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Abstract

The assessments obtained for the various conditional probabilities of a Bayesian belief net-
work inevitably are inaccurate. The inaccuracies involved influence the reliability of the
network’s output. By subjecting the belief network to a sensitivity analysis with respect to
its conditional probabilities, the reliability of the output can be investigated. Unfortunately,
straightforward sensitivity analysis of a Bayesian belief network is highly time-consuming. In
this paper, we show that, by qualitative considerations, several analyses can be identified as
being uninformative as the conditional probabilities under study cannot affect the network’s
output. In addition, we show that the analyses that are informative comply with simple math-
ematical functions; more specifically, we show that the network’s output can be expressed as
a quotient of two functions that are linear in a conditional probability under study. These
properties allow for considerably reducing the computational burden of sensitivity analysis of
Bayesian belief networks, as will be illustrated by means of various examples and experiments.

1 Introduction

During the last decades much effort in artificial-intelligence research has focused on modelling
and reasoning with uncertainty in knowledge-based systems. As the oldest, well-founded mathe-
matical theory of uncertainty, probability theory plays a prominent role in this research effort.
Unfortunately, straightforward application of probability theory in a knowledge-based system
leads to prohibitively high computational costs. Over the years, various attempts have been
made to settle this problem, leading, in the late 1980s, to the framework of Bayesian belief net-
works. Bayesian belief networks by now have become widely accepted as intuitively appealing
probabilistic models that are highly valuable in addressing real-life problems in complex do-
mains. Practical applications of the framework of belief networks are being developed for var-
ious problem domains, most notably in the field of medical diagnosis and prognostic assessment
[Andreassen et al., 1987, Heckerman et al., 1992].

A Bayesian belief network basically is a concise representation of a joint probability distri-
bution on a set of statistical variables [Pearl, 1988]. It consists of a qualitative part and an
associated quantitative part. The qualitative part of a belief network encodes, in a directed graph,
the variables under study, along with their probabilistic interrelationships. The nodes in the di-
graph represent the statistical variables. The digraph’s arcs with each other serve to capture
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the independences among these variables: absence of an arc between two nodes indicates that
the corresponding variables do not influence each other directly and, hence, are (conditionally)
independent. The quantitative part of the belief network is a set of conditional probabilities that
describe the strengths of the dependences between the variables represented in the qualitative part:
with each node are associated conditional probabilities describing the joint influence of values of
the node’s predecessors on the probabilities of the values of the node itself. A belief network’s
qualitative and quantitative part with each other provide enough information to uniquely define a
joint probability distribution on the statistical variables under study. A Bayesian belief network
thus allows for computing any (prior or posterior) probability of interest [Pearl, 1988].

Bayesian belief networks are generally constructed with the help of experts from the domain
of application. Experience shows that, although it may require considerable effort, building the
qualitative part of a belief network is quite practicable. In fact, as it has parallels to designing a
domain model for a more traditional knowledge-based system, well-known knowledge-engineering
techniques can be employed. Assessing the conditional probabilities for the quantitative part of
a Bayesian belief network, however, is generally found to be a much harder task, not in the least
because of the large number of assessments required [Druzdzel & Van der Gaag, 1995]. In general,
various different sources of information can be exploited for probability assessment, ranging from
databases and literature to human experts. The assessments obtained from these sources, however,
are inevitably inaccurate, due to incompleteness of data and partial knowledge of the problem
under study. Particularly assessments obtained from experts are known to be highly inaccurate
[Tversky et al., 1982].

The inaccuracies in the probability assessments for a Bayesian belief network influence the
reliability of the network’s output. In a medical application, for example, erroneous diagnoses or
non-optimal treatment recommendations may result from building upon inaccurate assessments.
The reliability of the output of a belief network can be investigated by studying its robustness.
Robustness pertains to the extent to which the network’s conditional probabilities influence the
output when deviations from the specified assessments are assumed. For gaining detailed in-
sight in output robustness, a Bayesian belief network can be subjected to a sensitivity analysis.
In general, sensitivity analysis of a mathematical model amounts to investigating the effects of
the inaccuracies in the model’s parameters on its output; to this end, the values of the model’s
parameters are varied systematically [Morgan & Henrion, 1990, Habbema et al., 1990]. For a be-
lief network, sensitivity analysis amounts to varying the assessments for one or more conditional
probabilities of the network’s quantitative part simultaneously and investigating the effects on a
probability of interest or, for example, on a diagnosis or decision based upon this probability of
interest [Laskey, 1995, Coupé et al., 1999a]. Upon such an analysis, some conditional probabilities
will show a considerable effect, while others will hardly reveal any influence.

Straightforward sensitivity analysis of a Bayesian belief network, unfortunately, is highly time-
consuming. In the simplest type of sensitivity analysis, for example, for every single conditional
probability of the network’s quantitative part, a number of deviations from the specified assessment
are investigated. For every value under study, the probability of interest is computed from the
network. Even for a rather small belief network, the analysis thus easily requires tens of thousands
of network computations. By restricting the sensitivity analysis to the conditional probabilities
that are expected to be influential, as indicated for example by a domain expert, the computational
effort required can be reduced. The computational burden still remains considerable, however,
and, in fact, is prohibitive when sensitivity analysis is to be used for verifying the robustness of a
network’s output in, for example, daily medical practice. To be of practical use, therefore, more
efficient methods for sensitivity analysis of belief networks are indispensable.

In this paper, we present an efficient method for sensitivity analysis of Bayesian belief networks
that requires considerably less computational effort than straightforward variation of conditional
probabilities. Our method builds to a large extent on the qualitative part of a belief network. As
the digraph of a network represents the independences among the statistical variables involved,
it allows for identifying conditional probabilities that upon variation cannot influence the proba-
bility of interest. Analyses with respect to these conditional probabilities are uninformative and
can therefore be excluded from the overall analysis. Experiments on randomly generated belief



networks indicate that the number of analyses that can be thus excluded may be considerable.
In addition, we show that the analyses that are informative comply with simple mathematical
functions. More in specific, we show that the probability of interest of a belief network can be
expressed as a quotient of two functions that are linear in a conditional probability under study.
The constants in this fractional function determine the sensitivity of the probability of interest to
the conditional probability concerned. We show that computing the constants from the network
requires just a small number of network computations. These properties with each other allow for
considerably reducing the computational burden and thus for improving upon the practicability
of sensitivity analysis of Bayesian belief networks.

The paper is organised as follows. In Section 2 we briefly review the framework of Bayesian
belief networks and detail some of the concepts that will be used throughout the paper. We then
present the various properties of sensitivity analysis of belief networks outlined above. In doing
s0, we focus on a one-way sensitivity analysis, that is, an analysis in which a network’s conditional
probabilities are investigated one at a time. In Section 3, we discuss the identification of a belief
network’s conditional probabilities that upon variation cannot influence the probability of interest.
In Section 4, we detail the functional relation that holds between a network’s probability of interest
and a single conditional probability under study. In Section 5, we comment on results obtained
from experiments with one-way sensitivity analysis of randomly generated belief networks. In
Section 6, we compare our results with previous work on sensitivity analysis of Bayesian belief
networks. The paper ends with our conclusions and directions for further research in Section 7.

2 The belief~-network framework

A Bayesian belief network basically is a concise representation of a joint probability distribution
on a set of statistical variables. In a belief network, information about the independences holding
among the variables is explicitly separated from the numerical quantities involved in the distribu-
tion. To this end, the network comprises a qualitative part and an associated quantitative part.
In this section, we briefly review the formalism of belief networks; for further details, we refer the
reader to [Pearl, 1988].

The qualitative part of a Bayesian belief network is a graphical representation of the indepen-
dences holding among the variables in the probability distribution that is being represented. It
takes the form of an acyclic directed graph, or digraph, for short. In this digraph G, each node
represents a statistical variable that can take one of a finite set of values. The digraph’s set of
arcs models the independences among the represented variables. Informally speaking, we take
an arc V; = Vj to represent a direct influential or causal relationship between the variables V;
and Vj; the arc’s direction designates V; as the effect or consequence of the cause V;. Absence
of an arc between two nodes means that the corresponding variables do not influence each other
directly and, hence, are (conditionally) independent. In the sequel, we will use 7 (V;) to denote
the set of (immediate) predecessors, or causes, of node V; in G and use 7§ (V;) to denote the set
of nodes composed of V; and all its ancestors; we will use o¢(V;) to denote the set of (immediate)
successors, or effects, of node V; in G and use of;(V;) to denote the set of nodes composed of V;
and all its descendants. The following definitions review the probabilistic meaning that is assigned
to the digraph of a Bayesian belief network more formally.

Definition 2.1 Let G = (V(G), A(Q)) be an acyclic digraph and let s be a chain in G between
the nodes Vi and V;. We say that s is blocked by the set of nodes Y C V(G), if either V; or Vj is
included in 'Y, or s contains three consecutive nodes X1, X2, X3, for which one of the following
conditions holds:

1. arcs X1 + X5 and Xs — X3 are on the chain s, and X5 € Y;
2. arcs X1 = X5 and Xy — X3 are on the chain s, and X5 € Y;

3. arcs X1 = Xo and X» < X3 are on the chain s and 0(X2)NY = 2.



In reviewing the concept of a blocked chain, we have distinguished between three conditions.
Figure 1 serves as a reference for these conditions; in the two chains representing the conditions
1 and 2, node X3 is drawn with shading to indicate that it is comprised in the blocking set Y for
the chain at hand.

Condition 1. - {( X{ }a——( Xo }—»{ X5 }-------
Condition 2. (X }—»f{ Xo}—»f{ X5 }-------
Condition 8. (X —»f{ Xo }t—{ X3 }------

Figure 1: The three conditions for chain blocking.

Building upon the concept of blocking, we review the well-known d-separation criterion for
sets of chains.

Definition 2.2 Let G = (V(G), A(G)) be an acyclic digraph and let X,Y,Z C V(G). The set of
nodes Y is said to d-separate the sets of nodes X and Z in G, denoted (X | Y | Z), if for each
node V; € X and each node V; € Z, every chain from V; to V; in G is blocked by Y .

The following definition relates the d-separation criterion to the concept of independence.

Definition 2.3 Let G = (V(G), A(G)) be an acyclic digraph and let Pr be a joint probability
distribution on V(G). Then, G is called an T-map for Pr if for all sets of variables X,Y,Z C V(G),
we have: if (X |Y | Z)%, then X and Z are conditionally independent given'Y in Pr.

The d-separation criterion thus provides for reading independences from a belief network’s digraph
without having to resort to probabilistic computations. We would like to note that the criterion
of d-separation generally is defined for mutually exclusive sets of nodes only. We have extended
the definition to apply to overlapping set of nodes as well, to provide for reading from a digraph
independences for instantiated nodes. We take an instantiated node to be d-separated from any
other node. Our extension has been inspired by previous work on informational independence
[Van der Gaag & Meyer, 1998].

Associated with the qualitative part of a Bayesian belief network are numerical quantities that
describe the strengths of the dependences among the represented variables. With each node V; of
the network’s digraph G is associated a set of conditional probabilities p(V; | 7g(V;)) describing the
joint influence of the various values for the node’s (immediate) predecessors 7 (V;) on the prob-
abilities of the values of V; itself. These probabilities with each other constitute the quantitative
part of the belief network.

We review the concept of Bayesian belief network more formally.

Definition 2.4 A Bayesian belief network is a tuple B = (G, P) where

e G = (V(G),A(G)) is an acyclic digraph with nodes V(G) = {V1,...,V,}, n > 1, and arcs
A(G);

e P is a set of conditional probabilities p(V; | ng(V;)), for all V; € V(G).

We illustrate the concept of Bayesian belief network by means of an example that will be used for
our running example throughout the paper.



