
Robust Genetic Algorithms for High Quality Map Labeling

Steven van Dijk Dirk Thierens Mark de Berg �

December 9, 1998

Abstract

The problem of placing labels on maps has been around for about twenty years and has
proven to be a diÆcult one. A variety of methods has been proposed to generate good
labelings, with a wide range of results. This paper will propose a stochastic approach using
Genetic Algorithms to solve the problem of placing labels for point features. This method
generates high quality labelings and is robust in the sense that it is built to be extendible to
other problem instances (involving point features) without dramatic changes of the algorithm
or much loss of quality.

�Department of Computer Science, Utrecht University, P.O. Box 80089, 3508 TB Utrecht, The Netherlands.
Email: fsteven, dirk, markdbg@cs.uu.nl

1

CONTENTS 2

Contents

1 Introduction 5

2 The map labeling problem 6
2.1 Properties of maps . 8

3 An overview of methods for map labeling 10

4 Genetic algorithms for map labeling 14
4.1 Introduction and overview . 14

4.1.1 Exploitation and the elitist recombination scheme 17
4.1.2 Masks and multi-masks . 19

4.2 Outline of the GA for map labeling . 20
4.3 Initialisers . 20
4.4 Fitness function . 23
4.5 Exploration . 27

4.5.1 Recombination . 27
4.5.2 Dealing with interaction . 30

4.6 Focusing on con
icts only . 32
4.7 Design of the loGA | summary . 36

5 Comparison experiments 36
5.1 Implementation . 37

5.1.1 The lazy hillclimber. 37
5.1.2 The simulated annealing algorithm. 37
5.1.3 The copyGA. 38
5.1.4 The loGA. 39

5.2 Quality . 39
5.2.1 The lazy hill climber versus the loGA . 39
5.2.2 The loGA versus the simulated annealing algorithm 41
5.2.3 The loGA versus the copyGA . 44

5.3 Speed . 46
5.4 Concluding observations . 46

6 Robustness of the GA 48

7 Conclusion 49

Acknowledgements 49

References 49

A Data�les 51

List of Figures

1 The map labeling problem. 5
2 Possible positions for the label of a point feature. 5
3 Additional positions for the label of a point feature. 5
4 An example of a map which is a solution for the label placement problem. 7
5 The rivals of the central point p. 8
6 A map labeled with its connected components numbered (compare with �gure 4). . 9
7 A comparison of the map labeling algorithms. 11
8 Leaving a local optimum can make the solution temporarily worse. 12

LIST OF TABLES 3

9 One point crossover. Two building blocks are accentuated. 14
10 The algorithm for the standard GA. 16
11 The elitist recombination scheme. 18
12 Comparison between roulette-wheel selection and the elitist recombination scheme. 19
13 One-point crossover. 19
14 Two-point crossover. 19
15 An example of masking. 20
16 An example of disruption. 21
17 Di�erence in initialisers. 22
18 The di�erence between the �rst two �tness functions. 25
19 The bad subsolutions of the parents are recombined to produce good subsolutions

in the children. 27
20 A schema and some matching strings. 28
21 Crossover generates new con
icts. 29
22 Comparison of di�erent crossover operators. 29
23 The e�ect of repairing con
icts. 30
24 Slot�lling: determine free slots and choose from them. 31
25 Three runs of the GA with di�erent optimisers . 32
26 A map of twohundred cities which was labeled with preferences and automatic label

selection. 33
27 Crossover without (on the left) and with (on the right) focus. 34
28 The di�erence in speed with focus turned on or o�. 34
29 The di�erence in speed with focus turned on or o� for a large map. 35
30 The di�erence in speed with focus turned on or o� for the SA. 35
31 The use of masks with the mask crossover. 38
32 A comparison of the loGA with the lazy hill climber. 40
33 A comparison of the lazy hill climber with di�erent options. 40
34 The di�erence between solutions from the hill climber and the loGA. 40
35 Slot-�lling can fail. 41
36 The lazy hillclimber compared with the loGA. 41
37 The simulated annealing algorithm compared with the loGA. 42
38 The simulated annealing algorithm compared with the loGA for the problem with

label selection. 43
39 The simulated annealing algorithm compared with the loGA using an eight position

model. 43
40 The loGA compared against the copyGA. 44
41 Several approaches of the copyGA compared with original results. 45
42 The copyGA without selection. 46
43 Time needed by the algorithms in the comparison experiments - most time consum-

ing algorithms. 47
44 Time needed by the algorithms in the comparison experiments - least time consum-

ing algorithms. 47
45 A plot of the running times. 48
46 A labeling of major cities in the USA. 50

List of Tables

1 The population sizes used for various map densities. 37
2 Settings of the runs used { 1. 53
3 Settings of the runs used { 2. 54
4 Di�erences in quality for maps of size 100. 54
5 Di�erences in quality for maps of size 150. 55
6 Di�erences in quality for maps of size 200. 55

LIST OF TABLES 4

7 Di�erences in quality for maps of size 250. 56
8 Di�erences in quality for maps of size 300. 56
9 Di�erences in quality for maps of size 350. 57
10 Di�erences in quality for maps of size 400. 57
11 Di�erences in quality for maps of size 450. 58
12 Di�erences in quality for maps of size 500. 58
13 Di�erences in quality for maps of size 750. 59
14 Di�erences in quality for maps of size 1000. 59
15 Di�erences in quality for maps of size 1500. 60

1 INTRODUCTION 5

1 Introduction

Onetown
Twotown
Threetown
Fourtown
Fivetown

Onetown
TwotownThreetown

Fourtown Fivetown

Figure 1: The map labeling
problem.

Map labeling is the problem of determining a (near)optimal
placing of labels (such as names of cities, rivers etc.) on a given
input map (see �gure 1). The input map can consist of point
features such as cities or measure points, line features such as
rivers or borders, and area features such as countries or forests.
Each feature has an associated name (which is usually called a
label), which can be placed in an in�nite number of ways on
the map. A good labeling has to adhere to a number of crite-
ria which ensure the map is readable, aesthetically pleasing and
gives easy access to the information it is o�ering [11]. Cartog-
raphers spend a lot of time on labeling maps to satisfy these
criteria. However, since geographical information systems are

becoming more widely used every day, a need has arisen to automate this process in such a way
that high quality maps can be generated with a minimum of user control. After all, users will
want to be able to compose their own maps and it is not feasible to ask the help of a professional
cartographer for such maps.

Figure 2: Possible positions for
the label of a point feature.

In this paper we make several simpli�cations of the problem
described above. First of all, we concentrate on point features.
Second, each label is considered to be an axis parallel rectangle
that can be placed in one of four or eight positions around the
point feature (see �gures 2 and 3). We will use several placement
models. If the allowed positions are as shown in �gure 2, we are

using the four-position model. If the positions from �gure 3 are also allowed, we are using the
eight-position model. Finally, we will try to maximise the number of labels without overlap. We
will for the moment largely ignore the other criteria that are needed for making a good map.
It should however be noted that in this paper we will build a general framework in which other
criteria can be incorporated easily. We will have more to say about this later (in section 6).

Figure 3: Additional positions for the label of
a point feature.

The problem as it stands (minimise the num-
ber of overlapping rectangles considering �xed
possible positions) is diÆcult enough. In fact, it
is NP-complete [14], which means that it is not
possible to construct an eÆcient (that is, poly-
nomial time) algorithm which solves the problem

unless P=NP which is generally not believed to be the case. We are therefore at the mercy of
heuristics to try �nding good results in reasonable time. Recently, a comparative study has been
done for map labeling algorithms by Christensen et al. [2]. They described map labeling algorithms
that have appeared in the literature and then compared them against each other and a stochastic
algorithm (based on simulated annealing) of their own devise. They described a framework with
a way of generating maps on which the algorithms were tested. Their conclusion suggests that
stochastic algorithms are the most promising approach for producing high quality maps, because
they do not get `stuck' in diÆcult problem instances due to their element of stochasticity. Verner
et al. [19] describe another stochastic algorithm based on genetic algorithms, which was also tested
in the framework which Christensen et al. set up. A short summary of these algorithms and how
they compare against each other is given in section 3. We describe a new stochastic algorithm,
also based on genetic algorithms, which however has quite a di�erent angle than the algorithm of
Verner et al.

The algorithm which is presented in this paper generates high quality labelings for maps con-
sisting of point features. The algorithm can also be easily extended to handle other problem
instances involving point features, such as problems which allow labels to be deleted, have pref-
erences for label positions, consider di�erent priorities for di�erent points or have di�erent label

2 THE MAP LABELING PROBLEM 6

sizes for di�erent points. It is also our aim to extend this method to handle line and area features
as well in further research.

Besides solving the map labeling problem for point features satisfactorily, a philosophy for
engineering genetic algorithms for GIS applications is explained, which involves the notion of
robustness. Genetic algorithms often have lots of options that have to be `tuned', which is a
lengthy process. The genetic algorithm presented in this paper is robust in the sense that it
performs well without the need for setting options by trial and error.

This paper is organised as follows. First (section 2) a bit more is said about the map labeling
problem and why it is diÆcult. Then (in section 2.1) we will brie
y say something about the
properties maps have and how this in
uences the problem diÆculty. The articles of Christensen
et al. and Verner et al. are brie
y summarised in section 3 to give a comprehensive picture of the
state of a�airs at the moment, and how the algorithms compare against each other. In section 4 we
will start with describing the workings of genetic algorithms in section 4.1 and then describe the
new genetic algorithm in detail. We will compare it against the other algorithms in the framework
of Christensen et al. in section 5. The notion of robustness is explained throughout the paper,
and in section 6.

A note on presented experimental results. In this article numerous experimental results
are presented. With the exclusion of the maps from �gures 26 and 46, all maps were generated
randomly according to a procedure explained in section 5. For comparisons that investigate the
e�ect of changing a part (for example, an operator) of the GA, �ve maps of 500 cities were
randomly generated (see �gure 4) which were used in all these experiments (shown in �gures 12,
17, 22, 23, 25, 28, 29, 32, 33, and 42). Every graph is the average of �ve runs done on those
maps. In the key of each �gure every run is speci�ed by a name (like \r001") and in Appendix
A the various parameters used in these runs are enumerated. For the �gures which show these
runs, the average �tness of the population was plotted unless otherwise speci�ed (the legend says
`max' when the run plots the �tness of the best individual). Graphs stop when the population is
deemed converged.

The �gures in which the results of di�erent algorithms are compared (like 40) the variation
is not plotted in order to avoid crowding the picture too much. Instead, the data values and
standard deviation are given in Appendix A.

2 The map labeling problem

Consider again the problem of label placement for maps, and let's pose the following de�nition:

De�nition 2.1 [Label placement problem]
Given is a set of n points in the plane, with labels associated with them. Each label can be

placed in a �xed number of prede�ned positions and orientations. Give a positioning for each label
such that the number of labels which do not intersect other labels is maximised.

Next we de�ne the speci�c instances we will be studying. First we de�ne di�erent problem
instance for the two placement models.

De�nition 2.2 [Four position labeling]
The problem is as in de�nition 2.1. Furthermore, each label is an axis parallel rectangle. The

height of all labels is equal. The width of the label can vary from label to label. Both the width and
the height are �xed for every label. Each label can be placed in one of four positions as seen in
�gure 2.

De�nition 2.3 [Eight position labeling]
The problem is as in de�nition 2.2. Additionally, each label can also be placed in one of four

positions as seen in �gure 3.

2 THE MAP LABELING PROBLEM 7

Also we will study the problem where features are deleted if the map is so crowded that it is
impossible to place all the labels.

De�nition 2.4 [Four position labeling with label selection]
The problem is as in de�nition 2.2. Additionally, it is allowed to delete a label entirely. In that

case it will not be considered a free label, neither will it intersect other labels.

