Eftficient Evaluation of
Triangular B-splines

Michael Franssen,
Remco C. Veltkamp and
Wieger Wesselink

UU-CS-1999-18






Efficient Evaluation of Triangular B-splines

Michael Franssen! Remco C. Veltkamp* Wieger Wesselink?

¥ Technical University of Eindhoven
Dept. Computing Science
Den Dolech 2, 5612 AZ Eindhoven, The Netherlands

e-mail: mfranssen@usa.net,wieger@win.tue.nl

Utrecht University, Dept. Computer Science
Padualaan 14, 3584 CH Utrecht, The Netherlands

email: Remco.Veltkamp@cs.uu.nl

Abstract

Evaluation routines are essential for any application that uses triangular B-splines. This
paper describes an algorithm to efficiently evaluate triangular B-splines. The novelty of the
algorithm is its generality: there is no restriction on the degree of the B-spline or on the
dimension of the domain. Constructing an evaluation graph allows us to reuse partial results
and hence, to decrease computation time. Computation time gets reduced even more by
making choices in unfolding the recurrence relation of simplex splines such that the evaluation
graph becomes smaller. The complexity of the algorithm is measured by the number of leaves
of the graph.

1 Introduction

Evaluation routines for splines are important for any application that uses splines. These appli-
cations vary from scattered data approximation to variational surface modeling or 3D-morphing
applications. In the end, the resulting spline is always sampled to compute the results or for
visualization.

Efficient evaluation schemes have been developed and implemented for many classes of splines,
e.g. for Bezier-surfaces [Béz72] and B-patches [Sei91]. However, for triangular B-splines, which
are widely used for their many desirable properties, efficient evaluation routines are restricted to
the quadratic bivariate case [FS93, PS94].

In this paper we present an algorithm for efficient evaluation of triangular B-splines as introduced
by Dahmen, Michelli and Seidel [DMS92]. The novelty of this algorithm is that it works for
triangular B-splines of arbitrary degree and with an arbitrary number of dimensions of the domain.
For simplicity, however, the main part of this paper concentrates on the bivariate case. The
generalization towards arbitrary domains is discussed in section 7.

Efficiency is obtained by re-using partial results. When Grandine [Gra87] attempted this approach,
he found that tabulating those partial results for reuse is more costly than simply re-computing
the required value. He attributes this to the need of the entire knot-set to identify a simplex spline.
Pfeifle and Seidel [PS94] use a triple of integers to identify the simplex splines encountered during
evaluation of a triangular B-spline of degree 2. Unfortunately, their numbering does not scale up
to higher order triangular B-splines. In this paper it is shown that the identification problem can



be avoided by constructing a directed graph (an evaluation graph) representing the simplex- and
B-splines. In section 3 we describe how this graph is built and how it is used to avoid multiple
evaluation of simplex splines.

To further reduce computation cost, we cut down on the number of partial results that are required.
This is done by using our degrees of freedom when unfolding the recurrence relation for simplex
splines.

The selection scheme for simplex splines is described in section 4 and the selection scheme for
triangular B-splines is described in section 5. The complexity of the algorithm is computed in
section 6 and the results are discussed in section 8.

2 Definitions

The notations used for simplex- and triangular B-splines differ in some papers. Therefore, we
briefly review the definition of the splines we consider in this paper. This section assumes that
the reader is already familiar with triangular B-splines.

2.1 General definitions

Definition 2.1 [Determinant of points] Let V = (vg,v1,v2) be a triple of points in IR?. Then the
determinant of V', denoted as det(V) is defined as

1 1 1
det(V) =det | voz vig v2z |- (1)
’on Uly U2y

Definition 2.2 [Barycentric determinant] Let V' be a triple of points in IR2 and let z be a point
in IR%. Then the i-th barycentric determinant of z (0 < i < 2) is defined as
di(z | V) = det(V]z/vi]), (2)

where V[z/v;] denotes the set V' in which v; is replaced by z.