Example 2.5 We consider the well-known ALARM-network [Beinlich et al., 1989]. The digraph
of the network is reproduced in Figure 2; for the examples in the remainder of the paper, we
have indicated the node of interest, LV failure, by a double circle and the network’s observable
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Figure 2: The digraph of the ALARM belief network.

nodes by shading. From the network’s digraph, various independences are read. For example,
the variable LV failure is independent of the variable Insuff anest, if no information is available
yet; the two variables become dependent, however, when, for example, the value of the variable
Blood press becomes available. The variables Pulm emb and Heart rate, on the other hand, are
dependent, but become independent once a value for SaCO2 is observed. Associated with the
nodes of the network are conditional probabilities. For example, for the node Stroke wol, the
following conditional probabilities are specified:

p(Stroke vol = low | Hypovolemia = false A LV failure = false) = 0.05
p(Stroke vol = normal | Hypovolemia = false A LV failure = false) = 0.90
p(Stroke vol = high | Hypovolemia = false A LV failure = false) = 0.05
p(Stroke vol = low | Hypovolemia = true A LV failure = false) = 05

p(Stroke vol = normal | Hypovolemia = true A LV failure = false) = 0.49
p(Stroke vol = high | Hypovolemia = true A LV failure = false) = 0.01
p(Stroke vol = low | Hypovolemia = false A LV failure = true) = 0.95
p(Stroke vol = normal | Hypovolemia = false A LV failure = true) = 0.04
p(Stroke vol = high | Hypovolemia = false A LV failure = true) = 0.01
p(Stroke vol = low | Hypovolemia = true A LV failure = true) = 0.98
p(Stroke vol = normal | Hypovolemia = true A LV failure = true) = 0.01
p(Stroke vol = high | Hypovolemia = true A LV failure = true) = 0.01

As for this paper, the specific assessments for the various conditional probabilities are not of
interest, we refrain from further detailing them. O

The following proposition states that the conditional probabilities of a Bayesian belief network
provide all information necessary for uniquely defining a joint probability distribution on the
variables discerned that respects the independences portrayed by the network’s qualitative part;
henceforth, we will call this distribution the joint probability distribution defined by the network.



Proposition 2.6 Let B = (G, P) be a Bayesian belief network. Then,

Pr(V(@) = [] pVilra(Vi)
VieV(Q)

defines a joint probability distribution Pr on V(G) such that G is an I-map for Pr.

Since the digraph of a Bayesian belief network and its associated conditional probabilities with
each other define a unique joint probability distribution on the variables discerned, any (prior or
posterior) probability of interest can be computed from the network. For this purpose various
algorithms are available [Pearl, 1988, Lauritzen & Spiegelhalter, 1988].

3 Uninfluential probabilities in a sensitivity analysis

Sensitivity analysis is a general technique for studying the effects of the inaccuracies in the param-
eters of a mathematical model on this model’s output [Habbema et al., 1990, Morgan & Henrion,
1990]. Sensitivity analysis basically amounts to systematically varying the values of the parame-
ters of the model under study. In a one-way sensitivity analysis, the values of the parameters are
varied one at a time while keeping the values of all other parameters fixed. For a Bayesian belief
network, a one-way sensitivity analysis amounts to varying the assessment for a single conditional
probability of the network’s quantitative part. The analysis provides for studying the effects of
the inaccuracy in the specified assessment on a probability of interest [Coupé et al., 1999a].

In essence, in a one-way sensitivity analysis of a Bayesian belief network, the sensitivity of the
network’s probability of interest is investigated with respect to every single conditional probabil-
ity. Various conditional probabilities of a belief network, however, are known beforehand not to
affect the probability of interest upon variation, for example because this probability of interest
is shielded from their influence by available observations. These uninfluential probabilities can be
readily identified by inspection of the network’s digraph, that is, without extensive probabilistic
computations. We say that the probability of interest is algebraically independent of these uninflu-
ential conditional probabilities. For abbreviation, we will write p » ¢ to denote that the probability
p is algebraically independent of the probability g. We would like to note that the phrase algebraic
independence is used to refer to the absence of any effect of varying the assessment for a conditional
probability under study on a probability of interest, as induced by the network’s digraph. Also note
that the phrase applies to probabilities whereas the phrase probabilistic independence pertains to
variables. Now, in a one-way sensitivity analysis of a Bayesian belief network, for a conditional
probability of which the network’s probability of interest is algebraically independent, no further
investigation is required. The sensitivity analysis of the network can therefore be restricted to the
conditional probabilities of which the probability of interest is algebraically dependent. The nodes
to which these conditional probabilities refer constitute the sensitivity set for the node of interest.

We define the concept of sensitivity set more formally.

Definition 3.1 Let B be a Bayesian belief network with the digraph G = (V(G), A(G)). Let
Vi € V(Q) be the network’s node of interest and let O C V(G) be the set of observed nodes in G.
Now, let G* be the digraph that is constructed from G by adding an auziliary predecessor X; to
every node V; € V(G). Then, the sensitivity set for V.. given O, denoted Sen(V,.,0), is the set of
all nodes V; € V(G) for which ~{({X;} O|{V,}&..

From the previous definition we have that the sensitivity set for a node of interest V. is computed
from the digraph of a belief network under consideration by adding an auxiliary predecessor X; to
every node V; and thereupon exploiting the d-separation criterion. The auxiliary predecessor X; of
node V; can be looked upon as capturing the presence of inaccuracy in the probability assessments
for V;. If the presence of inaccuracy in V;’s assessments is not d-separated from the node of interest
or, in other words, if V,. is not shielded from the inaccuracy by the available evidence, then varying
the assessments for V;’s conditional probabilities may influence the probabilities of the values of



V. V; is therefore included in V,’s sensitivity set. We would like to note that the basic idea
of capturing the presence of inaccuracy by means of auxiliary nodes has been exploited before
[Spiegelhalter, 1989]. We further note that we capture the presence of inaccuracy rather than the
inaccuracy itself by auxiliary nodes.

The following example illustrates our concept of sensitivity set.

Example 3.2 We consider once again the ALARM-network, the digraph of which is shown in
Figure 2. We are interested in the diagnostic variable LV failure; our probability of interest is the
probability that LV failure = true. We consider the sensitivity set for the node LV failure given
various different sets of observed nodes.

If the set of observed nodes is empty, that is, when no observations are available, the sensitivity
set for the node LV failure equals

Sen(LV failure,@) = {LV failure, History}

Upon performing a one-way sensitivity analysis of the a priori belief network, only the conditional
probabilities of these two nodes need be investigated; the conditional probabilities of all other
nodes in the network upon variation cannot influence the probability of interest.

Now, suppose that we would like to evaluate the sensitivity of the network’s probability of inter-
est in view of observations for the nodes in the set Oy = {History, CVP, TPR, Blood press, CO}.
The sensitivity set for LV failure given O; equals

Sen(LV failure,O1) = {LV failure, Hypovolemia, LVED, CVP, Stroke vol, CO, Insuff
anest, Catecholamine, Heart rate, Art CO2,50C02,PA SAT,
Fi02, Vent alv, Shunt, Intubation, Pulm emb}

From the 37 nodes included in the belief network, the conditional probabilities of only 17 nodes
need be investigated in the analysis. We would like to note that, in general, a sensitivity set does
not coincide with the set of non-d-separated nodes for the node of interest. From the sensitivity
set for the node LV failure given O;, for example, it is readily seen that a sensitivity set can
include both non-d-separated nodes (such as the node Stroke vol) and d-separated nodes (such
as the node CO); also, the set of nodes that are not comprised in the sensitivity set can include
non-d-separated nodes (such as the node PCWP) as well as d-separated nodes (such as Blood
press).

Now, if in addition to observations for the nodes in the set O; an observation is assumed for
the node SaCO2, yielding O» for the new set of observed nodes, the sensitivity set for LV failure
reduces in size from 17 nodes to 10 nodes:

Sen(LV failure,O2) = {LV failure, Hypovolemia, LVED, CVP, Stroke vol, CO, Insuff
anest, Catecholamine, Heart rate, Art CO2}

Note that, when a value for the node of interest LV failure is available, every node in the auxiliary
network for determining the sensitivity set is d-separated from LV failure. The sensitivity set then
is empty. O

In order to prove the claims we have made so far with respect to a sensitivity set, we will par-
tition a belief network’s set of nodes that are not included in a sensitivity set under study into
three mutually exclusive sets of nodes. We will then show that, for various different reasons, the
conditional probabilities for the nodes included in these sets upon variation have no effect on the
network’s probability of interest.

Definition 3.3 Let B be a Bayesian belief network with the digraph G, let V, be the network’s
node of interest, and let O the set of observed nodes, as before. We define the sets of nodes
Inseny (V,.,0), Inseny(V,.,0), and Insenz(V,.,0), respectively, as

e for every node V; € 75 (Ve), if ({Vi}Uma(Vi)) | O | {Va D&, then V; € Inseny (Vi., O);



o for every node Vi € V(G) \ 75(V,), if ({Vi} Una(V) | O | (Vi) and a(V)N O # 2,
then V; € Insens(V;., O);

o for every node V; € V(G) \ n5(V2), if 05(Vi) N O = &, then V; € Inseng(V;., O).

The sets Inseny (V;., O), Insenz(V;, 0), and Insens(V., O) include nodes to whose conditional prob-
abilities a belief network’s probability of interest is insensitive. Before illustrating the three sets
of nodes for our running example, we informally address their meaning. In doing so, we begin by
considering the ancestors V; of the node of interest V,.. We observe that any unblocked chain from
Vi to V,., be it a direct chain or a chain via a predecessor of V;, provides for conveying an influence
from V;’s probability assessments to V.. If no such chain is present, therefore, varying the assess-
ments for node V; can have no influence on the probability of interest. The set Insen;(V,., O) now
includes all ancestors V; of V,. such that V,. is d-separated by the available observations from both
V; and V;’s predecessors. We now consider the non-ancestors of the node of interest. We observe
that the probability assessments for a non-ancestor V; of V,. cannot influence the probability of
interest if there are no observations available. Only an observed descendant of V; that induces
an influence on V,. through V;, can cause varying V;’s probability assessments to affect the prob-
ability of interest. The set Insens(V,.,O) now includes all non-ancestors of V. that do not have
any observed descendants. The set Insenz(V.,0), to conclude, includes the non-ancestors of V.
that happen to have observed descendants yet whose influence is shielded from V,. by the available
observations: the set includes all non-ancestors V; of V,. with at least one observed descendant
such that V,. is d-separated from both V; and V;’s predecessors.
We illustrate the various sets of nodes defined above by means of our running example.

Example 3.4 We consider again the ALARM-network, the digraph of which is shown in Fig-
ure 2. We are once more interested in the variable LV failure; for our probability of inter-
est, we take the probability that LV failure is true. We recall from Example 3.2 that, if the
set of observed nodes is empty, the sensitivity set for the node of interest LV failure equals
Sen(LV failure, @) = {LV failure, History}. The set of all remaining nodes, that is, the set of all
nodes, LV failure and History excluded, is partitioned into three sets as defined above. Of these,
the sets Inseny (LV failure, @) and Inseny (LV failure, &) are empty; the set Inseng(LV failure, &)
includes any node that is not comprised in the sensitivity set. We consider, as an example, the
node Stroke vol. From Figure 2, we see that Stroke vol is not an ancestor of the node of interest LV
failure; furthermore, it does not have any observed descendants. From Definition 3.3, we conclude
that the node Stroke vol belongs to the set Insens(LV failure, @). Informally speaking, as the
node Stroke vol is not observed and does not have any observed descendants, it cannot exert nor
pass on any diagnostic influence on the probabilities for LV failure. The probability of interest
Pr(LV failure = true) therefore is algebraically independent of the conditional probabilities for
Stroke vol. A similar observation applies to any other node from the set Insens(LV failure, @).

We now assume that observations are obtained for the nodes in the set O; = {History, CVP,
TPR, Blood press, CO}. The sets Inseny (LV failure, Oy), Inseny(LV failure, O1), and Inseng(LV
failure, O1) equal

Inseny (LV failure,O1) = {History}
Inseny(LV failure,O1) = {Blood press, TPR, Anaphylaxis}
Insens(LV failure,O;) = {PCWP,Error low,HR BP,HR EKG,HR SAT, Error cntr,

Exp 02, Min vol, Vent lung, Pressure, Vent tube, Kinked tube,
Disconnection, Vent machine, Machine vol, PAP}

We consider, as an example, the node History. This node is a predecessor of the node of interest LV
failure. It is d-separated from LV failure and does not have any immediate predecessors that are
not d-separated from LV failure. From Definition 3.3, therefore, we have that History is included in
the set Inseny (LV failure, O,). Informally speaking, as a value for the node History is available, its



prior probabilities are irrelevant to the probabilities for its successor LV failure. The probability of
LV failure = true given the available observations for O; therefore is algebraically independent of
the prior probabilities for the node History. To conclude our example, we consider the node TPR.
From Figure 2, we observe that TPR is not an ancestor of the node of interest LV failure. The
node TPR itself as well as its immediate predecessor Anaphylazis are d-separated from LV failure
given the available observations. Furthermore, the descendant Blood press of TPR is observed. By
definition, we have that the node TPR is included in the set Inseny(LV failure,O1). Informally
speaking, from TPR and its predecessor Anaphylazis being d-separated from the node of interest
LV failure, we find that any diagnostic influence originating from TPR is shielded from LV failure
by the available observations. Therefore, the probability of interest is algebraically independent
of the conditional probabilities for the node TPR. A similar observation applies to any other node
from the set Insens (LV failure,O1). O

We would like to note that for a node of interest V,. and any set of observed nodes O, the three sets
Inseny (V,., 0), Inseny(V,,0), and Inseng(V,.,0), and the sensitivity set Sen(V,.,O) are mutually
exclusive and collectively exhaustive; for a formal proof of this property, the reader is referred to
the appendix.