Several things are important in the above de�nitions. First of all, the problem is reduced
to maximising the number of free labels and disregards other aspects of the problem such as
preferences for positions. We will however sometimes address other aspects, but we will only use
the above de�nitions of the problem for our comparison experiments with other algorithms. Also,
since we assume that the names are all written in the same font and have therefore the same height,
we demand the same height for all labels. Rescaling of labels is not allowed either. Although a
cartographer can choose from in�nitely many positions, we have discretised the problem such that
there are only four positions which are allowed. Finally, only intersections between labels are
considered, so a label does not intersect a point feature whose label is deleted (it is assumed that
the point feature is deleted also). Note that this is just a matter of choice. For example �gure 26
does consider intersections between point features and labels.

A solution for the label placement problem is a position assignment for the label of each point,
therefore each labeling is a solution. An optimal solution is a solution that has the maximal
number of labels without a con
ict. A solution looks like the map in �gure 4. Since the con
icts
in that map are irresolvable, this is also an optimal solution.

Figure 4: An example of a map which is a solution for the label placement problem. Some
irresolvable overlap still exists (arrows are added to indicate where).

The right placement of a label depends on the placement of surrounding labels, which depends
on their neighbours, and so on. This kind of interaction has as a result that the problem can be

2 THE MAP LABELING PROBLEM 8

very complex. Also, since this interaction can in
uence regions which are some distance away from
the in
uencing label, local optimisation alone can not be powerful enough to solve the problem
in a satisfactory manner. Global optimisation in some form should be present to produce high
quality labelings.

2.1 Properties of maps

Every point on the map has a number of neighbours that interact with it since the placing of their
label in
uences the placing of the label of that point. The notion of a neighbour should be more
precise, so we consider only a neighbouring point which could cause a con
ict. We'll de�ne such
a point as a rival:

De�nition 2.5 [Rival]
Given is the set of points P and associated labels with the constraints of de�nition 2.1. A rival

of some point p 2 P is a point q 2 P (with p 6= q) for which the set of all possible label positionings
of p and q contains a label intersection.

p q1
q2

q3

Figure 5: The rivals of the central point p.

For example, consider �gure 5 (under the
constraints of the problem in de�nition 2.2).
The points q1 and q2 are rivals of p, but point
q3 is not. It is clear that the rival relationship
is symmetric (if p is a rival of q, then q is also a
rival of p). Furthermore, two points are rivals

if the union of their labeling positions intersect (as can be seen in the picture when the dashed
boxes intersect).

An interesting property of a map is that it can be decomposed into separate problems which
can be solved independently. A point should not be labeled independently from its rivals, because
it can interact with it. This also holds for the rival of that rival (being another point). The rival
relationship knits points together which have to be solved as a group. As such, it induces a graph:

De�nition 2.6 [Rival graph]
The rival graph of a map consisting of the set of points P is the graph G = (P;E) where the

nodes consist of the points in P and the edges connect rivals: E = fpq j p is a rival of qg.

The separate problems mentioned above correspond with connected components (sets of nodes
for which a path can be drawn between each pair of nodes in the set) in the graph.

It is possible to break down a rival graph into its connected components (see �gure 6) and
solve these independently, afterwards merging the results. For example, for the �rst map (which
will be described in section 5) of 500 cities which is used in various experiments in this article (see
also appendix A), there existed 86 di�erent connected components. The two largest components
contained 32 cities and the 35 smallest components contained only a single city.

We did not use this property in the rest of the article and always solve the entire map as one
problem. Our reasons for this are as follows:

� The algorithms we compare our algorithm with (hillclimbing, simulated annealing and an-
other genetic algorithm, see section 5) also did not solve connected components indepen-
dently, although they could. Therefore comparing is clearer if we use the same conditions as
those algorithms.

� Our algorithm is able to �nd high quality solutions without the need for the problem to
be one connected component. If each connected component would be solved separately, the
quality of the resulting solutions would not increase, but the running time of the algorithm
would decrease. This is due to the implicit separate way all parts of the solution are handled
(which is caused by using a kind of uniform crossover, see section 4.5.1).

2 THE MAP LABELING PROBLEM 9

Figure 6: A map labeled with its connected components numbered (compare with �gure 4).

3 AN OVERVIEW OF METHODS FOR MAP LABELING 10

� If the problem is extended to handle line and area features as well and the rival relationship
is extended to consider intersections between features, the map will very likely contain very
few connected components. For example a river would be a rival of all the points lying
nearby and would therefore allow a path to be drawn in the rival graph between very remote
points. Although we did not consider the problem with line and area features, we think it
is wise not to build optimisations which will be useless in the future.

� If the map density increases, the number of connected components decreases (for example, a
randomly generated map with 750 cities contains 27 groups, and a randomly generated map
of 1000 cities contains 11 groups where 983 cities are in the same group). As a result, the
bene�ts of solving a connected component independently dwindle to none when problems
get harder and this would make comparing easy problems with hard ones more diÆcult.

Solving the problem as a whole only in
uences the population size and therefore the running
time of the algorithm. The population size is directly related to the diÆculty of the problem
which is solved. A problem needs to be solved with a population size above a certain treshold
to get a solution which has the possible amount of quality. Using a larger population size would
gain little, but using a smaller population size would cause a decrease in quality (more con
icts
remaining in the solution). If the problem is solved as a whole, the connected component which
is hardest determines the treshold above which the population size should be. This means that
the population is oversized for the connected components which are easier to solve. As a result,
since the population size is related to the running time, solving the problem as a whole causes the
running time to increase but the quality of the solution to remain the same. There is a situation
in which the hardest connected component does not determine the population size, and that is
when there are very many easier problems. Due to stochastic e�ects the population size has to
be increased to be able to solve every connected component. In that case the hardest connected
component would become oversized.

3 An overview of methods for map labeling

Several algorithms for map labeling already exist, and it is necessary to know them in order to be
able to compare the new algorithm against them. This is not the place for thorough descriptions of
these algorithms, but they will be brie
y explained. The algorithms mentioned were all compared
in the framework of Christensen et al., and more detailed descriptions and implementation issues
can be found in [2]. The genetic algorithm of Verner et al. is also mentioned, and a description
can be found in [19]. In [5] Djouadi describes a system for the full map labeling problem using
a genetic algorithm. However, he uses methods which are not standard GA practice and which
he unfortunately does not argue for. Also he does not give results which can be used to compare
against. As a result, we did not consider the algorithm from Djouadi in the present paper.

We review therefore the following algorithms which give a comprehensive view of what is
available in map labeling literature:

� Greedy algorithms [13, 20]: these algorithms perform local optimisation on every city in
succession and then terminate. No form of global optimisation is done, which makes the
algorithms fast but their solutions can be signi�cantly inferior to other algorithms.

� Discrete gradient descent [2]: these algorithms iterate a procedure for the whole map until
no improvement can be made. The procedure �rst enumerates all possible, allowable changes
that can be made and then picks the one which gives the most improvement. Variants in
which kind of changes are possible exist. For example, one could only look at reposition-
ing a label for a city. Another choice could be to look ahead two or three steps of label
repositionings, which would give better solutions at higher computational cost.

� Hirsch [10, 6]: the algorithm of Hirsch works by viewing the map labeling problem as a
dynamic system of repulsing labels. Each iteration all con
icts between labels are considered

3 AN OVERVIEW OF METHODS FOR MAP LABELING 11

and a movement is calculated based on the amount of repulsion between labels. The amount
of repulsion is de�ned in terms of how much the labels overlap. If a label intersect multiple
labels, the repulsions are added. This results in a movement for each label which is carried
out.

� 0/1 linear programming [21, 22]: the algorithm of Zoraster is based on formulating the
map labeling problem as a zero-one integer programming problem and using Lagrangian
relaxation and heuristic methods to solve it.

� Simulated annealing [2, 23]: Christensen et al. have devised an algorithm which is based on
simulated annealing. This algorithm will be explained in more detail later.

� GA of Verner et al. [19]: a genetic algorithm which uses masking and copying genes to both
children to preserve good solutions was implemented by Verner et al. This algorithm will
also be explained in more detail later. (This algorithm was published after the paper of
Christensen et al., and therefore is missing from �gure 7. See section 5 for a comparison of
this algorithm with the one from Christensen et al. and our algorithm.)

Simulated annealing
Gradient descent (3)
Random placement

Gradient descent (2)
Zoraster

Gradient descent (1)
Hirsch
Greedy

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

100

90

80

70

60

50

40

30

20

10

0

Figure 7: A comparison of the map labeling algorithms (data taken from [2]). Gradient descent
has the number of allowable changes in series between brackets.

The results of Christensen et al. (given in �gure 7) suggest that most heuristics fail because
they can not handle certain local optima very well and because of cycling in the algorithm. The
�rst problem is a consequence of the non-linearity of the problem. Because so many factors
interact, the global optimum (the best solution) depends on the right way of interaction for all
these factors. If the solution is not optimal, it is possible that in order to change the solution to
a global optimum, it has to be made worse before it can get better again. Heuristics which work
by strictly improving a solution, can therefore get 'caught' in these local optima. An example
will help explain this. Consider �gure 8. The �rst solution is what was found after using some
algorithm (some unlabeled cities are drawn to show that no labels can be placed there). We now
have found a local optimum: the solution is not the best one there is, and it can not be made
better by repositioning a single label. Instead, both middle labels have to move, of which only
one label can be moved at a time. The moved label will obstruct a label which was free, which
degrades the solution. However, this gives room for the other label to move and the �nal result has

3 AN OVERVIEW OF METHODS FOR MAP LABELING 12

two labels free instead of one. This problem plagues all heuristics except the simulated annealing
algorithm and the genetic algorithm of Verner et al.

The second problem because of which some heuristics fail is the problem of cycling. Suppose
there exist two solutions named a and b which are equally good, but not the global optimum.
If the algorithm improves solution a to b and b to a, it will never end. This happens with the
algorithms of Hirsch and Zoraster.

a

b

c

Figure 8: Leaving a local optimum can make the solution temporarily worse (also see �gure 34).

It seems like the determinism of the �rst four algorithms is causing the trouble. For an
algorithm to cope with diÆcult instances, it should not exhibit deterministic behaviour. The
simulated annealing algorithm and the genetic algorithm both work with an element of chance.
Moreover, they combine local optimisation with a form of global optimisation. Both algorithms
do this in a di�erent way, but it is clear from the comparison experiments that this is the way
to go. Simulated annealing and the genetic algorithm of Verner et al.1 are superior to the other
algorithms, in terms of the quality of the resulting solution: it has the largest number of labels
which do not overlap other labels.

Since the stochastic algorithms give the best performance, we describe in a little more detail
the simulated annealing algorithm, the hill climbing and the genetic algorithm with masking. For
fully detailed descriptions, the reader is referred to the original papers. These algorithms will be
considered in section 5 where comparison experiments are presented.

Simulated annealing. The process of heating a metal until it melts and then slowly cooling it
until it solidi�es is called annealing. The idea is that the atoms in the metal become completely
random in motion because of the heating, and the cooling is done suÆciently slow to let the atoms
crystallise in a highly ordered structure. If the cooling is done too fast it is like the crystallisation
is stopped half-way, and the metal is less structured (which means it is less strong).

An analogy of annealing can be used to devise an algorithm, which is thus called simulated
annealing (see [12]). Consider a problem and a way to encode the solution to this problem in
a data structure. We start with a randomly generated solution. Simulated annealing works by

1The genetic algorithm of Verner et al. was tested (in [19]) with a eight-position model against the algorithms
in the framework of Christensen et al. which use a four-position model, so based on known results from literature it
can not with certainty be said which of the two algorithms performs better. In section 5 however implementations
of the algorithms are compared with each other.

