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Abstract

There exists a polynomial time algorithm to compute the path-
width of outerplanar graphs [3], but the large exponent makes this
algorithm impractical. In this paper, we give an algorithm, that given
a biconnected outerplanar graph G, finds a path decomposition of G
of pathwidth at most at most twice the pathwidth of G plus one. To
obtain the result, several relations between the pathwidth of a bicon-
nected outerplanar graph and its dual are established.

1 Introduction

Much research has been done to compute the pathwidth of graphs. The no-
tion of pathwidth first appeared in the theory on graph minors by Robertson
and Seymour [8], and is equivalent to several other graph theoretic notions,
e.g., vertex separation number, interval thickness, node search number. See
[2, 1] for overviews.

In this paper, we consider the problem to approximate the pathwidth
of outerplanar graphs. In [3], it was shown that the pathwidth of graphs
with bounded treewidth can be computed in polynomial time. As outerpla-
nar graphs have treewidth two, we know that pathwidth is polynomial time
computable for outerplanar graphs. However, the exponent in the running
time of this algorithm is rather large — already one step in the algorithm
requires to work with sets of size O(n11). In this paper, we give a linear
algorithm, which approximates the pathwidth of a 2-connected outerplanar
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graph with multiplicative factor two. Our algorithm is based on structural
results on the relation between the pathwidth of a 2-connected outerplanar
graph and its dual, which are interesting in their own right. This ‘dual’ rela-
tion combining with the results of Ellis et al. [4] that the pathwidth of trees
can be computed in linear time are the main ingredients of our algorithm.
Also, we show how to construct the corresponding path decomposition in
O(n log n) time.

In [5], Govindran et al. give an O(n log n) time algorithm for approxi-
mating the pathwidth of an outerplanar graph with a multiplicative factor
of three. We improve upon this paper for biconnected outerplanar graphs.

2 Definitions and notations

We use the following notations: G = (V,E) is an undirected and finite graph
with vertex set V and the edge set E, assumed to be without self-loops or
parallel edges. A plane graph is a particular drawing of a planar graph in
the plane without crossings. An outerplane graph is a planar embedding of
an outerplanar graph with every vertex on the exterior face. Edges of an
outerplane graph that are not on the boundary of the exterior face are called
internal. If G = (V,E) is a plane graph then G∗ = (V ∗, E∗) denotes its
geometric dual. The weak dual of a plane graph G is the graph obtained
from the dual G∗ by deleting the vertex corresponding to the exterior face of
G.

Observation. The weak dual of an outerplane graph is a forest.

Observation. The weak dual of a 2-connected outerplane graph is a tree.

The notion of pathwidth was introduced by Robertson and Seymour [8].
(See [2] and [7] for surveys.) A path decomposition of a graph G = (V,E) is
a sequence (X1, X2, . . . , Xr) of subsets of V , such that

• ⋃1≤i≤rXi = V .

• For all {v, w} ∈ E, there is an i, 1 ≤ i ≤ r, with v, w ∈ Xi.

• For all 1 ≤ i0 < i1 < i2 ≤ r, Xi0 ∩Xi2 ⊆ Xi1.

The width of path decomposition (X1, X2, . . . , Xr) is max1≤i≤r |Xi| − 1. The
pathwidth of a graph is the minimum width over its path decompositions.

The notion of treewidth is strongly related to the notion of pathwidth.
In this paper, we use a variant of this notion, which we call semi treewidth.

A semi tree decomposition of a graph G = (V,E) is a pair ({Xi | i ∈
I}, T = (I, F )), {Xi | i ∈ I} a collection of subsets of V and T = (I, F ) a
tree, such that
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• ⋃i∈I Xi = V .

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi, or there are nodes
i0, i1 ∈ I with v ∈ Xi0 , w ∈ Xi1 , and i0 and i1 are adjacent in T .

• For all i0, i1, i2 ∈ I, if i1 is on the path in T from i0 to i2, thenXi0∩Xi2 ⊆
Xi1 .

The width of a semi tree decomposition ({Xi | i ∈ I}, T = (I, F )) is
maxi∈I |Xi| − 1, and the semi treewidth of a graph is the minimum width
over its semi tree decompositions.

