
Defining a non-concrete recursive type in HOL which includes

sets.

Tanja Vos and Doaitse Swierstra
Utrecht University, Department of Computer science

e-mail: {tanja, doaitse}@cs.uu.nl

February 18, 2000

1 Introduction

In HOL [GM93], a set of tools is provided which – for a certain class of commonly used
concrete recursive types – automatically carries out all the formal proofs necessary to define
these types. The class of recursive types supported by these tools are:

op = C1 t
1
1 . . . t

k1
1

| . . .
| . . .

| Cm tm1 . . . tkm1

(1.1)

where each tji is either a type expression already defined as a type (this type must not include

op), or is the name op itself. For recursive types where the tji ’s do include op, these tools do
not work, and the user has to define such a type manually. In this paper, we shall describe
how we manually defined the following recursive data type to HOL:

Val = NUM num

| SET (Val)set
| LIST (Val)list
| TREE (Val)ltree

Section 2 outlines the general approach one has to follow when manually defining a recursive
data type in HOL as it is described in [Mel89]. Sections 2 up to 4 describe the application of
this approach to the specific data type mentioned above. Section 5, subsequently, shows how
functions can be defined on this data type. Section 6, finally, concludes. All the results in this
technical report have been mechanically verified using the HOL theorem proving environment
[GM93].

1

2 The general approach for defining a new type in HOL 2

2 The general approach for defining a new type in HOL

The approach to defining a new logical type as described in [Mel89], involves the following
three steps:

1. find an appropriate non-empty subset of an existing type to represent the new type

2. extend the syntax of logical types to include a new type symbol, and use a type definition
axiom to relate this new type to its representation

3. derive from the type definition axiom and the properties of the representing type a set
of theorems that serves as an “axiomatisation” of the new type.

In the first step, a model for the new type is given by specifying a set of values that will
be used to represent it. This is done by defining a predicate P on an existing type such that
the set of values satisfying P is non-empty and has exactly the properties that the new type
is expected to have.

In the second step, the syntax of types is extended to include a new type symbol which
denotes the set of values of the new type. In HOL, this can be done by means of type
definition axioms, a mechanism formalised by Mike Gordon in [Gor85] which defines a new
type by adding a definitional axiom to the logic asserting that the new type is isomorphic
to an appropriate non-empty subset of an existing type. The SML function for doing this in
HOL is:

new type definition : {name:string, pred:term, inhab thm:thm} → thm

new
type

P
isomorphism

rep

existing
type

tyP ty

If ty is an existing type of the HOL logic, and P is a term of type ty → bool denoting a
non-empty1 (i.e. we can prove ` ∃x :: P x) subset of ty, then evaluating:

new type definition : {name = " tyP ", pred = P , inhab thm = ` ∃x :: P x }

results in tyP being declared as a new type symbol characterised by the following definitional
axiom:

` ∃rep :: (∀x y :: (rep.x = rep.y)⇒ x = y)
∧ (∀r :: P.r = (∃x :: r = rep.x)) (tyP TY DEF)

1Due to the formalisation of Hilbert’s ε-operator, HOL types must be non-empty (see Appendix A).

2 The general approach for defining a new type in HOL 3

which states that the set of values denoted by the new type is isomorphic to, and consequently
has the same properties as, the subset of ty specified by P . By adding this definition to the
logic, the new type tyP is defined in terms of existing type ty, and the isomorphism rep can
be thought of as a representation function that maps a value of the new type tyP to the value
of type ty that represents it. The type definition axiom (tyP TY DEF) above, asserts only the
existence of a bijection from tyP to the corresponding subset of ty. To introduce constants
that in fact denote this isomorphism and its inverse, the following SML function is provided:

define new type bijections :

{ABS:string, REP:string, name:string, tyax:thm} → thm

If REP tyP and ABS tyP are the desired names under which to store the representation func-
tion and its inverse, then evaluating:

define new type bijections

{ABS = "ABS tyP ", REP = "REP tyP ",
name = "tyP ISO DEF", tyax = tyP TY DEF}

defines two constants REP tyP :ty → tyP and ABS tyP :tyP → ty, and creates the following
theorem which is stored under the name tyP ISO DEF:

` (∀a :: ABS tyP .(REP tyP .a) = a)
∧ (∀r :: P.r = (REP tyP .(ABS tyP .r) = r)) tyP ISO DEF

It is straightforward to prove that the representation and abstraction functions are injective
(one-to-one) and surjective (onto), using provided SML functions:

` (∀a a′ :: (REP tyP .a = REP tyP .a
′) = (a = a′)) tyP REP ONE ONE

` ∀r :: P.r = (∃a :: r = REP tyP .a) tyP REP ONTO
` ∀r r′ :: P.r ⇒ P.r′ ⇒ ((ABS tyP .r = ABS tyP .r

′) = (r = r′)) tyP ABS ONE ONE
` ∀a :: ∃r :: (a = ABS tyP .r) ∧ P.r tyP ABS ONTO

So, after the second step we actually have the new type tyP , we know that the values of this
type have exactly the same properties as the values in the subset P of ty, and we have a rep-
resentation and abstraction function to go back and forth between tyP and ty. Consequently,
stating that some property H is true for all elements of the new type tyP is equal to stating
that for all elements in P , H is true of their image under ABS tyP :

` (∀x :: (H.x)) = (∀r :: (P.r)⇒ (H.(ABS tyP .r))) tyP PROP

In the third step, a collection of theorems is proved that state abstract characterisations
of the new type. These characterisations capture the essential properties of the new type
without reference to the way its values are represented and therefore acts as an abstract
“axiomatisation” of it. For an inductive type σ, the assertion of the unique existence of a
function g satisfying a recursion equation whose form coincides with the primitive recursion
scheme of this type σ – that is, g is a paramorphism [Mee90] – provides an adequate and
complete abstract characterisation for σ. From this characterisation it follows that every
value of σ is constructed by one or more applications of σ’s constructors, and consequently
completely determines the values of σ up to isomorphism without reference to the way these
are represented. Moreover, in [Mee90] it is proved that all functions with source type σ are
expressible in the form of paramorphism g.