3 AN OVERVIEW OF METHODS FOR MAP LABELING 13

randomly picking a part of the solution, altering it, and seeing if it has become any better. If it
has, the change is kept and another iteration is started. If it is not better, a choice should be made.
Either the change is discarded, on the grounds of it degrading the solution, or it is kept, on the
grounds of it giving a possible way to escape a local optimum. This choice is made according to a
certain probability. This probability is dependent on a variable which models the temperature of
the process. At the start of the run, the temperature is high: the system is in a chaotic state. The
probability of keeping a change is high (instead of starting with one, a temperature implicating a
probability of 2/3 is used). During the run of the algorithm, the temperature is lowered suÆciently
slow and the probability of keeping a bad change converges to zero. In the end, only good changes
will be kept. It is now the hope that the solution has avoided local optima and is heading for the
global optimum. The way in which the temperature is lowered is called the annealing schedule.

Simulated annealing for the map labeling problem can be done by simply repositioning a label
each iteration and observing the change in the number of overlapping labels. If the number has
decreased (or is equal), the change is kept. If the number has increased, the change is kept with
probability P = e��E=T where �E is the change in the number of overlapping labels and T is
the temperature, otherwise it is made undone.

In what way does this algorithm exhibit local optimisation and global optimisation? Local
optimisation arises in the form of keeping a change when it is good. The key to global optimisation
is of course keeping a label when the change is bad, since a solution sometimes has to degrade
before it can become better again. The annealing schedule ensures global optimisation is reached,
provided of course that the schedule is not too fast in lowering the temperature.

Hill climbing. If the annealing schedule is such that the temperature is always zero, the al-
gorithm reduces to the case of a hill climber: changes are made randomly and are only kept if
they give no deterioration of the solution. If the problem is not too complicated, a hill climber
performs surprisingly well. For instance, the problem of maximising the number of free labels can
be solved relatively well with a hill climber. Alas, when the problem is extended to the case where
labels have preferred positions and labels should be selected for deletion (because the map is too
crowded), the hill climber performs poorly. Nevertheless, it is an important algorithm because it
is so simple to implement and because the rate of improvement is very high at the start of the
algorithm.

Genetic algorithm with masking. The details of how genetic algorithms work are described
more thoroughly in section 4, but an intuitive explanation is given here to understand the way
the algorithm of Verner et al. works. A genetic algorithm is based on inspiration from the theory
of Darwinian evolution. Consider a population of organisms which compete for a certain resource
(say, food). Also consider the fact that there exists a mechanism for inheritance of traits with
small di�erences (\descent with modi�cation" as Darwin called it). Then each individual in the
population will be more or less �t for the task of getting the resource. The ones which are most �t
are more likely to reproduce and they will have children with the same traits which made them �t.
Since small di�erences occur during reproduction, there will be variation in �tness. The theory
says that because of these conditions there will be selection pressure towards organisms that are
highly �t in getting the resource. This process is called adaptation.

The same principles underlie genetic algorithms2. There is a population of encodings of so-
lutions (this can be just an array which holds the position of a label for each city). There is no
resource for which they are competing and which implicates a �tness. Instead they get a �tness
explicitly assigned to them (this can for example be the number of labels which do not overlap
other labels). Fit individuals produce more o�spring. Mating produces children by exchanging
pieces of the solution, in order to preserve variety for selection to act on. Letting this system evolve
produces individuals which get more and more �t, until the population is converged. Hopefully,
the solution found will be a global optimum.

2There are, however, major di�erences. Natural evolution for example works with a population which is largely
converged, in contrast with a genetic algorithm which begins with a randomly generated population.

4 GENETIC ALGORITHMS FOR MAP LABELING 14

A genetic algorithm has an element of local optimisation because partial solutions which were
found to be good will propagate through the population. Also, global optimisation exist because
combining all these partial solutions yields the �nal solution, which should be the global optimum.

Many choices have to be made when designing a genetic algorithm. Verner et al. chose a form
of uniform crossover for the reproduction operator. This means that when two individuals have
been selected to make two children, the children have for each partial solution (in this case, the
positioning of the label for a speci�c city) equal probability that it originated from one of the
two parents. Therefore, this operator is highly disruptive and it is very likely that good solutions
get chopped up instead of being passed integrally to their children. To overcome this problem
masking and copying were used. Whenever a piece of the solution is found which has no con
icts,
it is masked and thereby protected from being chopped up. If the parent with the good piece is
mated with a parent which has a con
ict in that piece, the good piece is copied to both children.
In other choices the algorithm is fairly standard.

4 Genetic algorithms for map labeling

In this section we will explain the genetic algorithm (which we will often abbreviate as `GA') that
was developed to solve the map labeling problem. Before we delve into the details of this speci�c
genetic algorithm, we will give some background information on GA's in general and speci�c
elements like the elitist recombination scheme and masking we used as well. This will be done in
subsection 4.1. Also the general outline of the GA will be given, after which detailed descriptions
follow in the next subsections.

4.1 Introduction and overview

Genetic algorithms are stochastic algorithms which have their inspiration from the theory of
Darwinian evolution in biology. They work with a population of solutions (encoded in some
manner) which can be evaluated by a measure of quality to yield the �tness of an individual. The
GA generates new individuals by mating members of the population which replace un�t individuals
by mating �t ones. Mating usually occurs in the form of recombination: on the codings of the
solutions crossover is performed to make new solutions. After recombinationmutation is sometimes
performed. The result of all this is that the solutions in the population become better as de�ned
by the �tness measure until hopefully the desired solution (the solution with the highest �tness)
is found.

Figure 9: One point crossover acting on strings of genes from di�erent parents. Two building
blocks are accentuated.

An example can clarify this idea more. Suppose we have a complicated mathematical function
of which we want to know the highest value in its range (the optimum). We can use a GA as a
function optimiser for this problem. The measure of �tness is simply the function itself: higher
values are better. The coding can be simply a binary string which is long enough to hold the
full range of possible values of its domain. We now start with making an initial population of N
individuals which are randomly generated. This means we have got N random binary strings, of

4 GENETIC ALGORITHMS FOR MAP LABELING 15

which we evaluate the value using our function. This gives us �tness measures of the individuals.
The hope is that each string is build up from pieces which are 'good' (they are often called
building blocks) and that we can put together somehow all pieces from di�erent individuals into
one individual, and get our optimum. We try this by using various operators on the individuals
of the population, of which the most important are crossover and mutation. Crossover works on
two parents3 and takes a chunk from one parent and a complementary part from the other parent.
This produces two children (see �gure 9). Mutation replaces a small part of the encoding by a
new part, in the hope that it will prove to be better. After the generation of children replacement
is performed by replacing un�t parents with �t children.

This process is iterated for some time and eventually the population will consist of individuals
of the same �tness (the population has converged). If the GA is built right, this �tness should be
optimal or near optimal. However, it is in most cases almost impossible to guarantee this.

What does it mean to say a population has converged? We will use the following de�nition: a
population which is being adapted by an algorithm is said to have converged when the algorithm
can not produce �tter (as de�ned by the �tness function) individuals.

Convergence is a characteristic of a population in relation to an algorithm. This is obvious
once one realises that otherwise it would always be possible to invoke exhaustive search and �nd
the optimum.

A standard GA uses the algorithm shown in �gure 10. Encodings are strings of values taken
from some alphabet. We use the concept of a mating pool to make the mechanism of selection and
producing a new population more explicit. The mating pool is the place where new individuals are
made which will alter the population. In the mating pool selected individuals are placed (some-
times with multiple copies, if they are very �t), which are altered by the process of recombination,
mutation and maybe other operators. Then the contents of the mating pool replaces a part (or
maybe the whole) of the population, thus forming a new population. 4

This is still very general, so we will clarify several points:

� Selection: selection of individuals can be done in several ways. For example, one could
place a number of copies of an individual in the mating pool proportionate to its �tness.
Un�t individuals would not reproduce. Another way of performing selection is to sort the
population on �tness and look at the rank of an individual in this list. There exist a wide
variety of schemes for selection. We will have more to say about this later, when we discuss
the elitist recombination scheme. Another point which is important for selection is the
amount of individuals that is selected. One could take a mating pool equal in size to the
population (this is called a generational scheme, because every iteration involves a generation
of individuals), or take only two (this is called an incremental scheme) or something in
between (which has been called a steady state scheme, a scheme with a generation gap or
an overlapping populations scheme by various authors; we will use the term steady state).

� Crossover and mutation: what should the values of Pc and Pm be? A large value of Pc will
tend to destroy things that were found to be good by selection, but will hopefully result in
building things that are better. Setting Pm to a value larger than zero will cause possible
destruction of good building blocks, but might introduce information that was lost due to
convergence. In [4] DeJong suggests values of 0.6 for Pc and 0.001 for Pm (where it is the
probability for each location on the string to be mutated, instead of the probability for the
string as a whole to be mutated).

3More exotic variants using more parents exist but are not widely used.
4Note that the metaphor of individuals which reproduce to make new children is a bit strained here. One way of

looking at it would be that the members of the mating pool are children of selected individuals from the population,
which means the operators were applied before placement in the mating pool took place. Another way of looking
at it (still holding on to the reproduction metaphor) would be that the mating pool holds the selected individuals,
after which operators are applied and the produced children are immediately placed in the new population. A more
natural way to look at it is by abandoning the metaphor a little. In that case, the mating pools holds the selected
individuals. Operators are applied, and the resulting individuals instantaneously replace their parents, after which
the mating pool holds only the children.

4 GENETIC ALGORITHMS FOR MAP LABELING 16

Generate start population Pop0 and set i = 0

Perform crossover on pairs of individuals in Mati with
probability Pc

Select individuals to be operated upon and put them in
set Mati

Perform mutation on individuals in Mati with probabil-
ity Pm

Perform replacement of individuals in Popi with indi-
viduals in Mati and generate Popi+1

Increment i

Check stopcriterion

Terminate

positive
negative

Figure 10: The algorithm for the standard GA. Pop is the population, Mat is the mating pool.

4 GENETIC ALGORITHMS FOR MAP LABELING 17

� Replacement: it has to be decided who should live and who should die, because the pop-
ulation has a �nite size. One choice is to simply replace the population with the mating
pool. This is done in the generational GA, where the mating pool is the next generation of
individuals. In the incremental GA, more options are available. The two individuals in the
mating pool could for example replace their parents, replace randomly chosen individuals,
or replace the two worst individuals in the population. Similar choices exist for a steady
state GA.

� Stop criterion: deciding when the algorithm is done is not always a trivial task, since it is not
certain when there will be no more improvement. It is always possible that the individual
with the highest �tness found does not represent the optimum solution. Mutation could for
example introduce the lucky (but unlikely) chance that transforms a near optimum solution
to an optimum one. Several criteria therefore are possible. One of them is waiting until
the period of time that there was not any improvement stretches beyond a certain limit.
Another stop criterion which could make sense when there is no mutation is waiting until
the average �tness in the population is equal to the maximum �tness in the population.

4.1.1 Exploitation and the elitist recombination scheme

In choosing a selection scheme for use in a GA a balance has to be struck on how much exploitation
one wants the GA to use. The GA exploits the information which is present in the population to
converge the population to a good solution. The most exploiting selection scheme therefore would
be the selection scheme that �lled the whole mating pool with copies of the same, �ttest individual.
Clearly this is too much. The other extreme is no selection at all: the whole population is copied
into the mating pool and the o�spring forms the next population. In this case the population
would only converge by genetic drift, which is the e�ect that random
uctuations in proportions
build up until they overwhelm the whole population5 (see [8] and [1] for discussions on genetic
drift).

So the selection pressure should be something in between6. Note however that this can vary
over time: you might want a low selection pressure to start with so you can explore di�erent
solutions, and turn to a high selection pressure later on to exploit the information you have
gathered. On the other hand, you might want a high selection pressure at the start to quickly
exploit the global perspective that the initial populations o�er, and drop the pressure later on to
give room to exploration.