Definition 2.3 [Barycentric coordinates] Let V' be a triple of points in IR? and let z be a point
in IR%. Then the i-th barycentric coordinate of z (0 < i < 2) is defined as

_ di(=z|V)
Ai(z | V) = “det(V) 3)
Barycentric coordinates have the following important properties:
2 2
o Z/\i(:c | V)=1and Z/\i(:c | Vv, = z.
1=0 =0

o If z lies within the convex hull of V, then 0 < X\;(z | V) for 0 <4 < 2.

Definition 2.4 [Half-open convex hull] Let V be a set of points in IR? and let e; denote the unit
vector for dimension ¢ for 7 = 0,1. Then the half-open convex hull of V is defined as

[V) ={z € V]| Zeo.c1>0(Vo<ar <ap<i1 (% + aogoeo + arrer € [V]))}, (4)
where [V] denotes the convex hull of V.
The half-open convex hull is a generalization of the half-open domain in IR. Its purpose is to

ensure that for any subdivision of a domain in IR?, the points on the edges of the subdivision
belong to exactly one sub-area.



2.2 Definition of simplex splines

Definition 2.5 [Simplex splines] A simplex spline is a piecewise polynomial function defined by
a finite set V of points in IR?%. The points in V are called knots and the set V itself is called the
knot-set of the simplex spline. A simplex spline defined over a set of n + 3 knots is said to have
degree n. The definition of a simplex spline is given by the following recursive equation:

(0 z €[V)
1 —
2
DN WM (@ | V\{w}) |V [>3
\ =0

The elements in W = (wg, w1, w2) can be chosen arbitrarily from V', hence W C V. W is called
the split set for V. The only restriction is that det(W) may not be zero.

If all knots are in general position, i.e. the knot-set does not contain a collinear triple of knots,
a simplex spline of degree n defined over these knots is C™~! continuous. For more information
about simplex splines, we refer to Traas [Tra90].

2.3 Definition of triangular B-splines

Definition 2.6 [Triangular B-splines] A triangular B-splines is a piecewise polynomial function
defined over an arbitrary polygonal domain in IR?. For clarity, we present the construction of a
triangular B-spline in a number of steps:

1. One starts by constructing a triangulation Z of the polygonal domain. This triangulation
has to be proper, i.e. triangles may not overlap and they can only share a single edge or a
single vertex.

2. Assign to every vertex v; occurring in the triangulation n +1 knots, denoted by v; 0, - - ., Vi n,
where n is the degree of the triangular B-spline, such that v; = v; 9. There are two important
restrictions on the placement of these knots:

(a) For every edge (v;,v;) at the boundary of the polygonal domain, the entire area
{vi,0, .- Vin,vj0,...vjn}) must lie outside the polygonal domain.

(b) For every triangle I = (4,%1,%2) in Z, the determinants det(io k, 41,1, t2,m) With &+ 1+
m < n must have the same sign. Often these requirements are not mentioned, even
though they are essential to guarantee the desired B-spline properties. More information
on these restrictions can be found in [Fra95].

3. Let I = (ig,%1,i2) be a triangle in Z. Let B be a triple of indices (8o, 81,082) such that
| 81=Bo+ B1+ B2 =n and B; > 0. Then the set V], containing n + 2 knots, is defined as

Vi = {(i0,0) - - » V(i0,B0) > V(i1,0) 3 - - s Vin,B1) > V(in,0) - - = Uiz, B) } - (6)

Each of these VBI will serve as the knot-set of a simplex spline needed to define a triangular
B-spline.

4. To use the simplex splines defined over the VﬁI -s as a basis for a triangular B-spline, we have
to ‘normalize’ them. That is, we have to multiply every simplex spline M (z | VBI ) with the



factor dé = det(Vig, 805 Viy 1 Via,3-)- As a result, for every point x in the polygonal domain,
we get

SN diM| V)| =1 (7)

IET |B|=n

Hence, the normalized simplex splines form a partition of unity, making control points easy
to use.