3 The representation and type definition 4

3 The representation and type definition

In [Mel89] a concrete recursive type of the form:

op = C1 t
1
1 . . . t

k1
1

| . . .

| Cm tm1 . . . tkm1

(3.1)

is represented by a non-empty subset of labelled trees (see Appendix E for labelled trees
(ltree)). Each of the m constructors Ci, 1 ≤ i ≤ m, of the concrete recursive data type is
represented by a labelled tree using the scheme outlined below:

Let us consider the following instantiation of the ith constructor: Ci.x
1
i . . . x

ki
i , where each

xji is of type tji which can be an existing logical type, or is the type op itself. Let pi denote
the number of arguments which have existing types and let qi be the number of arguments
which have type op, where pi+ qi = ki, then the abstract value of op denoted by Ci.x

1
i . . . x

ki
i

can be represented by a labelled tree which has pi values associated with its root node, and
qi subtrees (for the recursive occurences of op). In a diagram:

Ci.
︷ ︸︸ ︷
xi1 . . . x

ki
i︸ ︷︷ ︸

︸ ︷︷ ︸
qi subtrees

pi labels︷ ︸︸ ︷
(, , . . . ,)

pi arguments having
existing logical types

qi arguments
of type op

the root of the representing tree is labelled by a pi-tuple of values. Each of these values is
one of the pi arguments to Ci which are not of type op. When pi = 0, the representing tree
is labelled with one, the one and only element of type one. The qi subtrees shown in the
diagram are the representations of the arguments of Ci that have type op. When qi = 0, the
tree will have no subtrees. Each of the m constructors can be represented by a labelled tree
in this way, and consequently the representing type for op will be:

(

sum of m products︷ ︸︸ ︷
((# . . . #)︸ ︷︷ ︸
product of p1 types

+ . . . + (# . . . #)︸ ︷︷ ︸
product of pm types

))ltree

The subset predicate P can now be defined to specify a subset of labelled subtrees of the
above type.

This method from [Mel89] only has to be adjusted a bit, in order to represent a subset of
the new data type Val. Let us be ignorant of the sets for a while, and start using the ideas
outlined above. That is, we use ((one + num + one + tree))ltree as the representing type,
and make representations for the constructors NUM, LIST and TREE as follows:

3 The representation and type definition 5

NUM.n Node.(INR.(INL.n)).[]

LIST.[x1, . . . , xn] Node.(INR.(INR.(INL.one))).[rx1, . . . , rxn]

rx1 rxn

TREE.t Node.(INR.(INR.(INR.ts))).[rv1, . . . , rvm]

rv1 rvm

where, rx denotes the representation as a ((one + num + one + tree))ltree of value x of
type Val. The ts in the root of the representation tree of TREE t denotes the shape of the
tree t, and [v1, . . . , vm] is the list of Val typed values stored at the nodes of tree t. Although
ts is not an argument to the constructor TREE we can use this position at the root of the
representation tree to store the shape of the Val tree which we obviously need in order to
be able to go from the representation as a ((one + num + one + tree))ltree – where all the
values of the Val tree are put in a list not containing any information about the shape of the
original tree – to an abstract value of type Val.

As already indicated, the sets in the new type Val constitue a problem when proceeding
with the method outlined above. When representing SET.{x1, . . . , xn} as a labelled ltree of
which the subtrees are the representations of the values x1,. . . ,xn the resulting representation
function is not an injection, since:

SET.{x1, x2} = SET.{x2, x1}

but,

v

rx1 rx2

6= v

rx2 rx1

The solution is to represent SET.{x1, . . . , xn} by an equivalence class of ltrees in which ltrees
like the two above are considered to be equivalent. Consequently, the existing type to represent
our new type Val by shall consist of equivalence classes of ltrees, that is:

((one + num + one + tree))ltree → bool

3 The representation and type definition 6

Before the subset predicate can be defined, we first need to formalise the equivalence relation
equiv, that given an ltree of type ((one + num + one + tree))ltree, returns the equivalence
class of that ltree:

equiv : ((one + num + one + tree))ltree →
((one + num + one + tree))ltree → bool

The representation of a:

NUM.n value obviously has to consist of the equivalence class containing only the ltree
(Node.(INR.(INL.n)).[]). Consequently, equiv.(Node.(INR.(INL.n)).[]) must return a func-
tion that only delivers true for argument (Node.(INR.(INL.n)).[]).

SET.{x1, . . . , xn} value, has to consist of the class containing all ltrees that are equivalent to:

Node.(INL.one).[rx1, . . . , rxn]

rx1 rxn

For the SET case this must be the class of ltrees:

• that have (INL.one) at their root
• of which the sets of images of their subtrees under equivalence are identical. Note

that, because of the absence of ordering in sets, the requirement that these partic-
ular sets are identical ensures that two ltrees as displayed on page 5 are equivalent.

Consequently, equiv.(Node.(INL.one).tl1) must return a function that only delivers true
when given an argument (Node.(INL.one).tl2) such that:

image.equiv.(l2s.tl1) = image.equiv.(l2s.tl2)

LIST.xs value, has to consist of the class containing all ltrees that are equivalent to:

Node.(INR.(INR.(INL.one))).[rx1, . . . , rxn]

rx1 rxn

For the LIST case this must be the class of ltrees:

• have (INR.(INR.(INL.one))) at their root
• of which the list of images of their subtrees under equivalence are identical.

Consequently, equiv.(Node.(INR.(INR.(INL.one))).tl1) must return a function that only
delivers true for an argument (Node.(INR.(INR.(INL.one))).tl2) such that:

map.equiv.tl1 = map.equiv.tl2

3 The representation and type definition 7

TREE.t value, has to consist of the class containing all ltrees that are equivalent to:

Node.(INR.(INR.(INR.ts))).[rv1, . . . , rvm]

rv1 rvm

Where ts denotes the shape of tree t, and [v1, . . . , vm] is the list of Val typed values
stored at the nodes of tree t. For the TREE case this must be the class of ltrees:

• have (INR.(INR.(INR.ts))) at their root
• of which the list of images of their subtrees under equivalence are identical.