The GA that was developed to solve the problem of map labeling makes use of the Elitist
Recombination scheme (see [18] and [17] for a full description and discussions of properties). This
scheme has several useful properties (such as a constant selection pressure), which we will describe
later. First we will describe the idea of elitist recombination, which fortunately is very easy to
grasp.

The elitist recombination scheme combines selection, recombination and replacement. It can be
most naturally used in an incremental GA, but is also applicable with other replacement schemes.
In the elitist recombination scheme, two parents are selected from the population (the size of
the mating pool is therefore two). On these parents crossover is performed, which results in two
children. Of these four individuals, the two with the highest �tness (choosing the children in case
of ties) are placed back in the population in the place of the two parents. Therefore, if the children
both have a higher �tness, they replace their parents. On the other hand, a parent can never be
replaced by a worse individual (this is called elitism). See �gure 11 for a graphical explanation.

5Consider for example a collection of red and blue colored balls where the number of red balls is equal to the
number of blue balls. Pick randomly two balls and change the color of the second ball to the color of the �rst
ball. If one keeps doing this, all balls will eventually get the same color. The process is called a random walk with

absorbing barriers. The analogy with genetics is that each ball has a gene for color and reproduction is asexual
(the sexual variant (with two parents) demonstrates the same e�ect).

6The intensity of the selection pressure can be more formally de�ned (see [15] and [17]) as \the expected average
�tness of the population after applying the selection scheme to a population with standardized normal distributed
�tness" (from [17]).

4 GENETIC ALGORITHMS FOR MAP LABELING 18

810

6 12

Figure 11: The elitist recombination scheme. The numbers represent the �tness of the individuals.
The thick lines show which individuals replace the parents.

The elitist recombination scheme has the following useful properties:

� Tunable, constant selection pressure: the selection pressure is constant, which means that
gradual but sure progress will be made. The selection pressure can easily be tuned by making
a slight modi�cation: instead of picking both parents at random, one of them can be the
winner of a tournament of several randomly picked individuals.

� Elitism: since individuals are never replaced by less �t individuals, there is no fear of losing
a particular good solution.

� No problems with recombination: the balance that had to be made (see also section 4.5.1)
between crossover disruption and building block mixing (getting better individuals by com-
bining good pieces of di�erent individuals) and which led to setting Pc (the probability for
performing crossover) to a speci�c value, is not necessary here. We can safely always perform
crossover, since disrupted building blocks will degrade the �tness of the individual that has
them.

� Less sensitive to undersized populations: since selection and replacement only work on the
level of a family of four individuals, e�ects of the rest of the population are relatively minor.
This does not mean that good convergence always will occur, but it prevents a undersized
population from converging to the few relatively �t individuals. Tournament selection for
example works by picking several individuals at random and putting the one which is most �t
in the mating pool and iterates this procedure until the mating pool is �lled. If the population
is undersized the tournament size is relatively large compared with the population size and
this will lead to a mating pool �lled largely with the few lucky individuals that had relatively
high �tness. This will result in premature convergence. The di�erence between the elitist
recombination scheme and tournament selection is that the elitist recombination scheme has
random selection of the parents, whereas tournament selection (as most selection schemes
are) is biased in the selection of the parents (elitist recombination introduces a bias when
replacing the parents with the most �t individuals). As a result with elitist recombination
the mating pool will consist of di�erent individuals but with other selection schemes the
mating pool can (and probably will) contain multiple copies of very �t individuals.

� Ease of implementation.

� Conceptually simple.

4 GENETIC ALGORITHMS FOR MAP LABELING 19

Using the elitist recombination scheme immediately pays o�: see picture 12 for a comparison
between a run done with a generational GA using roulette-wheel selection and a run done with
the (incremental) elitist recombination scheme. Since the label intersection test is the most atomic
action all algorithms perform most of the time, we used this as a measure for computational e�ort
(see also section 5 on this).

Without ERGA [r007]
With ERGA [r006]

Label intersection tests (*106)

F
it
n
es
s

7654321

500

450

400

350

300

250

200

Figure 12: Comparison between roulette-wheel selection and the elitist recombination scheme.
(See section 5 for an explanation of the unit of measure for the horizontal axis.)

4.1.2 Masks and multi-masks

Figure 13: One-point
crossover.

As we have seen in section 4.1, crossover can be performed in several
ways. The most straightforward is the one-point crossover: pick a point
at random in the list encoding of the two individuals and swap from that
point (see �gure 13). One could expand on the idea and take two-point
crossover: pick two points at random and swap the string between them
(see �gure 14).

One could also decide for each location separately from which parent
the information should be copied. This is called uniform crossover. This is like tossing a coin for
each location to decide if it will be copied from the �rst or the second parent.

Figure 14: Two-point
crossover.

Sometimes one wants to generalise the idea and provide a way of
specifying what the crossover looks like. This can be done with masking.
A mask is a bit string with the same length as the string on which the
crossover operator works (see �gure 15). For each location, if the bit
is set, then the �rst child gets the value for that location from the �rst
parent and the second child gets it from the second parent. If the bit is
not set, this situation is reversed (�rst child gets the information from

the second parent and so on). One-point crossover can be speci�ed by setting the bits in a mask
until a picked point and clearing the bits after that point. Uniform crossover can be speci�ed by
taking a random bit string.

4 GENETIC ALGORITHMS FOR MAP LABELING 20

3 2 4 3 1

1 2 2 4 3

1 0 0 1 0

3 2

4

3

11 2

2

4

3

p1

p2

mask

c1

c2

Figure 15: An example of mask-
ing. The parents are denoted p1
and p2, the children are denoted
c1 and c2.

Masking has several uses. First, it can be used to specify
the crossover operator a priori. In this case one initializes a set
of crossover masks and chooses randomly from that set when
performing crossover. It is now also easy to combine several
masks by taking the inclusive OR from these masks and gen-
erating a new mask. Such a mask will be called a multi-mask,
and a bit is set in the multi-mask when the bit for that location
was set in any of the masks which were used to generate it.

Another use is the case in which the masks are made per-
sonal for each individual. In this way it becomes possible to
protect building blocks from being disrupted, or to focus the
mixing of strings in areas where things are considered not op-
timal. The masks will therefore change during the run and
provide control for the crossover operator instead of blindly
cutting strings up.

4.2 Outline of the GA for map labeling

We will brie
y outline the GA for map labeling now (called loGA from now on | from 'local
optimiser GA'). The loGA starts with generating an initial population. Procedures which gen-
erate an initial population are described in section 4.3. After that, the loGA keeps evolving the
population until a termination criterion is satis�ed.

The loGA makes use of the elitist recombination scheme (which we described in section 4.1.1)
to evolve the population. The elitist recombination scheme performs crossover on two randomly
selected individuals in order to generate the two children. The crossover operator is described in
section 4.5.1. As will become apparent there, the use of local optimisers is very important, and a
further section (which is section 4.5.2) is devoted to describing local optimisers. After the children
are generated, mutation could be performed on them. The loGA does not make use of mutation
in this way however.

The elitist recombination scheme replaces the parents with the two best individuals from this
family of four. It can decide which one is 'best' using the �tness function, which gives every
individual a measure of quality. Fitness functions are described in section 4.4.

A separate section (section 4.6) deals with the fact that the activity of the GA can be focussed
on regions which contain con
icts and leave regions which are already optimised out of time
consuming operations, thereby gaining a speed bene�t.

4.3 Initialisers

GA's try to �nd an optimal solution by adapting solutions in the population to become more like
an optimal solution. This describes what happens between populations, but what about the initial
population? What are the conditions for making the �rst population? Since good partial solutions
from di�erent individuals should eventually end up in one individual (where the combination of
good partial solutions gives the optimal global solution), it follows that these good subsolutions
should come from somewhere. These subsolutions are sometimes called `building blocks' because
they are the bricks with which the desired solution is built, or so the building block hypothesis
(see section 4.5.1 and [7]) tells us. There are several sources for building blocks:

� Building blocks exist integrally in the initial population.

� Building blocks get formed by chance during crossover.

� Building blocks are explicitly constructed by local optimisers during the run of the algorithm.

The GA we describe here uses local optimisers (see section 4.5.2) but does not use random
mutation (see section 4.5 for the reasons) which is commonly also used as a source for building

4 GENETIC ALGORITHMS FOR MAP LABELING 21

blocks in GA's. Here we focus on the �rst two points and see what it means for the initial
population. The population consists of individuals which are chromosomes: strings of genes (each
location is a gene) which can take any value (called an allele) from a �nite alphabet. A gene in
the GA for map labeling corresponds with a city and each allele corresponds with a positioning
for the label of that city.

Note that the use of the initialization operator is related to the crossover operator. Crossover
operators need to mix (put together) building blocks from the parents in order to make children
with more building blocks (which become �tter as a result). On the other hand, since crossover
takes a piece from each parent, there always is some amount of disruption after applying a crossover
operator (see �gure 16). Disruption can split up a building block and therefore destroy it. Instead
of disruption, building blocks can also get formed accidently, although this is a less likely scenario.

Figure 16: An example of disruption. The building block in the �rst parent is split by one point
crossover into two fragments.

The initialization operator should achieve two goals:

1. Building block supply: constructing integral building blocks in the initial population which
can be mixed later.

2. Providing variation to form building blocks with during crossover or as a basis for a local
optimiser to act on.

The �rst point (building block supply) is based on the assumption that if the initial population
contains all the building blocks, the crossover operator will be capable of putting them all together
in one individual during the run of the algorithm. So initialization provides the building blocks
and crossover mixes them.

The second point (providing variation) is based on the expectation that the crossover operator
can make new building blocks by itself because many di�erent combinations of the genes of the
parents can be formed during crossover and these may contain new building blocks. In that case
it is necessary to provide enough variation so these combinations can actually be formed. This
means that all alleles should be contained in the initial population in equal proportions.

Variation is also needed if local optimisers are used. (Geometrically) local optimisers are not
common in conventional GA's, but they play a very important role in the GA which is described
in this paper. Other hybrid GA's do also use local optimisers, but they are di�erent from the
local optimisers used in this article. For the local optimisers in the usual hybrid GA, 'local' means
'local in the �tness landscape'. The local optimiser is for example a hillclimber. We mean 'local'
in the sense of only acting on part of the solution, which is easy to do since we are dealing with
an geometrical problem.

A local optimiser tries to construct a local solution (it is applied to one city and considers
only that city and its rivals). However, in order to attain a globally very �t individual, that
local solution should �t in the overall picture. This can not be ascertained by the local optimiser,

4 GENETIC ALGORITHMS FOR MAP LABELING 22

therefor it is necessary to provide enough variation so the local optimiser will be applied to di�erent
con�gurations. This will result in di�erent local solutions, one of which is likely to �t in the global
solution.

The conventional GA uses an initialization operator which can satisfy both goals: for each gene
an allele is picked randomly out of the set of possible alleles. This provides the variation which
the second goal demands. The �rst goal is also met since the probability of forming a building
block will be high if the population size is large enough.

Another option for the initializer is to try and construct building blocks explicitly in the initial
population using a local optimiser. It is of course essential that the GA designer has a reasonably
good idea of what the building blocks of the problem at hand are. A discussion of what the
building blocks in the problem of map labeling are is given in section 4.5.1 where it is argued that
the optimal con�guration of a city and its rivals is a building block. As discussed above, variation
is necessary for a local optimiser, so the initialization starts with randomly assigning alleles to
genes. Then each city is visited in random order and local optimisation is performed.