In the remainder of this section, we will show that the probability of interest of a Bayesian
belief network is indeed algebraically independent of the conditional probabilities of any node that
is not included in the sensitivity set Sen(V,., Q) under study. To this end, we investigate the three
sets Inseny (V;., 0), Insens(V,., O), and Insens(V,., O) separately and provide for each of these sets a
lemma stating algebraic independence of the probability of interest for the conditional probabilities
of the nodes in the set at hand. Our main result is then stated in Proposition 3.11, building upon
these lemmas. The proofs of the three lemmas, although not complicated, are rather elaborate;
the full proofs therefore are deferred to the appendix.

In the first lemma, we state that a belief network’s probability of interest for a node V. given
observations for nodes O is algebraically independent of the conditional probabilities of any node
from the set Insens(V,., O).

Lemma 3.5 Let B be a Bayesian belief network and let Pr be the joint probability distribution
defined by B. Let O be the set of observed nodes and let o denote the corresponding observations.
Let V,. be the network’s node of interest. Then, for any value v, of V;., we have that Pr(v, | 0) »
p(Vi | w(V;)) for every node V; € Insens(V,., O).

Proof (Sketch). The probability of interest Pr(v, | 0) for the belief network B equals

Pr(or o) = T s

We recall from Section 2 that the joint probability distribution Pr that is defined by B, can
be written as a product of the network’s conditional probabilities. From the basic property of
marginalisation, we now have that both the numerator and the denominator can be written as a
sum of products of conditional probabilities. In these sums, for every unobserved leaf node, there
appear as many products as there are values for this node that differ in this node’s probability only.
Summing over these products amounts to summing out the leaf node by marginalisation. The same
argument applies recursively to all unobserved non-ancestors of V,. that do not have any observed
descendants, that is, the argument applies to every node from the set Insens(V;., 0). We conclude
that the probability of interest is algebraically independent of the conditional probabilities of any
node from this set. O

We illustrate the property stated in the previous lemma by means of an example.

Example 3.6 We consider the belief network from Figure 3, which is a small fragment of the
ALARM-network. The possible values of the node LV failure are fail and no fail; the possible
values for each of the nodes LVED, CVP, and PCWP are low, normal, and high. Our node of



O LV failure

Figure 3: An example belief network, illustrating the property stated in Lemma 3.5 for the node
of interest LV failure and the empty set of observed nodes; the set Insensg(LV failure, &) consists
of the nodes LVED, CVP, and PCWP.

interest once again is the node LV failure, indicated in the figure by a double circle. We now
address the situation where no observations are available yet and investigate the probability of
interest Pr(fail). From Definition 3.3, we find that the set Inseng(LV failure, @) consists of the
three nodes LVED, CVP, and PCWP. For the probability of interest, we find that

Pr(fail) =

= > p(PCWP | LVED) - p(CVP | LVED) - p(LVED | fail) - p(fail) =

{LVED, CVP,
PCWP}

= Z (p(low PCWP | LVED) + p(normal PCWP | LVED) + p(high PCWP | LVED)) -
{LVED,CVP}
-p(CVP | LVED) - p(LVED | fail) - p(fail) =

= > p(CVP|LVED)-p(LVED | fail) - p(fail) =
{LVED,CVP}

= Z (p(low CVP | LVED) + p(normal CVP | LVED) + p(high CVP | LVED)) .
{LVED}
-p(LVED | fail) - p(fail) =

= > p(LVED | fail) - p(fail) =
{LVED}

= (p(low LVED | fail) + p(normal LVED | fail) + p(high LVED | fail)) - p(fail) =

= p(fail)

From this derivation, it is readily seen that the probability of interest Pr(fail) is algebraically inde-
pendent of the conditional probabilities of the three nodes included in the set Inseng(LV failure, &).

We now address the situation where the value high is observed for the node PCWP. This
situation is depicted in Figure 4, where the node PCWP is drawn with shading to indicate that
its value has been observed. The set Insens(LV failure, {PCWP}) is composed of the node CVP
only. For our probability of interest Pr(fail | high PCWP), we now find that

L Pr(fail A high PCWP
Pr(fail | high POWP) = (Pf)r i ij WP )

10



Q LV failure

Figure 4: An example belief network, illustrating the property stated in Lemma 3.5 for the node of
interest LV failure and the set of observed nodes { PCWP}; the set Inseng(LV failure, {PCWP})
consists of the single node CVP.

The numerator in this equation equals

Pr(fail A high PCWP) =

= Y p(CVP|LVED)-p(high PCWP | LVED) - p(LVED | fail) - p(fail) =
{LVED,CVP}

= > (p(low CVP | LVED) + p(normal CVP | LVED) + p(high CVP | LVED)) :
{LVED}
- p(high PCWP | LVED) - p(LVED | fail) - p(fail) =

= Y p(high PCWP | LVED) - p(LVED | fail) - p(fail)
{LVED}

The denominator equals
Pr(high PCWP) =

= Z p(CVP | LVED) - p(high PCWP | LVED) - p(LVED | LV failure) - p(LV failure) =

{LV failure,
LVED, CVP}

= Z p(low CVP | LVED) + p(normal CVP | LVED) + p(high CVP | LVED))-

{LV failure,
LVED}

- p(high PCWP | LVED) - p(LVED | LV failure) - p(LV failure) =

= Z p(high PCWP | LVED) - p(LVED | LV failure) - p(LV failure)

{LV failure,
LVED}

We conclude that the probability of interest equals
Pr(fail | high PCWP) =

Z p(high PCWP | LVED) - p(LVED | fail) - p(fail)
{LVED}
Z p(high PCWP | LVED) - p(LVED | LV failure) - p(LV failure)

{LV failure,
LVED}

11



From this derivation, it is readily seen that the probability of interest Pr(fail | high PCWP) is
algebraically independent of the conditional probabilities of CVP, the only node included in the
set Inseng(LV failure, {PCWP}). O

So far, we have shown that a belief network’s probability of interest for a node V. given observations
for nodes O is algebraically independent of the conditional probabilities of any node from the set
Insens(V,.,0). We now proceed by observing that this probability of interest is also algebraically
independent of the conditional probabilities of the nodes from the set Insena(V;., O).

Lemma 3.7 Let B be a Bayesian belief network and let Pr be its joint probability distribution.
Let O be the set of observed nodes with observations o, as before. Let V,. be the network’s node
of interest. Then, for any value v, of V., we have that Pr(v,. | 0) = p(V; | m(V;)) for every node
Vi € Inseny(V;, O).

Proof (Sketch). The probability of interest Pr(v, | o) for the belief network B equals

Pr(v, | 0) = %(;;O)

Both the numerator and the denominator of this equation can be written as a sum of products of
conditional probabilities from the network. From Definition 3.3, we know that the nodes from the
set Insenz(V;., 0) as well as their immediate predecessors are d-separated from the node of interest
V, by the available observations; more in specific, we know that a predecessor of any node from
Inseny (V,., O) either belongs to Inseny(V,., O) itself or is an observed node. In both the numerator
and the denominator of the above equation, therefore, a term can be isolated that includes all
the nodes from Inseny(V;., O) and no other nodes that are not observed. As this term appears in
the numerator as well as in the denominator, it cancels out. The conditional probabilities of the
nodes from Inseny(V,.,O) upon variation therefore do not affect the probability of interest. O

We illustrate the property stated in Lemma 3.7 by means of an example.

Example 3.8 We consider the belief network from Figure 5, which again is a small fragment of the

Q LV failure

Inseny(LV failure, { CO, Blood press})  _ _ - _ _

~
‘ Blood press ™«
N

-
-
s
s

Figure 5: An example belief network, illustrating the property stated in Lemma 3.7 for
the node of interest LV failure and the set of observed nodes {CO, Blood press}; the set
Inseny(LV failure, { CO, Blood press}) consists of the node Blood press only.

ALARM-network. The possible values of the node LV failure are fail and no fail; the possible values
for each of the other nodes are low, normal, and high. Our node of interest once again is the node
LV failure. We now address the situation where the value low has been observed for both the nodes
CO and Blood press, and investigate the probability of interest Pr(fail | low CO Alow Blood press).
From Definition 3.3, we have that the set Inseny(LV failure, { CO, Blood press}) comprises the
node Blood press only. Note that Inseng(LV failure, { CO, Blood press}) = &. For the probability
of interest, we find that

Pr(fail A low CO A low Blood press)
Pr(low CO A low Blood press)

Pr(fail | low CO A low Blood press) =

12



The numerator in this equation equals

Pr(fail A low CO A low Blood press) =

= Z p(low Blood press | low CO) - p(low CO | Stroke vol) - p(Stroke vol | fail) - p(fail) =
{Stroke vol}

= p(low Blood press | low CO) -

Z p(low CO | Stroke wvol) - p(Stroke vol | fail) -p(fail))

{Stroke wvol}

The denominator in the equation equals

Pr(low CO A low Blood press) =

= Z p(low Blood press | low CO) - p(low CO | Stroke vol) - p(Stroke vol | LV failure) -

{LV failure,
Stroke vol}

-p(LV failure) =
= p(low Blood press | low CO) -

Z p(low CO | Stroke vol) - p(Stroke vol | LV failure) - p(LV failure)

{LV failure,
Stroke vol}

We now conclude that the probability of interest equals

Pr(fail | low CO A low Blood press) =

Z p(low CO | Stroke wvol) - p(Stroke vol | fail) - p(fail)
{Stroke vol}
Z p(low CO | Stroke wvol) - p(Stroke vol | LV failure) - p(LV failure)

{LV failure,
Stroke vol}

From this derivation, it is readily seen that the probability of interest is algebraically indepen-
dent of the conditional probabilities of Blood press, the only node that is included in the set
Insena(LV failure, { CO, Blood press}). O

So far, we have shown that a belief network’s probability of interest for a node V. given observations
for nodes O is algebraically independent of the conditional probabilities of any node from the sets
Insens(V,., O) and Insens(V;., O). To conclude, we now state that this probability of interest is also
algebraically independent of the conditional probabilities of the nodes from the set Insen; (V., O).

Lemma 3.9 Let B be a Bayesian belief network and let Pr be its joint probability distribution.
Let O be the set of observed nodes with observations o, as before. Let V, be the network’s node
of interest. Then, for any value v, of V., we have that Pr(v, | 0) » p(V; | 7(V;)) for every node
V; € Inseny (V;., O).

13



Proof (Sketch). The probability of interest Pr(v, | 0) for the belief network B once again equals

Pr(or [ o) = T2

As before, both the numerator and the denominator of this equation can be written as a sum
of products of conditional probabilities from the network. The proof is now based on canceling
out terms from the numerator and the denominator as in the proof of the previous lemma. From
Definition 3.3, we know that the nodes from the set Insen;(V;,0) as well as their immediate
predecessors are d-separated from the node of interest V,. by the available observations; more in
specific, we know that a predecessor of any node from Insen; (V;., O) either belongs to Insen; (V;., O)
itself or is an observed node. In both the numerator and the denominator of the above equation,
therefore, a term can be isolated that includes all the nodes from Insen, (V,., O) and no other nodes
that are not observed. As this term appears in the numerator as well as in the denominator, it once
again cancels out. The conditional probabilities of the nodes from Insen; (V,.,O) upon variation
therefore do not affect the probability of interest. O

We illustrate the property stated in the previous lemma by means of an example.

Example 3.10 We consider the belief network from Figure 6, which again is a small fragment
of the ALARM-network. The possible values of the node LV failure once more are fail and no

N N H' t P 7
Inseny (LV failure, { History}) ~~ _ wrory -7

LV failure

Figure 6: An example belief network, illustrating the property stated in Lemma 3.9 for the node of
interest LV failure and the set of observed nodes { History}; the set Inseni (LV failure, { History})
consists of just the node History.

fail; the values of the node History are history and no history. Our node of interest again is
the node LV failure. We now address the situation where the value history is observed for the
node History and investigate the probability of interest Pr(fail | history). From Definition 3.3, we
have that the set Inseny (LV failure, { History}) consists of the node History only. Note that both
Inseny (LV failure, { History}) and Insens(LV failure, { History}) are empty. For the probability
of interest, we find that

Pr(fail A history)

Pr(fail | history) = Pr(history) N

p(fail | history) - p(history)

Z p(LV failure | history) -p(history))
{LV failure}

p(fail | history) - p(history)
p(fail | history) - p(history) + p(no fail | history) - p(history)

p(fail | history) - p(history)

(p(fail | history) + p(no fail | history) ) - p(history)

= p(fail | history)

From this derivation, it is readily seen that the probability of interest Pr(fail | history) is alge-
braically independent of the prior probabilities of History, the only node that is included in the
set Inseny (LV failure, { History}). O

14



Building upon the three preceding lemmas, we now state our main result.