The definition of tree decomposition is obtained by replacing the second
condition in the definition above by

• For all {v, w} ∈ E, there is an i ∈ I with v, w ∈ Xi.

The treewidth of a graph is the minimum width over its tree decomposi-
tions. Notice that path decomposition of a graph G can be defined as a tree
decomposition with a tree T being path.

3 Pathwidth of outerplane graphs

The main purpose of this section is to prove the following theorem.

Theorem 1. Let G∗ be a 2-connected outerplane graph without loops and
multiple edges, and let G be the dual of G∗. Then:

pw(G) ≤ pw(G∗) ≤ 2 pw(G) + 2.

Proof. By Lemma 4, pw(G) ≤ pw(G∗). By Lemma 5, there is a planar inner
triangulation H∗ of G∗ such that pw(H) ≤ pw(G)+1. Notice that pw(G∗) ≤
pw(H∗). Applying Lemma 9 for H we have that pw(H∗) ≤ 2 pw(H). So we
have:

pw(G) ≤ pw(G∗) ≤ pw(H∗) ≤ 2 pw(H) ≤ 2 pw(G) + 2.

The lemmas needed for the proof above will follow in the remainder of
this section. We need the following fact about pathwidth of trees.

Theorem 2 (Ellis et al. [4]). 1. Every tree T of pathwidth k+1, k ≥ 1,
has a vertex u such that the forest T \ {u} has at least three connected
components of pathwidth ≥ k;
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2. For any tree T , pw(T ) ≤ k + 1, k ≥ 1, if and only if there is a path
P such that every connected component of the forest T \ V (P ) has
pathwidth ≤ k.

Lemma 3. Let G = (V,E) be the dual and let T = (VT , ET ) be the weak dual
of a 2-connected outerplane graph G∗ = (V ∗, E∗). Then pw(T )+1 = pw(G).

Proof. Let v ∈ V be the vertex corresponding to the exterior face of G∗, i.e.,
T = G \ {v}.

Let us prove that pw(G) ≥ pw(T ) + 1. Suppose that pw(T ) = k. Then
by Theorem 2 there is a vertex u ∈ VT such that at least three branches at
u have pathwidth ≥ k − 1. Let T1, T2, T3 be these branches.

Let (X1, X2, . . . , Xr) be a path decomposition of G. In this path decom-
position there are sets Xij containing at least k vertices of Tj , j ∈ {1, 2, 3},
as the pathwidth of each Tj is at least k − 1. Without loss of generality,
we suppose that i1 < i2 < i3. Choose a ∈ Xi1 \ Xi2 and b ∈ Xi3 \ Xi2.
Then Xi2 is an (a, b)-separator. But there are at least two vertex disjoint
(a, b)-paths in G avoiding V (T2) (one passing through u and one through v.)
Hence pw(T ) ≥ (k + 2)− 1 = k + 1.

The proof of pw(G) ≤ pw(T ) + 1 is obvious because T = G− v.

Lemma 4. Let G∗ be a 2-connected outerplane graph without loops and mul-
tiple edges. Then pw(G) ≤ pw(G∗).

Proof. Let T = (VT , ET ) be the weak dual of G∗. By Lemma 3, pw(T ) =
pw(G)− 1. We now will show that pw(T ) ≤ pw(G∗)− 1, using induction to
the pathwidth of T . In the case pw(T ) = 1 the result clearly holds.

Suppose now that for every 2-connected outerplane graph having weak
dual of pathwidth ≤ k, the lemma is correct.

Let G∗ be a 2-connected outerplane graph and T be its weak dual with
pw(T ) = k + 1. Then by Theorem 2 there is a vertex u ∈ VT such that
the graph T \ {v} has at least three components T1, T2, T3 of pathwidth
≥ k. Let H1, H2, H3 be the subgraphs of G∗ having T1, T2, T3 as weak duals.
These graphs are 2-connected and outerplane and by induction hypothesis
pw(Hi) ≥ k + 1, i ∈ {1, 2, 3}.