5. For every triangle I and every triple of indices 3, we define a control point cé in R3. The
triangular B-spline surface is then defined as

F(z)=> > diM(x|Vi)ch. (8)
IEIl ﬁ |:n

Since the normalization factors and the control points do not depend on the evaluation point
z, they need not to be considered in the evaluation algorithm. The normalization factors
are pre-computed once and the control coefficients are typically set (indirectly) by the user
of the application.

3 Reusing partial results

If we naively evaluate a simplex spline of degree n recursively, the amount of constant simplex
splines we encounter will be 3". For every unfolding of equation 5 for a simplex spline of degree ¢
we have to evaluate 3 simplex splines of degree i — 1. Since a constant simplex spline is obtained
after n unfoldings, we obtain 3" simplex splines of degree zero.

Not all of the simplex splines of degree ¢ with 0 < i < n that we evaluate during the recursion are
different. The knot-set V' of a simplex spline of degree n contains n + 3 knots. Any simplex spline
of degree i we encounter by recursively unfolding equation 5, has a knot-set V' of i + 3 knots that

is a subset of V. Therefore there exist no more than ('2133 ) different simplex splines of degree 1.

Evaluation will be accelerated if every simplex spline of degree i is computed only once. The
problem when re-using partial results is the identification of simplex splines, because this requires
comparing the entire knot-sets. In this section we will present a data structure that makes iden-
tifying simplex splines during evaluation superfluous.

We construct a directed graph, in which every node represents a simplex spline. This graph is
built only once (during preprocessing) and then used for all future evaluations. Every simplex
spline with degree i greater than 0 has three outgoing edges that connect it with three (different)
simplex splines of degree i — 1. These three simplex splines are determined by choosing a split set
W and unfolding the recurrence relation 5 for simplex splines. Note that we do not need to choose
a split set for every point z in which we evaluate the simplex spline: once the graph is built, it
can be used to evaluate the simplex spline in arbitrary points.

Ensuring that every node in the graph represents a unique simplex spline can be done by a simple
look-up table. Simplex splines are represented by a sorted list of the indices of their knots. In our
look-up table we store for every degree i with 0 < i < n a sorted list of simplex splines that already
exist. (Sorting can be done on alpha-lexicographical ordering of the knot-indices.) Whenever we
need (a reference to) a simplex spline, we first check if the simplex spline already exists in our
table. If not, we create a representation for the apparently new simplex spline and insert it in the
table. If it already exists, we use the stored simplex spline.

Evaluating the simplex spline at a point £ can now be done efficiently as follows:

1. We assign a number to each point z we want to evaluate.



2. Then we traverse the graph (which corresponds to unfolding the recurrence relation), starting
at the node representing the simplex spline of degree n. We label every node V' we visit with
a pair (zv,rv), where zv is the number corresponding to z, and rv is the value M(z | V') we
obtain by evaluation.

3. If we visit a node whose value zv is equal to the number assigned to z, we know that we
have visited this node for z before and hence, the label’s rv is the value we need. Since every
node represents a unique simplex spline, we know that every simplex spline is evaluated at
most once. If we use a single evaluation graph for several simplex splines defined over one
large set of knots, not all nodes will be visited during the evaluation of a single point.

4 Choosing split sets for simplex splines

We can use the number of nodes in the graph as a measure for the efficiency, since the data-
structure from the previous section avoids multiple evaluation of simplex splines in this graph.
To increase the efficiency, we have to decrease the number of nodes in our graph. Which simplex
splines occur in the graph depends on our choice of split sets when unfolding equation 5. In this
section, we present a selection scheme for split sets that strongly decreases the number of nodes
in the graph of a single simplex spline.

Throughout this section we will use V' = {vg,...,vn42} to denote the knot-set of the simplex
spline of degree n that we want to evaluate. Furthermore, ¢ will always denote a degree between
0 and n — 1 of some simplex spline in the graph. For simplicity, we assume that every choice for
the split set is legal, i.e. V' does not contain a triple of linearly dependent knots. In section 7, we
discuss how this restriction is eliminated.