Consequently, equiv.(Node.(INR.(INR.(INR.ts))).tl1), must return a function that only
delivers true for an argument (Node.(INR.(INR.(INR.ts))).tl2) such that:

map.equiv.tl1 = map.equiv.tl2

Below the formal definition of equiv is given:

Definition 3.1 Equivalence relation equiv DEF

equiv.(Node.v1.tl1).(Node.v2.tl2) =

(v1 = v2)
∧
((tl1 = tl2 ∧ (∃n :: v1 = INR.(INL.n)))
∨
(image.equiv.(l2s.tl1) = image.equiv.(l2s.tl2) ∧ ISL.v1)
∨
((map.equiv.tl1 = map.equiv.tl2)
∧
(v1 = INR.(INR.(INL.one)) ∨ ∃t :: v1 = INR.(INR.(INR.t)))

)
)

J
Proving that the relation equiv is an equivalence relation is tedious but straightforward. Using
the very nice way to represent equivalence relations from [Har93], we have:

Theorem 3.2 equiv is an equivalence relation equiv EQUIV REL

equiv.t1.t2 = (equiv.t1 = equiv.t2)

J
The subset predicate P that has to specify a non-empty subset of equivalence classes of ltrees
can now be defined as the quotient set of an appropriate subset Q of ltrees by the equivalence
relation equiv. Looking at the representations of the different Val values, we can see that this
Q must contain ltrees (Node.v.tl) for which hold that:

3 The representation and type definition 8

(1) if (v = INR.(INL.n)) for some number n at their root , then tl = [].
(2) if (v = INR.(INR.(INR.t))) for some tree t, then t and tl form an ltree
(3) for all ltrees in tl, (1) and (2) from above also hold.

in a formula:

Definition 3.3 Q DEF

Q.(Node.v.tl) =
(∃n :: (v = INR.(INL.n)))⇒ tl = []

∧ (∃t :: v = INR.(INR.(INR.t)))⇒ Is ltree.(OUTR.(OUTR.(OUTR.v)), tl)
∧ (∀t :: t ∈ tl⇒ Q.t)

J
Finally, the subset predicate P is defined as the quotient set of Q by equiv:

Definition 3.4 Is pvt REP

P = Q/equiv

Theorem 3.5 Is pvt REP THM

P = (λs. ∃t :: (s = equiv.t) ∧ (Q.t))
J

It is not hard to prove that P is not empty, and consequently we can use the SML func-
tions new type definition and define new type bijections to extend the syntax of logical
types to include our new type Val, define the type bijections ABS Val and REP Val between
Val and P , and prove that these are injective and surjective:

Definition 3.6 Val ISO DEF

(∀a :: ABS Val.(REP Val.a) = a) ∧ (∀r :: P.r = (REP Val.(ABS Val.r) = r))

Theorem 3.7 Val REP ONE ONE

(∀a a′ :: (REP Val.a = REP Val.a′) = (a = a′))

Theorem 3.8 Val REP ONTO

∀r :: P.r = (∃a :: r = REP Val.a)

Theorem 3.9 Val ABS ONE ONE

∀r r′ :: P.r⇒ P.r′ ⇒ ((ABS Val.r = ABS Val.r′) = (r = r′))

Theorem 3.10 Val ABS ONTO

∀a :: ∃r :: (a = ABS Val.r) ∧ P.r

Theorem 3.11 Val PROP

(∀x :: (H.x)) = (∀r :: (P.r)⇒ (H.(ABS Val.r)))
J

4 The axiomatisation 9

4 The axiomatisation

The abstract axiomatisation of Val will be based upon four constructors:

NUM : num → Val

SET : (Val)set → Val

LIST : (Val)list → Val

TREE : (Val)ltree → Val

To define the constructors, we need a function that given an equivalence class of ltrees returns
an element of that equivalence class. We will call this function pick, and define it using
Hilbert’s ε-operator (see Appendix A). It satisfies the following properties:

Definition 4.1 pick pick

pick.c = εt. c.t

Theorem 4.2 equiv pick REP pvt

equiv ◦ pick ◦ REP Val = REP Val

Theorem 4.3 Q pick REP pvt

∀x :: Q.((pick ◦ REP Val).x)
J

Now the constructors can be defined as follows (see Appendix D for the definition of s2l).

Definition 4.4 NUM DEF

NUM.n = ABS Val.(equiv.(Node.(INR.(INL.n)).[]))

Definition 4.5 SET DEF

SET.s = ABS Val.(equiv.(Node.(INL.one)
.(map.(pick ◦ REP Val).(s2l.s))))

Definition 4.6 LIST DEF

LIST.l = ABS Val.(equiv.(Node.(INR.(INR.(INL.one)))
.(map.(pick ◦ REP Val).l)))

Definition 4.7 TREE DEF

TREE.t = ABS Val.(equiv.(Node.(INR.(INR.(INR.(shape.t)))))
.(map.(pick ◦ REP Val).(values.t)))

J
Having defined the constructors, we can state the theorem which abstractly characterises the
new type Val. Following [Mee90] we characterise our new type by stating the unique existence
of a paramorphism para as follows:

4 The axiomatisation 10

Theorem 4.8 Abstract characterisation of Val pvt Axiom

∀fn fs fl ft ::
∃!para ::
(∀n :: para.(NUM.n) = fn.n)
∧
(∀s :: (FINITE.s)⇒ (para.(SET.s) = fs.(image.(split.para).s)))
∧
(∀l :: para.(LIST.l) = fl.(map.(split.para).l))
∧
(∀t :: para.(TREE.t) = ft.(map tree.(split.para).t))

J
where:

Definition 4.9 split split

∀f x :: split.f.x = (f.x, x)

J
The proof of Theorem 4.8 consists of two parts, the proof of the existence of a paramorphism
para, and the proof that such a paramorphism is unique.

The existence proof is based upon the following theorem about quotient sets. Informally,
this theorem states that: for all equivalence relations E on α, and subsets Q on α, if ABS
and REP are mutually inverse bijections between some set β and Q/equiv, and h is a function
of type α → γ that does not disthinguish between different elements in the same equivalence
class, then there exists a unique function g of type β → γ such that the following diagram
commutes:

Q
E

Q/E

ABS

β

REP

g
γ

h

Theorem 4.10 quotient sets QUOTIENT THM

For all equivalence relations E on α; for all Q defining a subset of α; for all ABS : (α→ bool)
→ β and REP : β → (α → bool), abstraction and representation functions respectively, the
following theorem holds for all functions h of type α → γ:

(∀a :: ABS.(REP.a) = a) ∧ (∀r :: ((Q/E).r) = (REP.(ABS.r) = r))
(∀t1 t2 :: (E.t1.t2) ⇒ (h.t1 = h.t2))

