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Abstract

Kayles is a combinatorial game on graphs. Two players select al-
ternatingly a vertex from a given graph G - a chosen vertex may not
be adjacent or equal to an already chosen vertex. The last player that
can select a vertex wins the game. The problem to determine which
player has a winning strategy is known to be PSPACE-complete. Be-
cause of certain characteristics of the Kayles game, it can be ana-
lyzed with Sprague-Grundy theory. In this way, we can show that
the problem is polynomial time solvable for graphs with a bounded
asteroidal number. It is shown that the problem can be solved in
O(n3) time on cocomparability graphs and circular arc graphs, and in
O(n1+1/ log 3) = O(n1.631) time on cographs.

1 Introduction

For various reasons, games keep attracting the interest of researchers in math-
ematics and computer science. Games can provide for models, for instance
for human thought processes, economic behavior, fault tolerance in computer
systems, and computational complexity of machine models. Also, the anal-
ysis of games can provide for entertainment, and/or beautiful theory that
is interesting on its own. It may be interesting to note that one of the first
books written on graph theory [8] already contained a section on the relations
between graphs and games.
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In this paper we consider a combinatorial game, that is played on graphs,
called Kayles. In this game, two players alternately choose a vertex from a
given graph. Players may not choose a vertex that has been chosen before,
and may also not choose a vertex that is adjacent to a vertex that has been
chosen before. The last player that is able to choose a vertex wins the game.

The game can also described as follows: when a player chooses a vertex,
this vertex and all its neighbors are removed from the graph. The first player
that ends his move with the empty graph wins the game.

We consider the problem: given a graph G = (V,E), does there exist
a winning strategy for the first player when Kayles is played on G? We
denote this problem also by the name Kayles. Kayles has been shown to
be PSPACE-complete by Schaefer [11]. Despite its intractability for general
graphs, Kayles has some nice characteristics, which together allow for efficient
algorithms that solve some special cases. We remark that the game Kayles
is:

• a two player game.

• finite. The game always ends after a finite number of moves, and each
player can choose each time from a finite number of possible moves.

• full-information. There is no information that is hidden to one or both
players, like e.g. in bridge, where cards of other players are unknown.

• deterministic. Every move gives rise to a unique position; no random-
ization devices (like dice) are used.

• impartial. This means that positions have no preference towards play-
ers. In other words, for each position, either the player that must move
has a winning strategy, or the other player has — this is regardless of
whether player 1 or player 2 must move from the position. For exam-
ple, chess is not impartial, as there are white and black pieces owned
by the players.

• with ‘last player that moves wins the game’ rule.

These six characteristics of Kayles make that it can be analyzed with help of
Sprague-Grundy theory. Some readers may know this theory as the theory
of the game Nim. In this theory, one associates to each position a (natural)
number, here called nimber after [1]. (The position has nimber i, when it
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can be represented by a stack of corresponding height in the game Nim.) It
is possible to do some calculations with these nimbers, and determine which
player has a winning strategy. In many cases, these calculations will be
intractable, but — as will be shown in this paper — in some cases, they are
not.

Those basic notions and results of Sprague-Grundy theory that are needed
for this paper are reviewed in Section 3. For more background, we recommend
the reader to consult [1] or [4]. Some graph theoretic definitions are given in
Section 2.

2 Definitions

All graphs in this paper are considered to be finite, undirected and simple.
For a graph G = (V,E), and a subset of the vertices W ⊆ V , the subgraph
of G, induced by W , is denoted by G[W ] = (W, {(v, w) ∈ E | v, w ∈ W}).
We denote |V | by n, and |E| by e. For v ∈ V , denote the set containing
v and all neighbors of v by N [v] = {v} ∪ {w ∈ V | (v, w) ∈ E}. For
X ⊆ V , write N [X] = ∪v∈XN [v]. Given a graph G = (V,E) and a set of
vertices W ⊆ V , we denote by G − W the graph G[V − W ]. For graphs
G1 = (V1, E1), and G2 = (V2, E2), with disjoint vertex sets (V1 ∩ V2 = ∅),
we define the disjoint union G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and the join
G1 ×G2 = (V1 ∪ V2, E1 ∪ E2 ∪ {{v1, v2} | v1 ∈ V1, v2 ∈ V2}.

