sense are always saddle points.

This notion extends the idea of non-creation of local
(spatial) extrema, valid only in the one dimensional case,
but sometimes erroneously extended to higher dimensions.
It is known that in spatial coordinates, while increasing
scale, new extrema can occur, except for 1D. However, in
the full coordinate system,viz. including scale, this intuitive
notion of non-creation is true, albeit not for spatial, but for
scale space extrema, since the latter do not even exist on the
interior of the scale space. Moreover, it is even requested
by the notion of causality, that states that isophotes in scale
space only disappear and never appear (no spurious detail).

The only spatial critical point traversing the scale space
saddle is the spatial saddle. Since the manifoldrL = 0
intersects the manifold�L = 0 transversally, the intensity
of this spatial saddle has an extremum at the scale space
saddle. Therefore, its intensity first increases and then de-
creases, or vice versa.

2.3 Critical Curves in Scale Space

In scale space each critical curve contains branches repre-
senting critical points. Branches are connected at catastro-
phe points, where two critical points are annihilated or cre-
ated. These two critical points differ with respect to the sign

of one eigenvalue of the Hessian, that becomes zero at the
catastrophe. Of all other eigenvalues the number of positive
and negative signs is equal. Note that a critical curve can
contain several catastrophe points.

In two dimensional images these two points necessarily
are a saddle and an extremum, in one dimensional ones they
are a maximum and a minimum. In higher dimensions inter-
actions become more complicated, since also catastrophes
of saddles of different type are also possible. For writing
convenience we will use the terminology saddle and ex-
tremum (minimum, maximum) to distinguish between the
two types of critical points.

It is known from catastrophe theory that each branch
of the critical curve is bounded with respect to scale: at
some scale the critical points annihilate. Critical points are
present from the initial scale or they are created at a cer-
tain (catastrophe) point in scale space. If the scale is taken
coarse enough only one extremum remains. Then there ex-
ists one critical curve bounded by the coarsest scale. Apart
from catastrophe points a second type of points comprises
special behaviour, viz. scale space saddles.

On critical curves the intensities of the critical points is
well-defined. The intensity of extrema is damped contin-
uously in scale space. Each minimum (maximum) there-
fore increases (decreases) monotonically towards its anni-
hilation point. At certain spatial and scale distance from
the annihilation, the intensity of corresponding saddle will
generically tend to move towards the intensity of extremum,
i.e. it decreases (increases) to the intensity of minimum
(maximum). So the signs of the Laplacean of both criti-
cal points at that scale will be opposite. At the catastro-
phe point, however, they necessarily have the same sign
and both points approach the intensity of the annihilation
decreasing (increasing).

Therefore, at saddle-branch of the critical curves, the
saddle will generically pass a point at which the Laplacean
equals zero: a scale space saddle. Since the sign of the
Laplacean changes passing the scale space saddle, the in-
tensity will have a switch in intensity.

The intensity of the critical curve of the both the anni-
hilation as the creation of critical points can be generically
shown as a curve with two extrema, where the minimum
corresponds to the scale space saddle and the maximum to
the catastrophe, in case of a saddle-minimum annihilation;
and vice versa.

A parametrisation of a critical curve leads to a 1D-
function of the intensity of the critical points. The extrema
of this function have the following properties:

Theorem 2 Let (x(s); t(s)) be a parametrisation of(x; t),
such thatrL(x(s); t(s)) = 0, i.e. (x(s); t(s)) defines a
critical curve. ThenL(x(s); t(s)) has its extrema at the
scale space saddle(s) and the catastrophe point(s). For 1D
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images (signals) the parametrisation has a point of inflec-
tion.