∃!g :: ∀t :: (Q.t) ⇒ (g.(ABS.(E.t)) = (h.t))
J

4 The axiomatisation 11

Instantiating Theorem 4.10 with ((one+num+one+tree))ltree for α, equiv for E, ABS Val

for ABS, REP Val for REP, and Q (Definition 3.3) for Q, obviously makes g a good candidate
for para. Applying modus ponens to this instantiation and Val ISO DEF gives us a unique
function g of type Val → γ for which it holds that:

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)

∀t :: (Q.t) ⇒ (g.(ABS Val.(equiv.t)) = (h.t))
(4.1)

Using theorem 4.3 (and Theorem E.3), it is easy to prove that:

Theorem 4.11 Q NUM REP

∀n :: Q (Node.(INR.(INL.n)).[])

Theorem 4.12 Q SET REP

∀s :: Q.(Node.(INL.one).(map.(pick ◦ REP Val).(s2l.s)))

Theorem 4.13 Q LIST REP

∀l :: Q.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP Val).l))

Theorem 4.14 Q TREE REP

∀t :: Q.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick ◦ REP Val).(values.t)))
J

These theorems together with (4.1) and the definitions of the constructors give us:

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)

∀n :: g.(NUM.n) = h.(Node.(INR.(INL.n)).[])
∀s :: g.(SET.s) = h.(Node.(INL.one).(map.(pick ◦ REP Val).(s2l.s)))
∀l :: g.(LIST.l) = h.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP Val).l))
∀t :: g.(TREE.t) = h. (Node.(INR.(INR.(INR.(shape.t))))

.(map.(pick ◦ REP Val).(values.t)))

Consequently, in order to finish the existence part of the proof of Theorem 4.8, we have to
find a function h, that satisfies the following properties:

(i). ∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)
(ii). h.(Node.(INR.(INL.n)).[])

= fn.n
(iii). h.(Node.(INL.one).(map.(pick ◦ REP Val).(s2l.s)))

= fs.(image.(split.g).s), for all finite sets s
(iv). h.(Node.(INR.(INR.(INL.one))).(map.(pick ◦ REP Val).l))

= fl.(map.(split.para).l)
(v). h.(Node.(INR.(INR.(INR.(shape.t)))).(map.(pick ◦ REP Val).(values.t)))

= ft.(map tree.(split.para).t)

4 The axiomatisation 12

We claim that the following function, defined by “primitive recursion” on ltrees, satisfies these
conditions, and to finish the proof of the existence part of theorem 4.8, it only remains for us
to validate this claim:

∀v tl :: h.(Node.v.tl) = k.(map.h.tl).v.tl, where:
k = λxs v tl.

ISL.v→fs.(l2s.(zip.(xs, (map.(ABS Val ◦ equiv).tl))))
| ISL.(OUTR.v) => fn.(OUTL.(OUTR.v))
| ISL.(OUTR.(OUTR.v)) => fl.(zip.(xs, (map.(ABS Val ◦ equiv).tl)))
| ft.(zip tree

((ABS ltree.(OUTR.(OUTR.(OUTR.v)), xs)),
(ABS ltree.(OUTR.(OUTR.(OUTR.v)),map.(ABS Val ◦ equiv).tl))))

In order to prove requirement (i), we have the following theorem, the proof of which is
straightforward and tedious and hence will not be given here.

Theorem 4.15 ltree Axiom PRESERVES equiv

For all functions h of type ((one + num + one + tree))ltree → γ defined by
“primitive recursion” on ((one + num + one + tree))ltrees (i.e. having the form
(∀v tl :: h.(Node.v.tl) = k.(map.h.tl).v.tl) for an arbitrary function k of type (γ)list →
((one + num + one + tree))list → γ):

∀xs1 xs2 tl1 tl2 v ::
(equiv.(Node.v.tl1).(Node.v.tl2) ∧
(ISL.v) ⇒ (length.xs1 = length.tl1) ∧ (length.xs2 = length.tl2) ∧

((l2s.(zip.(xs1,map.equiv.tl1))) = (l2s.(zip.(xs2,map.equiv.tl2)))
(ISR.v) ⇒ (xs1 = xs2))
⇒
((k.xs1.v.tl1) = (k.xs2.v.tl2))

∀t1 t2 :: (equiv.t1.t2) ⇒ (h.t1 = h.t2)
J

Proving that our function k satisfies the premise of theorem 4.15 is again straightforward and
tedious since, as the proof of theorem 4.15 itself, it involves lots of lemmas involving zip. We
shall not give this proof here either, and consider (i) to be proven.

It is easy to prove that h satisfies property (ii):

h.(Node.(INR.(INL.n)).[])
= (definition h and k)

fn.(OUTL.(OUTR.(INR.(INL.n))))
= (OUTL, OUTR, INR, INL)

fn.n

In order to show that h satisfies property (iii), we first need to prove:

∀s :: map.(h ◦ pick ◦ REP Val).(s2l.s) = map.g.(s2l.s) (4.2)

4 The axiomatisation 13

proof of (4.2)
Let us consider an arbitrary set s of Val-typed values. Since h ◦ pick ◦ REP Val is mapped
only on elements in (s2l s), it will be sufficient to prove:
∀t : t ∈ (s2l s) : g = (h ◦ pick ◦ REP Val)

From the definition of Q (3.3) and theorem 4.12, we know that:
∀x : x ∈ (map.(pick ◦ REP Val).(s2l.s)) : (Q.x) holds,

and thus (Theorem B.10)
∀t : t ∈ (s2l.s) : (Q.((pick ◦ REP Val).t))

From (i) and (4.1) we can now deduce that
∀t : t ∈ (s2l.s) : (g ◦ ABS Val ◦ equiv ◦ pick ◦ REP Val) = (h ◦ pick ◦ REP Val)

which with theorem 4.2 and Val ISO DEF, rewrites to:
∀t : t ∈ (s2l.s) : g = (h ◦ pick ◦ REP Val)

end proof of (4.2)

Now we can proceed with the proof of property (iii) as follows:

h.(Node.(INL.one).(map.(pick ◦ REP Val).(s2l.s)))
= (definition h)
k.(map.h.(map.(pick ◦ REP Val).(s2l.s))).(INL.one).(map.(pick ◦ REP Val).(s2l.s))

= (map composition (Theorem B.8) and 4.2)
k.(map.g.(s2l.s)).(INL.one).(map.(pick ◦ REP Val).(s2l.s))

= (definition k)
fs.(l2s.(zip.(map.g.(s2l.s), map.(ABS Val ◦ equiv).(map.(pick ◦ REP Val).(s2l.s)))))

