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Abstract. This paper revisits an important, yet poorly understood,
phenomenon of genetic optimisation, namely the mixing or juxtaposi-
tioning capacity of recombination, and its relation to selection. Mixing is
a key factor in order to determine when a genetic algorithm will converge
to the global optimum, or when it will prematurely converge to a subop-
timal solution. It is argued that from a dynamical point of view, selection
and recombination are involved in a kind of race against time: the num-
ber of instances of good building blocks is quickly increased from gener-
ation to generation by the selection phase, but in order to create optimal
solutions these building blocks have to be juxtaposed by the crossover
operator and this also takes some time to occur. If the selection of build-
ing blocks goes too fast - relative to the rate at which crossover can
juxtapose or mix them - then the population will prematurely converge
to a suboptimal solution. Previous work (Goldberg, Deb & Thierens,
1993) made a first step toward a better understanding of mixing in ge-
netic algorithms, and also introduced the use of dimensional analysis in
GA modelling. In this paper we extend this work by integrating some
of the insights gained from the modelling of the dynamic behaviour of
GAs on infinite populations (Miihlenbein & Schlierkamp-Voosen, 1993;
Thierens & Goldberg, 1994; Back, 1995; Miller & Goldberg, 1995). The
resulting dimensional model quantifies the allele-wise mixing process: it
specifies the boundary in the GA parameter space between the region of
reliable convergence at one side, and the region of premature convergence
at the other. Although the model is limited to simple bit-wise mixing,
the lessons learned from it are quite general and are also valid for more
difficult, building-block based problems.

1 Introduction

Genetic algorithms are complex adaptive systems and therefore it should come as
no surprise that different modelling approaches are needed to highlight different
aspects of their behaviour. Traditional analysis of genetic algorithms - as stated
by the schema theorem - focuses on the selective growth of good building blocks
and on the destructive effects of recombination on this growth (Holland, 1975;
Goldberg, 1989). An alternative approach studies the GA convergence properties
by modelling the dynamic change of the population fitness distribution (Vose &
Liepins, 1991; Whitley, 1993; Miihlenbein & Schlierkamp-Voosen, 1993; Thierens



& Goldberg, 1994; Back, 1995; Miller & Goldberg, 1995). These analytical tools
are all quite useful but unfortunately they do not answer all the questions one
would like to get answered. For instance the analyses do not give an answer
to the important question whether a finite sized population will prematurely
converge or not, nor do they consider the effect of the different GA parameters
on this phenomenon.

In this paper we study the dynamic interaction between the selection phase
and the recombination phase. In contrast with the schema theorem analysis our
attention is now focused on the constructive capacities of recombination. It is
argued that selection and recombination are basically involved in a race against
time. Selection makes copies of the best strings and since the population size is
fixed a loss of diversity occurs. At the same time recombination has to mix or
juxtapose the good genetic material, but due to the loss of diversity it has only
limited time to achieve this. If selection goes too fast then recombination will
have not enough time to bring all the optimal alleles together and the population
will prematurely converge to a suboptimal solution.

A very useful methodology to quantify this selection-recombination race is the
so called dimensional analysis methodology (Ipsen, 1960). Dimensional analysis
tries to identify the basic dimensions or key features of a certain process and
establishes the functional relationship between them. Important key features
for genetic algorithms are the selection pressure, the recombination rate, the
population size, the string length and the building block length. The dimensional
analysis methodology was first applied to the study of GAs in (Goldberg, Deb
& Thierens, 1993) where a first step at allele-wise modelling was performed. In
(Thierens & Goldberg, 1993) the methodology was used to show the limitations
of simple genetic algorithms when they have no linkage information about the
building blocks. A general discussion of the methodological aspects and their use
for GA analysis can be found in (Goldberg, 1994). This paper extends the work
done in (Goldberg, Deb & Thierens, 1993) and builds a complete dimensional
model for allele-wise mixing by integrating some of the insights gained from the
modelling of the dynamic behaviour of GAs on infinite populations (Miihlenbein
& Schlierkamp-Voosen, 1993; Thierens & Goldberg, 1994; Béck, 1995; Miller &
Goldberg, 1995). In addition we also perform an extensive set of experiments to
check the validity of the dimensional model.

2 A Dimensional Model for Allele-Wise Mixing

The purpose of mixing analysis is to study the relationship between the key
genetic algorithm parameters that determine whether or not the optimal solu-
tion will be found in a reliable way. When a given parameter choice violates
this relationship the GA will prematurely converge to a suboptimal solution. In
this paper we look at the mixing limitations on the level of alleles, and thus
the modelling considers fitness functions with independent allele fitness contri-
butions. Two extreme cases can be considered. In the first case all allele fitness