Proposition 3.11 Let B be a Bayesian belief network and let Pr be its joint probability distribu-
tion. Let O be the set of observed nodes with the observations o, as before. Let V,. be the network’s
node of interest and let Sen(V,.,O) be the sensitivity set for V, given O. Then, for any value v,
of V., we have that Pr(v, | 0) = p(V; | m(V;)) for every node V; ¢ Sen(V,.,0).

Proposition 3.11 states that a belief network’s probability of interest is algebraically independent
of the conditional probabilities of any node that is not included in the sensitivity set under study.
From this property, we have that sensitivity analyses with respect to these conditional probabilities
are uninformative as they will reveal no effect whatsoever on the probability of interest. These
sensitivity analyses, therefore, are to no avail and can be excluded from the overall analysis. The
number of analyses that can be thus excluded may be considerable, as will be demonstrated in
Section 5.

4 Functional relations in a sensitivity analysis

In the previous section, we have argued that a sensitivity analysis of a Bayesian belief network
can be restricted to the conditional probabilities of the nodes in a sensitivity set under study: we
know that the conditional probabilities of any other node do not contribute to the probability
of interest and upon variation will not show any effect on this probability. To gain insight into
the sensitivity of the probability of interest to the various conditional probabilities of the nodes
that are included in the sensitivity set, further analysis is required. In essence, for every such
conditional probability, the effect on the probability of interest can be studied by investigating a
number of deviations from the specified assessment. Now, the curve yielded by such an analysis is
not arbitrarily shaped, but instead is strongly constrained by the independences that are portrayed
by the digraph of the network. In fact, the network’s probability of interest relates as a quotient
of two linear functions to a conditional probability under study. As we will argue presently,
knowledge of this mathematical function renders systematic variation of conditional probabilities
in a sensitivity analysis unnecessary.

Proposition 4.1 Let B be a Bayesian belief network with the digraph G = (V(G), A(G)) and let
Pr be the joint probability distribution defined by B. Let O C V(G) be the set of observed nodes in
G and let o denote the corresponding observations. Let V, be the network’s node of interest and
let Sen(V,.,0) be the sensitivity set for V,. given O. Then, for any value v, of V.., we have that

a-z+b
Pr(vr o) = 75

for every conditional probability x = p(vs | ') of every node V; € Sen(V,.,0), where a, b, ¢, and
d are constants that are dependent upon the values vs of Vs and ©' of wa(Vs).

Proof (Sketch). The probability of interest Pr(v, | 0) for the belief network B equals

Pr(or o) = T 5

We recall that the joint probability distribution Pr, that is defined by the network, can be written
as a product of the network’s conditional probabilities. From the basic property of marginalisation,
we further have that both the numerator and the denominator can be written as a sum of products
of conditional probabilities. By separating, in these sums, the terms that specify the conditional
probability z under study and those that do not, it is readily seen that Pr(v, A o) as well as Pr(o)
relate linearly to z. O

We illustrate the property stated in Proposition 4.1 by means of an example.
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Example 4.2 We consider the Bayesian belief network from Figure 7, which again is a small
fragment of the ALARM-network. The possible values of the node Shunt are normal and high; the
possible values of the node Pulm emb are pulm emb and no pulm emb, and the possible values of
the node PAP are low, normal, and high. Our node of interest is the node Shunt, indicated in the
figure by a double circle. We address the situation where the value high has been observed for

Pulm emb

PAP Shunt

Figure 7: An example belief network, illustrating the property stated in Proposition 4.1 for the
probability of interest Pr(normal Shunt | high PAP) and the conditional probability under study
p(high PAP | no pulm emb).

the node PAP, indicated by shading, and consider the probability of interest Pr(normal Shunt |
high PAP). From Definition 3.1, we have that the sensitivity set Sen(Shunt, {PAP}) comprises all
three nodes from the network. We now investigate the functional relation between the probability
of interest and the conditional probability = p(high PAP | no pulm emb) for the node PAP €
Sen(Shunt, {PAP}). For our probability of interest, we find that
Pr(normal Shunt A high PAP)

Pr(high PAP)

Pr(normal Shunt | high PAP) =

The numerator in this equation equals
Pr(normal Shunt A high PAP) =

= Z p(high PAP | Pulm emb) - p(normal Shunt | Pulm emb) - p(Pulm emb) =
{Pulm emb}

= p(high PAP | no pulm emb) - p(normal Shunt | no pulm emb) - p(no pulm emb) +
+ p(high PAP | pulm emb) - p(normal Shunt | pulm emb) - p(pulm emb) =

=a-z+b
where a equals

a = p(normal Shunt | no pulm emb) - p(no pulm emb)
and b equals

b = p(high PAP | pulm emb) - p(normal Shunt | pulm emb) - p(pulm emb)

The denominator of the probability of interest equals
Pr(high PAP) =

= Z p(high PAP | Pulm emb) - p(Shunt | Pulm emb) - p(Pulm emb) =

{Shunt,
Pulm emb}

= Z p(high PAP | Pulm emb) - p(Pulm emb) =
{Pulm emb}

= p(high PAP | no pulm embd) - p(no pulm emb) + p(high PAP | pulm emb) - p(pulm emb) =

=c-z+d
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where ¢ equals
¢ = p(no pulm emb)
and d equals

d = p(high PAP | pulm emb) - p(pulm emb)

From the previous derivations, it is readily seen that both the numerator Pr(normal Shunt A
high PAP) and the denominator Pr(high PAP) of the probability of interest Pr(normal Shunt |
high PAP) relate linearly to the conditional probability p(high PAP | no pulm emb). The probabil-
ity of interest therefore relates as a quotient of two linear functions to this conditional probability.
The sensitivity of the probability of interest with regard to the conditional probability under
study is now uniquely determined by the values of the constants a, b, ¢, and d. These values are
computed from the assessments for the appropriate conditional probabilities in the network:

p(high PAP | pulm emb) = 08

p(high PAP | no pulm emb) = 0.05

p(normal Shunt | pulm emb) = 0.096

p(normal Shunt | no pulm emb) = 0.905

p(pulm emb) = 0.01
We find that

a = 0.896

b = 0.00076

c=0.99

d = 0.008

The mathematical function relating the probability of interest Pr(normal Shunt | high PAP) to
the conditional probability z = p(high PAP | no pulm emb) therefore equals
0.896 - = 4+ 0.00076

0.99 -z + 0.008

The function is depicted in Figure 8. Note that the probability of interest shows a high sensitivity
for the conditional probability under study at the specified assessment 0.05. O

Pr(normal Shunt | high PAP) =

0.6 -

04} .

0.2 E

Pr(normal Shunt | high PAP)

0 I I I I
0 02 04 06 038 1

p(high PAP | no pulm emb)

Figure 8: The function relating the probability of interest Pr(normal Shunt | high PAP) to the
conditional probability under study p(high PAP | no pulm emb).
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So far, we have shown that a belief network’s probability of interest relates as a quotient of
two linear functions to a conditional probability under study. For a conditional probability that
pertains to a node from the sensitivity set that does not have any observed descendants, this
functional relation reduces to a linear function. The following proposition states this property
more formally.

Proposition 4.3 Let B be a Bayesian belief network and let Pr be its joint probability distribution.
Let O be the set of observed nodes with the corresponding observations o, as before. Let V,. be the
network’s node of interest and let Sen(V,.,0) be the sensitivity set for V, given O. Let V, €
Sen(V,., O) with a*(V5) NO = @. Then, for any value v, of V., we have that

Pr(v. |0o) =a-z+b

for every conditional probability x = p(vs | ') of Vs, where a and b are constants that are dependent
upon the values vy of Vs and ' of mg(V5).

Proof (Sketch). The probability of interest Pr(v, | o) for the belief network B once more equals

Pr(v, | 0) = 7Pr1(3vrr((3 o)

From the proof of Proposition 4.1, we have that the numerator Pr(v, A o) in this equation relates
linearly to the conditional probability z under study. Now, with regard to the probability Pr(o),
we recall from the previous section that, if no observations are available for descendants of a non-
ancestor, the probability of interest is algebraically independent of the conditional probabilities
of this node. Likewise, the probability of a combination of observations is algebraically indepen-
dent of the conditional probabilities of any non-ancestor without observed descendants. From
this property, we have that the probability Pr(o) is algebraically independent of the conditional
probability z under study. We conclude that Pr(o) is a constant with respect to . O

We illustrate the property stated in the previous proposition by means of an example.

Example 4.4 We consider again the belief network from Figure 7. Once more, we address the
situation where the value high has been observed for the node PAP, and consider the probability
of interest Pr(normal Shunt | high PAP). As mentioned in Example 4.2, the sensitivity set
Sen(Shunt, { PAP}) comprises all three nodes from the network. We now investigate the functional
relation between the probability of interest and the conditional probability p(normal Shunt |
pulm emb) for the node Shunt € Sen(Shunt,{PAP}). Note that the node Shunt does not have
any observed descendants. For our probability of interest, we once again find that

Pr(normal Shunt A high PAP)
Pr(high PAP)

Pr(normal Shunt | high PAP) =

The numerator in this equation equals

Pr(normal Shunt A high PAP) =

= Z p(high PAP | Pulm emb) - p(normal Shunt | Pulm emb) - p(Pulm emb) =
{Pulm emb}

= p(high PAP | pulm emb) - p(normal Shunt | pulm emb) - p(pulm emb) +
+ p(high PAP | no pulm emb) - p(normal Shunt | no pulm emb) - p(no pulm emb) =

=a-z+V
where a' equals

a' = p(high PAP | pulm emb) - p(pulm emb)
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and b’ equals

b' = p(high PAP | no pulm emb) - p(normal Shunt | no pulm emb) - p(no pulm emb)

The denominator of the probability of interest equals

Pr(high PAP) =

= Z p(high PAP | Pulm emb) - p(Shunt | Pulm emb) - p(Pulm emb) =

{Shunt,
Pulm emb}

= Z p(high PAP | Pulm emb) - p(Pulm emb) =
{Pulm emb}

= p(high PAP | pulm emb) - p(pulm emb) + p(high PAP | no pulm emb) - p(no pulm emb) =

= CI
The previous derivations show that the denominator Pr(high PAP) of the probability of interest
does not depend on the conditional probability under study p(normal Shunt | pulm emb). The
numerator Pr(normal Shunt A high PAP) relates linearly to this conditional probability. We
conclude that our probability of interest relates linearly to the conditional probability under study:
. a-x+b
Pr(normal Shunt | high PAP) = ———— = a-x+b
c
The sensitivity of the probability of interest with regard to the conditional probability under
study is now uniquely determined by the values of the constants a and b. These values again are
computed from the assessments for the appropriate conditional probabilities in the network, as
specified in Example 4.2. We find that

a=0.139
b=0.779

The linear function relating the probability of interest Pr(normal Shunt | high PAP) to the
conditional probability p(normal Shunt | pulm emb), denoted by z, therefore equals

Pr(normal Shunt | high PAP) = 0.139-x + 0.779

The function is depicted in Figure 9. O

1 T T T T
08 /

0.6 |- E

0.4 - g

0.2 | E

Pr(normal Shunt | high PAP)

0 1 1 1 1
0 02 04 06 038 1

p(normal Shunt | pulm emb)

Figure 9: The function relating the probability of interest Pr(normal Shunt | high PAP) to the
conditional probability under study p(normal Shunt | pulm emb).
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We would like to note that, in the special case where none of the nodes in a Bayesian belief network
are observed, Proposition 4.3 implies that the network’s probability of interest relates linearly to
every conditional probability of every node from the sensitivity set under study.

Corollary 4.5 Let B be a Bayesian belief network and let Pr be its joint probability distribution.
Let V,. be the network’s node of interest and let Sen(V,, D) be the sensitivity set for V,. given the
empty set of observed nodes. Let Vs € Sen(V,,d). Then, for any value v, of V., we have that

Pr(v. |o)=a-z+b

for every conditional probability © = p(vs | ©') of Vs, where a and b are constants that are dependent
upon the values vs of Vs and @' of wa(Vs).

In the foregoing, we have argued that a belief network’s probability of interest relates to a con-
ditional probability under study by a simple mathematical function. Knowledge of this function
allows for considerably reducing the computational burden of a one-way sensitivity analysis of a
Bayesian belief network as only the constants in the function need be known. These constants
can be determined by computing the probability of interest from the network for a small number
of values for a conditional probability under study and solving the resulting system of equations;
systematic variation of the conditional probability is then no longer necessary. For a conditional
probability that is related linearly to the probability of interest, two network computations suffice;
for all other conditional probabilities, three network computations are required. The following
example illustrates the basic idea.