Proof 2 The total differentiation ofL(x(s); t(s)) with re-
spect tos is defined by

dL(x(s); t(s))

ds
= rL � xs +�L � ts: (5)

Here

xs
def
=

dx

ds
; ts

def
=

dt

ds

SincerL = 0, the critical points of Eq. (5) are given by
�L � ts = 0. The scale space saddles are defined as the
points where�L = 0, whereas the catastrophes take place
at the location where the saddle and the extremum ‘meet’
in scale space, i.e. where the parametrisation of scale has
its local extremum. The critical points ofL(x(s); t(s)) are
extrema, since both the Laplacean and the catastrophe point
are non-degenerate and do not coincide forn-D images,
n > 1. For 1D images they do, so the point is a point of
inflection.2

Although this results holds for any parametrisation of the
critical curves, in practice the intensities of critical points
are obtained at the calculated scales of the scale space. In
other words, they are measured as a function of scale. Then
t = s, sots = 1 andL(x(s); t(s)) is obtained as the union
of its different branches. Each branch is defined on a closed
intervals1 � s � s2, wheres1 is either the initial or the
creation scale, ands2 is the annihilation scale of the spatial
critical point.

2.4 The Structure of Iso-intensity Manifolds

Each extremum is encircled by iso-intensity manifolds. The
shape of these manifolds is determined by the presence of
scale space saddles and the annihilation point, the intensity
at these points and the intensity of the manifold at other
points.

At the annihilation intensity the manifold has a horse-
shoe shape, as known from catastrophe theory, see Figure
1d.

At scale space saddles the manifold is umbrella-shaped
around the extremum belonging to the saddle point. At the
saddle point it touches another manifold with the same in-
tensity, see Figure 1b.

At intensities between the scale space saddle and the an-
nihilation point the manifold around the extremum trans-
forms from umbrella-shaped to horseshoe, see Figure 1c.

At other intensities ‘before’ the annihilation the mani-
folds around the extremum are umbrella-shaped encapsu-
lating a bounded region , see Figure 1a.

Figure 1: 2D Iso-intensity surfaces a) Before the scale space
saddle b) At the scale space saddle c) Between the scale
space saddle and the catastrophe point d) At the catastrophe
point

As a dual expression it follows that each extremum forms
the top of an iso-intensity umbrella in scale space, until its
intensity equals that of the related scale space saddle. Then
the umbrella transforms to a horseshoe shape at the anni-
hilation. In case of a minimum (maximum) there are only
pure umbrellas at intensities smaller (larger) than the inten-
sity of the scale space saddle.

3 Scale Space Hierarchy and Pre-
segmentation

Since each extremum encapsulates a series of umbrellas
from the initial scale to a scale space saddle, the intensi-
ties of the collection of these umbrellas define a segment.
The boundaries of various segments follow directly from
the intensities of the scale space saddles. A natural hierar-
chy is obtained as scale space segments are defined by the
regions encapsulated by the iso-intensity manifolds through
the scale space saddles. This hierarchy avoids the problems
of a straight-forward segmentation of an image based on the
intensities of the saddle points. Although saddles have dif-
ferent intensities in the initial image (since they are Morse-
saddles), at some scales intensities of saddles are equal, see
e.g. Lindeberg [14]. Then, for example, a saddle isophote
contains another saddle and encircles three extrema. In
scale space, however, the scale space saddles generically
have different intensities.

The hierarchy tree contains as nodes the scale space sad-
dles and their intensities. The branches are formed by the
segments, defined by the collection of internal umbrellas,
bounded by the iso-intensity manifold through the scale
space saddle. So one branch represents the set of umbrel-
las of the corresponding extremum. The scale space saddles
are ordered by scale. Segments in the tree can be joined if
they have a scale space saddle in common. Subtrees contain
parts of the image and can be selected or deselected. To ob-
tain a simple segmentation, only the part of the tree with
large scales can be regarded. See section 4 for applications.

The scale space hierarchy is uniquely found by the fol-
lowing algorithm:

1 Build a scale space.
2 Find the extrema and the saddle points at each level.
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3 Construct critical paths.
4 Connect the critical paths.
5 Find the scale space saddles.
6 Build the hierarchical tree.
In the following these items will be explained and

illustrated.

1 Scale Space
Input is an image of arbitrary size and dimension. Only
for the sake of illustration we consider the one and two
dimensional cases. Images of higher dimension are com-
parable to the two dimensional ones, albeit that they allow
saddle-saddle pairs. A scale space image is obtained by
convolving the input image with a normalised Gaussian
filter of variable size. The intermediate levels are logarith-
mically sampled, see e.g. [2, 8, 10, 14].

2 Extremum and Saddle Stacks
Each level in scale space is a blurred image. Its crit-
ical points can be calculated by various methods, e.g.
zero-crossings of the derivatives, winding-numbers, or
neighbourhood-relations.