= (map composition (Theorem B.8), theorem 4.2 and Val ISO DEF)
fs.(l2s.(zip.(map.g.(s2l.s), (s2l.s))))

= (zip and split (Theorem B.9))
fs.(l2s.(map.(split.g).(s2l.s)))

= (l2s, map and image (Theorem C.9))
fs.(image.(split.g).(l2s.(s2l.s)))

= (s is a finite set (Theorem D.6))
fs.(image.(split.g).s)

The proofs of properties (iv) and (v) are similar to the proof of (iii) and will not be given.
We hereby finish the proof of the existence part of theorem 4.8, and continue with the proof
that the existing paramorphism is unique. That is we shall prove that: for all function x and
y of type Val → γ:

∀n :: x.(NUM.n) = fn.n
∀s :: finite.s⇒ (x.(SET.s) = fs.(image.(split.x).s))
∀l :: x.(LIST.l) = fl.(map.(split.x).l)
∀t :: x.(TREE.t) = ft.(map tree.(split.x).t)
∀n :: y.(NUM.n) = fn.n
∀s :: finite.s⇒ (y.(SET.s) = fs.(image.(split.y).s))
∀l :: y.(LIST.l) = fl.(map.(split.y).l)
∀t :: y.(TREE.t) = ft.(map tree.(split.y).t)

(x = y)
(4.3)

4 The axiomatisation 14

In order to be able to prove this, we first need an induction theorem for type Val.

Theorem 4.16 Induction on Val pvt Induct

For all properties H,

∀n :: H.(NUM.n)
∀s :: ((finite.s) ∧ (∀p :: (p ∈ s)⇒ (H.p)))⇒ (H.(SET.s))
∀l :: (every.H.l)⇒ (H.(LIST.l))
∀t :: (every tree.H.t)⇒ (H.(TREE.t))

∀p :: H.p
J

The proof of this induction theorem is not too hard. Here we shall only give a sketchy proof
to give the reader an idea. We start with the following lemma, that is easy to prove using
Val PROP.

Lemma 4.17 induct lemma4

(∀p :: H.p) = (∀t r :: ((r = equiv.t) ∧ (Q.t))⇒ (H ◦ ABS Val ◦ equiv).t)

J
To prove theorem 4.16 we assume:

A1) ∀n :: H.(NUM.n)
A2) ∀s :: ((finite.s) ∧ (∀p :: (p ∈ s)⇒ (H.p)))⇒ (H.(SET.s)))
A3) ∀l :: (every.H.l)⇒ (H.(LIST.l))
A4) ∀t :: (every tree.H.t)⇒ (H.(TREE.t))

we have to prove that:

(∀p :: H.p)
(= lemma 4.17)

(∀t r :: ((r = equiv.t) ∧ (Q.t)) ⇒ (H ◦ ABS Val ◦ equiv).t)
(⇐ ltree induction (Theorem E.4) and definition of every (Definition B.6))

for arbitrary h and tl, we have to prove:

((r = equiv.(Node.h.tl)) ∧ (Q.(Node.h.tl)))
∀t :: (t ∈ tl)⇒ ∀r :: ((r = equiv.t) ∧ (Q.t))⇒ ((H ◦ ABS Val ◦ equiv).t)

((H ◦ ABS Val ◦ equiv).(Node.h.tl))

Moving the antecedents of this proof obligation into the assumptions, we get for an arbitrary
h and tl that:

A5) ∀t :: (t ∈ tl)⇒ (∀r :: ((r = equiv.t) ∧ (Q.t))⇒ ((H ◦ ABS Val ◦ equiv).t))
A6) r = equiv.(Node.h.tl)
A7) Q.(Node.h.tl)

The proof that (H ◦ ABS Val ◦ equiv).(Node.h.tl), now proceeds by case distinction on h.

4 The axiomatisation 15

We shall prove the SET case (i.e. ISL.h), the other cases are similar. So suppose:

A8) ISL.h

From the definition of equiv, and the properties of Q, pick, ABS Val and REP Val it follows
that:

Lemma 4.18 SET L2S EQ ABS

For all lists tl of ((one + num + one + tree))ltrees:
∀t :: (t ∈ tl)⇒ (Q.t)

(SET.(l2s.(map.(ABS Val ◦ equiv).tl))) = (ABS Val.(equiv.(Node.(INL.one).tl)))
J

Continuing with the proof of 4.16:

(H ◦ ABS Val ◦ equiv).(Node.h.tl)
= (A8, the type of h, one, and ◦)

H.(ABS Val.(equiv.(Node.(INL.one).tl)))
= (rewriting assumption A7 with Q, and lemma 4.18)

H.(SET.(l2s.(map.(ABS Val ◦ equiv).tl)))
⇐ (assumption A2)

finite.(l2s.(map.(ABS Val ◦ equiv).tl))
∧
∀p :: (p ∈ (l2s.(map.(ABS Val ◦ equiv).tl)))⇒ (H.p)

= (lists are finite (Theorem C.10))
∀p :: (p ∈ (l2s.(map.(ABS Val ◦ equiv).tl)))⇒ (H.p)

= (element of l2s and map (Theorems C.9, C.5 and C.11))
∀p :: (∃t :: (t ∈ tl) ∧ (((ABS Val ◦ equiv).t) = p))⇒ (H.p)

Making the antecedents of this proof obligation into assumptions, gives us an t, such that for
arbitrary p:

A9) t ∈ tl
A10) p = ((ABS Val ◦ equiv).t)

leaving us with proof obligation:

H.p
= (assumption A10)

H.((ABS Val ◦ equiv).t)
⇐ (Modus ponens assumption A9 and the Induction Hypothesis (A5))
∃r :: (r = equiv.t) ∧ (Q.t)

= (rewriting assumption A7 with Q, and assumption A9)
∃r :: (r = equiv.t)

4 The axiomatisation 16

Instantiating with equiv t proves this case. As already indicated the other cases (where ISR
h) are similar, the NUM case is trivial, and for the LIST and TREE cases, theorems similar to
4.18 had to be proved.

