A 3-approximation algorithm for the \(k \)-level uncapacitated facility location problem

Karen Aardal* Fabián A. Chudak† David B. Shmoys‡

Abstract

In the \(k \)-level uncapacitated facility location problem, we have a set of demand points where clients are located. The demand of each client is known. Facilities have to be located at given sites in order to service the clients, and each client is to be serviced by a sequence of \(k \) different facilities, each of which belongs to a distinct level. There are no capacity restrictions on the facilities. There is a positive fixed cost of setting up a facility, and a per unit cost of shipping goods between each pair of locations. We assume that these distances are all nonnegative and satisfy the triangle inequality. The problem is to find an assignment of each client to a sequence of \(k \) facilities, one at each level, so that the demand of each client is satisfied, for which the sum of the setup costs and the service costs is minimized.

We develop a randomized algorithm for the \(k \)-level facility location problem that is guaranteed to find a feasible solution of expected cost within a factor of 3 of the optimum cost. The algorithm is a randomized rounding procedure that uses an optimal solution of a linear programming relaxation and its dual to make a random choice of facilities to be opened. We show how this algorithm can be derandomized to yield a 3-approximation algorithm.

1 Introduction

In the classical single-level uncapacitated facility location problem, we want to decide where to locate facilities, and to which open facility each client should be assigned, so as to minimize the total cost of setting up the facilities and of servicing the clients. In the \(k \)-level uncapacitated facility location problem, each client must be serviced by a sequence of \(k \) different facilities. This problem has applications, for instance, in more complex logistical systems where central depots ship goods through smaller depots, and further down the hierarchy, to the clients. We refer to Kaufman, Vanden Eede & Hansen [10], Van Roy & Erlenkotter [14], Tcha & Lee [13], Barros [2], and Aardal, Labbé, Leung & Queyranne [1] for further applications of multi-level location problems, as well as optimization algorithms and heuristic approaches. Since the \(k \)-level problem is \(\mathsf{NP} \)-hard even if \(k = 1 \), an approximation algorithm is useful in order to quickly find feasible solutions of good quality.

It was observed already in the 1970's that the linear relaxation of the so-called "strong" integer programming formulation of the 1-level problem provides values close to the integer optimum value,

* aardal@cs.uu.nl. Department of Computer Science, Utrecht University. Research partially supported by the ESPRIT Long Term Research Project nr. 20244 (Project ALCOM-IT: Algorithms and Complexity in Information Technology), by the project TMR-DONET nr. ERB FMRX-CT98-0202, both of the European Community, by NSF grant CCR-9307391 through David B. Shmoys, Cornell University, and by NSF through the Center for Research on Parallel Computation, Rice University, under Cooperative Agreement No. CCR-9120008.
† chudak@cs.cornell.edu. IBM TJ Watson Research Center, Yorktown Heights, NY 10598. This research was done while the author was a graduate student at the School of Operations Research & Industrial Engineering, Cornell University, Ithaca, NY 14853. Research partially supported by NSF grants DMS-9505155 and CCR-9700029 and by ONR grant N00014-96-1-0050.
‡ shmoys@cs.cornell.edu. School of Operations Research & Industrial Engineering, Cornell University. Research partially sponsored by NSF grants CCR-9700029 & DMS-9505155 and ONR grant N00014-96-1-0050.
and so it was natural to hope to find an approximation algorithm with a good performance guarantee, based on this relaxation. In practice, the dual-ascent based heuristic by Erlenkotter [7] produces excellent solutions, but in the worst case this algorithm performs arbitrarily poorly. We shall say that an algorithm for a particular optimization problem is a p-approximation algorithm if it is a polynomial-time algorithm that is guaranteed to find a feasible solution of objective function value within a factor of p of the optimum. For the 1-level problem where the objective is to maximize the “profit” of servicing the clients, a $(1 - \frac{1}{e})$-approximation algorithm was developed by Cornuéjols, Fisher & Nemhauser in 1977 [5], but for the version where we want to minimize the total cost, a constant performance guarantee remained elusive until recently. In 1997, Shmoys, Tardos & Aardal [12] considered the special case in which the service costs satisfy the triangle inequality, and gave a 3.16-approximation algorithm based on the linear relaxation for the 1-level problem. This performance guarantee was improved by Guha & Khuller [9] to 2.408, and later by Chudak & Shmoys [3, 4], who presented a 1.736-approximation algorithm. These algorithms are based on the linear relaxation as well. We give a 3-approximation algorithm for the k-level facility location problem, which is the first constant performance guarantee for any $k \geq 2$. (This improves on a preliminary version of this result, a 3.16-approximation algorithm for just the 2-level case [12]; the other results of this conference paper [12] will be published in a separate journal paper.) For a more extensive overview of algorithmic results for various facility location problems we refer to Cornuéjols, Nemhauser & Wolsey [6], Shmoys et al. [12], and Chudak [3].