Example 4.6 We consider again the belief network from Figure 7. As in Example 4.2, we inves-
tigate the functional relation between the probability of interest Pr(normal Shunt | high PAP)
and the conditional probability = p(high PAP | no pulm emb). We recall that this function
equals

a-x+b

Pr(normal Shunt | high PAP) = crtd

In Example 4.2, we have determined the values of the constants a, b, ¢, and d by expressing every
constant in terms of conditional probabilities from the network and subsequently filling in the
appropriate assessments. The functional relation can be determined more efficiently, however, by
computing the probability of interest from the network for three different values of the conditional
probability under study. Note that three network computations suffice since the constant ¢ can
be eliminated from the above equation, yielding

a-z+Y

Pr(normal Shunt | high PAP) = P

Using the three values x = 0.2, = 0.4, and = = 0.6 for the conditional probability under study
and the assessments for the other conditional probabilities as specified in Example 4.2, we find by
computing the probability of interest Pr(normal Shunt | high PAP) from the network, the values

Pr(normal Shunt | high PAP)3—02 = 0.87356
Pr(normal Shunt | high PAP)y—94 = 0.88897
Pr(normal Shunt | high PAP)y—9s = 0.89424

From these values, we now obtain the three linear equations

0-2 b 6 :: ! L ;35 . ot 2 . -
0.4 - a b ! ! 97 . — 4 . 8 9; — 0
0.6 a b 1 4 ! ! 9 2 - C — . -
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Solving this system of linear equations gives

a' =0.905
b' = 0.00061
¢ =0.00789

It is readily verified, by dividing the values of the constants a, b, and d specified in Example 4.2
by the value of the constant ¢, that the mathematical function yielded coincides with the function
found in Example 4.2. O

5 Experimental results

In the previous sections, we have detailed various properties that allow for reducing the computa-
tional burden of a one-way sensitivity analysis of a Bayesian belief network. In Section 3, we have
argued that a belief network’s probability of interest is algebraically independent of the conditional
probabilities of any node that is not included in the sensitivity set under study. As sensitivity anal-
yses with respect to these conditional probabilities are uninformative, they can be excluded from
the overall analysis. In Section 4, we have argued that for any conditional probability, that pertains
to a node that is included in the sensitivity set, a small number of network computations suffice
to determine the sensitivity of the probability of interest with regard to a conditional probability
under study. Systematic variation of conditional probabilities then is no longer necessary. Now, to
gain insight into the effect of exploiting these properties, we have conducted several experiments
on randomly generated Bayesian belief networks. In these experiments, we have investigated, for
various different sets of networks, the number of nodes in the sensitivity set under study and the
number of nodes whose conditional probabilities are related linearly to the probability of interest,
as these numbers reflect the computational burden of a network’s sensitivity analysis.

In each experiment, we have generated a set of one thousand connected acyclic digraphs; for
details of the graph-generator used, we refer the reader to [Van der Gaag, 1994]. We have gener-
ated various sets of digraphs with fifty nodes each, comprising fifty, seventy five, one hundred, one
hundred and fifty, two hundred, and two hundred and fifty arcs, respectively. As our investigations
are concerned with the digraph of a Bayesian belief network only, we have refrained from quanti-
fying the generated digraphs with conditional probabilities. For each digraph from every set, we
have randomly selected a single node of interest and & observed nodes, where, for the various sets
of digraphs, k is varied from zero to thirty by steps of two nodes.

To study the behaviour of our method on Bayesian belief networks that have been developed for
different types of application, we have also generated various sets of digraphs for which a diagnostic
and a prognostic bias, respectively, have been used in the selection of the node of interest and of
the observed nodes. For diagnostic applications, we have assumed that a belief network’s node
of interest tends to be located in the upper part of the digraph, whereas the observed nodes are
likely to be situated in its lower part. For prognostic applications, on the other hand, we have
assumed that the node of interest tends to be located in the lower part of the digraph and the
observed nodes in the upper part. The two biases have been realised as a two-stage selection. The
selection of a node of interest in the lower part of a digraph, for example, starts with selecting a
single auxiliary node in a random fashion. The node of interest is then selected from among the
nodes that are assigned a lower number in a topological ordering of the digraph than the auxiliary
node. For computational reasons, the maximum number of observed nodes considered with the
diagnostic and prognostic biases, respectively, has been limited to sixteen nodes.

In each experiment, we have determined, for every digraph, the number of nodes in the sen-
sitivity set for the selected node of interest given the set of observed nodes under study, and the
number of nodes whose conditional probabilities are related linearly to the probability of interest.
The results are summarised in Figure 10. Figure 10(a) and Figure 10(b) pertain to the digraphs
for which no bias has been used in the selection of the node of interest and of the observed nodes.
Figure 10(a) shows the average number of nodes in the sensitivity set, plotted against the number
of observed nodes; the six curves pertain to the sets of digraphs with different numbers of arcs.
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Figure 10(b) shows the average number of nodes, from the sensitivity set, whose conditional prob-
abilities are related linearly to the probability of interest. Figure 10(c) and Figure 10(d) depict the
same information for the digraphs for which a diagnostic bias has been used in the selection of the
node of interest and of the observed nodes; Figure 10(e) and Figure 10(f) show the information
for the digraphs for which a prognostic bias has been used.

To discuss the results obtained from our experiments, we start by considering the average
number of nodes in the sensitivity set for digraphs for which the node of interest and the set of
observed nodes have been selected randomly. From Figure 10(a), we see that the average number
of nodes in the sensitivity set increases at first, with an increasing number of observed nodes. This
property is readily explained by observing that, initially, only observations for ancestors of the
node of interest, that is, only observations for nodes from the sensitivity set, allow for diminishing
the set’s size. For all other nodes in the digraph, an observation will either have no effect or
increase the size of the sensitivity set. In the digraphs under consideration, the node of interest
will, on average, be located in ‘the middle’ of the digraph. The number of ancestors of this
node will, on average, be smaller than its number of non-ancestors. The tendency of additional
observations for the ancestors of the node of interest to decrease the size of the sensitivity set
will therefore be outweighed by the tendency of additional observations for its non-ancestors to
increase the sensitivity set’s size. Now, for a still further increasing number of observed nodes, the
increase in size of the sensitivity set diminishes. In fact, when roughly eighteen observed nodes
have been selected, additional observations cause the sensitivity set to decrease in size. This
property is explained by observing that a new node can only be inserted into the sensitivity set
if one of its descendants is selected as an observed node where it had no observed descendants
before. The more observed nodes have been selected, however, the fewer nodes remain without
observed descendants. On the other hand, additional observations for nodes from the sensitivity
set will serve to decrease the set’s size. For larger numbers of observed nodes, the sensitivity
set will be quite large and the latter tendency will therefore outweigh the former, resulting in
an overall decrease in the size of the sensitivity set. Figure 10(a) further reveals that a larger
number of arcs in a belief network’s digraph will result in a larger sensitivity set. This property
is explained by observing that, in a digraph with more arcs, the node of interest is likely to have
more ancestors, resulting in a larger sensitivity set to begin with. Moreover, a larger number
of arcs will, on average, result in a larger number of chains between a node under consideration
and the node of interest. To block the influence of this node’s conditional probabilities on the
probability of interest, that is, to exclude the node from the sensitivity set, on average, a larger
number of observations is required. For a fixed number of observed nodes, therefore, an increase
in the number of arcs leads to an increase in size of the sensitivity set.

We now consider the average number of nodes, from a sensitivity set under study, whose condi-
tional probabilities are related linearly to the selected probability of interest. From Figure 10(b),
we see that this number diminishes with an increasing number of observed nodes. This property
is readily explained by observing that only the conditional probabilities of ancestors of the node
of interest that do not have any observed descendants, are related linearly to the probability of
interest. The more observed nodes have been selected, the fewer ancestors of the node of interest
remain without observed descendants and, hence, the smaller the number of nodes whose condi-
tional probabilities are related linearly to the probability of interest. Figure 10(b) further shows
that, for a fixed number of observed nodes, the number of linearly related nodes increases with an
increasing number of arcs, which conforms with the tendency of the number of ancestors of the
node of interest to increase with the number of arcs.

We proceed with addressing the results from our experiments with digraphs for which a di-
agnostic bias has been used in the selection of the node of interest and of the set of observed
nodes. From Figure 10(c) and Figure 10(d), we see that these digraphs show tendencies similar
to those shown by digraphs for which no bias has been used. The initial increase in the size of
the sensitivity set with an increasing number of observed nodes, however, is stronger and reaches
a higher maximum for the digraphs with a diagnostic bias than for the digraphs for which no
bias has been used. This property is readily explained by once more observing that, initially, only
observations for ancestors of the node of interest allow for diminishing the size of the sensitivity
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Figure 10: The average number of nodes in the sensitivity set under study and the average number
of linearly related nodes, for various sets of networks without any bias (figures (a) and (b)), with a
diagnostic bias (figures (c) and (d)), and with a prognostic bias (figures (e) and (f)), respectively.
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set. Since the node of interest in digraphs with a diagnostic bias is, on average, situated higher
in the digraph than in unbiased digraphs, its ratio of the number of ancestors to the number of
non-ancestors will, on average, be smaller. As a result, the tendency of additional observations
for non-ancestors to increase the size of the sensitivity set is even more dominant in digraphs for
which a diagnostic bias has been used than in digraphs without any bias. The smaller number of
ancestors further accounts for the stronger decrease of the number of nodes from the sensitivity
set whose conditional probabilities are related linearly to the probability of interest, as revealed
in Figure 10(d).

We now consider the results from our experiments with digraphs for which a prognostic bias
has been used in the selection of the node of interest and of the set of observed nodes. Figure 10(e)
suggests that the size of the sensitivity set for these digraphs remains reasonably constant with an
increasing number of observed nodes. The tendency of additional observations for the ancestors
of the node of interest to decrease the size of the sensitivity set is therefore balanced, in these
digraphs, by the tendency of observations for its non-ancestors to increase the sensitivity set’s
size. We feel that this property is the coincidental result of the ‘degree’ of prognostic bias we have
used. We expect that a more extreme location of the node of interest and of the observed nodes
in the digraphs under study, that is, a larger ratio of the number of ancestors to the number of
non-ancestors, will lead to a decrease in the size of the sensitivity set with an increasing number of
observations. In fact, further experiments, using a three-stage selection for a prognostic bias, have
met this expectation. Figure 10(e) further shows that the size of the sensitivity set increases with
an increasing number of arcs, as we have seen before for the digraphs without any bias as well as
for the digraphs for which a diagnostic bias has been used. Similar tendencies as for unbiased and
for diagnostic digraphs are also seen in Figure 10(f) with respect to the number of nodes from the
sensitivity set whose conditional probabilities are related linearly to the probability of interest.

6 Previous work

Sensitivity analysis is a general, well-known technique for studying the effects of the inaccura-
cies in the parameters of a mathematical model on the model’s output; it is widely used in
mathematical modelling in various different domains of application [Morgan & Henrion, 1990,
Habbema et al., 1990, Dippel et al., 1992, Helton, 1993, Doubilet et al., 1985]. As more and more
Bayesian belief networks are being developed for real-life applications, interest in sensitivity analy-
sis of belief networks is increasing. In this section, we review previous work on sensitivity analysis
of belief networks. In doing so, we do not intend to give an exhaustive overview of the state of
the art. We merely discuss the results from related work and compare it with the results that we
have presented in the current paper.

In her work on sensitivity analysis of Bayesian belief networks, K. Blackmond Laskey has been
motivated, as in fact we have been, by the observation that straightforward, systematic varia-
tion of the assessments of a network’s conditional probabilities is too much time-consuming to
be of practical use. She has developed an efficient method for analytically computing first-order
approximations of exact analyses [Laskey, 1995]. Her method sets out by identifying, in a belief
network under study, conditional probabilities that upon variation have no effect on a probability
of interest. Laskey suggests two procedures for this purpose. She suggests that the assessment
of every single conditional probability be varied over a small number of values, serving to reveal
all conditional probabilities that have no influence on the probability of interest. For an alterna-
tive procedure, she observes that some uninfluential probabilities can be identified using graphical
considerations. For this purpose, she introduces a concept similar to our sensitivity set; in fact,
our notion of sensitivity set has been inspired to a large extent by her concept. Laskey’s method
excludes the identified uninfluential conditional probabilities from further analysis. For the re-
maining conditional probabilities, the effect of variation on the network’s probability of interest is
measured by a so-called sensitivity value. A sensitivity value is the partial derivative of the prob-
ability of interest with respect to a conditional probability under study. A sensitivity value thus
provides an approximation of the effect of small deviations from the probability’s assessment on
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the probability of interest. Laskey presents two procedures for analytically computing sensitivity
values; these procedures build upon the propagation algorithm by Lauritzen and Spiegelhalter and
upon Monte Carlo sampling, respectively. Compared to straightforward variation of conditional
probabilities in a sensitivity analysis, Laskey’s method requires considerably less computational
effort.