Definition 1 For a graph G = (V,E), a set W ⊆ V of vertices is asteroidal,
if for every vertex v ∈ W , there is a connected component of G − N [v] that
contains all vertices of W − {v}. The asteroidal number of a graph G is the
maximum size of an asteroidal set of G.

Graphs that do not have an asteroidal triple (i.e., have asteroidal number
two) are said to be AT-free. They are well studied, see e.g. [5]. See [7] for a
study of the asteroidal number of graphs.

Definition 2 A graph is a cograph, if and only if it can be formed by the
following rules:

1. Every graph with one vertex and no edges is a cograph.

2. If G1 = (V1, E1) and G2 = (V2, E2) are disjoint cographs, then G1 ∪G2

and G1 ×G2 are cographs.
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To each cograph G, one can associate a labeled rooted tree TG, called the
cotree of G. Each leaf node of TG corresponds to a (unique) vertex of V . Each
internal node is labeled with either a 0 or a 1. Children of nodes labeled with
1 are labeled with 0, and vice versa. Two vertices are adjacent, if and only if
their lowest common ancestor in the cotree is labeled with a 1. It is possible
to associate a cograph with each node of the tree. Leaf nodes correspond to
the cograph with the one vertex they represent. Internal nodes labeled with
0 (1) correspond to the disjoint union (join) of the cographs, corresponding
to the children of the node. G equals the cograph corresponding with the
root of TG. Cographs can be recognized in O(n + e) time, and in the same
time the corresponding cotree can be built [6].

A graph is a cocomparability graph, if it is the complement of a com-
parability graph. A graph G = (V,E) is a comparability graph, if it
has a transitive orientation. Cocomparability graphs can be character-
ized as those graphs having a cocomparability ordering, i.e. an ordering
v1, v2, . . . vn of its vertices such that for all i, j, k ∈ {1, 2, . . . , n}, i < j < k:
(vi, vk) ∈ E ⇒ (vi, vj) ∈ E or (vj, vk) ∈ E. See e.g. [9]. It seems worth
noting the following correspondence between cocomparability orderings and
linear extensions: Let P be a partially ordered set and let G be the comple-
ment of the comparability graph of G. Then any cocomparability ordering
of G is a linear extension of P and vice versa.

3 Sprague-Grundy theory

In this section, we review some notions and results from Sprague-Grundy
theory, and give some preliminary results on how this theory can be used
for Kayles. For a good introduction to Sprague-Grundy theory, the reader is
referred to [4] or the less formal and very entertaining [1].

A nimber is an integer ∈ N = {0, 1, 2, . . .}. For a finite set of nimbers
S ⊆ N, define the minimum excluded nimber of S as mex(S) = min{i ∈
N | i 6∈ S}.

We now assume that we consider positions in a two-player game, that is
finite, deterministic, full-information, impartial, with ‘last player wins’-rule.
(As in Kayles.)

To each position in such a game, one can associate a nimber in the fol-
lowing way. If no move is possible in the position (and hence the player
that must move loses the game), the position gets nimber 0. Otherwise the
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nimber is the minimum excluded nimber of the set of nimbers of positions
that can be reached in one move.

Theorem 3 [1, 4] There is a winning strategy for player 1 from a position,
if and only if the nimber of that position is at least 1.

Denote the nimber of a position p by nb(p). We next define the sum
of two games. For (finite, deterministic, impartial, . . . ) games G1, G2, the
sum of G1 and G2, G1 + G2 is the game, where each player when moving first
decides whether he wants to make a move in G1 or in G2, and then selects a
move in that game. The player that makes the last move (whether it is in
G1 or G2) wins the game G1 + G2.

Definition 4 Let i1, i2 ∈ N be nimbers. i1 ⊕ i2 is the binary sum of i1 and
i2 without carry, i.e., i1 ⊕ i2 =

∑{2j | (bi1/2jc is odd)⇔ (bi2/2jc is even)}.