Besides o�ering a rich supply of building blocks in the initial population, an additional advan-
tage of this method is that local optimisation is guaranteed to be applied at least once for each
city (note however that this can also be done in a postprocessing step). This can be necessary
if the local optimiser does more than just resolve con
icts (overlapping labels) but also considers
other, softer constraints such as position preferences which would not be considered if there was
no overlap. In that case a point could be con
ict free and the local optimiser would never be
applied, which would result in the label possibly being placed in a position which is less preferred
than another possible position. This advantage of a guarantee that a local optimiser is applied at
least once will become more clear when crossover (section 4.5.1), local optimisers (section 4.5.2)
and the option of focussing mixing (section 4.6) have been discussed.

Initialization with slot-�lling [r028]
Random initialization [r027]

Label intersection tests (*106)

F
it
n
es
s

4321

500

450

400

350

300

250

200

Figure 17: Di�erence in initialisers. The run which uses the initialiser with slot-�lling spends
roughly 1 � 106 label intersection tests on the initialisation.

We can now propose the following initialisers:

� A random initializer: this initializer chooses a random allele for each gene.

� Initializer with slot-�lling: slot-�lling is a local optimiser (explained in more detail in section
4.5.2) which can locally improve a solution (for a speci�c city). This initializer visits each
gene in a random order and performs slot-�lling on it.

4 GENETIC ALGORITHMS FOR MAP LABELING 23

See �gure 17 in which two graphs with the di�erent initialisers are shown. The �gure shows
that both initialisers take a di�erent route to arrive at the same number of free labels in almost
the same amount of label intersection tests. The initializer with slot-�lling has a slight advantage.
This can be explained by the fact that the runs which were done with the random initializer also
construct building blocks during the run itself and this takes time.

Another way of looking at things is in terms of alphabet reduction. If every city can place its
label in one of four positions, the alphabet consists of four alleles and therefore has cardinality
four. If we have n cities, the search space consists of 4n distinct points. The GA has the task to
�nd a point in that space which is good. Suppose we want to have more freedom to place our
labels and increase the cardinality of the alphabet to eight. We now have a search space consisting
of 8n distinct points. Doubling the freedom of a label to be placed results in a enormous increase
in the complexity of the problem. However, things are really not that bad. If local optimisers are
used, the real alphabet which is processed is reduced in size. We will call this the meta-alphabet.
A character in the meta-alphabet consists of the con�guration of a city and its rivals (this means
that di�erent characters share information, but we will ignore that for now). Suppose we have a
city that has four rivals. Each city can place its label in A positions, where A is the cardinality
of the real alphabet. The cardinality of the meta-alphabet for that city and its rivals is therefore
A5 since there are A5 di�erent con�gurations that the city and its rivals can be in. Some of
these con�gurations exist in optimal solutions, and many do not. Now consider the result of a
local optimiser which works on the point and its rivals. For any given con�guration the points
are in (that is, in which positions they place their labels) the local optimiser makes a change to
another con�guration only if it improves the situation (results in more free labels). The result is
that certain characters in the meta-alphabet (con�gurations the cities can be in) will disappear
from the population if the optimiser is applied to that gene in all the genomes in the population.
Therefore the cardinality of the meta-alphabet is reduced and the e�ective search space which has
to be examined has been made simpler.

The fact that characters overlap complicates things a bit, but not much since only the label
of the point on which the optimiser is applied can be changed by the local optimiser. This means
that a con�guration can not come back by changing the labels of one of the rivals (when the
optimiser is applied to it at some other point during the run). In e�ect, only the con�gurations
which result from appliance of local optimisers are considered by the genetic algorithm.

In [9] it was shown (using the model of the Gamblers Ruin) that for a GA which has a properly
sized population of size n, an alphabet of cardinality A and a building block size of k, the following
holds (all else staying equal):

n � Ak.

This shows that we can expect to use smaller population sizes if the alphabet which is e�ectively
processed is smaller. Smaller population sizes allow the GA to run faster.

4.4 Fitness function

One of the main components of any GA is the �tness function. It gives every individual in the
population a measure of quality and thus steers the direction of search towards desirable solutions.
The choice of �tness function sometimes is trivial. For example, when using the GA as a function
optimiser, the �tness function is naturally de�ned as the function which is to be optimised. In
many other cases, the choice of the �tness function is critical to the success of the algorithm. The
�tness function however is a metaphor which was taken from evolutionary biology. In a biological
context an organism competes as a whole with others to survive and its �tness is necessarily
a composite of many factors. The �tness metaphor has proven to be very useful for designing
GA's, but it has its limits. In some problems (like the map labeling problem) there exist levels
of precedence for di�erent aspects of the problems, a situation which is radically di�erent from
the state of a�airs in natural biology. Therefore, a way has to be found to make solutions adapt
without necessarily measuring them as a whole. Another issue which arises because we are dealing
with a geometrical problem is the di�erence between local and global aspects of the problem. It is

4 GENETIC ALGORITHMS FOR MAP LABELING 24

desirable to di�erentiate between the both in order to avoid treating local aspects of the problem
in a global manner.

To make this more concrete, we start with the appropiate example of the problem of labeling
a map with label selection allowed. Clearly, the most important aspect of the problem (as derived
from the problem de�nition 2.4) is the number of free labels a map has. Now suppose that we
complicate the problem a bit. Besides wanting a map with little or no con
icts, we also want that
the label is placed in a speci�c position when possible. Also we want that cities that are capitals
are labeled if possible (this means that moving or deleting labels of rivals is allowed if the rivals
are not capitals). Furthermore, apart from capitals, there exist two kinds of cities with di�erent
importance. The problem now has several aspects7 and it should be decided how they in
uence
the form the �tness function will take. In most GA's all aspects are put together in the �tness
function. This neglects the di�erences between aspects, which is handled by giving each aspect
its own weight. This gives the new problem of tuning these weights and we will have more to say
about this later.

In general, to avoid tuning a lot of weights, we would like to put as little as possible into the
�tness function. We can call this the principle of maximal delegation: put as much as possible
into the local optimiser. That way the local optimiser can produce good subsolutions which will
be combined to form a good whole solution.

In solving the problem of maximising free labels for cities of di�erent importance, with label
selection, position preferences and capitals we will have to decide what should be put in the
�tness function. The combinatorial most diÆcult aspect of the problem is of course maximising
the number of free labels, so we decide to put that in the �tness function. It is necessary to put
the combinatorial most diÆcult aspect in the �tness function because it needs a global evaluation
(if it does not, a GA should not be used). Since maximising free labels is the only combinatorial
diÆcult aspect of the problem, we delegate handling all the other aspects of the problem to the
local optimiser.

In the local optimiser the precedences of the di�erent aspects of the problem should be treated
properly. For example, labeling a capital has precedence over maximising the number of free
labels since we allow less free labels in order to be sure that a capital is labeled. Note that such
precedence relations between di�erent aspects is a choice that must be made by the one who is
formalizing the problem. The local optimiser also should handle the aspect of maximising free
labels, to avoid generating labelings which are bad according to the �tness function and which
will therefore be selected against8.

The aspect of preferences for label positions has the lowest precedence, since it is an aesthetical
aspect only. In the local optimiser this order in precedence is followed when handling the di�erent
aspects. For example, when applying a local optimiser to a city that is not a capital, we try to
move its label to a place where it is free. When there are several places, we continue with regarding
the next aspect (position preferences) and choose the position which is most preferred.

We have ignored the fact that cities come in two degrees of importance so far. The set of
points can be divided into sets C, P1 and P2, where set C contains all the capitals, set P1 the most
important cities and set P2 the least important cities. The aspect of maximising free labels can
be seen as being actually two aspects: maximising the free labels of points in P1 and maximising
the free labels of points in P2. These two aspects have equal precedence and a weighing factor is
needed to indicate how much more important p 2 P1 is than q 2 P2. This weighing factor can
only be set by the user of the GA, not by the designer.

The �nal topic we will need to consider is the issue of label selection. It is allowed to delete labels
in order to make more room for other labels. This however is not an aspect of the problem itself,
but an aspect of the label placement model. The label placement model de�nes the search space,
while the problem aspects induce constraints in that search space. Therefore no consideration

7For an example of a map which was labeled with label selection, position preferences, capitals and di�erent
label sizes see �gure 46.

8There are two adaptive mechanisms at work here and care should be taken to let them cooperate. The two
mechanisms are �rstly variation (by crossover and mutation) and selection and secondly the local optimiser. More
will be said about this in section 5.2.3.

4 GENETIC ALGORITHMS FOR MAP LABELING 25

of label selection was needed in the discussion above. A deleted label is just another allele like
the four 'real' positions the label can be placed in. It is however better to only delete labels
when it is actually needed (when the map is too crowded) instead of letting the GA �lter out the
deleted labels which were supplied in the initial population. For this the local optimiser provides
an excellent mechanism.

Summarising, a sensible way to solve a problem with multiple levels of precedence (as often
encountered in GIS-problems) is the following:

1. Divide the problem in di�erent aspects that are as unrelated as possible.

2. Decide for each aspect whether it is combinatorial diÆcult and what its precedence is over
the other aspects.

3. Place the combinatorial most diÆcult aspects in the �tness function (this should preferably
be only one aspect) and delegate handling of the other aspects to the local optimiser.

4. Handle all aspects of the problem in the order of precedence in the local optimiser.

How should aspects be combined? Before it was said that putting di�erent aspects in the
�tness function was undesirable because it made it necessary to give each aspect a weighing factor
and to tune these factors. It is however still possible to have several aspects (if they are of the
same precedence) in the �tness function or the local optimiser.

It is true that combining these aspects also requires weighing factors. There is however a big
di�erence between the weighing factors that arise out of combining di�erent types of aspects and
those that arise out of combining aspects of the same precedence. The �rst kind are parameters
that are artifacts of the workings of the GA itself. Just because one wants to put di�erent kinds
of aspects together in the �tness function brings them to existence. The second kind of weighing
factors are however directly related to the problem (like the kind that we used to indicate how
much more important a city from set P1 is than a city from set P2). And as such the only one
which can determine them is the user of the GA. Therefore, no or little tuning is necessary.

Considering all this we can come up with two possible �tness functions that can be used to
solve the map labeling problem, which essentially measure the combinatorial most diÆcult aspect
(maximising the number of free labels) in di�erent ways:

1. Since we want to maximise the number of labels which do not intersect other labels (see
de�nition 2.1), let's do just that: count the number of points which do not have a con
ict
and return it as the �tness. For a labeled set of points P , the �tness function becomes:

�t(P) =
X
p2P

Y
q2P
p6=q

(1� conf (p; q))

where

conf (p; q) =

�
1 when the label of p intersects the label of q
0 otherwise

2.

Figure 18: The
di�erence between
the �rst two �t-
ness functions.

We can also (conceptually) do the opposite: minimise the number of
label overlap. Note that this is not the negated version of the previ-
ous function, since with this function an intersection with two other
labels is worse than an intersection with one. See �gure 18 in which
an example of the di�erence is given. In this picture after changing the
position of the bold printed label to the top left position the situation
becomes worse according to the minimising �tness function (from two
intersections to three) but it becomes better according the maximising
�tness function (from zero free labels to one free label).

4 GENETIC ALGORITHMS FOR MAP LABELING 26

This �tness function is de�ned as follows:

�t(P) =
X
p;q2P
p6=q

conf (p; q)

Which function is best? Since the de�nitions of the problem state that the number of free
labels should be maximized and the second �tness function can fail to do so (as shown in �gure
18), the �rst �tness function is preferred.