3 Extremum and Saddle Paths
Since critical points can be annihilated and created, they
inherit, apart form movement in scale direction, also spatial
drift. This movement can be calculated accurately by
means of derivatives up to third order, see e.g. [3, 11]. To
link critical points at two subsequent scales, for each crit-
ical point at scalei both its current and expected location,
predicted by its spatial drift, are compared with the critical
points at scalei + 1. The outcome of this procedure are
two stacks each containing doubly linked lists. The head of
each list corresponds with the creation of the critical point
(or the initial scale), its tail with the annihilation.

4 Connected Critical Paths
Since the annihilation of an extremum involves a saddle,
each tail of an extremum list at a certain scalei corresponds
to a tail of some saddle list at the same scalei. At
catastrophes the spatial drift becomes undetermined since
det(H) = 0. Then the movement of a critical point can
still be accurately predicted, see [3, 11]. This results in
chains of extremum-saddle pairs, viz. critical curves.

5 Scale Space Saddles
Scale space saddles have the property that they are the local
extrema of the parametrised intensity-curve, obtained by
taking the intensity along the saddle branches as function
of scale, as argued in section 2. Saddle lists can have
zero or multiple extrema with respect to intensity. If no
extrema are found then the Laplaceans of the extremum
and the saddle have either the same or the opposite sign at

all scales. The former signals that the scale space saddle
is absent. To identify a segment with the extremum, the
intensity of the saddle in the first image of the scale space
stack can be taken. The latter case represents a scale
space saddle located closer to the catastrophe point than
is measured. The saddle at the coarsest scale is assigned
as scale space saddle. If multiple scale space saddles are
found within one saddle list, the one at coarsest scale is
chosen. Since each extremum list is linked to a saddle
list, each extremum is linked to a scale space saddle.
Equivalently, the iso-intensity manifold through the scale
space saddle encapsulates the corresponding extremum.

6 Hierarchical Tree
The scale space saddles are sorted from coarse to fine
according to scale at which the extremum saddle pair
annihilates. Each scale space saddle defines an iso-intensity
manifold around an extremum: the part of the image encap-
sulated by this manifold is a segment of the image at that
scale. Segments may have sub-segments, defined by scale
space saddles within the segment. At the coarsest scale
only one extremum remains. Since it has no corresponding
saddle branch containing a scale space saddle, it does
not have an a priori critical umbrella. These umbrellas,
however, are defined as the iso-intensity manifolds through
an extremum at a pre-defined scale, viz. at which a scale
space saddle occurs. Therefore the iso-intensity manifold
of the last extremum can be chosen having the intensity of
the extremum at the coarsest scale. Since the heat equation
is energy preserving, it is known that the input image
converges to an image of constant value equalling the
average value of the input image. Consequently the value
of the iso-intensity manifold of the remaining extremum
can be set to this value.

Segmentation
A natural segmentation, or rather “pre-segmentation”, of
scale space is thus obtained by the iso-intensity manifolds
of the scale space saddles with their corresponding extrema.
Consequently a spatial segmentation of the image at any
scale t is found by the intersection of the scale space
segmentation and this fixed scalet; A full (partial) segmen-
tation of the initial image is found by taking into account
the intensities of all (a proper subset of all) scale space
saddles. At a partial segmentation each selection of scale
space saddles define segments with a certain grey-level
histogram. If knowledge of the grey-level distribution of
the image is present, this is a semantical choice.

4 Applications

1D images
As an example of segmentation at various scales and a hier-
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Figure 2: a) Initial image b) After one saddle, c) after the
second one d) and after the last one.

S0
S1

S2
S3

S0

S1

S2

S1

S0 S0

Figure 3: a) Initial image with 4 segments. S2 is a subset of
S1. S1 and S3 are subsets of S0 b) After the first saddle S3
vanishes. c) After the second saddle the segment S1 and S2
remain. d) After the second saddle the only segment is S0.

archy tree in 1D we use Figure 2a. The scale space image
contains three scale space saddles (equivalent: catastrophes,
annihilations). The four essential different appearances are
shown in Figure 2.