To minimize the number of simplex splines in the graph, we want to use as few different simplex
splines of degree i as possible. Therefore, we want to keep the intersections of different knot-sets
as large as possible. By choosing the correct split sets we will then create less different simplex
splines, since more simplex splines of lower degree become shared.

To establish this similarity between splines, we split, for every degree i, the knot-set V of the
original simplex spline of degree n in two disjoint sets Z; and Z]. The idea is that Z] denotes
the knots that occur in every simplex spline of degree i in our graph. Besides the element of Z,
the simplex splines of degree ¢ will also have some knots from Z;. We then keep Z| as large as
possible. When we choose a knot w for split set W, we prefer to choose from Z;. If we choose
w € Z}, we know that w ¢ Z!_,, since w then causes us to create a simplex spline of degree i — 1
that does not contain w and hence, w does not occur in every simplex spline of degree 7 — 1.

We now derive our selection scheme using the following heuristic: initially we only have the simplex
spline of degree n, hence Z; = () and Z] = V. The first choice for W is arbitrary and results in
Zn_1 =W and Z]_; = V \ W. Note that every simplex spline of degree n — 1 has exactly 2
elements of Z,,_1. Since a split set must contain 3 elements, we must choose one element for the
split set from Z/_; for each of these simplex splines. In order to obtain the largest Z,_,, we
choose the same element from Z],_,; for every simplex spline of degree n — 1 in the graph. This
selection scheme generalizes: we get a graph in which a simplex spline of degree i < n contains
two knots from Z;. These are always chosen for the split set together with one element from Z]
that is the same for all simplex splines of degree i.

As an example: for every simplex spline choose the first three knots from its knot-set. That is,
initially we choose W = {vo,v1,v2}. The element chosen from Z; at any level i is v,_;y2. We
then have for 0 < i < n that Z; = {vo,...,n—sy1} and Z] = {vn_it2,-..,Uny2}.

Every simplex spline of degree i contains ¢ + 3 knots. Since the ¢ + 1 knots of Z] occur in every
simplex spline of degree ¢ in the graph, its knot-set must contain exactly (i +3) — (i +1) = 2



knots from Z;. Therefore, the number of simplex splines of degree i in the graph is limited by the
number of pairs of knots that can be chosen from the n — i + 2 knots of Z;, which is ("_2’“).

5 Choosing split sets for triangular B-Splines

The computation of a triangular B-spline requires the evaluation of an entire set of simplex splines
instead of just one. Since many knots occur in several of these simplex splines, there is hope that
evaluating this set of simplex splines can be done more efficiently than simply evaluating all the
simplex splines separately. In this section we will exploit similarities between the knotsets of the
simplex splines to get an efficient evaluation scheme.

Since the triangulation of the domain of the B-spline, is arbitrary, we will restrict our attention
to the computation of the contribution of a single triangle. For the remainder of this section we
will denote this triangle as I = (ig,%1,i2). The same evaluation scheme can then be used for all
triangles in the domain. By using a single look-up table of simplex splines for the entire domain
of the B-spline, the evaluation time is reduced even further, but we will not discuss this effect in
this paper.

We start by introducing the concept of fingerprints. Fingerprints are special subsets of the knot-
sets of the simplex splines in the graph of the triangular B-spline. They will be used to distinguish
two groups of simplex splines in the graph of this B-spline: those that contain a fingerprint and
those that do not.

Definition 5.1 [Fingerprints] For every triangle I = (io,41,42) € Z and index g with | 8 |=n we
define a fingerprint F, é as

Fi={vi;, 1 0<j<2A1< B} 9)

Hence, the fingerprint Fé contains from every knot cloud the knot with the highest second index
occurring in V, provided that this index is at least 1. For example: Ff, oy = {vi,2,0i5,1} (and
10t {iy,1,vio,2,Vip,1 })- In the graph of a triangular B-spline of degree n, only the Fjj with | 8 |=n
are called fingerprints.

The name ’fingerprint’ is not chosen arbitrarily. A fingerprint Fé is the smallest set uniquely

identifying the degree n simplex spline M (. | VﬁI ). Hence, if a fingerprint F' is a subset of the
knot-set V' of some simplex spline, then F' uniquely defines a degree n simplex spline, which is the
only one whose evaluation requires the evaluation of V.