Tunability and robustness. As described above, the use of �tness functions with terms mea-
suring di�erent aspects has the major disadvantage of requiring a phase in which the parameters
of the multiple terms are tuned. We would like to point out that this is a problem that typically
arises when one designs a genetic algorithm. It is a serious problem, because it makes the algo-
rithm signi�cantly less robust since a new, time-consuming tuning phase may be required every
time either the problem instance or the scale of the problem changes. Verner et al. use such a
�tness function in their algorithm which solves the map labeling problem:

�t(P) = a � (Number of overlapping labels.)
+ b � (Total area of the overlapping labels.)
+ c � (Sum of the distance factors for points with overlapping labels.)
+ d � (Average label value with labels valued according to preference of position.)

They make the following remark in their article after introducing their �tness function with
the tunable parameters denoted by a, b, c and d:

The d factor in the �tness function was not used in our analysis. The various
combinations of values for a, b and c were arrived at by numerous trial and error
testing to determine the best combinations to use.

([19], emphasis added)

The time needed for solving a problem now not only depends on the problem itself, but also
lots of runs are needed to tune the GA itself. Sometimes this has to be done only once. Verner et
al. derive values of 1, 0, 0.0001 for a, b and c respectively from runs done on small maps. Then
they look at a more dense map (a randomly generated map with 500 cities called R500) and use
a value of 0.00001 for c. They say:

Dataset R500 proved to be a very interesting problem. [..] In this example a c value
of 0.00001 was used to keep the factor in line with the weight of the other parameters.

([19])

Unless one wants to do a lot of runs under nearly identical circumstances (an unlikely event in
real GIS-use where users generate very di�erent thematic maps for di�erent uses), a new tuning
phase is needed for every fresh problem, which dramatically increases the time needed to solve a
given problem.

Another pitfall is also concerned with the scale of problems. One often tunes the GA on small
problems, since these can be solved relatively quickly. The implicit assumption is then made that
the same constants are also optimal for problems of larger scale, which is questionable.

These problems are typical for a lot of genetic algorithms that combine combinatorial diÆcult
aspects with other constraints in their �tness function and it is a problem which is often overlooked.
Robustness (see also section 6) is a very important property any genetic algorithm should have.
We propose several strategies to increase robustness. One of them is the right use of the �tness
function combined with local optimisers.

4 GENETIC ALGORITHMS FOR MAP LABELING 27

4.5 Exploration

Genetic algorithms can not work by selection alone. Selection is the mechanism that exploits
the information present in the population (on a string level). Besides that, some amount of
exploration is needed to make new, di�erent strings that represent new information that can be
exploited. Another way of picturing this is by visualising what is called the �tness landscape.
The �tness landscape consists of l + 1 dimensions. The �rst l dimensions are derived from the l

independent units of which the solution is build. For example, the map labeling problem for n
points has n dimensions, because every city can place its label independent of every other city. It
can place its label in one of four positions, so every dimension has four discrete points. The space
which uses these dimensions as a basis is called the con�guration space. The extra dimension of
the �tness landscape follows from the �tness value each point in the con�guration space has. For a
problem with two dimensions, one gets a mountain-like landscape, with peaks, ridges, valleys and
pits. Now we can get a more intuitive idea of what a genetic algorithm does. It has a population
of n sample points in this space. It has therefore a limited view of what the �tness landscape looks
like. Exploitation works by directing the search towards the regions which contain sample points
with a high �tness value. Exploration on the other hand introduces new sample points which give
new information about the landscape.

GA's therefore need operators which allow for exploration and produce new sample points in
the con�guration space. There are two operators which are commonly used: recombination (also
called crossover) and random mutation. The e�ect of random mutation is choosing one of the
dimensions in the con�guration space and �xing all the others, and making a random jump in
that dimension. We do not use random mutation in our GA for two reasons:

� The chance on improvement is very small due to the non-linearity of the problem.

� Random mutation is a blind operator, so it can degrade good solutions.

Instead of using random mutation, we will use recombination together with local optimisation.
Local optimisation is a kind of mutation which uses the information of a local situation to strictly
improve it. It therefore does not su�er the disadvantages of random mutation. In the next two
subsections we will discuss the recombination operator and the local optimisation routines.

4.5.1 Recombination

The goal of recombination is twofold. First, it should place the good pieces of each parent together
in the children. This is called mixing. The idea behind it is that each solution is built out of highly
�t sub-solutions which have a small chance to be disrupted. These sub-solutions are called building
blocks and the hypothesis that combining building blocks yields the desired optimum is called the
building block hypothesis (see [7]).

Figure 19: The bad subsolutions of
the parents are recombined to produce
good subsolutions in the children.

The second use of recombination is that partial, bad
solutions recombined a di�erent way produce new, good
solutions. See �gure 19 for an example of this. One
can imagine building blocks getting formed like this, af-
ter which they get combined with other building blocks
(building blocks can also already exist in the initial pop-
ulation, see section 4.3). The notion of a building block
is certainly not mathematically precise, but it should suf-
�ce as an intuitive notion of what is going on. A building
block is just some partial sub-solution which is an element
of the optimal solution which the GA should �nd.

The theory of schemata makes talking about building
blocks and strings a little easier. A schema is a string

which has the same possible values on every location as normal strings (these values are called
�xed), but it can also have the \don't care" value (denoted by a star: *). A string matches a

4 GENETIC ALGORITHMS FOR MAP LABELING 28

certain schema if for every location on the string either the values match, or the schema has the
\don't care" value for that location. See �gure 20 for a schema and some strings that match it.
A schema has a �tness which is the average �tness of all the strings that match it. We can now
see a building block as a schema with high �tness which is not likely to be disrupted. This means
that the concept of a building block depends on both the �tness function used, and the possibly
disruptive operators which are used. For most operators it is true that short schemas are less
likely to be disrupted than long schemas.

* 2 * * 1

1 2 3 1 1

3 2

4

3

11 2

2

4

1

schema

1 2 2 4 1

strings

Figure 20: A schema and some
matching strings.

If building blocks are so important, it becomes natural to
ask what the building blocks in the solution of the map label-
ing problem might be and how we can ensure that the cross-
over operator does not disrupt them. A reasonable choice
would be to consider the local solution for one point as a
building block. This local solution is build out of the posi-
tioning of the label of the point (which we will sometimes
call the central point) and it neighbours. A natural choice
for which kind of neighbours we will use, is to use neighbours
that are rivals in the sense of de�nition 2.5. In this way, only
the labels that are in direct con
ict are considered.

It is important to distinguish between partitions and build-
ing blocks. A building block is a speci�c partial solution (a
schema) with the property that it is the best of all possible

partial solutions (all schemata which have �xed values for the same positions). A partition is this
set of all partial solutions. Consider a bit-string of length three where each entry can be either
zero or one. We use a GA to optimise the bit-string to contain all ones (this problem is called
bit-counting or one-max). Obviously, the desired building blocks in this problem are the ones,
since they give a string higher �tness when set. For a speci�c location, the bit can be 0 or 1.
A partition P contains all possible sub-solutions for speci�c �xed positions. Let us assume we
are interested in the partition which holds the building block for the leftmost bit: in this case
P = f0 � �; 1 � �g. The building block 1** is member of the partition. This is by de�nition always
the case. A partition is the set of all partial sub-solutions for some speci�ed part. A building block
is a member of a partition with the highest �tness. We could by the way have chosen di�erently
for our partition. We could have used a partition containing the substrings of length two. In that
case, our partition P

0

would be: P
0

= f00�; 01�; 10�; 11�g. The building block of this partition is
11*. If necessary one can talk about low order and high order building blocks, depending on the
number of �xed positions (the length of the substring). The schema 1** would be a �rst order
building block and the schema 11* would be a second order building block. In this paper when
we talk about building blocks, we mean low order building blocks.

We now have some idea about what the building block looks like (a city with its rivals in
optimal con�guration), and therefore a group of rivals seems to be a good choice for a partition
(the �xed positions are the labels of the cities in the rival group and the \don't care" positions are
the labels of all the other cities on the map). Hence, we want a crossover operator which makes
use of this geometric structure. We do this by sampling rival groups. A rival group is simply a
certain point together with its rivals. We randomly select points until the number of points in the
union of the rival groups of the selected points exceeds half the total number of points. For each
parent, we transfer the union of all rival groups to one of the children and the complement of that
union is transferred to the other child. This results in two new children.

A useful way of doing this operation is by the use of masking, as was explained in section 4.1.2.
We precompute the rivals of every point. Then we precompute a set of masks, in which each mask
is the rival group of a point. When performing crossover, we sample points by randomly choosing
masks and building a multi-mask (which is the inclusive OR of the masks). We keep sampling
until the multi-mask has passed the point where more bits are set than there are cleared9. This

9Actually, testing if half of the multi-mask is set every time a sample is taken would be an expensive (time-
consuming) operation. Instead the number of masks is �xed and the multi-mask is build by taking a �xed number

4 GENETIC ALGORITHMS FOR MAP LABELING 29

multi-mask serves as a crossover mask, because every entry in the mask speci�es if we should take
the label positioning for the point from the �rst or the second parent.

Figure 21: Crossover generates
new con
icts.

A valid objection at this point to this choice of crossover
would be that the crossover operator is still to likely to be
disruptive. Consider for example �gure 21. This is exactly
the opposite of what we want the crossover operator to do,
since it now breaks up useful building blocks. This situation
can be remedied as follows. After we perform crossover, we
build a set of points that are on the border between the points
from the di�erent parents. Each point in that set has a ri-
val which came from the other parent. Only for these points
new con
icts can have arisen. For all these points we check if
there is a con
ict, and apply a local optimiser on the point if
there is (we call this repairing). This reduces the disruption
of the crossover to a minimum, while being suÆciently �ne
grained to transfer building blocks separately (this prevents
'hitchhiking', which is the phenomenon that bad partial so-

lutions get transferred with good building blocks and win over (better) alternatives because of the
superiority of the building block). See �gure 22 for a comparison of this crossover operator with
other possibilities, such as uniform crossover, one point crossover and a crossover which swaps
subtrees of a precomputed kd-tree10. The need of sampling multiple masks can be seen from this
picture since separate runs were done (for the treeSwap crossover) with the number of masks �xed
at one and the number of masks variable.

Rival [r005]
One point [r004]

TreeSwap (adaptive masks) [r003]
TreeSwap (�xed masks) [r002]

Uniform [r001]

Label intersection tests (*106)

F
it
n
es
s

40302010

500

450

400

350

300

250

200

Figure 22: Comparison of di�erent crossover operators.

The next section will discuss local optimisers which can be used. Note however that this kind
of repairing is not essential to make the GA work. If the population is large enough, there will be
enough variation from which to build the optimal solution. Also, the elitist recombination scheme

of samples. After the multi-mask is build the number of bits set in the multi-mask is counted. If it is less than the
length the number of samples is increased for the next crossover, and if it is more the number is decreased.

10A kd-tree is a geometric data structure which recursively splits the set of points in half with a hyperplane (a
line in two dimensions), which results in a tree with the points in the leafs. Since points in the same subtree tend
to be close together, swapping subtrees might seem like a good crossover operator.

4 GENETIC ALGORITHMS FOR MAP LABELING 30

will not allow degraded solutions to replace their parents so degraded solutions will not make it
into the population. We would however like to have as small a population as needed (because large
populations take longer to converge) and as many successful recombinations as possible. In �gure
23 the e�ects of using the repair function are seen. A run which does not use the repair function
gives an obvious inferior result compared to a run with the same settings but in which repairing
is permitted. Doubling the population size gives a better end result, but at high computational
cost.

No repair, double pop. size [r010]
With repair [r009]
No repair [r008]

Label intersection tests (*106)

F
it
n
es
s

2019181716151413121110987654321

500

450

400

350

300

250

200

Figure 23: The e�ect of repairing con
icts.

Besides their use in repairing, there is also another reason why the use of local optimisations
is preferred, which will be explained in the next section.