2 The k-level uncapacitated facility location problem

Let D be the set of demand points. Each client $j \in D$ must be assigned to precisely one facility at each of the k levels. Let F^l be the set of sites where facilities on level l, $1 \leq l \leq k$ may be located. We denote the set of all such sites, $\cup_{l=1}^k F^l$, by F. The cost of setting up facility at site i is f_i. We assume that $f_i > 0$ for each $i \in F$. Whenever we use the the expression “facility i” we mean “facility at site i”. The cost of shipping between points $i, j \in F \cup D$ is equal to c_{ij}. Throughout this paper, we make the following assumptions on the service costs:

- $c_{ij} \geq 0$, for each $i,j \in F \cup D$;
- $c_{ij} = c_{ji}$, for each $i,j \in F \cup D$, i.e., the service costs are symmetric,
- $c_{ik} \leq c_{ij} + c_{jk}$, for each $i,j,k \in F \cup D$, i.e., the service costs satisfy the triangle inequality.

We shall use p to denote a sequence of facilities $i_1 \in F^1, i_2 \in F^2, \ldots, i_k \in F^k$, and shall refer to p as a path of facilities. The set of all possible paths is denoted by P. Each client must be assigned to precisely one path $p \in P$. The total service cost incurred by assigning client j to path $p = (i_1, i_2, \ldots, i_k)$ is equal to $c_{pj} = c_{i_1,i_2} + c_{i_2,i_3} + \cdots + c_{i_{k-1},i_k} + c_{i_k,j}$.

Let x_{pj} be equal to 1 if client j is assigned to path p, and 0 otherwise. Furthermore, let y_{it} be equal to 1 if facility i_t is open at level l. If we relax the constraints that $x_{pj} \in \{0,1\}$, for each $p \in P$ and $j \in D$, and $y_{it} \in \{0,1\}$, for each $i \in F^l$, $l = 1, \ldots, k$, we obtain the following linear programming relaxation of the k-level uncapacitated facility location problem:

$$z_{LP} = \min \sum_{l=1}^k \sum_{i_t \in F^l} f_{i_t} y_{i_t} + \sum_{p \in P} \sum_{j \in D} c_{pj} x_{pj}$$

subject to

$$\sum_{p \in P} x_{pj} = 1,$$

for each $j \in D$, \hspace{1cm} (2)

$$\sum_{p : p \ni i_t} x_{pj} - y_{i_t} \leq 0,$$

for each $j \in D$ and $i_t \in F^l$, $l = 1, \ldots, k$, \hspace{1cm} (3)

2
\[x_{pj} \geq 0, \quad \text{for each } p \in P, \text{ and } j \in D, \quad (4) \]
\[y_{it} \geq 0, \quad \text{for each } i_t \in F^l, \ l = 1, \ldots, k. \quad (5) \]

In the integer programming formulation, constraints (2) impose that each client is assigned to precisely one path. To interpret constraints (3), fix a client \(j \), and a facility \(i_t \) on level \(l \). No assignment of client \(j \) to a path using facility \(i_t \) is possible unless facility \(i_t \) is open. If \(y_{it} \) is equal to 0, then the sum of all assignment variables for client \(j \) to use paths containing facility \(i_t \) must also be 0. The upper bounds \(x_{pj} \leq 1 \) are not necessary in the model due to the combination of constraints (2) and (4). Similarly, we do not need to state the constraints \(y_{it} \leq 1 \) explicitly since the sum in constraints (3), \(\sum_{p \in P} x_{pj} \), is bounded from above by the sum in constraints (2), \(\sum_{p \in P} x_{pj} = 1 \), and since we assume that the fixed cost \(f_{it} > 0 \), for each \(i_t \in F^l \).