Lemma 5.2 Let z € VJ such that © € Fj. Then there exists a v with | v |=| 8 | —1 such that
VI=Vi\{z}.

Proor: We have z € Fé, hence z = wv;, g, for certain j, where 1 < ;. Let v be 8 — e/ then
V,YI = Vﬁ[_ej = VIQI \ {U’ij,ﬂj} = V,BI \ {.Z'} X

Lemma 5.3 Let V be the knot-set of a simplex spline in the graph of a triangular B-spline of
degree n — 1. Let 8 be an index with | § |=n. Then Fé zV.

PROOF: Since V is in the graph of a triangular B-spline of degree n — 1, all paths leading to V'
start with a simplex spline of degree n — 1. All of these simplex splines have a knot-set VWI for

certain v with | v |= n — 1. Clearly, since | § |= n we have Fé— z V,YI and since V C VWI we have
FI¢V.R



Figure 1: A B-spline of degree 4 with 6 patches.

Using the concept of fingerprints and the corresponding lemmas, we will define our selection scheme
for the evaluation of triangular B-splines. The evaluation scheme will be based on lemma 5.2 and
the evaluation scheme for a single simplex spline.

To compute the value of a B-spline of degree n, we have to compute M (z | VﬂI ) for all 8 with
| B |= n. For this computation we will construct a single evaluation graph G,. Our idea is to
use a graph G,_; that efficiently computes all M(z | V;[) with | v |=n — 1 and add as few new
simplex splines to it as possible to obtain G,,. Initially, we use the evaluation graph for a B-spline
of degree 0, which consists of a single simplex spline of degree 0. Clearly, this graph is optimal.

Using G,,—1 as a subgraph of G,, is accomplished by the following heuristic: If a simplex spline
contains a fingerprint then this fingerprint must be a subset of the split set. From this decision
and lemma 5.2 it follows that evaluating all required B-splines of degree n (i.e. all B-splines with
a knot-set VBI with | B |= n) requires the evaluation of all B-splines with a knot-set V.| with
| v |=n — 1. This is done efficiently by a graph G,,_1 of a B-spline of degree n — 1 defined over
the same knot-set, which we already have. However, not every fingerprint contains 3 knots, so we
still have to select a few elements for the split sets.

The remaining knots of the split sets are chosen in the same way as split sets for single simplex
splines are chosen: we use the first 3— | Fﬁl | knots from V'\ Fﬁl . To define 'first’ we may use an
arbitrary ordening on the knots, e.g. alpha-lexicographical ordening on the two indexes. Figure 1
shows a triangular B-spline of degree 4 with 6 patches.



4 V'\{v,x}

Figure 2: Sketch of the proof of lemma 6.1

6 Complexity

The simple selection scheme of split sets presented above yields a surprisingly efficient evaluation
graph. In order to compute the number of nodes in the graph, we prove the following lemma and
theorem:

Lemma 6.1 Let V be a simplex spline in the graph G, of a B-spline of degree n, such that
Fé C V. Let v be an element in the split set of V. Then

o ifv g Fj then F; CV \ {v}.

e ifveE FBI then V' \ {v} exists in the graph G,_1 of the B-spline of degree n — 1 defined over
the same knot-set.

PrOOF: The first case is trivial. The second case is proved by induction on i, where n — i is the
degree of the simplex spline V.

case i = 0: Given by lemma 5.2

case i > 0: We need to prove that V' \ {v} exists in the G,,_1. Let V' be an ancestor of V, say
V' =V U{z} (see figure 2). Then V' contains Fé and hence, by the induction hypothesis
V' \ {v} exists in Gp_1. V'\ {v} will contain some fingerprint ! of a B-spline of degree
j with j < n. Clearly | F] |<| Fj | and since « is one of the first 3— | Fjj | elements of
V', it will be one of the first 3— | F!y | elements of V' \ {v} or it will be an element of F.