4.5.2 Dealing with interaction

As explained in the previous section, local optimisers are useful to resolve con
icts that arise
during crossover. In fact the use of local optimisers can be put in a broader perspective than just
the repairing of the border of the crossover. The way a GA works is by looking at the population
of sample points of the con�guration space and using this global view how the �tness landscape
at those sample points looks like to decide where the global optimum is. So we can use local
optimisers to locally construct good partial solutions, and rely on the GA to combine the local
solutions into a global solution. This is important because a local optimiser now does not have
to worry about the interactions that are some distance away, but which it does in
uence. It can
forget about everything which does not fall in his scope of view and try to make the best it can.

However, a local optimiser should worry about producing enough alternatives. If the variation
in local solutions is low, the global optimiser does not have enough choice to decide which local
optimum was best in the overall picture. Ideally, a local optimiser produces a set of alternative
solutions and chooses randomly from them. Of course, a certain amount of variation is produced
just by the fact that the local optimiser will not always be applied to exactly the same situation,
which might be enough.

Local optimisers get used to solve two kinds of con
icts:

� Old con
icts which arose during the initialization of the �rst population.

� New con
icts that arise on the border between parts from di�erent parents during crossover.

4 GENETIC ALGORITHMS FOR MAP LABELING 31

The new con
icts are all in the border, so we can solve them by applying local optimisers on
the cities in the border. The old con
icts can occur everywhere on the map. That means we want
to apply a local optimiser on every point with the same probability. This can be done during
sampling of central points when building the crossover mask. Instead of altering the children, we
try to improve the parents. Each point on the map has equal probability to be chosen as a sample.
To this point we apply the local optimiser. Note that we can use a `focus' (see section 4.6) to
guide the GA to regions with con
icts to limit the computational cost.

We can now consider some local optimisers for the problem of optimising the labeling of a point
relative to the labelings of his rivals. Note that for these optimisers, the scope is very limited:
it consists of just one point. The optimiser therefore can only reposition the label of the central
point. Consider the following local optimisers:

� Random repositioning: just randomly choose another position for the label and place it
there. If the map is not too crowded, chances are high that it will solve the con
ict. The
repositioning will result in a change in the �tness function and the repositioning will be made
undone when the �tness decreases. Advantages of this approach are that it is independent
of the �tness function and preserves variety. A disadvantage is that it is blind, it does not
really use the information about the positions of the labels of the rivals.

�

Figure 24: Slot�lling: determine
free slots and choose from them.

Slot-�lling: consider every possible position for a label
to be a slot and call a slot �lled when a label of one of
the rivals intersects the label of the central point if it
was positioned there (see �gure 24). Now determine of
all slots whether they are �lled or not, and choose from
the free slots in order of preference if positions have
di�erent preferences, otherwise choose randomly. When no free slots are available, leave the
label where it is, or delete it if label selection is allowed. An advantage of this approach is
that it will solve the con
ict if possible. A disadvantage is that it makes implicit assumptions
about the �tness function because it has to consider what the �tness function counts as a
con
ict in order to solve it.

A GA uses adaptive mechanisms (see also section 4.4) to adapt solutions to become more
like the desired solution. Every GA uses the adaptive mechanism of variation (as provided by
crossover and mutation) combined with selection. Local optimisers can be used as another adaptive
mechanism, by letting them change solutions as they see �t. The slot-�lling local optimiser is like
that. It is however possible to make a local optimiser which only provides variation and uses the
�tness function to check if it has become better, which is what the random repositioning optimiser
does.

If one decides to make the local optimiser a new adaptive mechanism in its own right, care
should be taken that it operates in concert with the other adaptive mechanism (variation and
selection). We want to avoid adapting solutions which are better according to one mechanism
and worse according to the other. In practice this means that all aspects of the problem should
be handled in the local optimiser, including the aspect which is measured in the �tness function
(which should be the combinatorial most diÆcult aspects, as argued in section 4.4). Also, all
aspects should be handled in order of precedence. This means for example that if label positions
have preferences they are only considered when there is a choice between two positions which
result in an equal number of free labels.

An `intelligent' local optimiser (such as slot-�lling) has several uses in the GA. Summarising:

� It is used to repair the border.

� It constructs locally good solutions from which the GA can construct a globally good solution.

� It allows for the use of the maximal delegation principle which removes aspects of the problem
from the �tness function which are not combinatorial diÆcult.

4 GENETIC ALGORITHMS FOR MAP LABELING 32

� It allows for the handling of precedences in GIS-problems.

Clearly, only the �rst (and in some sense the second) point holds for the random repositioning
optimiser. It is for these reasons that we think slot-�lling is the most preferred optimiser. Experi-
mental results con�rm this. See for example �gure 25 where the GA was run with respectively the
slot-�lling optimiser and the random repositioning optimiser. Both converge to the same optimum,
but the use of slot-�lling makes the speed of convergence much higher. In this case, plugging in a
tailor made optimiser allows the GA to run faster without loss of quality. Indeed, if the algorithm
is run without the use of a local optimiser but with the same population size (also shown in the
picture), performance is signi�cantly inferior.

Skip (no local opt.) [r013]
Random repositioning [r012]

Slot-�lling [r011]

Label intersection tests (*106)

F
it
n
es
s

181716151413121110987654321

500

450

400

350

300

250

200

Figure 25: Three runs of the GA with di�erent optimisers .

Slot-�lling is essentially a local optimiser which has to resolve con
icts resulting from label
overlap. It was however no trouble to augment it to handle preferred positions and automatic
label selection as well. This con�rms the statement that combining tailor-made local optimisers
with the powerful search mechanism of the GA is a good way to solve the map labeling problem.
See �gure 26 for a dense map of two hundred cities which was labeled using the slot-�lling local
optimiser where preferences were followed and label selection was allowed. Note that it is important
what counts as an intersection. For this picture a label is considered to intersect when it overlaps
either another label or another point. Other users would choose di�erently. For example, if points
with deleted labels are also deleted an intersection would be de�ned as overlap with another label.

4.6 Focusing on con
icts only

During the run of the genetic algorithm, con
icts will be solved. However, even when a con
ict
is solved for a certain point, it will still be active in the process of crossover, mixing and local
optimisation. This could be a waste of time if the con
ict was solved satisfactory. To speed things
up, a way can be constructed to avoid spending too much time on parts of the solution which
are good. We can focus on unsolved con
icts only by keeping track of which con
icts were solved
and excluding them from crossover (more accurately, from mixing). This is easily done using the
technique of masking. Each solution carries a con
ict mask in which a bit is set if the con
ict
for that point in the solution is unsolved. When performing crossover we again use the masking
technique. Masks are sampled (by picking points on the map) and each mask corresponds with

4 GENETIC ALGORITHMS FOR MAP LABELING 33

Figure 26: A map of twohundred cities which was labeled with preferences and automatic label
selection.

4 GENETIC ALGORITHMS FOR MAP LABELING 34

a rival group (a bit is set if a city is member of the rival group). We now make sure only rival
groups are sampled which contain at least one point which has a con
ict or whose label is deleted
(if label selection is allowed). This is not diÆcult to do, since the con
ict mask of the solution
contains the information we need to test a whole rival group for con
icts. E�ectively, this will
focus the activity of the GA on the regions which apparently are diÆcult. Note that the union
of the sampled rival groups should now be half of the focused region, instead of half of the whole
map. These ideas become more clear by looking at �gure 27. The picture shows a map with a
region which has no con
icts, and a region which contains only con
icts. Normally a map would
of course not have such neatly divided regions, but this is just to make the point. In the picture
on the left, the map is divided in two parts which are complementary. When a child is generated,
one of the parts is taken from the mother and the other from the father. This division is made
without focusing. In the picture on the right, we do focus on regions with con
icts. We now only
sample in the region which contains con
icts. The complementary parts now are not equal in size
anymore, which is the key for the speed-up since the border between the part from the father and
the part from the mother is not so large anymore.

No con
ict With con
ict

Figure 27: Crossover without (on the left) and with (on the right) focus.

loGA with focus [r015]
loGA without focus [r014]

Label intersection tests (*106)

F
it
n
es
s

4321

500

450

400

350

300

250

200

Figure 28: The di�erence in speed with focus turned on or o�.

Figures 28 and 29 show that the di�erence in speed with focus turned on or o� is not very
dramatic, since the gain comes from the pieces of the map which are solved in both parents, for

4 GENETIC ALGORITHMS FOR MAP LABELING 35

loGA with focus [r030]
loGA without focus [r029]

Label intersection tests (*106)

F
it
n
es
s

1

1000

950

900

850

800

750

700

650

Figure 29: The di�erence in speed with focus turned on or o� for a large map. The map has width
1582, height 1222 and has 1000 cities placed on it.

SA (without focus)
SA (with focus)

Label intersection tests (*106)

F
it
n
es
s

321

500

480

460

440

420

400

380

360

Figure 30: The di�erence in speed with focus turned on or o� for the SA.

5 COMPARISON EXPERIMENTS 36

a whole rival group. This is seldom the case. However, focus does not have any bad side-e�ects
so it can not hurt to use it. Also, possibly ways can be devised to make the focus more e�ective,
but research on that topic is still in progress. The focus option is not only applicable for Genetic
Algorithms, but also for the Simulated Annealing algorithm and the lazy hillclimber. See �gure
30 for a run of the SA with and without focus. Again no deterioration of quality is observed. The
genetic algorithm uses its con
ict mask for fast �tness evaluations. Using the focus option is a
bonus which can be used at no extra cost. For the SA, the con
ict mask has to be updated during
the run which is not necessary if focus is not used. This extra bookkeeping costs time (in the form
of label intersection tests) which can be seen in the �gure by the di�erent rate of improvement.
However, since the SA is forced to �nish its schedule in order to be sure it found the best solution,
the run with focus wins out in the long run (no pun intended).

4.7 Design of the loGA | summary

Di�erent aspects of the loGA were investigated in the preceding sections. In this section we
recapitulate and give the design choices which should be made for the loGA.

The selection scheme should be the elitist recombination scheme. This allows the probability
of crossover to be 1:0 and the probability of mutation to be 0:0.

The initialiser can be both random or with the use of slot�lling. This mainly depends on the
task at hand. If all one wants to do is label a map and maximise free labels, simpler settings can
be used than when one also wants to consider preferred positions, automatic label selection, etc.
In the case of just making the map con
ict free, the random initialisers should be used because
it gives the most variation. If one wants to consider more rules, the other initialiser should be
used since it guarantees each city undergoes local optimisation even when it is not engaged in a
con
ict.

The �tness function used should be the �tness function which maximises the number of free
labels, for the reasons mentioned in section 4.4.

The crossover operator should be the rival based crossover, in cooperation with local optimisers.
Again, depending on the task at hand a choice has to be made whether local optimisation should
only be performed on the border or on the parents also (see section 4.5.2). The local optimiser
used should be slot-�lling.

Focus should always be turned on, since it speeds up the algorithm and has no disadvantages.

5 Comparison experiments

As was argued in section 3, stochastic algorithms seem to work best at solving the map labeling
problem. Several algorithms have proven to work well, and we will compare our algorithm with
them. These algorithms are the simulated annealing algorithm (from [2]), the genetic algorithm
from Verner et al. (from [19]) and the hill climber algorithm. We will present the comparison
results in two subsections: in section 5.2 we will compare the quality of the solutions of the
di�erent algorithms, and in section 5.3 we will explore the issue of how fast the algorithms �nd
their solutions. First however, we devote section 5.1 to implementation details. Finally, in section
5.4 we will give some conclusions that we can derive from these experiments.

All comparisons need some fair method of measurement for computational e�ort. When com-
paring two di�erent genetic algorithms, counting the number of �tness evaluations is a fair method.
However, this would give an unfair advantage to the genetic algorithm when it is compared to the
simulated annealing algorithm or the hill climber, since those algorithms do not need a full �tness
evaluation of the whole map. Instead the most atomic action that all algorithms perform is the
test if two labels intersect each other. Therefore, all graphs show the number of label intersection
tests against the solution quality (or �tness) which was obtained after that many tests11.