values are equal - which gives us the well studied bit-counting function - and the
proportion of the optimal alleles increases at the same rate in the entire string.
In the second case the allele fitness values are exponentially scaled, which causes
a domino-like convergence behaviour. The optimal alleles converge sequentially
and at any time only a very limited number of genes is actually converging in the
so called convergence window. Genes outside the convergence window are either
already fully converged or they still have to start converging (Rudnick, 1992).
From the mixing point of view, the domino convergence is an easy problem: only
a few genes are actually converging at the same time and juxtaposing them is
a simple matter. The mixing task becomes much harder with equal allele values
because all genes are converging simultaneously and thus they all have to be
juxtaposed simultaneously. It has also been shown that the time complexity of
the convergence rate is of order O(v/f) for equally scaled allele values, and of
order O(?) for the exponentially scaled allele values (Thierens, 1995). Since the
convergence rate is faster for the uniform allele fitness distribution there is less
time to mix all the alleles, and thus the most difficult situation for allele-wise
mixing occurs when optimising the bit counting function. Therefore we will de-
velop a dimensional mixing model for this case. The notation used throughout
the text is summarised in table 1.

2.1 Recombination

n| population size || pc crossover probability
l string length pz | allele swapping probability
s | tournament size || p, | gene exchange probability
I (selection intensity|| r |recombination rate (= pcpr)
t.| mixing time ||p(t)| proportion optimal alleles
ts| selection time

Table 1. Notation.

We start our dimensional modelling with the analysis of the recombinative
capacity of crossover. Whether or not the GA will prematurely converge depends
on the relative speed of selection and recombination. To quantify the recombi-
nation speed we express the recombinative capacity of crossover in terms of time
or equivalently of number of generations.

First the probability that two arbitrary genes are exchanged is simply the
probability of applying the crossover operator p. times the probability p, that an
actual exchange between the two genes takes place. This exchange probability
is dependent on the type of crossover operator used. For instance for 1-point
crossover we have p, = d;;/(l —1) (with J;; the distance between the two genes),
while for parameterised uniform crossover the gene exchange probability is p, =



2p; (1 — p;) (with p, the allele swapping probability). We call the probability of
gene exchange the recombination rate r:

T = PcPr

Under repeated use of crossover, the number of generations that are needed
in expectation to exchange two arbitrary genes is thus given by 1/nr. This gene
exchange has to happen with all the [ genes, so the number of generations that
we have to apply recombination or the mixing time ¢, is proportional to:

t — 1
mocnr (1)

2.2 Selection

The speed at which selection makes the population converge is of course depen-
dent on the selective pressure and on the particular selection algorithm used. A
number of studies have derived an exact dynamical model of the convergence of
different selection algorithms for normally distributed fitness functions such as
the bit counting function (Miihlenbein & Schlierkamp-Voosen, 1993; Thierens &
Goldberg, 1994; Bick, 1995; Miller & Goldberg, 1995). For tournament selection
and (p/)) or truncation selection this model is given by:

I
p(t) =0.5(1 4+ sin(—=t + ¢
(t) ( ( i 0))
where I is the selection intensity and c¢g = arcsin(2p(0)+1) a constant dependent
on the initial proportion of optimal alleles. For a randomly initialised population
the number of generations needed to converge (p(geony) = 1) is thus given by:
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The selection time ¢t is therefore proportional to:

Note that for unscaled proportionate selection the time to convergence is given
by geonv = llogl. Clearly this is unacceptably slow and in practice unscaled
proportionate selection is never used so we will not consider it here.

2.3 Allele-wise mixing model

Now that we have a dimensional relation of both recombination and selection,
we need to combine them. When selection acts more slowly than exchange -
when t, < ts - we expect the optimal alleles to have time to be juxtaposed and
thus creating good strings which can then be given more copies by selection.
This juxtapositioning of the target alleles can then subsequently proceed until all



optimal alleles are put together. However when selection is too fast - when ¢, < ¢,
- too many copies are created of only a few good strings before recombination has
had the time to exchange the optimal alleles. As a result some alleles will not be
part of strings that receive extra copies and their proportion in the population
will decline until they finally disappear. A lack of good mixing thus results in
premature convergence.

To quantify this mixing failure we interrelate the previous dimensional re-
lations (Equations 1 and 2) for the recombination and selection process. If we
want to avoid a mixing failure we need t, < t, or:
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where ¢ is a constant factor since dimensional analysis gives us only the
functional relationship between the parameters. Rearranging the selection and
recombination parameters at one side and the size parameters at the other side
we obtain the following mixing model:
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3 Experimental verification

The use of dimensional modelling allows us to build simple analytical models that
expresses the functional relationship between the key parameters. For instance
the model tells us that in order to maintain proper convergence the minimal
population size needs to be increased by a factor v/2 whenever the string length
is doubled. Dimensional analysis forces us to take a birds eye view on the whole
convergence process. It is therefore extremely important to validate the model
with experimental results. Since we have four independent variables (population
size n, string length [, selection pressure s and the recombination rate r = p.p;.)
we have (3) = 6 functional relations between two variables while keeping the
other independent variables fixed. Exhaustively performing the 6 sets of exper-
iments assures us of the correctness of the dimensional model. In the following
experiments the results are obtained by doing 20 independent runs for all the
parameter combinations shown. We call the experiments a success whenever in
at least 19 of these 20 runs the population converged to the optimal string. At
one side of the curve we have reliable convergence to the optimal solution, while
at the other side premature convergence occurs. Although the 19-out-of-20 suc-
cess criterion might seem rather arbitrary, the particular choice has no influence
on the functional relationships. The value of the constant ¢ in the dimensional
model might change a little bit, but this is of no importance. All experiments are
carried out with tournament selection with tournament size s. Since the selection
intensity I is approximately proportional to the tournament size s (In s ~ v/2I),
we can quantify the selection pressure by the tournament size as was done in
(Goldberg, Deb & Thierens, 1993).