Let \(v_j \) and \(w_{i_t,j} \) denote the dual variables corresponding to the primal constraints (2) and (3), respectively. The dual problem corresponding to the linear programming relaxation is given below:

\[z_{LP} = \max \sum_{j \in D} v_j \]

subject to

\[v_j - \sum_{i \in P} w_{i_t,j} \leq c_{pj}, \quad \text{for each } p \in P, \text{ and } j \in D, \quad (7) \]
\[\sum_{j \in D} w_{i_t,j} \leq f_{it}, \quad \text{for each } 1 \leq l \leq k, \text{ and } i_t \in F^l, \quad (8) \]
\[w_{i_t,j} \geq 0, \quad \text{for each } 1 \leq l \leq k, \ i_t \in F^l, \text{ and } j \in D. \quad (9) \]

Since the dual has a polynomial number of variables, we can use the ellipsoid algorithm to solve this linear program in polynomial time, given a polynomial-time separation algorithm [8]. In other words, we must design a polynomial-time algorithm that, given \((v, w)\), either concludes that \((v, w)\) is feasible, or else outputs a constraint that is violated by it. Constraints (8) can be checked explicitly (since there are only a polynomial number of them). For each \(j \in D \), the constraints (7) can be checked by a straightforward shortest path computation. Since the dual linear program can be solved in polynomial time, the primal can also be solved in polynomial time.

In the analysis of our algorithm, we will use the following lemma in order to bound the value of the service cost of a feasible integer solution.

Lemma 1 Let \((\bar{z}, \bar{y})\) and \((\bar{v}, \bar{w})\), respectively, be optimal solutions to the primal and dual linear programs. Then \(\bar{x}_{pj} > 0\) implies that \(c_{pj} \leq \bar{v}_j\), for each \(p \in P \) and \(j \in D \).

Proof: Consider the following set of complementary slackness conditions:

\[\bar{x}_{pj}(c_{pj} - \bar{v}_j + \sum_{i \in P} \bar{w}_{i_t,j}) = 0, \quad \text{for each } p \in P, \text{ and } j \in D, \quad (10) \]

which must hold for any pair of optimal solutions to the linear program and its dual. If \(\bar{x}_{pj} > 0\), then \(c_{pj} - \bar{v}_j + \sum_{i \in P} \bar{w}_{i_t,j} = 0\), or equivalently, \(c_{pj} + \sum_{i \in P} \bar{w}_{i_t,j} = \bar{v}_j\). Since \(\bar{w}_{i_t,j} \geq 0\), we have that \(c_{pj} \leq \bar{v}_j\). \(\blacksquare\)

3 The algorithm

We next present a randomized algorithm that produces feasible solutions of expected value no more than 3 times the optimum value. After the description of the algorithm, we prove the claimed performance guarantee, and then describe how the algorithm can be derandomized.
Description of the algorithm. We shall refer to the algorithm described below as *Random Path*. We start by solving the linear programs (1) – (5) and (6) – (9) to optimality. We denote the optimal solutions by (\vec{x}, \vec{y}) and (\bar{v}, \bar{w}), respectively. The aim of our algorithm is to construct so-called clusters of facility and demand locations. Each cluster consists of a path of facility locations, and a set of clients that are serviced uniquely by this path. Each cluster is centered at a certain demand point, as described below. During the execution of our algorithm we maintain:

1. A feasible fractional solution (x, y). Initially, we set $(x, y) := (\vec{x}, \vec{y})$.
2. A set C of clusters. Initially, we set $C := \emptyset$.
3. A set \tilde{D} of demand points that are not part of any cluster in C. Initially, $\tilde{D} := D$.