Because G∗ is a 2-connected outerplane graph without loops and multiple
edges, the face of G∗ corresponding to vertex u is bounded by a cycle C of
length ≥ 3. See Figure 1 for a schematic diagram. Notice that for every
i ∈ {1, 2, 3} the subgraph Hi has some vertices of C and there is a path pi
in C from Hj to Hk avoiding Hi, i 6= j 6= k. Let (X1, X2, . . . , Xk) be a path
decomposition of G. In this path decomposition there are sets Xij containing
at least k + 2 vertices of Hj, j ∈ {1, 2, 3}. We may assume, without loss of
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Figure 1: Illustration to the proof of Lemma 4

generality, that i1 < i2 < i3. Then Xi2 separates Xi1 and Xi3. Therefore Xi2

contains a vertex of p2 and |Xi2| ≥ k + 2 + 1 = k + 3.

A triangulation of a plane graph G is a maximal plane supergraph, i.e. a
plane supergraph of G with every face (including the exterior face) a triangle.

An inner triangulation of a plane graph G is a plane supergraph of G,
such that all interior faces are a triangle, i.e., we allow the exterior face not
to be a triangle, and no edges are added to the outerface of G.

Lemma 5. Let G∗ be a 2-connected outerplane graph without loops and mul-
tiple edges. Then there exists an inner triangulation H∗ of G∗ such that
pw(G) = pw(H) + 1, where G = (G∗)∗ and H = (H∗)∗.

Proof. Consider the following split operation on plane graphs: take an inte-
rior face that is not a triangle, and add an edge between two non-adjacent
vertices of the face. Clearly, when we repeat the split operation until it is no
longer possible, we end up with an inner triangulation of the original graph.
It remains to be shown that we can do this such that the pathwidth of the
dual graphs do not change.

The split operation corresponds to the following operation on the dual G,
or, similarly, to the weak dual T . Take a vertex v of degree at least 4 in G.
Let N [v] be the set of the vertices that are adjacent to v. Assume a clockwise
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ordering of the neighbors of v, v1, v2, . . . , vs. (The ordering is forced by the
embedding, up to a cyclic shift.) Now, partition the set N [v] into two sets
M and N , where M consists of the vertices in some consecutive part of the
ordering, i.e., M = {vi, vi+1, . . . , vj}, 1 ≤ i < j ≤ s. M and N have size at
least two. Now, transform G as follows: delete v with all its incident edges,
add new vertices u and w with an edge {u,w}, and make u adjacent to all
vertices of M and w adjacent to all vertices of N . Notice that the degree of u
in new graph is |N |+1 and the degree of w is |M |+1. We say that the result
of this transformation is obtained from G by a vertex splitting of v. A graph
H is said to be a split of G if H is obtained from G by a sequence of vertex
splittings. Notice that a split of an outerplane graph is an outerplane graph
and if F = (VF , EF ) is a split of G = (V,E) then V ∗F = V ∗ and E∗F ⊇ E∗.

Let T be a weak dual tree of G∗. We wish to prove that there is a split TS
of T such that pw(T ) = pw(TS) and ∆(TS) = 3. By Lemma 3 this implies
the existence of F ∗, i.e. an outerplane graph having TS as weak dual. By
Theorem 2, every tree of pathwidth ≤ k + 1 has a path P such that every
branch at this path (connected component of T \ V (P )) has pathwidth at
most k. Using this fact one can find the split TS easily. In fact, choose the
path P as in Theorem 2 and split (if necessarily) the vertices of P . Since
the new path has the same branches, such splittings do not increase the
pathwidth. Then we can split the branches of P recursively, unless such a
branch consists of a single vertex. Splitting a branch that is a single vertex
means that the vertex is replaced by a path: this increases the pathwidth of
the branch by one, and hence the pathwidth of G by one.

If we do the corresponding splits to G∗, then we obtain the desired inner
triangulation of G∗.

Note that a graph remains outerplanar when we apply an inner triangu-
lation.

Lemma 6. Let G0 be a graph, and let G1 be obtained from G0 by removing
all vertices of degree two whose neighbors are adjacent. Then pw(G1) ≤
pw(G0) ≤ pw(G1) + 1.