In other words, write i1 and i2 in binary notation. For every digit, take a
1 if either i1 has a 1 for that digit, and i2 has a 0 for that digit, or vice versa.
For example 10⊕ 7 = (8 + 2)⊕ (4 + 2 + 1) = 8 + 4 + 1 = 13.

With (p1, p2) we denote the position in G1 + G2, where the position in Gi
is pi (i = 1, 2).

Theorem 5 [1, 4] Let p1 be a position in G1, p2 a position in G2. The nimber
of position (p1, p2) in G1 + G2 equals nb((p1, p2)) = nb(p1)⊕ nb(p2).

As Kayles is an impartial, deterministic, finite, full-informtion, two-player
game with the rule that the last player that moves wins the game, we can
apply Spraque-Grundy theory to Kayles, and we can associate with every
graph G the nimber of the start position of the game Kayles, played on G.
We denote this nimber nb(G), and call it the nimber of G.

An important observation is the following: when G = G1∪G2 for disjoint
graphs G1 and G2, then the game Kayles, played on G is the sum of the
game Kayles, played on G1, and the game Kayles, played on G2. Hence, by
Theorem 5, we have the following result.

Lemma 6 nb(G1 ∪G2) = nb(G1)⊕ nb(G2).
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Note that G1 and G2 might be disconnected graphs.
Our second observation makes that it is sufficient to know the nimbers

of certain subgraphs of the input graph G. Consider Kayles, played on G =
(V,E), and suppose that a vertex v ∈ V is played. Then, the nimber of the
resulting position is the same as the nimber of G − N [v], as the effect of
playing on v is the same as the effect of removing v and its neighbors from
the graph. As the nimber of a position is the minimum nimber that is not
in the set of nimbers of positions that can be reached in one move, we have:

Lemma 7 (i) If G = (V,E) is the empty graph, then nb(G) = 0.
(ii) If G = (V,E) is not the empty graph, then nb(G) = mex(nb({G −
N [v] | v ∈ V }).

The last two lemmas give a recursive algorithm to compute the nimber
of a graph G, and hence, a method to decide which player has a winning
strategy for Kayles on G. Using memoisation (i.e., storing values that are
computed in a table, and looking up whether a value has been computed
earlier) in a suitable way gives for special graph classes a polynomial time
algorithm. This is explored in the next section.

4 A polynomial time algorithm for Kayles on

graphs with bounded asteroidal number

In this section, we show that if the asteroidal number of a graph is bounded
by a constant k, then Kayles can be solved in O(nk+2) time. We extensively
use results for solving the independent set problem on graphs with bounded
asteroidal number from Broersma et al. [3]. We may assume that G is con-
nected; otherwise we compute the nimber of every connected component of
G and then apply Lemma 6. The following notion is from [3].

Definition 8 Let v ∈ V be a vertex in G = (V,E). A component of v in G
is a connected component in the graph G−N [v]. We number the components
of v Cv,1, . . . , Cv,sv .

The following notion is also from [3]. Intuitively, a lump is the set of
vertices ‘between’ the vertices of the corresponding asteroidal set.
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Definition 9 Let A be an asteroidal set of at least two vertices in G =
(V,E). The lump of A, denoted by L(A), is the set {v ∈ V | for all x ∈ A:
there is a component Cx,i of x containing v and A− x}.

Lemma 10 ([3]) Let Cv,i be a component of v ∈ V in G = (V,E), and let
w ∈ Cv,i. Then

G[Cv,i −N [w]] = G[L({v, w})] ∪
⋃

Cw,j⊆Cv,i−N [w]

G[Cw,j]

From Lemmas 10 and 6, we directly have:

Corollary 11 Let Cv,i be a component of v ∈ V in G = (V,E), and let
w ∈ Cv,i. Then

nb(G[Cv,i −N [w]]) = nb(G[L({v, w})])⊕
⊕

Cw,j⊆Cv,i−N [w]

nb(G[Cw,j])

and thus, by Lemma 7, we have

Corollary 12 Let Cv,i be a component of v ∈ V in G = (V,E). Then

nb(G[Cv,i]) = mex{nb(G[L({v, w})])⊕
⊕

Cw,j⊆Cv,i−N [w]

nb(G[Cw,j]) | w ∈ Cv,i}

With Corollary 12, we obtain a computational method for the nimber
that is related to Lemma 6.2 from [3], where a similar formula for the size
of the maximum independent set is given; the difference is mainly in the
operands that are used.