Now that an induction theorem on Val is available, it is straightforward to prove the
uniqueness. Assume the premises of proof obligation (4.3). We have to prove:

x = y
= (function equality)
∀p :: (x.p) = (y.p)

⇐ (Val Induction, H = (λp. (x.p) = (y.p)))
∀n :: (x.(NUM.n)) = (y.(NUM.n))
∧
∀s :: ((finite.s) ∧ (∀p :: (p ∈ s)⇒ ((x.p) = (y.p)))⇒ ((x.(SET.s)) = (y.(SET.s))))
∧
∀l :: (every.(λp. (x.p) = (y.p)).l)⇒ ((x.(LIST.l)) = (y.(LIST.l)))
∧
∀t :: (every tree.(λp. (x.p) = (y.p)).t)⇒ ((x.(TREE.t)) = (y.(TREE.t)))

The first conjunct immediately follows from the premises of (4.3). We shall continue to prove
the SET case, the LIST and TREE cases are similar. Suppose, for an arbitrary set s with Val

typed values:

A’1) finite.s
A’2) ∀p :: (p ∈ s)⇒ ((x.p) = (y.p))

we have to prove that: (x.(SET.s)) = (y.(SET.s)). From the premises of (4.3), we can deduce
that:

A’3) (x.(SET.s)) = fs.(image.(split.x).s)
A’4) (y.(SET.s)) = fs.(image.(split.y).s)

(x.(SET.s)) = (y.(SET.s))
= (assumptions A’3 and A’4)

fs.(image.(split.x).s) = fs.(image.(split.y).s)
⇐

(image.(split.x).s) = (image.(split.y).s)
⇐ (Theorem C.6)
∀p :: (p ∈ s)⇒ ((split.x.p) = (split.y.p))

= (Definition 4.9 of split)
∀p :: (p ∈ s)⇒ (((x.p), p) = ((y.p), p))

= (pairs)
∀p :: (p ∈ s)⇒ (x.p) = (y.p)

Assumption A’2 proves this SET case, and, as indicated, the LIST and TREE cases are similar.
This completes the outline of the uniqueness part, and consequently the entire proof of the
abstract characterisation theorem of Val (Theorem 4.8).

5 Defining functions and operations on Val 17

5 Defining functions and operations on Val

In [Mee90] it is proved that all functions with source type σ are expressible in the form of a
paramorphism, i.e. are paramorphisms. Consequently, functions on Val are defined in HOL
as paramorphisms on Val. For example, a destructor function evaln, that unpacks the value
(NUM n), is added to HOL as follows. First, using Hilbert’s choice operator, evaln is defined
as a function that has the desired behaviour:

Definition 5.1 evaln evaln DEF

evaln = εg.(∀n. (g.(NUM.n) = n))

J
Then we prove that the function evaln is a paramorphism:

Theorem 5.2 evaln is a paramorphism on Val evaln

∀n. evaln.(NUM.n) = n

J

proof of 5.2
For arbitrary n we have to prove that:

evaln.(NUM.n) = n
= (Definition 5.1)

(εg.(∀n. (g.(NUM.n) = n))).(NUM.n) = n
⇐(Hilbert’s ε (Theorem A.1))
∃g. g.(NUM.n) = n

Specialising the conclusion of Theorem 4.8, by substituting (λn. n) for fn, we can conclude
the (unique) existence of a paramorphism para for which it holds that para.(NUM.n) = n.
Now the existentially quantified proof obligation from above can be proved by reducing it
with the witness para.
end proof of 5.2

Theorem 5.2 above is exactly desired the definition of the destructor function evaln. Note
that is has been defined as a partial function by leaving the results of values not in the correct
domain unspecified. If one wants to define evaln such that “undefinedness” is explicitly dealt
with, first some constant of type Val has to be defined about which nothing can be proved,
e.g.

new_constant {Name = "udef", Ty = ==‘:Val‘==} ;

Then evaln can be proved to be the paramorphism:

∀n. evaln.(NUM.n) = n
∀set. (FINITE.set)⇒ evaln.(SET.set) = udef

∀l. evaln.(LIST.l) = udef

∀t. evaln.(TREE.t) = udef

6 Conclusions 18

by extending the proof of 5.2 with specialising the universally quantified functions fset, fl
and ft in Theorem 4.8 with functions that given an argument of the correct type return the
value udef.

6 Conclusions

The contents of this report serves as a justification for adding the abstract characterisation
theorem of the following data type as an axiom to the HOL theorem proving environment.

VAL = NUM num

| BOOL bool

| REAL real

| STR string

| SET (VAL)set
| LIST (VAL)list
| TREE (VAL)ltree

Although the data type Val is somewhat simpler than VAL, one can see that it contains
the same problematic aspects as VAL (i.e. the constructors SET, LIST and TREE). From
the verification activities described in this report, it becomes clear that manually adding
the recursive data type VAL to HOL can be done analoguos to the way Val is added. The
representation, abstract characterisation and proof obligations for the additional constructors
BOOL, REAL and STRING, will be analogous to those of NUM. However, as the number of
constructors increases the proofs become long and tedious. Since all formal proofs necessary
to prove the abstract characterisation theorem of the subtype Val have been verified in HOL,
we are convinced that the abstract characterisation theorem of VAL can also be proved.
Therefore, we have added it to HOL as an axiom, saving time that was spent on proving
theorems of which we were not yet convinced that they held.

7 Acknowledgements

We would like to thank Tom Melham, Graham Collins, and Lambert Meertens.

References

[GM93] M.J.C. Gordon and T.F. Melham. Introduction to HOL. Cambridge University Press,
1993.

[Gor85] M.J.C. Gordon. HOL: A Machine Oriented Formulation of Higher Order Logic.
Technical Report 68, University of Cambridge, Computer Laboratory, 1985.

[Har93] J. Harrison. Constructing the real numbers in HOL. In L.J.M. Claesen and M.J.C.
Gordon, editors, Higher Order Logic Theorem Proving and its Applications (A-20),
pages 145–164. Elsevier Science Publications BV North Holland, IFIP, 1993.

[Mee90] L. Meertens. Paramorphisms. Technical Report CS-R9005, CWI, Amsterdam, 1990.

Appendix A Hilbert’s ε-operator 19

[Mel89] T.F. Melham. Automating recursive type definitions in higher order logic. In P.A.
Subrahmanyam and G. Birtwistle, editors, Current Trends in Hardware Verification
and Automated Theorem Proving, pages 341–386. Springer-Verlag, 1989.