Proof. As G1 is a subgraph of G0, clearly, pw(G1) ≤ pw(G0).
Suppose we have a path decomposition (X1, X2, . . . , Xr) of G1. For each

vertex v in G0 with degree two whose neighbors w, x are adjacent, find a set
Xi with w, x ∈ Xi and add after Xi in sequence of the path decomposition a
set Xi ∪ {v}. This gives a path decomposition of G0 whose width is at most
one larger than the given path decomposition of G1.

Lemma 7. Let H∗ be a 2-connected inner triangulated outerplane graph.
Let T = (VT , ET ) be the weak dual of H∗. Let H− be the graph, obtained
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Figure 2: Illustration to the proof of Lemma 7

by removing all vertices of degree two from H∗. Then there is a semi tree
decomposition ({Xi | i ∈ VT}, T ) of H− with width 1.

Proof. Choose an arbitrary leaf node v0 from T , and view T as a rooted tree
with root v0. We take Xv0 = ∅. For all nodes w 6= v0, consider the edge from
w to its parent in T . This edge is dual (crosses in the diagram) an edge, say
{y, z} from H∗. Then take Xw = {y, z}.

We claim that ({Xi | i ∈ VT}, T ) defined in this way is a semi tree
decomposition of H−. We will verify the second and third condition of semi
tree decomposition; the first then follows directly from the second.

Consider an edge {y, z} from H−. If {y, z} is an internal edge, then it
crosses an edge say {v, w} from T . Suppose v is the parent of w in T . Then,
by construction, {y, z} = Xw. Now, suppose {y, z} is not an internal edge.
Suppose {y, z} is adjacent to an internal face, represented by a vertex v from
T . As the graph is triangulated, this face must also be a triangle. The face
must be adjacent to two other internal faces in H∗ otherwise y or z would
have degree two in H∗, and hence {y, z} would not be an edge in H−. Say
these faces are represented by nodes w and x. As the root of T is a node of
degree one in T , either w or x is a child of v in T . Suppose w is a child of v
in T . Then y ∈ Xv and z ∈ Xw or z ∈ Xv and y ∈ Xw. (See diagram 2.)

Finally, for a node z in H−, note that the edges from T that cross an
edge with z as endpoint form a path in T . By the choice of a leaf node as
root of T , this is a directed path and hence the collection of sets Xv that z
induces a path in T .

Lemma 8. Let (X,T ) be a semi tree decomposition of a graph G = (V,E)
with width k. Then,

pw(G) ≤ (k + 1)(pw(T ) + 1)− 1.

Proof. Let (Y1, Y2, . . . , Yr) be a path decomposition of T of pathwidth pw(T ).
Consider the sequence (Z1, Z2, . . . , Zr) with Zi =

⋃
j∈Yi Xi.
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We now will verify that this sequence is a path decomposition of G. First,
suppose i1 < i2 < i3, and v ∈ Zi1 ∩ Zi3 . Hence, v ∈ Xj1 for some j1 ∈ Yi1,
and v ∈ Xj3 for some j3 ∈ Yi3 . By the properties of path decomposition, we
have that Yi2 must contain a node from the path from j1 to j3 in T ; call this
node j2. By the definition of semi tree decomposition, v ∈ Xj2, and hence
v ∈ Zi2.

Next, consider an edge {v, w} ∈ E. If there is an edge {i1, i2} in T with
v ∈ Xi1 and w ∈ Xi2 , then there must be an j, 1 ≤ j ≤ r with i1, i2 ∈ Yj.
Hence, v, w ∈ Zj. The case that there is an i ∈ I with v, w ∈ Xi is easy.

One directly sees that the width of this path decomposition is at most
(k + 1)(pw(T ) + 1)− 1.

Lemma 9. Let G∗ be a 2-connected inner triangulated outerplane graph with
dual G. Then pw(G∗) ≤ 2 · pw(G).