In the same way as Lemma 10.8 from [3], we can obtain the following
result.

Lemma 13 Let A be an asteroidal set in G = (V,E), and let w ∈ L(A).
Then

nb(G[L(A)]) =

mexw∈L(A)

⊕

Cw,i∩A=∅
nb(G[Cw,i])⊕
⊕

Cw,i∩A6=∅∧L(A)∩Cw,i 6=∅
nb(G[L({w} ∪ (Cw,i ∩ A))]).
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The same computational method can be used as in [3], which basically
consists of tabulating the values of nb(Cv,i) and nb(G[L(A)]), over all compo-
nents Cv,i (over all v ∈ V ), and all asteroidal sets A (in a dynamic program-
ming fashion.) The main difference is that here, we also need to compute the
mex of several sets, but as there are O(nk) computations of a mex of a set
with O(n) elements, this does not affect the asymptotic running time. For
the remaining details, we refer to [3]. Thus we arrive at an algorithm that
uses the same running time as the algorithms in [3] for computing the inde-
pendent set, independent dominating set, or independent perfect dominating
set of a graph of asteroidal number at most k.

Theorem 14 There is an algorithm that decides in O(nk+2) time which
player has a winning strategy for Kayles, played on a given graph G = (V,E)
with asteroidal number at most k, n = |V |.

5 Kayles on cocomparability graphs

In this section, we give an algorithm that solves Kayles in O(n3) time on
cocomparability graphs. As the class of cocomparability graphs contains
several interesting subclasses, in particular the permutation graphs and the
interval graphs, we get the same result for these classes too. Cocomparability
graphs have asteroidal number at most 2.

Given a cocomparability graph, a cocomparability ordering, i.e. an order-
ing v1, v2, . . . vn of its vertices such that for all i, j, k ∈ {1, 2, . . . , n}, i < j < k:
(vi, vk) ∈ E ⇒ (vi, vj) ∈ E or (vj, vk) ∈ E, can be computed by an O(n + e)
time algorithm presented by McConnell and Spinrad in [10]. On the other
hand, the best known recognition algorithms for cocomparability graphs have
running time O(n2.376) and O(ne), respectively.

In order to describe our algorithm more easy, we add two isolated ‘fake
vertices’, s = v0, and t = vn+1, to the graph G and its cocomparability
ordering v1, v2, . . . vn. For all v, w ∈ V ∪{s, t} with v = vi, w = vk and i < k,
we denote the set Vvw = {x ∈ V | x = vj with i < j < k} − N [{v, w}].
Clearly G = G[Vst].

To compute the nimber of a graph G[Vvw], we have to know the nimber
of all subgraphs resulting from a play of one vertex in Vvw. The following
lemma gives an easy characterization of such a resulting graph.
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Lemma 15 Let x ∈ Vvw. G[Vvw]−N [x] is the disjoint union of G[Vvx] and
G[Vxw].

Proof: Clearly Vvw − N [x] is the disjoint union of Vvx and Vxw. Now let
y ∈ Vvx and z ∈ Vxw. Then (y, z) ∈ E implies (y, x) ∈ E or (x, z) ∈ E,
contradicting the fact that both y and z are not adjacent to x. ut

Lemma 15 also implies that for an asteroidal set A = {v, w} of G its lump
L(A) is contained in Vvw. Notice that G[Vvw] is not necessarily connected
and that vertices of Vvw − L(A) belong either to a component of v or to a
component of w. Furthermore by Lemma 15, for any vertex x ∈ V the graph
G−N [x] = G[Vst]− N [x] is the disjoint union of G[Vsx] and G[Vxt]. Notice
that both graphs G[Vsx] and G[Vxt] might be disconnected and that one of
them might be empty.