Appendices

A Hilbert’s ε-operator

Hilbert’s ε-operator is a primitive constant of higher order logic[Mel89, GM93]. Informally,
its syntax and semantics are as follows. If P [x] is a boolean term involving a variable x of
type α, then (εx. P [x]) denotes some value, say v, of type α such that P [v] is true. If there
is no such value (i.e. ∀v ∈ α : ¬P [v]) then (εx. P [x]) denotes some fixed but arbitrary chosen
value of α2. For example:

• εn. 4 < n ∧ n < 6 denotes the value 5
• εn. (∃m :: n = 2×m) denotes an unspecified even natural number
• εn. n < n denotes an arbitrary natural number

The formalisation of the ε-operator in HOL is by the following theorem:

Theorem A.1 SELECT AX

∀P :: (∃x :: P.x) ⇒ (P.(εx. P.x))
J

Consequently, ε can be used to obtain a logical term which provably denotes a value with a
given property P from a theorem merely stating the existence of such a value.

B Lists

In the built-in theory list, a type (’a)list is defined to denote the set of all finite lists having
elements of type ’a. The constructor functions that are used to construct any list-structured
value of type (’a)list are:

[] ∈ (’a)list
CONS ∈ ’a→ (’a)list→ (’a)list

Below definitions and theorems are stated. In these definitions, 0 and SUC refer to the
constructor functions that are used to construct any natural number in num.

Theorem B.1 list element IS EL

(∀x :: ¬is el.x.[]) ∧ (∀x y l :: is el.y.(CONS.x.l) = (y = x) ∨ is el.y.l)

Throughout this technical report, when it is clear from the context that lists are used, is el
will be denoted by ∈.

Definition B.2 map MAP

(∀f :: map.f.[] = []) ∧ (∀f x l :: map.f.(CONS.x.l) = CONS.(f x).(map.f.l))
2A consequence, in HOL, types must be non-empty.

Appendix B Lists 20

Definition B.3 zip ZIP

(zip.([], []) = []) ∧
(∀x1 l1 x2 l2 :: zip.(CONS.x1.l1,CONS.x2.l2) = CONS.(x1, x2).(zip.(l1, l2)))

Definition B.4 foldr FOLDR

(∀f e :: foldr.f.e.[] = e) ∧ (∀f e x l :: foldr.f.e.(CONS.x.l) = f.x.(foldr.f.e.l))

Definition B.5 length LENGTH

(length.[] = 0) ∧ (∀x l :: length.(CONS.x.l) = (length.l)) + 1

Definition B.6 every EVERY

(∀P :: every.P.[] = true) ∧ (∀P h t :: every.P.(CONS.h.t) = P.h ∧ every.P.t)

Definition B.7 sum SUM

(sum.[] = 0) ∧ (∀x l :: sum.(CONS.x.l) = x+ (sum.l))

Theorem B.8 map compostion MAP o

∀f g l :: map.f.(map.g.l) = map.(f ◦ g).l

Theorem B.9 ZIP MAP EQ MAP split

∀f l :: zip.((map.f.l), l) = map.(split.f).l

Theorem B.10 IS EL MAP

∀Q f l :: (∀x : is el.x.(map.f.l) : Q.x) = (∀x : is el.x.l : Q.(f.x))

Definition B.11 interval

interval.0 = [] ∧ interval.(SUC.n) = CONS.n.(interval.n)

Theorem B.12 appending lists APPEND

∀l :: ([] ++ l) = l ∧ ∀l1 l2 x :: ((CONS.x.l1) ++ l2) = (CONS.x.(l1 ++ l2))

Definition B.13 deleting an element DEL

(∀y :: del.y.[] = []) ∧
(∀y l x :: del.y.(CONS.x.l) = ((x = y) → l | CONS.x.(del.y.l)))

Definition B.14 first element of a list HD

∀x l :: hd.(CONS.x.l) = x

Definition B.15 tail of a list TL

∀x l :: tl.(CONS.x.l) = l

Definition B.16 indexed elements EL

∀l :: el.0.l = hd.l ∧ ∀n l :: el.(SUC.n).l = el.n.(tl.l)

Definition B.17 list contains no duplicate elements NO DUPLICATES

∀l :: no duplicates.l = ∀n k : n < length.l ∧ k < length.l ∧ n 6= k : el.n.l 6= el.k.l

Appendix C Sets 21

C Sets

Definition C.1 characteristic set predicate IN DEF

∀s x :: CHF.s.x = (x ∈ s)

Definition C.2 image IMAGE DEF

∀f s :: image.f.s = {f.x | x ∈ s}

Definition C.3 insert INSERT DEF

∀x s :: x insert s = {y | (y = x) ∨ y ∈ s}

Definition C.4 Complement of a set

∀s :: sc = {x | x 6∈ s}

Theorem C.5 IN IMAGE

∀y s f :: y ∈ image.f.s = (∃x. (y = (f.x)) ∧ x ∈ s)

Theorem C.6 IMAGE EQ

∀f g s ::
∀x. (f.x) = (g.x)

image.f.s = image.g.s

The predicate FINITE is true of finite sets and false for infinite ones.

Definition C.7 Cardinality of sets set

(card.{} = 0) ∧
∀s :: FINITE.s

⇒
(∀x :: card.(x insert s) = ((x ∈ s) => card.s | card.s + 1))

Definition C.8 converting lists to sets L2S DEF

(l2s.[] = {}) ∧
(∀x l :: l2s.(CONS.x.l) = x insert (l2s.l))

Theorem C.9 L2S MAP EQ IMAGE

∀f l :: l2s.(map.f.l) = image.f.(l2s.l)

Theorem C.10 L2S FINITE

∀l :: FINITE.(l2s.l)

Theorem C.11 IN L2S IS EL

∀l x :: (x ∈ (l2s.l)) = (is el.x.l)

Appendix D Converting (finite) sets to lists 22

D Converting (finite) sets to lists

Because sets are unordered, a function that converts sets to lists cannot be defined by set-
induction on finite sets, like e.g. the definition of function card:

s2l.{} = [] ∧
∀s :: FINITE.s

⇒
(∀x :: s2l.(x insert s) = ((x ∈ s) => s2l.s | CONS.x.(s2l.s)))

Defining s2l this way, reults in that s2l.{2, 3, 4} is not equal to s2l.{4, 3, 2}, and this is clearly
not what we want.