At each scale a minimum-maximum pair defines a seg-
ment based on the intensity of their scale space saddle.
These segments vary in scale space. For the images of Fig-
ure 2a-c the corresponding segments labelled S1, S2, and
S3 are shown in Figure 3a-c.

The scale space hierarchy tree is shown in Figure 4. At
high scales there is only one segment: the whole image from
boundary to boundary. Decreasing scale one reaches scale
space saddle 3, from which point the image contains two
segments: S1 and the complement of S1: the parts that
range from the boundaries to S1. Continuing the descent
one reaches scale space saddle 2, from which point segment
S1 contains a subsegment, viz. S2. Decreasing scale even
more one ends up with scale space saddle 1, from which
point a new segment S3 is obtained from the boundary part.

Interpreting Figure 4 the other way round one concludes
that at increasing scale firstly segment S3 vanishes at the
boundary, secondly S2 is “gulped down” by S1, and finally
S1 disappears.

This notion of disappearing of structure at special points
gave rise to the gist that the essence of segmenting images
should be based on catastrophe points instead of scale
space points. This misinterpretation is caused by the coin-
cidence of scale space saddles and catastrophe points in 1D.

2D images
To show the results of the scale space saddle hierarchy
and pre-segmentation in 2D we took an 81x81 artificial
image, made by the combination of four maxima and one
(induced) minimum, see Figure 5a. The simplicity of
this image enables a quantitative check of the outcome.
Subsequently we took the 2D slice from an MR image
shown in Figure 5b to illustrate the use of the hierarchy

S0

S0

S0

S1

S1 S2

S3
Saddle 1

Saddle 2

Saddle 3

S0
S1

S2
S3

S0

S1

S2

S1

S0

S0

Figure 4: Hierarchy tree of Figure 2a. The three ‘Sad-
dles’ denote the topological changes of the image in scale
space. The branches denote the segments present at the dis-
tinguished scales. The stack of images at the right show the
corresponding image between the scale space saddle scales.
Note that segment S2 is a subsegment of segment S1.

Figure 5: 2D test images. a) Artificial 81 x 81 image build
by combining four maxima and one minimum. b) 181 x 217
MR image.

tree.
The 81 x 81 artificial image contains 5 extrema. Since

the image at (very) large scale contains only one blob, 4
extrema must be annihilated. To obtain the scale space hi-
erarchy firstly a scale space consisting of 113 levels was
built. Levels were calculated at scalesei=32; i = 2; : : : ; 114.
Secondly at each level the spatial critical points were calcu-
lated.

Thirdly the spatial critical points of subsequent scales
were linked resulting in the critical paths. Figure 6a shows
the locations of spatial critical points in scale space. For
visualisation purposes this 81x81x113 space was reduced
to a 41x41x113 volume of interest space. Dark points
correspond to extrema, light points to saddle points. At
three scales a pair of created and directly annihilated crit-
ical points is visible. The algorithm is able to detect these
points and finds the right linking.

Fourthly extrema and saddle points were pairwise
grouped by means of the catastrophe points. The
parametrised critical paths, viz. the intensities of the crit-
ical curves containing the branches of saddle and extremum
branches, are shown in Figure 6b. The four catastrophes are
visible as the end of two branches of critical points.
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Figure 6: a) Spatial critical points of Figure 5a in(x; y; t)
scale space. Dark points correspond to extrema, light points
to saddle points. b) Intensities of the critical points as
function of scale. c) Intensities of the saddles as function of
scale.

S0
S1

S0

S1

S2

S3

S4

S5

Figure 7: a) SegmentsS1 andS0 of Figure 5a projected at
the initial image. b) Pre-segmentation of the initial image.

Fifthly the scale space saddles are derived from the sad-
dle branches. These are shown in Figure 6c. It can be seen
that the upper three saddle branches, although containing
multiple local extrema with respect to the intensity, have a
global maximum, viz. the scale space saddle of interest.
The fourth saddle branch is monotonically increasing, just
as its corresponding minimum. Therefore the intensity of
the spatial saddle at the first level is chosen as value for the
minimum encapsulating manifold.