From the discussion above, we see that the following dynamic program-
ming algorithm solves the problem in O(n3) time. We compute all values
nb(G[Vvw]) for all v, w in order of increasing value of k − i, where v = vi
and w = vk. Given a v, and w, the set Vvw = {x ∈ V | x = vj, i < j <
k∧{v, x} 6∈ E∧{w, x} 6∈ E} can be computed in O(n) time. If Vvw = ∅, then
nb(G[Vvw]) = 0; otherwise, we compute mex{nb(G[Vvx]) ⊕ nb(G[Vxw]) | x ∈
Vvw} in O(n2). (The needed values nb(G[Vvx]) and nb(G[Vxw]) have been
computed earlier and can be looked up.) Thus, the overall time of the pro-
cedure is O(n3).

Theorem 16 There is an algorithm that decides in O(n3) time which player
has a winning strategy for Kayles, played on a given cocomparability graph
G = (V,E).

Thus, we also have an O(n3) algorithm for Kayles on subclasses of the
cocomparability graphs like interval graphs, permutation graphs, etc.

One may observe that the result can be extended to some classes of
graphs that have a circular intersection model, like the circular arc graphs.
A straightforward algorithm using the fact that every graph G−N [x] is an
interval graph (permutation graph) if the graph itself is a circular-arc graph
(circular permutation graph) would have running time O(n4). With an al-
gorithm, similar to that for cocomparability graphs, we obtain the following
result.

Theorem 17 There is an algorithm that decides in O(n3) time which player
has a winning strategy for Kayles, played on a given circular arc graph or a
circular permutation graph G = (V,E).
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6 Kayles on cographs

The class of cographs is a subclass of the class of cocomparability graphs,
hence by the results of the previous section, there is an algorithm that solves
Kayles on cographs in O(n3) time. However, with a more detailed analysis,
we can obtain an algorithm with a better running time. The algorithm
computes for every node in the cotree TG of the input graph G, the set of
nimbers of the positions reachable in one move from the cograph associated
to the node.

Definition 18 Let G = (V,E) be a graph. The nimberset of G is the set of
nimbers nbs(G) = {nb(G[V −N [v]] | v ∈ V }.

Recall that nb(G) = mex(nbs(G)). We use the following notation: for a
set of nimbers S ⊆ N , and a nimber α, we denote α⊕ S = {α⊕ β | β ∈ S}.
Lemma 19 Let G1 = (V1, E1), G2 = (V2, E2) be two disjoint graphs.
(i) nbs(G1 ∪G2) = nb(G2)⊕ nbs(G1) ∪ nb(G1)⊕ nbs(G2).
(ii) nbs(G1 ×G2) = nbs(G1) ∪ nbs(G2).

Proof: (i) nbs(G1 ∪G2) = {nb(G1[V1 −N [v]] ∪G2) | v ∈ V1} ∪ {nb(G2[V2−
N [v]] ∪ G1) | v ∈ V2} = nb(G2) ⊕ {nb(G1[V1 − N [v]] | v ∈ V1} ∪ nb(G1) ⊕
{nb(G2[V2 −N [v]] | v ∈ V2} = nb(G2)⊕ nbs(G1) ∪ nb(G1)⊕ nbs(G2).

(ii) Write G = G1 × G2. nbs(G) = {nb(G[V1 ∪ V2 − N [v]]) | v ∈ V1} ∪
{nb(G[V1∪V2−N [v]]) | v ∈ V2} = {nb(G1[V1−N [v]]) | v ∈ V1}∪{nb(G2[V2−
N [v]]) | v ∈ V2} = nbs(G1) ∪ nbs(G2). ut

The lemma can be generalized as follows.

Lemma 20 Let G1 = (V1, E1), G2 = (V2, E2), . . . , Gr = (Vr, Er) be r
disjoint graphs.
(i) nbs(G1 ∪ G2 ∪ . . . ∪ Gr) =

⋃
1≤i≤r nb(G1) ⊕ nb(G2) ⊕ . . . ⊕ nb(Gi−1) ⊕

nb(Gi+1)⊕ . . .⊕ nb(Gr)⊕ nbs(Gi).
(ii) nbs(G1 ×G2 × . . .×Gr) = nbs(G1) ∪ nbs(G2) ∪ . . . ∪ nbs(Gr).