The correct definition of the function s2l has been constructed as follows. First, we define
when a function f : num→α is a bijection from a subset of num to a set containing elements of
type α:

Definition D.1 Bijection from subset of num to a set is BIJ NUM to

f is BIJ NUM to s
= ∀nm : n < card.s ∧ m < card.s : (f.n = f.m) ⇒ n = m
∧ s = {f.n | n < card.s}

Then we define such a bijection for a set s using Hilbert’s choice operator (Section A):

Definition D.2 A bijection for a set set BIJ

set BIJ.s = εf. f is BIJ NUM to s

and prove that it indeed is a bijection as defined in definition D.1:

Theorem D.3 set BIJ DEF

∀s :: FINITE.s ⇒ set BIJ.s is BIJ NUM to s

Now the idea is, to define the function s2l.s by mapping the set bijection set BIJ.s as defined
above on a list containing the elements 0 to card.s.

Definition D.4 Converting finite sets to lists S2L L2S

s2l.s = map.(set BIJ.s).(interval.(card.s))

The rest of this section lists some theorems.

Theorem D.5 IN IS EL S2L

∀s :: FINITE.s ⇒ ∀x :: (x ∈ s) = (is el.x.(s2l.s))

Theorem D.6 L2S S2L id

∀s :: FINITE.s ⇒ (s = l2s.(s2l.s))

Theorem D.7 NO DUPLICATES S2L

∀s :: FINITE.s ⇒ no duplicates.(s2l.s)

Appendix E Labelled trees 23

Theorem D.8 IS EL DEL S2L

∀s x y ::
FINITE.s ∧ is el.x.(s2l.s) ∧ is el.y.(del.x.(s2l.s))

x 6= y

Theorem D.9 S2L split

∀s x ::
FINITE.s ∧ ¬(x ∈ s)

∃l1 l2 :: (s2l.(x insert s) = (l1 ++ [x] ++ l2)) ∧ (s = l2s.(l1 ++ l2))

E Labelled trees

In the built-in HOL theory tree, a type tree is defined to denote the set of all ordered trees
of which the nodes can branch any (finite) number of times. A constructor function

node ∈ (tree)list→ tree

can be used to construct any value of type tree. For example, the tree:

is denoted by the term:
node.[node.[node.[]; node.[]]; node.[]; node.[]]

Figure 1: Some tree

The size of a tree is defined to be the number of nodes in that tree:

Definition E.1 size of trees size

∀tl :: size.(node tl) = sum.(map.size.tl) + 1
J

In the built-in HOL theory ltree a type of labelled trees (called (’a)ltree) is defined by a type
definition, following the way this is described in Section 2 and [Mel89]. Labelled trees have
the same structure as values of the defined type tree. The only difference is that a labelled
tree of type (’a)ltree has a value associated with each of its nodes. The constructor:

Node ∈ ’a→ ((’a)ltree)list→ (’a)ltree

can be used to construct any value of type (’a)ltree. For example,
There is a function available that given an labelled tree of type (’a)ltree returns the shape
of the tree:

shape.t ∈ (’a)ltree→ tree

For example, applying shape to the labelled tree in Figure 2, returns the tree in Figure 1.
The function that returns the list of values that are associated with the nodes of an labelled
tree of type (’a)ltree is:

values.t ∈ (’a)ltree→ (’a)list

Appendix E Labelled trees 24

4

3 68

2 1
is denoted by the term:

Node.4.[Node.3.[Node.2.[]; Node.1.[]]; Node.6.[]; Node.8.[]]

Figure 2: Some labelled tree

A pair (t, l) ∈ (tree × (’a)list) for which it holds that the size of t equals the length of l
can be used to create a labelled tree:

Definition E.2 Is ltree Is ltree

∀t l :: Is ltree.(t, l) = (lenght.l = size.t)

Theorem E.3 can create ltree from shape and values Is ltree REP ltree lemma

∀t :: Is ltree.(shape.t, values.)
J

There is an induction principle on labelled trees:

Theorem E.4 ltree Induction ltree Induct

∀P ::
(∀t :: every.P.t ⇒ (∀h :: P.(Node.h.t)))

∀l :: P.l
J

Finally, analoguous to the functions on lists, we have (defined in the theory more ltrees):

Definition E.5 map on trees MAP TREE DEF

∀v t :: map tree.f.(Node.v.t) = Node.(f.v).(map.(map tree.f).t)

Definition E.6 zip on trees ZIP TREE DEF

For all v1, v2, t1, t2:
length.t1 = length.t2

zip tree.(Node.v1.t1,Node.v2.t2) = Node.(v1, v2).(map.zip tree.(zip.(t1, t2)))

Definition E.7 every on trees EVERY TREE DEF

(∀P h t :: every tree.P.(Node.h.t) = P.h ∧ every.(every tree.P).t
J

Index

[] (constructor function for empty list), 19
++ (appending lists), 20
sc (complement of set s), 21
ε (Hilbert’s operator), 19

card, 21
CHF (characteristic set predicate), 21
concrete recursive types, 1
CONS (constructor function for lists), 19

define new type bijections, 3
del, 20

el, 20
every, 20
every tree, 24

FINITE, 21
foldr, 20
FST (HOL constant (’a#’b)→’a), 5

hd, 20
HOL

type constants
one, 4

type operator
list, 19
ltree, 23
tree, 23

image, 21
induction

on labelled trees, 24
INL (HOL constant ’a→(’a+’b)), 4
INR (HOL constant ’b→(’a+’b)), 4
insert, 21
interval, 20
is BIJ NUM to, 22
is el, 19
Is ltree, 24
ISL (HOL constant (’a+’b)→bool), 12
ISR (HOL constant (’a+’b)→bool), 12

l2s, 21
labelled trees induction principle, 24
length, 20

list (HOL type operator), 19
ltree (HOL type operator), 23
ltree (induction principle), 24

map, 19
map tree, 24

new type definition, 2
no duplicates, 20
Node (constructor function for ltree), 23
node (constructor function for tree), 23

one (HOL type constant), 4
OUTL (HOL constant (’a+’b)→’a), 12
OUTR (HOL constant (’a+’b)→’b), 12

paramorphism, 3

s2l, 22
shape (of ltrees), 23
size, 23
SND (HOL constant (’a#’b)→’b), 5
split, 10
SUC (successor function), 19
sum, 20

tl, 20
tree (HOL type operator), 23
type constant

one, 4
type definition axiom, 2
type operator

ltree, 23
tree, 23

values (in ltree), 23

zip, 20
zip tree, 24

25