1. string length vs. selection pressure

First we look at the functional relation between the string length [ and
the selection pressure s. We fix the population size n = 200, the crossover
probability p. = 1.0 and the disruption probability p, = 0.3. We use parame-
terised uniform crossover so the crossover swapping probability is p, = 0.18
(pr = 2p,(1 — p;)). Plugging these values into the mixing model (Equa-
tion 3) gives us a prediction of the boundary between successful and failing
convergence:

vi= ¢

Ins

Figure 1 shows the data and the corresponding fitted curve
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The predicted functional relation and the data coincide quite well and the
corresponding value of the constant factor in the dimensional model is ap-
proximately: ¢ = 0.298 .
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Fig. 1. Dimensional relation between the selection pressure and the string length.

2. disruption probability vs. string length
The second experiment checks the relation between the disruption probabil-
ity p, and the string length . The population size n = 200, the selection
pressure s = 10 and the crossover probability p. = 1.0. Note that the choice
of the values of the fixed variables is such that the resulting mixing boundary
falls within a reasonable range of the varying variables.



The predicted relation is now :
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Figure 2 shows a fitted curve equal to

pr = 0.045V1

which gives us for the constant factor: ¢ = 0.256 .
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Fig. 2. Dimensional relation between the string length and the disruption factor.

The experimental data shows good agreement although for very low string
lengths (I < 30) the necessary disruption probability is actually a little bit
lower than predicted. This can be understood however if we realize that for
such small string lengths the search problem becomes almost trivial.
3. crossover probability vs. selection pressure

For the relation between the selection pressure and the crossover probability
we take the string length [ = 100, the population size n = 200 and the dis-
ruption probability p, = 0.5, the predicted functional relation now becomes:
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Figure 3 shows the experimental results and the fitted curve:

DPc

pe =0.35Ins

which results in a constant factor : ¢ = 0.286 .

For large values of the selection pressure s the GA behaviour is no longer
determined by the mixing but by the cross-competition between the genes
(Goldberg, Deb & Thierens, 1993).
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Fig. 3. Dimensional relation between the selection pressure and the crossover proba-
bility.

4. population size vs. disruption probability
The fourth set of experiments establishes the relation between the population
size n and the disruption probability p,. Taking for the string length [ =
100, the selection pressure s = 4 and the crossover probability p. = 1 the
predicted relation is:

13.86
n=
C Pr

Figure 4 shows the experimental results and the fitted curve:

50
n=—
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and a corresponding constant factor: ¢ = 0.277 .
5. population size vs. selection pressure
For a string length [ = 100, crossover probability p. = 0.75 and disruption
probability p, = 0.20 (= p, = 0.11) the relation between the population
size n and the selection pressure s is:
_ 66.67

n= Ins
c

Experimental results (Figure 5) are

n =236Ins

or ¢ = 0.282 . Again we notice that for very large values of the selection
pressure s cross-competition starts to influence the convergence results.
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Fig. 4. Dimensional relation between the disruption factor and the population size.
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Fig. 5. Dimensional relation between the selection pressure and the population size.

6. population size vs. string length
Finally the last set of experiments looks at the relation between the pop-
ulation size and the string length. Fixing the selection pressure s = 2, the
crossover probability p. = 1.0 and the disruption probability p, = 0.1(=
pr = 0.18) the dimensional model predicts:

n:E l

Experimental results are shown in Figure 6. The fitted curve is:



n=27.3V1

which gives us for the constant factor: ¢ = 0.2821.
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Fig. 6. Dimensional relation between the string length and the population size.

4 Conclusion

In this paper we have derived a dimensional model of allele-wise mixing. This
model gives the functional relationship between the key genetic algorithm pa-
rameters and determines a boundary between reliable convergence and prema-
ture convergence. From a dynamical viewpoint, selection and recombination are
involved in a times race, and when selection goes too fast relative to the recombi-
nation or mixing time, then the GA will fail to converge to the global optimum.
The model quantifies the mixing boundary in terms of the selection pressure,
the recombination rate, the population size, and the string length. Experimental
results show good agreement with the predicted functional relations.

! The 6 fitted curves gave an approximate value to the constant factor of respectively
¢ = {0.298, 0.256, 0.286, 0.277, 0.282, 0.282}. Considering the presence of the
constant /7 in the normal distribution modelling of GA convergence it is interesting
to note that: 1/2,/7 = 0.282. However further analysis would be needed to test the
sensitivity of the constant value on a number of factors, such as the choice of success
criterion and the curve fitting method.
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