The idea is to use these lemmas to compute for all internal nodes in TG,
the nimber and nimberset of the corresponding cograph. It is helpful for
decreasing the running time of this computation, when we know what the
maximum nimber is that a cograph with n vertices can attain.

Let s(K) denote the minimum number of vertices of a cograph G with
nimber at least 2K . We will show that s(K) = 3K .
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Lemma 21 For all K ≥ 0, s(K) ≤ 3K.

Proof: We give a series of cographs, H0, H1, H2, . . . , with HK containing
exactly 3K vertices, and nbs(HK) = {0, 1, 2, . . . , 2K−1}, and hence nb(HK) =
2K .

For H0, take a graph with one vertex and no edges. For K ≥ 1, take
HK = (HK−1 ∪ HK−1) × HK−1. With Lemma 19, one easily verifies with
induction that HK fulfills the conditions mentioned above. ut

Theorem 22 For all K ≥ 0, s(K) = 3K.

Proof: We now show that for all K ≥ 0, s(K) ≥ 3K . As it is shown in
Lemma 21 that s(K) ≤ 3K , Theorem 22 follows.

First observe that s(0) = 1, as the empty graph has nimber 0, and a
graph with one vertex has nimber 1. The graph with two vertices and no
edges has nimber 0, and the graph with two vertices and one edge has nimber
1. Hence s(1) ≥ 3. We will now show that for all K ≥ 1, s(K+1) ≥ 3 ·s(K).
With induction, the result then follows.

Suppose G = (V,E) is a cograph with nimber ≥ 2K+1, with minimum
size of n = |V |. Let TG be the corresponding cotree. We write Gi for the
cograph, corresponding with node i in TG.

Observe, that if for any node i in TG, 2K+1 ∈ nbs(Gi), then Gi contains a
subgraph with nimber 2K+1. The size of this subgraph is smaller than the size
of G, hence G was not of minimum size. Thus we may assume that nbs(G) =
{0, 1, 2, . . . , 2K+1 − 1}, and for all i ∈ I: nbs(Gi) ⊆ {0, 1, 2, . . . , 2K+1 − 1}.

We say that a node i ∈ TG is K-heavy, if nb(Gi) ≥ 2K or nbs(Gi) ∩
{2K, 2K + 1, . . . , 2K+1 − 1} 6= ∅. A node i ∈ TG is K-precise, if nbs(Gi) =
{0, 1, 2, . . . , 2K − 1. Note that for a K-precise node i, nb(Gi) = 2K .

Claim 23 If i0 is K-heavy, then i0 is K-precise, or i0 has a descendant that
is K-precise.

Proof: From Lemma 20 it easily follows that every K-heavy node either is
K-precise, or has a K-heavy child. ut

As the root r of TG is K-heavy, it follows that there must be at least
one K-precise node in TG. Note that if a K-precise node i has a descendant
j 6= i that is also a K-precise node, then G is not minimal: use the cograph
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corresponding to the cotree, obtained by replacing the subtree rooted at i in
TG by the subtree rooted at j. So assume no K-precise node has a descendant
which is also K-precise.

Claim 24 There are at least two K-precise nodes in TG.

Proof: Suppose that i is the only K-precise node in TG. Then the only
K-heavy nodes in TG are the nodes on the path from TG to root r. With
induction, one can prove that for each node j on this path, {0, 1, 2, . . . , 2K −
1} ⊆ nbs(Gj). (Use Lemma 20, and note that only one term contains the
binary factor 2K .) Hence, if a predecessor j0 of i is 1-labeled, it follows that
for the unique K-heavy child j1 of j0, nbs(Gj1) = nbs(Gj0). Hence G was
not of minimum size, contradiction.