Finally an unambiguous hierarchy based on the catastro-
phe points and the scale space saddles, just as in the 1D
case, can be made. The presence of 5 extrema results in 5
inner regionsSi; i = 1; : : : ; 5 and a boundary regionS0.
The first region is defined by the remaining extremum. The
scale space umbrella defined by this maximum is the iso-
intensity manifold valued by the intensity of the extremum
at coarsest scale. Since the diffusion equation is energy pre-
serving, this value converges to the average intensity of the
initial image. This convergence can also be seen in Figure
6b. This segmentS1 and its dualS0 projected to the initial
image are shown in Figure 7a.

To find the next segment, scale is decreased until the
second extremum appears. The segmentS2 correspond-
ing to it is located at the bottom right part of the image.
The value of the iso-intensity manifold is obtained from the
scale space saddle of the spatial saddle corresponding to this
extremum. The other segments are found in the same way,
resulting in the pre-segmentation of the image as shown in
Figure 7b. Furthermore the hierarchy associated with this
pre-segmentation is given by the successive annihilations in
scale space, shown in Figure 8.

Having a hierarchical description tree of the image, one
can disregard parts of the tree. Combined with knowledge
of the image one can thus obtain a pre-segmentation useful

S0

S1

S4

S1

S1

S1

S1

S5

S3

S2

Cat. 4

Cat. 3

Cat. 2

Cat. 1

Figure 8: Hierarchy tree of Figure 5a. Segments are la-
belled corresponding to Figure 7. SegmentsS2; : : : ; S5 are
subsegments of segmentS1, but annihilate in the sequence
S4; S5; S3; S2 at increasing scale.
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Intensity
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Figure 9: a) Intensities of the critical points of Figure 5b as
function of scale. b) Intensities of the saddles as function of
scale.

for e.g. further segmentation. Figure 10a shows a 2D slide
from an simulated MRI of brain tissue. This image is taken
from the web-site http://www.bic.mni.mcgill.ca/brainweb.
In order to investigate the large structures of this 2D im-
age, we focused on the part of the scale space with scales
varying from 8.4 to 32.9. Within these scales, of 7 extrema
6 annihilate. The parametrised critical paths are shown in
Figure 9a, the saddle branches in Figure 9b.

Figure 10d shows a direct intersection of the original im-
age Figure 10a with the manifolds of these 7 extrema. The
range of values is reduced from0; : : : ; 255 to0; : : : ; 8. With
the simulated MRI, also the distributions of the white and
gray matter are given as ground-truth. These images are
shown in Figure 10b-c, respectively. Selecting the manifold
obtained by the scale space saddle of the last catastrophe,
Figure 10e is obtained. Selecting the region between two
manifolds, that is: deselecting a part of the hierarchy tree,
Figure 10f is obtained.

5 Summary and Conclusions

We developed a method to calculate the hierarchical struc-
ture of an arbitrary input image. Consequently, this struc-
ture can be represented as a pre-segmentation. The method
is based on the scale space image of the input image and the
critical paths within it. The latter exist of branches of ex-
trema and saddle points. The range of scales at with these
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Figure 10: Top row: a) Simulated MR brain image. b)
Ground-truth white matter. c) Ground-truth grey matter.
Bottom row: d) Segmentation by 7 extrema. e) Segment
of the extremum of the last catastrophe. f) Region of the
segment of a selected extremum and its successive sub-
segment.

branches exist follow from their catastrophe points in scale
space. To each extremum that annihilates an iso-intensity
manifold is assigned. The value of this manifold equals that
of the scale space saddle located at the saddle branch anni-
hilating with the extremum branch. This point is a critical
point in scale space. The iso-intensity manifold encapsu-
lates the extremum in scale space. The manifolds through
the extrema are nested and non-intersecting and thus form
a hierarchy. Consequently, a pre-segmentation of the image
without any a priori knowledge is obtained by the intersec-
tion of the image and the manifolds. The proposed algo-
rithm has two main advantages. Firstly it has a severe math-
ematical underpinning which encourages and facilitates fu-
ture improvements, and admits reproducible, predictable,
and provable segmentation results. Secondly it has the po-
tential to include semantics enabling an intelligent choice of
the nodes, either by deterministic, statistic or probabilistic
means. Experimental results based on artificial images and
simulated MRI with respect to the hierarchy and segmenta-
tion were given and showed intuitive results.
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