Proof. Let H− be the graph obtained by removing the nodes of degree two
from H∗. Note that, as H∗ is triangulated, the neighbors of every vertex of
degree two in H∗ are adjacent. By Lemma 6, pw(H∗) ≤ pw(H−) + 1. Let
T be the weak dual of H∗. By Lemma 7, there is a semi tree decomposition
(X,T ) of H− of width 1, hence by Lemma 8, pw(H−) ≤ 2 · pw(T ) + 1. Now

pw(H∗) ≤ pw(H−) + 1 ≤ 2 · pw(T ) + 2 = 2 · pw(H)

4 An approximation algorithm for biconnected

outerplanar graphs

In this section, we give an algorithm, that given a 2-connected outerplanar
graph G∗ = (V ∗, E∗)with n vertices finds a path decomposition of G∗ that
has a width that is at most two times the pathwidth of G∗ plus 2. The
algorithm uses O(n log n) time, and follows the structure of the proof, given
in the previous section. Note that if we just want to have a bound on the
pathwidth of G∗, then the algorithm can run in linear time.

Step 1: Remove loops and parallel edges. If we allow our input graph
to have self-loops (edges of the form {v, v}, or parallel edges, then we just
remove such edges: this does not change the pathwidth of the graph.
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Step 2: Compute an outerplane embedding of G∗. It is well known
that given a graph G, one can test in linear time if G is outerplanar, and if
so, find an embedding of G with all vertices on the exterior face. See e.g.
[6, 10].

Step 3: Compute the dual graph G of G∗. It is well known, that, given
a plane embedding of a planar graph, one can find its dual in linear time.

Step 4: Compute the pathwidth of the dual graph G. The pathwidth
of the dual graph G can be computed in linear time, in the following way.
First, we take the tree T that is obtained from G by removing the vertex
v representing the exterior face, i.e., T is the weak dual of G∗. Using the
algorithm of Ellis et al. [4], we can compute in linear time the pathwidth of
T , and compute a path decomposition (X1, . . . , Xr) of T of optimal width in
O(n log n) time. The pathwidth of G is one larger, by Lemma 3, and the path
decomposition (X1 ∪{v}, X2 ∪{v}, . . . , Xr ∪{v}) is a path decomposition of
G of optimal width. By Euler formula the number of vertices in G is O(n)
and the pathwidth of G can be computed in O(n) time.

If we are satisfied with a bound on the pathwidth of G∗ that is at most two
times plus 2 larger than the exact bound, then, by Theorem 1 we are done,
as 2 pw(G) + 2 is such a bound. However, if we want a path decomposition
of G∗ whose width at most two times plus 2 than the pathwidth of G∗, then
more work has to be done.

Step 5: Compute an inner triangulation H∗ of G∗, such that pw(H) =
pw(G) + 1. In this step, we make the proof of Lemma 5 constructive, i.e.,
we compute an inner triangulation H∗ of G∗, such that the pathwidth of G
equals the pathwidth of H, where H is the dual of H∗.

Let T be again the weak dual of G∗. Suppose the pathwidth of T is k.
Now, first we find a path P in T , such that all branches at this path

have pathwidth at most k. This can be done in linear time, using a minor
modification of the algorithm from Ellis et al. [4]. When we have the path
P , the split can easily be applied. After this, we continue recursively on the
branches. As the pathwidth of a tree with t vertices is O(log t), every edge
of T is involved in O(log t) recursive steps, and the total time of this step
becomes O(t log t) = O(n log n).

Step 6: Compute a path decomposition for the weak dual of H∗

Compute the weak dual T of the inner triangulation H∗, computed in the
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previous step, and use the linear time algorithm of Ellis et. al. [4] to compute
an optimal path decomposition of T .

Step 7: Compute the semi tree decomposition of H− Let H− be the
graph obtained by removing the vertices of degree two from H∗. Following
construction described in the proof of Lemma 7, we can make a semi tree
decomposition (X,T ) of width 1, with T the weak dual of H∗. It is not hard
to see that this step can be done in linear time.

Step 8: Make a path decomposition of H− The proof of Lemma 8
can be made constructive in a straightforward way; we thus obtain a path
decomposition of H− of width 2 pw(T ) + 3 = 2 pw(H) + 1 of H−.