In each iteration, we choose a client $j \in \tilde{D}$ with minimum value of $\tilde{v}_j + \tilde{\varepsilon}_j$, where $\tilde{\varepsilon}_j = \sum_{p \in P} c_{p,j} x_{pj}$. Let j_t denote the client chosen in iteration t. Client j_t is the center of the cluster C_t, which is computed in the following way. Let P_t be the set of paths of facilities that service client j_t by any positive fraction, i.e., $P_t = \{ p \in P : x_{pj_t} > 0 \}$. Also, let $F^l_t = \{ i \in F^l : i \text{ belongs to at least one path in } P_t \}$, for each $l = 1, \ldots, k$, and $F_t = \cup_{l=1}^k F^l_t$. Let $T_t = \{ j \in D : \exists x_{pj} > 0 \text{ such that } p \text{ contains at least one facility in } F_t \}$. Notice that $j_t \in T_t$. For an illustration of the sets P_t and T_t, we refer to Figure 1. Let C_t be the set of all clients in T_t and all facilities in F_t, i.e., $C_t = T_t \cup F_t$.

![Figure 1: The paths in P_t, the client j_t, and the other clients in T_t.](image)

Next, choose a path $p \in P_t$ with probability x_{p,j_t}. Call the chosen path p_t. Round all variables $\{y_{ik}\}_{i \in P_t}$ to 1 and all variables $\{y_{ik}\}_{i \in F_t - p_t}$ to 0. We assign each client in T_t to the path p_t; that is, we set $x_{pj} = 1$ for each $j \in T_t$ and $x_{pj} = 0$ for each $j \in T_t$ and $p \in P_t - \{p_t\}$. The situation after rounding is illustrated in Figure 2. We now set $\tilde{D} := \tilde{D} - T_t$ and $C := C \cup \{C_t\}$. We iterate this
Figure 2: The solution created by rounding within the cluster C_t.

process until $\bar{D} = \emptyset$. Notice that each client belongs to precisely one cluster in \mathcal{C} when the algorithm terminates.

We are now ready to prove the following theorem.

Theorem 2 The algorithm Random Path runs in polynomial time, and produces a feasible integer solution whose expected total cost is no more than 3 times the optimum cost.

Proof: We first show that our algorithm produces a feasible integer solution. In the rounding step of iteration t we create a cluster by first choosing a certain client j_t as a center. Then we randomly choose one of the fractional paths $p_t \in P_t$. Each variable $y_{i_t} : i_t \in p_t$ is set to 1, and so all facilities in path p_t are open. Finally, we assign all clients in the set T_t to the path p_t. The assignment of the clients in T_t to the path p_t is integer and feasible. No client in $\bar{D} - T_t$ is fractionally serviced by any of the facilities in F_t, by definition, and so they are unaffected by the current rounding step. Hence, a feasible fractional solution (x, y) is maintained during the execution of the algorithm. Upon termination of the algorithm the solution (x, y) is integral.

We now need to prove that the algorithm has the claimed performance guarantee. Consider the cluster C_t created in iteration t. Although the algorithm updates the solution (x, y) throughout its execution, at the start of iteration t, we have that $x_{p_j} = \bar{x}_{p_j}$, for each $p \in P_t$ and $j \in \bar{D}$, and $y_{i_t} = \bar{y}_{i_t}$, for each $i_t \in F_t^l$, $l = 1, \ldots, k$. Hence, the expected fixed cost incurred in iteration t is equal to

$$
\sum_{p \in P_t} \sum_{i \in p} f_{i} \bar{x}_{p, j} = \sum_{l=1}^{k} \sum_{i_t \in F_t^l} f_{i_t} \left(\sum_{p \in P_t} \sum_{\bar{x}_{p, j}} \right) \leq \sum_{l=1}^{k} \sum_{i_t \in F_t^l} f_{i_t} \bar{y}_{i_t},
$$

(11)

where the inequality holds due to constraints (3).

Furthermore, the expected service cost for client j_t is equal to

$$
\sum_{p \in P_t} c_{p, j_t} \bar{x}_{p, j_t} = \bar{c}_{j_t},
$$

(12)
To obtain a bound on the expected service cost for each client \(j \in C_t, j \neq j_t \), we need to observe what happens in the rounding step. Since client \(j \) belongs to the set \(T_t \), it is fractionally serviced through at least one facility that is also fractionally servicing the center \(j_t \) of cluster \(C_t \). Let \(\tilde{p} \) be the path that fractionally services \(j \) and that has at least one facility in common with a path \(p' \in P_t \). Let facility \(i_q \) be the facility with largest level index that belongs to both paths \(\tilde{p} \) and \(p' \); see Figure 3. After rounding, client \(j \) is completely serviced by path \(p_t \). Due to the triangle inequality we can bound the cost \(c_{p_t,j} \) from above by the sum of the cost of traversing \(\tilde{p} \) from \(j \) to \(i_q \), and the cost of traversing \(p' \) from \(i_q \) to \(j_t \), and the cost of traversing all of \(p_t \) from \(j_t \). Hence, by linearity of expectation and the fact that the costs are nonnegative and symmetric, we can bound from above the expected service cost for \(j \) by