In her method, Laskey has introduced a powerful concept upon which we have built our concept
of sensitivity set. She suggests, as we do, to construct, from a belief network’s digraph, an auxiliary
digraph in which a predecessor X is added to every node V;. She proceeds by observing that, if the
auxiliary predecessor X; of a node Vj; is d-separated from the auziliary predecessor X, of the node
of interest V., then sensitivity analyses with respect to the conditional probabilities for node V; are
uninformative as these probabilities cannot influence the probability of interest upon variation.
Her observation, unfortunately, is incorrect, as it can declare several conditional probabilities to
be not influential while in fact they are. For example, from her observation, we would conclude
that, if no observations are available as yet, the conditional probabilities of all ancestors of the
node of interest V. are uninfluential, since ({X;} | @ | {X,})? for all V; € 7*(V;.) \ {V;-}. To show
that this conclusion is incorrect, we give an example from the ALARM-network. We are interested
in the probability that the node LV failure takes the value true when no observations are available
as yet. For the probability of interest, we have that

Pr(fail) = p(fail | history) - p(history) + p(fail | no history) - p(no history)

which reveals that the probability of interest is algebraically dependent upon the probabilities of
the nodes History and LV failure. Since, in the absence of observations, the auxiliary predecessor
of the node History is d-separated from the auxiliary predecessor of LV failure, building upon
Laskey’s observation would incorrectly declare the prior probabilities of the node History to be
uninfluential. With the various lemmas presented in Section 3 of the current paper, we have shown
that our concept of sensitivity set provides for correctly identifying uninfluential nodes.

As mentioned before, Laskey’s method of computing sensitivity values requires considerably
less computational effort than straightforward variation of probability assessments for studying
sensitivity. The method, however, provides insight in the effect of small deviations from a prob-
ability’s assessment only: as Laskey indicates, when larger deviations are considered, the quality
of the approximation may break down rapidly. For the ALARM-network, Figure 8 illustrates how
an approximation may fail to reveal the extent of the sensitivity of a probability of interest to
a conditional probability under study. The figure shows the effect of variation of the assess-
ment for the conditional probability p(high PAP | no pulm emb) on the probability of interest
Pr(normal Shunt | high PAP). The assessment specified for the conditional probability under con-
sideration is 0.05. For variation of this assessment to higher values, the derivative of the sensitivity
function does not change rapidly. The derivative at the specified assessment therefore provides a
good approximation of the effect on the probability of interest for larger values. However, even
a slight shift in the specified assessment to a smaller value has a very large effect on the deriva-
tive of the sensitivity function. The approximation therefore does not suffice. We feel that exact
sensitivity analysis of a Bayesian belief network is to be preferred to approximate analysis.

We briefly review two other methods for sensitivity analysis of Bayesian belief networks that
take a different approach than our method. In [Chang & Fung, 1995] and [Castillo et al., 1997],
the idea of symbolic propagation in belief networks is exploited for studying sensitivity. Instead of
yielding a single number as the standard propagation algorithms do, a symbolic propagation algo-
rithm yields an algebraic expression for a network’s probability of interest in terms of all conditional
probabilities in the network. From this expression, the sensitivity of the probability of interest
to a conditional probability under study is readily computed, basically by filling in the specified
assessments for all other conditional probabilities. A disadvantage of building upon symbolic prop-
agation is that it is quite time-consuming. We therefore feel that methods for sensitivity analysis
that build upon the faster standard propagation algorithms are preferred. In [Spiegelhalter, 1989],
a method for sensitivity analysis of Bayesian belief networks is presented that builds upon an ex-
plicit specification of the inaccuracies in a network’s conditional probabilities. As in our method,
an auxiliary graph is constructed from the digraph of a belief network by adding an auxiliary
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predecessor to every node. The auxiliary predecessor now captures second-order distributions for
the conditional probabilities of its successor. Using standard propagation algorithms, the effects
of the specified inaccuracies on a probability of interest are readily computed. A disadvantage of
this method is that it requires an explicit specification of the inaccuracies in a belief network’s
probability assessments. As second-order distributions for the specified assessments often are not
available, assumptions on the nature of the inaccuracies have to be made that may not be realistic.
We would like to note that with our method for studying sensitivity no assumptions with regard
to the inaccuracies involved are necessary.

While in this paper we have focused on sensitivity analysis of Bayesian belief networks, we
would like to note that the reliability of a belief network’s output can in addition be studied
by subjecting the network to an wuncertainty analysis. In an uncertainty analysis of a belief
network, the assessments of all conditional probabilities of the network’s quantitative part are
varied simultaneously. To this end, for each conditional probability, values are drawn from some
probability distribution. Uncertainty analysis of a Bayesian belief network serves to reveal the
overall reliability of the network’s output. Uncertainty analysis, however, yields less insight into
the effect of single conditional probabilities than sensitivity analysis does. Previous experiments
with uncertainty analysis of Bayesian belief networks have led to the suggestion that belief net-
works are highly insensitive to inaccuracies in the assessments of their conditional probabilities
[Henrion et al., 1996, Pradhan et al., 1996]. In these experiments, performed on belief networks
for diagnostic applications, a measure of the reliability of a network’s diagnosis is obtained by
assuming a log-normal distribution for every conditional probability, having the initially specified
assessment for its mean, and subsequently averaging over the probability of the true diagnosis for
various diagnostic situations. Unfortunately, when using probability distributions to model inac-
curacies in the assessments for a network’s conditional probabilities, it is not the average of the
probabilities of the true diagnosis that reflects the effects of these inaccuracies, but the wvariation
in these probabilities. In addition, we would like to note that the reported results are based on
experience with a single belief network only, in which the conditional probability distributions
have been simplified using noisy-OR and noisy-MAX assumptions. From the results reported so
far for uncertainty analysis of Bayesian belief networks, therefore, no decisive conclusions can be
drawn. We feel that the sensitivity of a network’s probability of interest to the various condi-
tional probabilities involved will vary from application to application. In fact, sensitivity analysis
of a Bayesian belief network for congenital heart disease has shown that a network’s conditional
probabilities can have a large effect on a probability of interest [Coupé et al., 1999b].

7 Conclusions

The assessments obtained for the various conditional probabilities of a Bayesian belief network are
inevitably inaccurate, due to incompleteness of data and partial knowledge of the problem under
study. The inaccuracies in these probability assessments can severely compromise the reliability
of the network’s output. To gain insight into the reliability of a probability of interest computed
from a belief network, the network can be subjected to a sensitivity analysis. A sensitivity analysis
can be performed by systematically varying the assessments for one or more of the network’s con-
ditional probabilities simultaneously. We have argued that even for a rather small belief network
such a straightforwardly performed analysis is highly time-consuming. In this paper, we have
shown that, by qualitative considerations pertaining to a belief network’s digraph, various condi-
tional probabilities can be identified that upon variation cannot influence the network’s probability
of interest. Analyses with respect to these probabilities are uninformative and can therefore be
excluded from the overall analysis. More specifically, we have shown that a sensitivity analysis of
a Bayesian belief network can be restricted to the conditional probabilities of the nodes from the
sensitivity set for the network’s node of interest. Excluding uninformative analyses can lead to a
considerable reduction in the computational burden of a sensitivity analysis, as is evidenced by
the results from the experiments we have performed on randomly generated belief networks. In
the paper, we have further shown that for sensitivity analyses that are informative, simple mathe-
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matical functions exist expressing the network’s probability of interest in terms of the conditional
probabilities under study. Knowledge of these functions allows for even further reduction of the
computational burden of a sensitivity analysis, as only the constants in the functions need be
determined, rendering systematic variation of conditional probabilities unnecessary.

In this paper, we have focused attention on a one-way sensitivity analysis of a Bayesian belief
network in which the network’s conditional probabilities are investigated one at a time. For such
an analysis, we have detailed the mathematical function expressing the network’s probability of
interest in terms of a single conditional probability. More specifically, we have shown that, in
general, the probability of interest relates as a quotient of two linear functions to a conditional
probability under study. In essence, it is also possible to investigate the effect of simultaneous
variation of two or more conditional probabilities. Such a higher-order sensitivity analysis can,
just as a one-way analysis, be restricted to the conditional probabilities of the nodes that are
included in the sensitivity set for a belief network’s node of interest. Moreover, for higher-order
sensitivity analyses also functional relations exist between a network’s probability of interest and
the conditional probabilities under study. Although not reported in this paper, we have detailed
the functions that hold in a two-way sensitivity analysis in which conditional probabilities are
studied pairwise. These functions comprise terms for the separate effects of each of the two
conditional probabilities being investigated as well as terms for their joint effect. More specifi-
cally, the probability of interest, in general, relates as a quotient of two bi-linear functions to the
probabilities under study. The more conditional probabilities of a belief network are investigated
simultaneously, the more involved the mathematical functions will be. We feel that the results
of higher-order sensitivity analyses in which three or more conditional probabilities are studied
simultaneously will in general be very hard to interpret.

In the near future, we envision further experiments with our method of sensitivity analysis on
real-life Bayesian belief networks. In these experiments, we would like to study the reliability of
belief network’s output in general. Also, we would like to evaluate in more detail the effect of the
location of the node of interest and of the observed nodes in a network’s digraph. In addition, we
envision further investigation of the properties of sensitivity analysis, both from a theoretical and
an experimental point of view. Our experiments so far on randomly generated belief networks and
on the ALARM-network have shown considerable computational savings. Motivated by these initial
results, we hope to be able to arrive at a generally applicable, practicable method for sensitivity
analysis of Bayesian belief networks.
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Appendix

In the Sections 3 and 4 of this paper we have presented various properties of sensitivity analysis
of Bayesian belief networks. In Section 3, we have introduced the concept of a sensitivity set for
a network’s node of interest given available observations. We have shown that the conditional
probabilities of the nodes that are not included in a sensitivity set under consideration upon
variation cannot influence the probability of interest. For the nodes that are included in the
sensitivity set, we have shown in Section 4 that the probability of interest relates to the conditional
probabilities of these nodes as a quotient of two linear functions. So far, we have presented these
properties with short, intuitive proofs. In this appendix, we provide full proofs for the various
different properties.

In order to prove that a belief network’s probability of interest for a node V, is algebraically
independent of the conditional probabilities of any node that is not included in a sensitivity set
Sen(V,., O) under consideration, we have partitioned, in Definition 3.3, the set of remaining nodes
into the three sets Inseni(V;,0), Inseny(V,.,0), and Insenz(V,,0). In the following lemma, we
show that these three sets and the sensitivity set are mutually exclusive and collectively exhaustive.

Lemma A.1 Let B be a Bayesian belief network with the digraph G = (V(G), A(G)). Let V, €
V(G) be the network’s node of interest and let O C V(G) be the set of observed nodes in G. Let
Sen(V,., O) be the sensitivity set for V,. given O and let Inseny (V., 0), Insena(V,., O), Insens(V;., 0),
and Sen(V,.,O) be defined as in Definition 3.3. Then,

o Insen;(V,,0) N Insen;(V;,0) = @, for all i,j =1,2,3 with i # j;
e V(G)\ Sen(V;,0) = Uiy o3 Inseni(V;, 0).

Proof. From Definition 3.3, it is readily seen that the sets Insen;(V;,O), Inseny(V,,0), and
Insens(V,.,O) are mutually exclusive. In our proof, we therefore focus on the second property
stated in the lemma.