So we may assume that i has exactly one predecessor, namely r, which
is labeled with a 0. Hence we can write G = Gi ∪H. (H is the union of all
cographs, corresponding to the other childs of r.) nbs(Gi) = {0, 1, 2, . . . , 2K−
1}, nbs(H) ⊆ {0, 1, 2, . . . , 2K − 1}. If nb(H) < 2K , then 2K + nb(H) 6∈
nbs(Gi ∪H), hence nb(G) < 2K+1. So nb(H) = 2K . Applying Lemma 19 it
follows that nbs(Gi∪H) = {2K , 2K + 1, 2K + 2, . . . , 2K+1−1}, contradiction.

ut
If there are at least three K-precise nodes, then note that each of these

must have at least s(K) leaf-descendants. Hence s(K+1) ≥ 3·s(K). Assume
now there are exactly two K-precise nodes, i0 and i1. Let i2 be the lowest
common ancestor of i0 and i1. Similar as above, we can argue that G is not
of minimum size, if a node between i0 and i2 or a node between i1 and i2 has
a label 1, and if i2 has label 1, then it has exactly two children, which are
both K-heavy. (Each subtree rooted at one of these two children contains
exactly one of i0 and i1, in this case.)

We consider now two cases, namely that i2 has label 0, and that i2 has
label 1.

Case 1. i2 has label 0. Then Gi2 can be written as Gi2 = Gi0∪Gi1∪Gj1∪
. . . Gjr . Write H = Gj1 ∪ . . .∪Gjr . Note that nbs(H) ⊆ {0, 1, 2, . . . , 2K − 1},
as none of the nodes j1, . . . , jr is K-heavy. If nb(H) = 2K , then nbs(Gi2) =
{0, 1, . . . , 2K − 1} and i2 is K-precise, contradiction. So nb(H) < 2K , and it
follows that nbs(Gi2) = {2K , 2K + 1, . . . , 2K+1 − 1} ∪ nbs(H).

Claim 25 Let j be a node in TG on the path from i2 to r. Let Hj be the
subgraph of Gj, obtained by removing all leaf-descendants of i0 and of i1 from
Gj. Then nbs(Gj) = nbs(Hj) ∪ {2K, 2K + 1, . . . , 2K+1 − 1}.
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Proof: With induction. For j = i2, the claim holds, as is argued above.
Suppose the claim holds for the K-heavy child j ′ of j. Note that none of the
other children of j is K-heavy. We must have that nb(Gj′) = nb(Hj′) < 2K ,
otherwise nb(Gj′) = 2K+1, which contradicts the minimality of G.

Write Gj = Gj′ ∪ H, or Gj = Gj′ × H. If j is labeled with a 0, then
Hj = Hj′∪H, and nbs(Gj) = nb(Gj′)⊕nbs(H)∪nb(H)⊕nbs(Hj′)∪nb(H)⊕
{2K, 2K + 1, . . . , 2K+1} = nb(Hj′)⊕ nbs(H) ∪ nb(H)⊕ nbs(Hj′) ∪ {2K , 2K +
1, . . . , 2K+1} = nb(Hj′ ∪H){2K , 2K + 1, . . . , 2K+1}. If j is labeled with a 1,
then Hj = Hj′×H and nbs(Gj) = nbs(Gj′)∪nbs(H) = nbs(Hj′)∪{2K, 2K +
1, . . . , 2K+1 − 1} ∪ nbs(H) = nb(Hj′ ×H) ∪ {2K , 2K + 1, . . . , 2K+1}. ut

In particular, we have for the root r of TG that {0, 1, 2, . . . , 2K+1 − 1} =
nbs(Gr) = nbs(Hr)∪ {2K , 2K + 1, . . . , 2K+1 − 1}. Hence nb(Hr) ≥ 2K . So, if
we remove all leaf-descendants of i0 and i1 from G, we remain with a graph
with nimber at least 2K , hence with a graph with at least s(K) vertices. As
both Gi0 and Gi1 contain at least s(K) vertices, G contains at least 3 · s(K)
vertices. This ends the analysis of case 1.