Therefore, z is an element of the split set of V' \ {v}. Now, since V' \ {v} exists in Gp,_1 ,
V'\ {v,z} =V \ {v} will also exist in G,_1 as was to be proved.

X

Theorem 6.2 Using the split set selection scheme above, we will now prove that every simplex
spline V in the graph of a degree n B-spline

e is either a simplex spline in the graph G,_1 of a B-spline of degree n — 1.

e or contains a fingerprint FBI for certain B with | B |=n.



s Constant Simplex Spline
O Linear Simplex Spline
4 Quadratic Simplex Spline

Figure 3: The graph G2 of a B-spline of degree 2. The dashed lines indicate edges from graph Gj.

PROOF: By induction on ¢, where n — i is the degree of the simplex spline V:

case 1 =0: n —4i =n and hence V contains a fingerprint by definition.

case i > 0: Let V' be an ancestor of V;ie. V =V'\ {z}. If V' is in G,,—; then V certainly is.
If V' is not G,,_1 we get from the induction hypothesis that V' contains a fingerprint Fé for
certain . If z € Fj then by lemma 6.1 V'\ {z} =V exists in G,_;. If z ¢ F}, then clearly
V contains Fy.

X

As an example, see figure 3: The graph G is a subgraph of Gs.

The complexity discussed in this section refers to the complexity of the evaluation and does not
include the time required to construct the graph. Constructing the graph is done once during
preprocessing using a lookup table. Consulting this lookup table cost time, but once the graph
is constructed, the B-spline can be evaluated in an arbitrary number of points without ever using
the lookup table again.

The complexity of the evaluation algorithm is expressed as the number A, of constant simplex
splines in the evaluation graph G,,. Let B, denote the number of constant simplex splines in G,
that do not exist in G,—1. Then we find the equation

Ap=An 1+ Bn: (10)

or written differently

An:A0+ZB,-. (11)

In a B-spline of degree 0 the only simplex spline is already a constant simplex spline, hence Ag = 1.
It remains to compute B,,.

From theorem 6.2 it follows that every simplex spline in G,, \ G,,_1 contains a fingerprint. Since a
simplex spline with fingerprint Fé can only be used to compute Vﬂl , the graph G, \ G,,—1 contains
one connected component for each 3. All simplex splines in such a subgraph contain the same
fingerprint. We will now count for each index 8 the number B of constant simplex splines in the
subgraph of splines containing FﬁI . To compute B,,, we then use

B,= > Bg. (12)

|Bl=n



Bg is computed similar to the number of constant simplex splines in the graph of a single simplex
spline: write the elements of V4 as the elements of Fj, followed by the elements of Vj \ F} in
the order used by the selection algorithm. Effectively, the algorithm chooses the first 3 elements
from Vﬁl and does the same for all descendents in the graph that contain Fé . Like in section 4,
we use Z; and Z] to split VBI in two parts. As a result, Z; contains the first n — i + 2 elements
of VﬂI , written in the order above, and Z] contains the remaining elements. Again, all simplex
splines of degree i will contain 2 elements of Z;. Since we are only interested in simplex splines
from G, \ Gn—1, these elements include Fé , hence we can only choose 2— | Fé | elements from
n—it2—|Fj|

simplex
2-|Fj)| ) simp

the last n — i 4+ 2— | Fé | elements of Z;. Hence, in G,, \ G,—1 there are (

n+2-|Fj|

I ) To compute B,, we now sum over all 3,
27|Fﬂ\

splines of degree i that contain F}; i.e. Bg = (

distinguishing between | Fj |:

case | Fj |=3: By = " =0

-1

case | Fj |=2: Bg = (3) = 1. One out of three indices is 0; the other two vary between 1 and
n — 1, summing up to n. Hence, there are 3(n — 1) of these cases.

case | Fj |=1: Bg = (") = n 4 1. There are 3 of these cases: (n,0,0); (0,n,0); and (0,0,n).

Hence, B, =3(n—1)+3(n+1) = 6n.