Step 9: Make a path decomposition of H∗ Finally, we have to add
back the vertices with degree two, while increasing the pathwidth with at
most one, as in the proof of Lemma 6. This can be done in linear time by
using the following method:

Suppose that the vertices in H∗ are numbered v1, . . . , vn. We use also a
boolean array Z with indexes {1, . . . , n}. Initially, all Z[i] are false.

1. Suppose that S is the set of vertices of degree two. Make a set P of
(ordered) pairs of vertices, with for every v ∈ S, its two neighbors as
two ordered pairs in P , i.e., if v’s neighbors are x and y, then both
(x, y) and (y, x) belong to P . Maintain pointers from and to a vertex
v ∈ S and its corresponding pair in P .

2. Radix sort P , i.e., P is sorted with respect to the lexicographic order-
ing. This can be done in linear time, using the standard radix sort
algorithm.

3. Now, we can build an array, with the ith entry pointing to a list of
vertices v for which (vi, v) belongs to P . This can be done in linear
time, using the sorted list of the previous step.

4. Next, visit the bags in the path decomposition of H− one by one. For
each bag Xi, we do the following:

(a) for every vj ∈ Xi, make Z[j] true.

(b) for every vj ∈ Xi\Xi−1 and for every vj′ with (vj, vj′) ∈ P , check if
Z[j′] is true. If it is true, then we found the bag for the neighbors
of a vertex v, namely the one corresponding to the pair (vj, vj′).
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We remove this pair and its reversed copy (vj′ , vj) from the array
of step 3, and add a pointer from v to bag Xi.

(c) for every vj ∈ Xi, make Z[j] false, i.e., now all values in Z are
again false.

5. Now, for every vertex v of degree two in G∗, we can follow the pointer
from v to a bag Xi. Add after Xi a bag which contains Xi ∪{v}. Note
that in this way, we never create bags that are more than one larger
than a bag in G−.

When (v, w) and (w, v) belong to P , then consider the first bag that
contains both v and w. In this bag, we either will consider v or w in step 4b,
and hence the vertex of degree 2 associated with this pair will be pointing
towards this bag.

The time is linear in the size of the path decomposition plus the size of
G∗. The pathwidth of a tree with k vertices is O(log k) and by construction
the number of vertices in a path decomposition is O(n). Therefore this step
can be performed in O(n log n) time.

Step 10: Obtain a path decomposition of G∗ The path decomposition
of H∗ obtained in Step 9 is also the path decomposition of G∗ and the width
of this decomposition is at most 2 pw(G∗) + 2.

5 Concluding remarks

One of the most interesting question about pathwidth of outerplanar graphs
we left open is the existence of fast practical exact algorithms or algorithms
approximating pathwidth of outerplanar graphs with additive factor. One of
the possible ways in obtaining such algorithms is the proof of the following
conjecture.

Conjecture 10. There is a constant c such that for any 2-connected out-
erplanar graph G∗ without loops and multiple edges pw(G) ≤ pw(G∗) ≤
pw(G) + c.

Moreover, we suggest that

Conjecture 11. For any 2-connected planar graph G∗ without loops and
multiple edges pw(G)− 1 ≤ pw(G∗) ≤ pw(G) + 1.

Path decompositions of trees and of outerplanar graphs with n vertices
can have Θ(n) bags Xi of size Θ(log n), thus, when using a straightforward
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representation one may need already Ω(n log n) time just for writing the out-
put. However, more compact representations of path decompositions exists,
e.g., mark for each vertex the first and last bag it belongs to, or one can use
the equivalent notion of vertex separations. These representations have size
linear in the number of vertices. As Skodinis [9] has shown that (with such
representations) one can find an optimal path decomposition of a given tree
in linear time, we conjecture that the algorithm of Section 4 can be made to
run in linear time, but there are several unresolved matters in this, and we
leave this as an open problem. As a side remark, we note that the algorithm
of Govindran et al. [5] can be made to run in linear time, using Skodinis’
algorithm and a corresponding representation of the path decompositions.
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