Case 2. i2 has label 1. Then Gi2 can be written as Gi2 = (Gi0 ∪ Gj1 ∪
. . . Gjr)×(Gi1∪Gk1∪. . . Gks). Write H = Gj1∪. . . Gjr , and K = Gk1∪. . . Gkr .
Calculation shows that nbs(Gi2) = {0, 1, 2, . . . , 2K−1}∪2K⊕nbs(H)∪2K⊕
nbs(K).

Consider the graph G′ = Gi0 ∪ (H ×K). There are two cases:
Case 2.1. nb(H ×K) = 2K . Then G contains at least 3 · s(K) vertices:

H and K together contain at least s(K) vertices and are disjoint from Gi0

and Gi1, which both also contain at least s(K) vertices.
Case 2.2. nb(H×K) < 2K . As none of the nodes j1, . . . , jr, k1, . . . , ks is

K-heavy, it follows that nbs(G′) = nb(H×K)⊕nbs(Gi0)∪nb(Gi0)⊕nbs(H×
K) = nb(H×K)⊕{0, 1, 2, . . . , 2K−1}∪2K⊕nbs(H)∪2K⊕nbs(K) = nbs(Gi2).
Now let G′′ be the cograph, that corresponds to the cotree that is obtained
by replacing in TG the subtree rooted at i2 by the cotree TG′ of G′. The
nimberset for i2 does not change under this replacement operation, and hence
nb(G′′) = nb(G). But G′′ has fewer vertices than G, contradiction. This ends
the proof of case 2, and of Theorem 22. ut

Corollary 26 For every cograph G = (V,E) with n vertices, nb(G) <
2n1/ log 3.

Proof: Take the largest K with 2K ≤ nb(G). By Theorem 22, n ≥ 3K ,
hence nb(G) < 2 · 2K = 2 · 3(1/ log 3)K ≤ 2 · n1/ log 3. ut
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Note that 1/ log 3 ≈ 0.63093.
We now give an algorithm that solves Kayles on cographs. We suppose

that cograph G is given together with its cotree TG. For each node i in TG,
let Gi denote the cograph corresponding with this node, and write nb(i) =
nb(Gi), and nbs(i) = nbs(Gi). Let z = b2n1/ log 3c. To store nbs(i) for each
node i in TG, associate with each node i in TG a boolean array with entries
for all nimbers 0, 1, . . . , z. The algorithm computes nbs(i) and nb(i) for all
nodes i in TG. For easier presentation, we state the algorithm as a recursive
procedure, which is called with compute nimbersets(r), with r the root of
TG.

procedure compute nimbersets(node i):
begin if i is a leaf of TG

then begin nbs(i) := {0};
nb(i) := 1;

end;
else begin Suppose the children of i are j1, . . . , jr;

helpnbs := nbs(j1);
helpnb := nb(j1);
if label(i) = 0
then for k := 2 to r do

begin helpnbs := nb(jk)⊕ helpnbs ∪ helpnb⊕ nbs(jk);
helpnb := mex(helpnbs);

end;
else begin for k := 2 to r

do helpnbs := helpnbs ∪ nbs(jk);
helpnb := mex(helpnbs);

end;
nbs(i) := helpnbs;
nb(i) := helpnb;

end;
end.

Correctness follows from Lemmas 19 and 20. Taking the union of two
sets of nimbers, and taking the ⊕-sum of a nimber and a set of nimbers can
be done in O(z) time. As TG has n leaves, and hence ≤ n− 1 edges, a linear
number of these operations is done. Hence, the total time of the algorithm
is bounded by O(nz) = O(n1+1/ log 3) = O(n1.631).
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Theorem 27 Kayles can be solved on cographs in O(n1+1/ log 3) = O(n1.631)
time.

7 Final remarks

In this paper, we obtained polynomial time algorithms for Kayles, when re-
stricted to several well studied classes of graphs. For several other interesting
classes of graphs, the complexity of Kayles is still open. Probably the most
notable of these classes is the class of trees. Already in 1978, Schaefer men-
tioned as an open problem the complexity of Kayles, when restricted to trees
where only one vertex has degree at least three [11]. To the authors’ best
knowledge, this problem is still unresolved.
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