We can now finally compute the number A,, of constant simplex splines in the evaluation graph
G, of a B-spline of degree n:

n
Ap =14 6i=1+3n+3n". (13)

i=1

Hence, to compute the contribution of one triangle I € 7 to the value of the B-spline of degree n
in a point z, we only have to evaluate 1 4+ 3n + 3n? constant simplex splines.

7 Generalizations

Although our algorithm can deal with B-splines of arbitrary degree, there are still some restrictions
on its use. In this section we discuss how these restrictions are eliminated.

7.1 Arbitrary knot-sets

One annoying restriction is that all knot-sets V' must be in general position, i.e. every triple of
knots in V is linearly independent. Sometimes one deliberately introduces a few linearly dependent
knot-sets to model splines with continuity less than C™1.

We can allow arbitrary knot-sets if we consider a special case in our selection scheme for split sets:
if a selected split set W is linearly dependent (det(W) = 0), we arbitrarily choose a different split
set. If no suitable split set can be found then obviously V' is linearly dependent. But then [V) = ()
and hence M (z | V') = 0 by definition of equation (5).

10



7.2 Domains in R?

Another important restriction is that the algorithm is still limited to domains in IR?. Lifting this
restriction to higher dimensional spaces is straightforward, although it requires more work than
the previous generalization.

The generalizations of determinants, barycentric determinants, barycentric coordinates and the
half-open convex hull are straightforward. Therefore, we only explicitly give those generalizations
that affect our algorithm.

Definition 7.1 [s-variate simplex splines] For domains in IR?, simplex splines are defined over
sets of at least s + 1 points in IR®. The recursive equation then becomes:
(0 zg[V)

1 _
Mz V) =+ Tdet(VY] |[V]=s+1land z€[V) 14)

i)‘i(m|W)M(m|V\{wi}) [V[>s+1

\ =0

But now W is a tuple of s + 1 knots and hence, the selection algorithm must be extended.

When evaluating a single simplex spline it is sufficient to choose the first s + 1 elements of each
knot-set, like we selected the first 3 knots in the case where s = 2 (see section 4). The number of

constant simplex splines in the graph then becomes ("}°).

Definition 7.2 [s-variate simplicial B-splines] To define simplicial B-splines we need a subspace
T of IR? that is properly divided into simploids (subspaces bounded by s+ 1 vertices). ”Properly”
means that the simploids do not intersect and that if they share an edge, a hyperplane, etc, they
share the entire edge, hyperplane, etc.

To form a basis for the B-spline we assign n+1 knots v; g, - - ., v;, to every vertex v; in the domain,
such that v; = v;¢. Furthermore, let I € 7 be a simploid in the domain and let 3 = (B, ..., 3s)
be a tuple with | 8 |= Y7, 8; =n, then VHI is defined as

VBI = {Uio,o""5Ui0,ﬁ07"'7vi5705"‘5visﬁs} = {1),']-7]9 | 0 S] S sAO S k S BJ} (15)

After generalizing the normalization factors and defining the control coefficients, the formula for
a B-spline remains exactly the same:

F(m)=> > diM(z|Vi)ch (16)
IeL| B |=n

Hence we have to compute the simplex splines V/BI for all 8 with | 8|=nand I €T.

Definition 7.3 [s-variate fingerprints] To compute s-variate B-splines we generalize the definition
of fingerprints to
Fj ={vi;5, |0<j <sA1< By} (17)

Computing the number of constant simplex splines in the graph is done in the same way as for
s = 2. The number of constant simplex splines in the graph of an s-variate B-spline of degree n is

R (W GO GO

i=1 k=1

11



which is a generalization of equation 13.

Note that the algorithm described in the previous sections is exactly the special case of the general
algorithm for s = 2.

Pfeifle and Seidel [PS95] also introduced a class of spherical triangular B-splines. Since this class
of splines uses the same recursive pattern, it is also straightforward to use our algorithm for these
splines.