To prove that V(G) \ Sen(V;, 0) = U;_, 5 3 Insen;(V;, O), we have to show that any node that
is included in one of the sets Insen;(V,.,O), is not included in Sen(V,,0), and vice versa. To
show that a node Vj is not included in the set Sen(V;,0), we construct from the belief network’s
digraph G the auxiliary digraph G* as defined in Definition 3.1 and show that in G* any chain
from Vj’s auxiliary predecessor X; to the node of interest V; is blocked by O. We now begin by
showing that ,_, 5 3 Insen;(V;,0) C V(G) \ Sen(V;., 0):

o We assume that Inseni (V;., O)UInsens(V,,O) # @ and consider a node V; € Insen; (V;,O)U
Inseny(V,, 0). We observe that, in the digraph G, any chain from this node V; to node V,
includes either a predecessor or a successor of Vj; in the auxiliary digraph G*, therefore,
any chain from V}’s auxiliary predecessor X; to node V, equally includes either an(other)
predecessor or a successor of V;. Now, for node V;, we have by definition that (({V;} U
7c(V;)) | O | {Vi:h)&. From (({V;} Ung(V;)) | O | {V;:})4, we have that, in the digraph
G, any chain V; = .-V, from Vj to V; that includes a successor of V}, is blocked by O.
In the auxiliary digraph G*, therefore, any chain X; — V; — ...V, from X; to V; that
includes a successor of V}, is blocked by O. From (({V;} Una(V;)) | O | {V;: })&, we further
have that, in G, any chain Vj---V, from a node Vj; € ng(V;) to node V; is blocked by
O. In G*, therefore, any chain X; — V; < Vi ---V, from X; to V, that includes a node
Vi € mg(Vj), is blocked by O. We conclude that ({X;} | O | {V;})&.. By definition, we
have that V; € V(G) \ Sen(V;, O).

e We assume that Insenz(V,,0) # @ and consider a node V; € Inseng(V,,0). For this
node V;, we have by definition that V; € V(G) \ #§&(V;) and o&(V;) N O = @. From these
properties, we have that, in the digraph G, any chain from node Vj to node V;. either includes
a predecessor Vi, of V; or includes a descendant V, € of(V;) with two incoming arcs for
which 0% (V;,) N O = @. In the auxiliary digraph G*, any chain X; — V; < V},--- V. from
V;’s auxiliary predecessor X; to node V, that includes an(other) predecessor Vi of Vj, is
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blocked by O because o;(V;) N O = @. Furthermore, in G*, any chain X; —- V; = --- —
Vim ¢ -V, from X; to V; is blocked by O because o (V;n) N O = &. We conclude that
({X;} 10| {V;})%.. By definition, we have that V; € V(G) \ Sen(V;.,0).

From the previous observations, we conclude that {J;_, , 5 Insen;(V;.,O) C V(G)\ Sen(V;, O); note
that the property trivially holds for the case where Insen;(V,,0) = @, i =1,2,3.

We proceed by showing that V(G) \ Sen(V;,0) C U;_; 53 Insen;(V;,0). We assume that
V(G) \ Sen(V;,0) # @; the property trivially holds otherwise. We now consider a node V; €
V(G) \ Sen(V,,0). For this node V;, we have by definition that ({X;} | O | {V,})4.. We
distinguish between two cases, the case where V; € n;(V;) and the case where V; & wf,(V;):

e We assume that V; € n5(V,). From ({X;} | O | {V;})%., we have that, in the auxiliary
digraph G*, any chain X; =+ V; — ---V, from X; to V; that includes a successor of V},
is blocked by O. We conclude from this observation that, in the digraph G, any chain
V; = ---V, from V; to V; is blocked by O. Note that from V; € n5(V:), we have that
there exists at least one (directed) path V; — --- — V, from V; to V; in G. From this
path being blocked, we conclude that o (V;) N O # @. Now, from ({X;} | O | {V:}&.,
we further observe that, in the digraph G* any chain X; — V; « V},---V, from Xj to V,,
that includes an(other) predecessor V}, of Vj, is blocked by O. From o;(V;) N O # & and
the previous observations, we have that, in G, any chain Vj ---V,. from a predecessor V}, of
Vj to V; is blocked by O. We conclude that (({V;} Uns(V;)) | O | {V;})& and, hence, that
V; € Inseny (V;,0).

o We assume that V; & 7 (V;). We once more distinguish between two cases, the case where
0&(V;) N O = @ and the case where o,(V;) N O # @:

— We assume that o, (V;) N O = @. By definition, we have that V; € Insens(V;, O).

— We assume that o(V;) N O # @. From ({X;} | O | {V;})4., we have that, in
the auxiliary digraph G*, any chain X; = V; = ---V, from X; to V; that includes a
successor of V}, is blocked by O. We conclude from this observation that, in the digraph
G, any chain V; — ---V, from V; to V;, is blocked by O. From ({X;} | O | {V: D&,
we further observe that, in the auxiliary digraph G*, any chain X; — V; < V;---V,
from X; to V, that includes an(other) predecessor Vi of Vj, is blocked by O. From
0&(V;) N O # @ and the previous observations, we have that, in the digraph G, any
chain Vi ---V, from a predecessor V}, of V; to V; is blocked by O. We conclude that
({V;} Ums (V) | O | {V; )& and, hence, that V; € Insens(V;, O).

From the previous considerations we conclude that V; € U;_; 5 3 Insen;(V;,0) and, hence,
that V(G) \ Sen(V;,0) C U, 5 3 Inseni(V;:, 0).

From V(G) \ Sen(V:, 0) C U,_, 5 3 Inseni(Vy, 0) and U,_; 5 3 Insen;(V;,,0) C V(G) \ Sen(V;,0)
we conclude that V(G) \ Sen(V;.,0) = U;—, 5 3 Insen;(V;, 0), as stated in the lemma. O

In Section 3, we have provided the three lemmas 3.5, 3.7, and 3.9, stating that the probability of
interest of a Bayesian belief network is algebraically independent of the conditional probabilities
of the nodes included in the sets Inseny (V;., 0), Inseny(V,.,0), and Insenz(V,.,0). We will provide
formal proofs for these lemmas shortly. Before doing so, however, we introduce the concept of a
sensitivity ordering of the nodes of a belief network’s digraph that will be used throughout the
proofs.

Definition A.2 Let B be a Bayesian belief network with the digraph G = (V(G), A(G)) where
V(G) ={V1,...,Vu}, n > 1. Let V; € V(G) be the network’s node of interest and let O C V(G)
be the set of observed nodes in G. Let Sen(V,,0) be the sensitivity set for V, given O and let
Inseny (V,., O), Inseny(V,.,0), and Insenz(V,,0) be defined as in Definition 3.3. Let 1 : V(G) +—
{1,...,n} be a total ordering on V(G), such that
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o for any two nodes Vi, V; € V(Q) with V; = V; € A(G), we have «(V;) < 1(V});
o for any two nodes V; € Insen; (V,., O)USen(V,., 0), V; € Inseny(Vy, 0), we have 1(V;) < o(Vj);
o for any two nodes V; € Inseny(V;, 0), V; € Insens(V,., 0), we have «(V;) < o(V;).

Then, ¢ is a sensitivity ordering of G with respect to V, and O.

For any node of interest and any set of observed nodes, there exists a sensitivity ordering of a
belief network’s digraph. Any such sensitivity ordering is a topological ordering of the digraph at
hand.

Lemma A.3 (cf. Lemma 3.5) Let B be a Bayesian belief network with the digraph G = (V(G), A(GQ)).
Let Pr be the joint probability distribution defined by B. Let O C V(G) be the set of observed nodes
in G and let o denote the corresponding observations. Let V. € V(G) be the network’s node of
interest. Then, for any value v, of V,., we have that Pr(v, | 0) = p(V; | mq(V;)) for every node
Vi € Inseng(V;,0).

Proof. Let ¢ be a sensitivity ordering of G with respect to V. and O. Without loss of generality,
we assume that the nodes in G are indexed by their ordering number, that is, we assume that
(Vi) = i; we take n > 1 to be the number of nodes in G. From the rule of marginalisation, we
have that the probability of interest Pr(v, | 0) can be written as

> Pr(({Vi,...,Vu}\ ({V;} U O)) A v, A 0)

Pr(’l} | O) — {Vl’"'vvﬂ}\({VT}UO)
> Pr(({W,...,Va}\ 0) Ao)

{V1,...Va }\O

In the above equation, we have used the notation ), to indicate summation over all possible
values of the variables in the set W. In the following, we will also use the notation |,__; this
notation is used to indicate that in the preceding formula the variables in the set X take the
combination of values z. Now, using the property stated in Proposition 2.6 for the probability
distribution Pr defined by the network, we find that

> II »(Vi|7a()

Pr(v, | 0) = (Vi Vo VYR JUO) =1m O—o
> II »( 7))
{Vi, s, Va\O §=1,...,n 00

From the definition of sensitivity ordering, we have that the nodes in the set Insens(V,.,O) have
the highest ordering numbers in the network’s digraph; without loss of generality, we assume that
Insens(V,., O) includes the nodes V41, .., V,. Now,

> II rilmc) || II »(Vilwa(Vi)

) . Vi = vy
PI‘(UT | 0) _ {V1,...,Va \N({V>}UO) i=m+1,...,n i=1,...,m O=o
> I rilmc) || I »il=a(V;)
{V1,ee0, Vi \O j=m+1,....,n j=1,...,m O=o

From Definition 3.3, we know that the set Insens(V,.,O) does not include any nodes from the set
{V,}UO0, that is, {V,}UO)N{Vyt1,--.,Va} = @. Since our sensitivity ordering is a topological
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ordering, we further know that (U,—; ., 7¢(Vi)){Vin+1,...,Va} = @. Using these observations,
we find that

Pr(v, | o) =
> > II eilme) |- [T »(Vilmec(i) ||
_ Ve Ve NV 200) \\ WVt Vo } =t oo i=1,...,m b=
T S I e I e e
(Vi Vin NO \\{ Vi1,V } G=mt 1, j=1ymm oo

The rule of marginalisation now implies that the sum terms in parentheses in the equation above
equal one: for node V,,, marginalisation gives

> II rVilze() =

{Ving1yeosVa } i=m+1,...,m

> S oWl lnaa) |- [ pilwe)) | =

{Vm+1,...,Vn_1} {Vn} i=m+1,...,n—1
= X || A EEO)
{Vm+1,...,Vn_1}i:m—i—l,...,n—l
Recursively repeating this argument for the nodes V,,_1,..., V41 results in
> [I »vilma(vi)=1
{Vm+1,...,Vn}i=m+1,...,n

We conclude that

> I rilna()

. Ve = vn
Viyeot,Vim V,.}U0) i=1,..., =
Pr(vr|o):{ 1 N({V»}u0) ¢ m O=o
> I 2| 7a(V))
{Vl,,Vm}\O j=1,...,m O=o

which shows that the probability of interest Pr(v, | o) is algebraically independent of the condi-
tional probabilities of any node from the set Insens(V;,0), as stated in the lemma. O

So far, we have shown that a belief network’s probability of interest for a node V,. given observa-
tions for nodes O is algebraically independent of the conditional probabilities of any node from the
set Insenz(V;.,0). We now proceed by showing that this probability of interest is also algebraically
independent of the conditional probabilities of the nodes from the set Insens(V;., O).

Lemma A.4 (cf. Lemma 3.7) Let B be a Bayesian belief network with the digraph G = (V(G), A(Q)).
Let Pr be the joint probability distribution defined by B. Let O C V(G) be the set of observed nodes
in G and let o denote the corresponding observations. Let V. € V(G) be the network’s node of
interest. Then, for any value v, of V,, we have that Pr(v, | 0) = p(V; | mq(V;)) for every node
Vi € Insena(V;, O).

Proof. Let ¢ be a sensitivity ordering of G with respect to V,. and O. Without loss of generality,
we assume that Insenz(V,.,0) = &. Also without loss of generality, we assume that the nodes in
G are indexed by their ordering number, that is, we assume that «(V;) = i. We take n > 1 to
be the number of nodes in G. From the definition of sensitivity ordering, we have that the nodes
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in Inseny(V,, O) have the highest ordering numbers in the digraph; we assume that Inseny(V;.,O)

consists of the nodes V41, .., V,. For our probability of interest Pr(v, | 0), we find that
> I »Vilmei) |-{ I »Vilwra() L
{V1i,. ., Va \({ V- }UO) =m+1,...,n =1,...,m T:OUT
Pr(v, | 0) = o=
> II rVilzeWi) |-l II 2V l7a(Vi)
{Vl’,,,,vn}\o j=m+1,...n j=1,....m O=o

Since our sensitivity ordering is a topological ordering of G, we know that (U;—; ., 7a(Vi)) N
Vg1, --,Vo} = @. Since V, & Inseny(V,,0) by definition, we also have that V, & {Vit1, ..., Va}-
Using these observations, we find that

Pr(v, | 0) =

> > I[I »ilmav: H p(Vi | 76 (V;)

ViV N{VU0) \\{ Vi1,V NNO =t L o o

> (( > II p(V}'Im(V}-)))-_H p(VjIWG(Vj)))

{Vlv,Vm}\O {Vm+1,...,Vn}\O j=m+1,...,n O=o

Now, from Definition 3.3, we have that the nodes Vi,41,...,V, from the set Insens(V,,0) and
their predecessors are d-separated from the node of interest V.. Any predecessor of a node V;,
i =m+1,...,n, therefore, is either included in Insens(V;.,O) itself or is an observed node. We
conclude that (U;—py1,. o 7a(Vi) N ({V1,..., Vi } \({V:} U O)) = @. The probability of interest
can now be written as

Pr(v, | 0) =

> II »pvil7c() |- > I »vil7a(V)

_ {Vm+1,---7Vn}\O i=m+1,...,n {V17'~~an}\({V7‘}UO) i=1,...,m 7‘:: or
> IT »0l7c() | > I »il7a(vy)
{Vint1see,Va O G=m+1,...,m {V1yee, Ve \O G=1,...;m 0o

> II »(ilza(v)

_ (i Ve NV JUO) =i o=
> II 2 7a(vy)
{Vi,.es Ve N\O §=1,...;m o,

which shows that the probability of interest Pr(v, | o) is algebraically independent of the condi-
tional probabilities of any node from the set Insens(V;,0), as stated in the lemma. O

So far, we have shown that a belief network’s probability of interest for a node V,. given observa-
tions for nodes O is algebraically independent, of the conditional probabilities of any node from
the sets Inseng(V,.,0) and Insenz(V;.,0). To conclude, we now prove that this probability of in-
terest is also algebraically independent of the conditional probabilities of the nodes from the set
Inseny (V., O).