\[
c_{\tilde{p}j} + c_{p',j_t} + \bar{c}_{j_t} \leq \bar{v}_j + \bar{v}_{j_t} + \bar{c}_j, \tag{13}
\]

where the first inequality follows from Lemma 1, and the second inequality follows from the fact that the choice of client \(j_t \) ensures that \(\bar{c}_{j_t} + \bar{v}_{j_t} \leq \bar{c}_j + \bar{v}_j \).

If we combine the expressions (11)-(13), then we conclude that the total expected cost for all clusters in \(C \) is bounded by

\[
\sum_{l=1}^{k} \sum_{i_t \in F_t} f_{i_t} \bar{y}_{i_t} + \sum_{j \in D} (\bar{v}_j + 2\bar{v}_j) = 2 \sum_{j \in D} \bar{v}_j + \sum_{l=1}^{k} \sum_{i_t \in F_t} f_{i_t} \bar{y}_{i_t} + \sum_{j \in D} \sum_{p \in P} c_{pj} \bar{x}_{pj} = 3z_{LP}.
\]

The running time of the algorithm is dominated by the time required to solve the linear programming relaxation and its dual. As noted above, these linear programs can be solved in polynomial time by the ellipsoid algorithm.

Derandomizing the algorithm. Since the expected cost of cluster \(C_t \) created in iteration \(t \) by the algorithm *Random Path* is bounded by

\[
\sum_{l=1}^{k} \sum_{i_t \in F_t} f_{i_t} \bar{y}_{i_t} + \sum_{j \in F_t} (\bar{c}_j + 2\bar{v}_j), \tag{14}
\]
there must exist a path in $p_i \in P_t$ such that the cost of cluster C_i obtained by choosing path p_i is no more than the bound on the expected cost (14). Hence, in a derandomized version of our algorithm, we can choose any path in iteration t that yields a cost of cluster C_i that is less than or equal to the bound (14). One specific possibility is to evaluate the cluster cost for each path in P_t, and take the path that yields the minimum cost. If, for example, we assume that the solution (\bar{x}, \bar{y}) is an extreme point solution of this linear program, then the number of positive variables x_{ij} is at most the number of constraints in this linear program. Thus, there are only a polynomial number of paths to consider in each iteration.

Theorem 3 The derandomized version of Random Path is a 3-approximation algorithm.

4 Discussion

An interesting open question is whether the techniques used by Chudak & Shmoys to improve the performance guarantee for the 1-level problem can be extended to the k-level problem as well. In our algorithm, as well as in the algorithm of Shmoys, Tardos & Aardal [12], the value of the fixed costs of the integer feasible solution does not increase, compared to the linear programming solution, so the increase in total cost over z_L is all due to the bound on the service cost. Chudak & Shmoys gave a more refined rounding procedure so that the service cost and the facility cost are better balanced.

A related question is to obtain a tight bound on the duality gap, the worst-case ratio between the integer and fractional optimal values, for the k-level problem (and also the 1-level problem), given different assumptions on the objective function.

It would also be interesting to investigate how our algorithm performs in practice. The most substantial obstacle is the solution of the linear programming relaxation, but it would be interesting to see if a cutting-plane approach to solving the dual linear program (and hence the primal) would be possible with reasonable computation times. Such an approach might be further enhanced by preprocessing the input to reflect the fact that most (expensive) paths are unlikely to be used in an optimal primal solution. This approach has been successful, for example, in computational work on the traveling salesman problem, where one typically includes only the ten shortest edges from each vertex of the underlying graph in the initial formulation. Once this initial linear program has been solved to optimality, one can compute the reduced cost of every excluded variable to verify whether the current solution is optimal with respect to the complete set of variables.

Acknowledgments

We wish to thank J.K. Lenstra and A.M. Verweij for useful comments on a preliminary version of this manuscript.

References