8 Discussion

In this paper we introduced selection schemes for the efficient evaluation of simplex- and triangular
B-splines. In contrast with previous approaches these evaluation schemes are able to deal with
splines of arbitrary degree, any number of dimensions in the domain, arbitrary (non-general)
knot-placements, and different variants of the B-splines scheme. We derived that the complexity
of algorithm for the bivariate case is O(n?) where n is the degree of the spline.

To a large extent the efficiency of the algorithm is the result of our look-up table. Grandine’s
conclusion, that searching for previously computed results is more expensive than simply re-
computing the required value, does not hold, since the graph we construct does not depend on the
point in which we evaluate the spline. Hence, we only have to look-up simplex splines during the
construction of the evaluation graph and can then evaluate the spline in any point without ever
searching the table again.

The selection schemes to obtain efficient evaluation graphs are surprisingly simple. For simplex
splines we only need to fix the order of the knots and repeatedly select the first three knots in the
knot-set. For triangular B-splines we preferably select elements from the fingerprint and complete
the split set with the first knots remaining from the knot-set using a fixed order.

The properties proved in lemma 6.1 and theorem 6.2 are not straightforward. If the ordening
of the knots would not be fixed, but for instance, would depend on the simplex spline under
consideration, the algorithm would not work as it turned out during our experiments. Also, if
we use a slightly different definition for fingerprints, e.g. Fé = {vi; 5, | 0 < j < 2}, the required
properties do no longer hold.

Since simplex splines are uniquely defined by their knot-sets, enumerating simplex splines is a
non-trivial matter. In contrast to [PS94], we avoid explicitly enumerating every simplex spline.
The enumeration scheme used by Pfeifle and Seidel could never have been sufficient, since the
number of possible names in their enumeration is less than the number of simplex splines that
occur during the evaluation of splines of higher degree. Because of this our algorithm scales up to
arbitrary degrees and arbitrary domains, and their algorithm does not.

For B-splines of degree 2 our algorithm yields the same efficient graph as Pfeifle and Seidel (see
figure 3). In [PS94] 78 pairs of barycentric coordinates are computed for each triangle. This
corresponds to 156 barycentric determinants, provided that the 3rd coordinate is computed as 1
minus the other two coordinates. However, by using our look-up table for barycentric determinants
we avoid multiple evaluation. Therefore the number of determinants actually computed by our
algorithm is the number of pairs of knots that can be chosen from the 3n + 3 knots of a B-spline,
i.e. (*%?). For n = 2 this yields only 36 determinants.

References

[Béz72] P. Bézier. Numerical Control, Mathematics and Applications. Series in Computing.
Wiley, 1972.

12



[DMS92] W. Dahmen, C.A. Micchelli, and H.-P. Seidel. Blossoming begets B-splines built better

[Fra95]

[FS93]

[Gra87]

[PS94]

[PS95]

[Sei9l]

[Tra90]

by B-patches. Mathematics of Computation, 59(199):97-115, July 1992.

Michael Franssen. Evaluation of DMS-splines. Master’s thesis, Eindhoven University of
Technology, 1995.

P. Fong and H.-P. Seidel. An implementation of triangular b-spline surfaces over arbi-
trary triangulations. Computer Aided Geometric Design, 10:267-275, 1993.

T.A. Grandine. The computational cost of simplex spline evaluation. SIAM Journal on
Numerical Analysis, 24(4):887-890, August 1987.

Ron Pfeifle and Hans-Peter Seidel. Faster evaluation of quadratic bivariate DMS spline
surfaces. Graphics Interface, pages 182-189, 1994.

R. Pfeifle and H.-P. Seidel. Spherical triangular B-splines with application to data fitting.
In F. Post and M. Gd&bel, editors, Computer Graphics Forum, volume 14, pages C89—-C96,
Maastricht, the Netherlands, August 28-September 1 1995. Blackwell Publishers.

H.-P. Seidel. Symmetric recursive algorithms for surfaces: B-patches and the de boor
algorithm. Constructive Approximation, 7:257-279, 1991.

C.R. Traas. Computation of Curves and Surfaces, chapter Practice of bivariate quadratic
simplicial splines, pages 383—422. Kluwer Academic Publishers, Dordrecht, 1990.

13