Lemma A.5 (cf. Lemma 3.9) Let B be a Bayesian belief network with the digraph G = (V(GQ), A(GQ)).
Let Pr be the joint probability distribution defined by B. Let O C V(G) be the set of observed nodes
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in G and let o denote the corresponding observations. Let V. € V(G) be the network’s node of
interest. Then, for any value v, of V,., we have that Pr(v, | 0) = p(V; | wg(V;)) for every node
Vi € Inseny (V,., 0).

Proof. Without loss of generality, we assume that Insens(V;.,0) = @ and Insenz(V;,0) = @.
From these assumptions and Lemma A.1, we have that V(G) = Sen(V;,0) U Insen; (V,,0). Let
the nodes from Sen(V,.,0) be called Vi,...,V;, and let the nodes from Insen;(V;,0) be called
Vimt1y---, Vo, m > 1; note that, in contrast with the proofs of the previous lemmas, the nodes
are not indexed by their ordering number according to some sensitivity ordering of G. For our
probability of interest Pr(v, | 0), we now find that

> II »Vilzei) |-{ TI »Vilwa() L
1 yeeisVin a i=m+1,...,n i=1,....,m r=Ur
Pr(v, | 0) = {1, Vo N({V2 }UO) + O=o
> II 20Vl -\ II »(Vilma(V)
{V1,..., Vo }\O j=m+1,...,n j=1,....,m O=o

From Definition 3.3, we have that the nodes Vi41,...,V, from the set Insen;(V;,0) and their
predecessors are d-separated from the node of interest V.. Any predecessor of a node V;, i =
m + 1,...,n, therefore, is either included in Insen;(V,.,O) itself or is an observed node. We
conclude that (U—py1,.,Te(Vi) N ({Vi,-..,Vin} \ ({V;} U 0)) = 2. In addition, for every
node V;, i = 1,...,m, from Sen(V,,0), we have that any predecessor that is included in the set
Inseny (Vr, O) is an observed node. Hence, J;—; ., 7¢(Vi))N({Vint1,---,Vo}\O) = 2. Building
upon these observations, the probability of interest can be written as

Pr(v, | 0) =

> II »pvil7a() |- > I »vil7a(h)

_ {Vint1,.-,Va }\O i=m+1,...,n {V1seee, Ve \N({ V5 }UO) i=1,...,m. gr::o’v'r
> IT »0l7c() | > I »(vilmc(vi)
{Vint1,..,Va \O j=m+1,...,n {V1,..,Vm \O j=1,....,m O=o

> II »(Vilma(Vi)

_ Ve Ve N{WU0) i=1,m (‘;r

R | A AET)

{Vl,,Vm}\O Jj=1,..,m

Ur
0]

O=o0

which shows that the probability of interest Pr(v, | 0) is algebraically independent of the condi-
tional probabilities of any node from the set Insen; (V;.,0), as stated in the lemma. O

In the foregoing, we have shown that a belief network’s probability of interest is algebraically
independent of the conditional probabilities of any node that is not included in the sensitivity
set under consideration. We now show that the probability of interest relates to any conditional
probability for a node from the sensitivity set as a quotient of two linear functions.

Proposition A.6 (cf. Proposition 4.1) Let B be a Bayesian belief network with the digraph
G = (V(G), A(G)) and let Pr be the joint probability distribution defined by B. Let O C V(G)
be the set of observed nodes in G and let o denote the corresponding observations. Let V,. be the
network’s node of interest and let Sen(V,.,0) be the sensitivity set for V. given O. Then, for any
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value v, of V., we have that

a-x+b
Pr(v, |0) = =

for every conditional probability x = p(vs | ') of every node V5 € Sen(V,.,0), where a, b, ¢, and
d are constants that are dependent upon the values vy of Vs and @' of wg(Vs).

Proof. The probability of interest Pr(v, | 0) for the belief network B equals

Pr(or o) = T 5

Without loss of generality, we take the nodes of the belief network B to be Vi,...,V,, n > 1. For
ease of exposition, we assume all variables in the network to be binary, taking one of the truth
values true and false. We will use v; to denote the proposition that the variable V; takes the value
true; V; = false will be denoted as —w;. We will return to our assumption of binary variables at
the end of the proof. We now consider a node V; from the sensitivity set Sen(V,., O) under study.
Without loss of generality, we investigate the sensitivity of the probability of interest with regard
to the conditional probability p(vs | ©') for this node, where «' is a specific combination of values
for the nodes from the set mg(Vs). For the numerator Pr(v, A o) of the probability of interest, we
find that

Pr(v, Ao) =

> I »vil#me()

Vi, .. Val\ i=1,.n
{v:}uo)

r = Ur

SN
I
°

> p(Vs [7(Vs)- I  »(Vi|ma(V) =

{Vi,..., Vo }\ i=1,...,n,

{V»} U 0) i#s L=
- ) pos o) [ pilmeW) |lee  +
Vi, Ve R\ i=1,...,n, 9=e
({Vi, Va} Uma(Vs) U O) its =
+ > Q=ps =) I pMVilac()) ||v. =w. +
. O=o0
Vi, Ve i=1,...,n, o=°.
{Va, Vs} Una(Vs) U O) its ra(Ve) = o'
+ ) p(Vs l7a(Va))- I  p(Vi|ma(W)
Vi, Va N\ i=1,...,n, Vo
{V.} v 0, i%s oo

ma(Vy) £ o'

The first term in the above sum of three assembles all products that specify the conditional
probability p(vs | 7'). The second term gathers all products specifying the complement, p(—ws | 7'),
of the conditional probability under study. Note that this term, as the first one, depends on the
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value of p(vs | #'). The third term, to conclude, collects the remaining products; these products
specify for the node V; a conditional probability that has another combination of values than 7'
for its conditioning part. Note that the third term does not depend on the value of the conditional
probability under study. Writing z for p(vs | ©'), we find that

Pr(vrANo)=a-z+b

where
a= > II »ilmc(Vi)||v.=w +
Vi, Va I\ i=1,...,n, 9=e
({Ve, Va} Una(Va) UO) i#s (Vo) = '
- ) I 2l 7)) ||v, =
Vi, Va I\ i=1,...,n, oz,
({Ve, Va} Unc(Vs) UO) i#s e (Vo) = !
and
b= > I[I rVilmei)||v=v.  +
{Viyoo Va l\ i=1,...,n, 9=e
({VT,VS}UWG(VS)UO) K] Trsg(—V:)'Ui '

+ > II »(Vi | 7a(V2)

{Vl,...,Vn}\ i:l,...,n O=o
{V-}u o),
na(Vs) # '

Note that the constants a and b are related to the conditional probability under study but are not
dependent upon its value.
For the denominator Pr(o) of the probability of interest, we analogously find that

Pr(o) =
= Z p(vs | ') H p(Vi | mc(Vi)) +
{Vi,..., Vo }\ i:.l,...,'n,, ‘O/::o'u
{Vs}Umg(Vs)UO) iF£s WSG(VS)SZTI"
n 3 A=ps =) ] »Vilma(Vi) +
Vs Va i=1,...,n, oz,
({Ve} Ure(Va) U O) i#s T (V) = 7

{Vi,...,Va}\ O, i=1,...,m,
ra(Vs) # ' i#s o

=c-z+d
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once more writing x for the conditional probability under study. For the constants ¢ and d, we
have that

¢= > I »ilrc(i) +
{Vl"'-,Vn}\ izl,...,n,
({Ve} Une(Vs) U 0) i

- > I »ilre()

Vi, Va W\ i=1,...,n, 3__(’%
({Vs} Una(Vs) UO) i#s (Vo) =
and
d= 3 II rvilme(v) +
{Vi,.. ., Va 1\ i=1,...,n, ‘O/.Zzoﬁv
({Vs}Uma(Vs) U O) its e (Vo) = !

+ > II »vilma(vi)

{Vl,...,Vn}\O, i=1,...,n
’

a(Vs) # w O=o

From the previous observations, we conclude that the probability of interest Pr(v, | 0) equals

a-r+b
Pr(or | o) = c-z+d
where z, a, b, ¢, and d are as above.

In our proof so far, we have assumed all variables in the belief network B to be binary. We
would like to note that the proof can be generalised to non-binary variables, provided that for
varying the value of a conditional probability p(vs | ') for a node V; from the sensitivity set under
study, the ratio of any pair of complementary probabilities p(v. | ') and p(vY | #') for this node
is kept fixed. O

So far, we have shown that a belief network’s probability of interest relates as a quotient of
two linear functions to a conditional probability under study. For a conditional probability that
pertains to a node from the sensitivity set that does not have any observed descendants, this
functional relation reduces to a linear function.

Proposition A.7 (cf. Proposition 4.3) Let B be a Bayesian belief network with the digraph G =
(V(G), A(@)) and let Pr be the joint probability distribution defined by B. Let O C V(G) be the
set of observed nodes in G and let o denote the corresponding observations. Let V. be the network’s
node of interest and let Sen(V,,O) be the sensitivity set for V, given O. Then, for any value v,
of V., we have that

Pr(v.|0o)=a-z+b

for every conditional probability x = p(vs | ©') for every node Vs € Sen(V,., O) with o*(V;)NO = @,
where a and b are constants that are dependent upon the values vs of Vs and ©' of na(Vs).

Proof. The probability of interest Pr(v, | o) for the belief network B once more equals

Pr(v, | 0) = %(SO)
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From the proof of Proposition A.6, we have that the numerator Pr(v, A 0) in this equation relates
linearly to the conditional probability z under study. More formally, we have that

Pr(v, Ao)=a' -z +V

where a’ and b’ are constants as specified in the proof of the proposition.

Let ¢ be a sensitivity ordering of G with respect to V. and O. Without loss of generality,
we assume that the nodes in G are indexed by their ordering number, that is, we assume that
1(V;) = i; we take n > 1 to be the number of nodes in G. For ease of exposition, we further assume
all variables in the network to be binary, taking one of the truth values true and false. We will
once more use v; to denote the proposition that the variable V; takes the value true; V; = false will
be denoted as —v;. Our proof can be generalised to non-binary variables as indicated in the proof
of Proposition A.6. We now consider a node V; from the sensitivity set Sen(V;.,O) under study.
Without loss of generality, we assume that the set o*(V;) consists of the nodes Vj,...,V,. We
investigate the sensitivity of the probability of interest with regard to the conditional probability
p(vs | ©') for the node V;, where 7' is a specific combination of values for the nodes from 7 (V5).
For the denominator Pr(o) of the probability of interest, we find that

Prio) = Y. II »vilwa(Vi)

{V1,..,Va\O i=1,...,n

= > II rVilme) |- TI »Vilma(V)
{V1,..,Va \O i=8,...,M0 i=1,...,s—1 O=o

Since our sensitivity ordering ¢ is a topological ordering, we know that (U,_, ., ;7c(Vi)) N
{Vsy...,Vin} = @. In addition, we have that o*(V;)NO = @ and, hence, that {V,...,V,}N0 = .
Building upon these observations, we find that

Prio)= > oo I pilmei)) |- I p(Vi I 7a(Vi))
{Vi,...,Vs—1\O {Vayoer,Vn } i=5,..0n i=1,...,s—1 O—o

The rule of marginalisation now implies that the sum term in parentheses in the equation above
equals one. We conclude that

Prg) = 3 I 2w =

{Viye Va1 1\O i=1,...,5—1

:cl

From this derivation, we have that Pr(o) is a constant with respect to the conditional probability
under study z. For our probability of interest, we now find that

! /
Pr(v, |0) = 2-Z+b

c
=a-z+b
! 7
wherea= % and b= %. O
C C
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