11The correlation coeÆcient for the correlation between the total number of label intersection tests and the total
amount of time needed was always higher than 0.984 for every experiment.

5 COMPARISON EXPERIMENTS 37

map density 100 150 200 250 300 350 400 450 500 750 1000 1500
loGA pop. size 150 150 150 150 150 150 150 150 150 300 500 1000

copyGA pop. size 200 250 250 250 400 400 400 400 400 400 500 1500

Table 1: The population sizes used for various map densities.

Since we will compare our own genetic algorithm against the genetic algorithm of Verner et al.,
we will refer to our own algorithm as the local optimiser GA (loGA) and sometimes refer to their
algorithm as the copyGA (since the power of its crossover operator lies in copying good parts to
both children).

The maps which the algorithms have to label are derived from randomly generated datasets.
These datasets are alike to the maps Christensen et al. used when they performed their comparison
experiments mentioned in section 3 (since they are random, they are unlikely to be the same).
On a grid of 792 by 612 units n points are randomly placed. Each point can place its label in
several �xed positions, as depicted in �gures 2 and 3. Unless otherwise speci�ed, a four-position
placement model is used. Each label has �xed dimensions of 30 by 7 units. Increasing the number
of points therefore causes the amount of interaction to rise and the problem becomes harder.

The population sizes for the loGA and the copyGA are shown in table 1 for di�erent map
densities12. The population sizes of the copyGA are the same as those which Verner et al. used.
Verner et al. did not experiment with problems with 1500 cities on the map, so we choose a
population size for those problems which is certainly large enough. The reader is warned not to
conclude anything from the population sizes used. We do not claim these values are optimal and
further research in this important area is de�nitely needed.

5.1 Implementation

5.1.1 The lazy hillclimber.

The hill climber algorithm excels in simplicity. It simply tries to change the solution (reposition
one label) and reverses the change if the solution degrades in quality (according to the �tness
function, so a degradation means less free labels in this context). We call this hillclimber a 'lazy'
hillclimber since it invests as little time as possible in deciding which change will be best. Contrast
this with an 'eager' hillclimber which picks the best change of all possible, allowable changes (this
is like the gradient descent algorithm discussed in section 3).

The hill climber was implemented as a reduced version of a genetic algorithm. The population
size was one, and no crossover was performed. Mutation was always performed, and this allowed
the solution to improve. Since mutation can also degrade solutions, the mutation was implemented
as a local optimiser which checks the solution after the change to see if it degraded. If it did, the
change is made undone. The check is done by comparing the �tness of the changed solution with
the original �tness. However, since this change was local (consisting of only one point) the change
in �tness could be derived by looking at the point and its rivals. This makes the computational
cost of a single iteration (consisting of one mutation) very small. Of course, many iterations were
needed to �nd a good solution.

5.1.2 The simulated annealing algorithm.

The simulated annealing algorithm was implemented according to the directions of Christensen
et al. in [2]. The reader is referred to that article for more details. After implementing the basic
algorithms, several changes were tried. It was found that the algorithm performed better when
'focussing' (see section 4.6) was turned on. In the original algorithm, a change could happen to
every point which was given as input. With focus turned on, a change can not happen to a point
if its label is free and the labels of its rivals are free also. Another version used the slot-�lling
procedure (see section 4.5.2) instead of making a random change.

12See section 5.1.4 for an additional experiment with constant population size.

5 COMPARISON EXPERIMENTS 38

5.1.3 The copyGA.

The algorithm of Verner et al. basically consists of a standard GA (using a generational model
with roulette wheel selection, a random mutator and a �tness function containing several aspects)
with a new crossover operator. The crossover operator makes use of masking to preserve good
subsolutions. Each string (a solution consisting of an array with label positions for each point)
has a mask associated with it which speci�es if the point at that location has a good labeling. A
labeling for a point is considered good when the label does not intersect another label and the
point is not a neighbour of a point with an intersecting label, otherwise the labeling is considered
bad. A neighbour of a point p is de�ned in the article of Verner et al. as one of the four points
that are closest to p (using the Euclidean metric). This contrasts with the use of the de�nition of
a neighbour as a rival (de�nition 2.5) which was used in the rest of this article.

0 0 1 0 1

0 0 1 1 0

1 0 - - -

P1 P2

P2

P2

P1P2 P1

P1

P2

P1

Mask from parent 1 (P1, 1 means "good")

Mask from parent 2 (P2)

Random bitmask ('-' means that the value is irrelevant)

Child 1 inherits from...

Child 2 inherits from...

Figure 31: The use of masks with the mask crossover.

Crossover is performed by looking at a random bit mask and the two masks of the parents.
For every location the following reasoning is applied to decide whether to copy the contents for
the location from the �rst or the second parent (see �gure 31 for a summary of this procedure). If
the mask of the �rst parent signi�es that the location is good, the contents are copied to the �rst
child. If the mask of the second parent signi�es a bad location, the contents of the �rst parent is
also copied to the second child. If the masks of both parents signify a bad location, the random bit
mask determines whether to copy from the �rst or the second parent. The procedure is symmetric
for the other child. So if a location is considered good for one parent and bad for the other parent,
both children get the information from the same parent.

Crossover operators are usually complementary: the children can be split up in two pieces each
which can be joined to form the parents again. The masking crossover is di�erent in that it can
copy more from one of the parents than from the other one. This results in a very exploiting
scheme since good subsolutions immediately are distributed to both the children. The risk of such
an exploiting scheme is that premature convergence could become a problem.

As we said before in section 3, besides the crossover operator the algorithm is fairly stan-
dard using a generational scheme with roulette wheel selection, blind mutation, elitism (the best
individual of the population always makes it into the next population), and a �tness function mea-
suring di�erent aspects of the problem. We felt that the basic idea of their crossover operator was
interesting but that the other (standard) choice could be improved on by adopting the choices we
made for our own algorithm: elitist recombination, no blind mutation and a �tness function which
measures only the number of free labels (Verner et al. also included two terms (with parameters b
and c) to minimise the area of label overlap which is unnecessary for the comparison experiments).
This resulted in an algorithm we denote by 'copy Xover ERGA' in our presentation of the results.

Also we experimented with the use of the neighbours when copying. When we say 'no neigh-
bours' we mean that a labeling for a point is considered good when the label does not intersect
another label.

5 COMPARISON EXPERIMENTS 39

5.1.4 The loGA.

The local optimiser GA was implemented following the recommendations of section 4.7. In addi-
tion, care has been taken to allow the algorithm to run as fast as possible. To achieve this every
genome has a con
ict mask as an attribute. The con
ict mask speci�es for each point whether the
label of the point is free or not. This allows the �tness function to be computed quite fast, since
no time consuming label intersection tests have to be performed. This con
ict mask needed to be
computed for every genome at the start of the run and stay updated during the run. Therefore,
after crossover was performed, on points where new con
icts can have arisen the con
ict masks
are updated. The result was that �tness evaluation did not have to cover the whole map and the
GA runs faster13.

The focus option uses the con
ict mask to determine which points can be sampled (as explained
in section 4.5.1). The larger the map, the more the GA will bene�t from using the focus option.

Locals optimiser were only applied if a test indicated that the point had a con
ict.
The population size of the loGA was chosen such that the quality was comparable to the

SA of Christensen et al. Note however that since the most diÆcult building block oversizes the
population size for the other building blocks (as explained in section 2.1) we could use a smaller
population size and sacri�ce little quality. In fact, since building block gets bigger when the
problem instance gets bigger, the amount of characters in the meta-alphabet (as described in
section 4.3) stays about the same. To demonstrate this we have also done experiments with the
loGA run with a population size of 150 for all maps, which is always clearly indicated.

5.2 Quality

5.2.1 The lazy hill climber versus the loGA

An option to solve the map labeling problem could be to simply let the hill climber run from
di�erent random initialisations, and pick the best solution. If the �tness landscape is rough, this
method would depend on choosing in one of the runs the right hill with the global optimum (by
accident), after which it is climbed. However, for label placement with four positions which are all
equally good and no label selection, the �tness landscape is not rough. So hill climbing actually
works quite well. It makes rapid progress at the start, but this slows down when the hard pieces
of the map have to get solved (which consist of �nding a way out of a plateau). Then it takes a
long time to solve these problems.

Since the lazy hillclimber is such a simple algorithm, it can serve to give an indication of the
point where the problem gets tough. If one devises a new algorithm, one would at the very least
want it to give better results than the lazy hillclimber, which does not use any sophistocated
techniques at all.

In �gure 32 several runs are plotted (for the loGA, the best available solution in the population
at any given moment is used for comparison). The hillclimber (hillclimber 1) �nds 482 free labels
(averaged over �ve maps). Also plotted is a run of the GA, to compare how much time it would
take to gain the same quality (number of free labels). Note that this run uses a very small
population size (using a smaller population size would degrade the quality further however). Also
plotted is a run with a close to optimal population size for the best quality the loGA is able to
�nd (490 free labels). A run where the hillclimber used the focus option (from section 4.6) showed
worse performance, so focus does not work well with the lazy hillclimber.

Experiments suggest that the hill climber gets trapped in a local optimum at the end of the
run. In �gure 34 the di�erence in solutions (taken from actual solutions that were found) from
both algorithms is seen.

13This optimisation is more diÆcult to do with the algorithm of Verner et al. since the con
ict mask would then
have to be updated to represent the number of overlapping labels instead of simply whether there is a con
ict. The
\copy Xover GA" does have the optimisation.

5 COMPARISON EXPERIMENTS 40

loGA with optimal population size (max) [r026]
Hillclimber 2 (max) [r018]

loGA with minimal population size (max) [r017]
Hillclimber 1 (max) [r016]

Label intersection tests (*106)

F
it
n
es
s

1

500

450

400

350

300

250

Figure 32: A comparison of the loGA with the lazy hill climber. (Hillclimber 1 uses focus and
random positioning and hillclimber 2 uses no focus and random positioning.)

Hillclimber 3 [r019]
Hillclimber 1 [r016]

Label intersection tests (*106)

F
it
n
es
s

54321

500

450

400

350

300

250

Figure 33: A comparison of the lazy hill climber with di�erent mutators. (Hillclimber 3 uses no
focus and slot-�lling.)

Figure 34: The di�erence between solutions from the hill climber (on the left) and the loGA (on
the right).

5 COMPARISON EXPERIMENTS 41

Figure 35: Slot-�lling can
fail.

Shown in �gure 33 are runs of the hillclimber with a focus option
on (see section 4.6 in which the same mechanism as used in the loGA
is described) and with slot-�lling used as the mutator. The run
with slot-�lling shows very poor performance which is as expected
because slot-�lling can not solve problems like the one shown in
�gure 35 since it can not �nd any free slots if either point is chosen

as the central point.
A comparison of implementations of the lazy hillclimber and the loGA for di�erent map sizes

was done and the results are shown in �gure 36.

Lazy hillclimber
loGA

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

Figure 36: The lazy hillclimber compared with the loGA. See appendix A for the exact datapoints
with standard deviation.

5.2.2 The loGA versus the simulated annealing algorithm

It was shown in [2] that in terms of solution quality simulated annealing works very well. Indeed,
it performed better than all the other algorithms tested in that article. We did an experiment in
which an implementation (according to the description from the original article) of the simulated
annealing algorithm was compared against the loGA. The results of this experiment are plotted
in �gure 37.

Three versions of the simulated annealing algorithm were compared against the loGA. They
all had the same annealing schedule. The �rst version is the one that is the most faithful imple-
mentation of the directions from the article of Christensen et al. Since the loGA gains much of its
power from the local optimiser, for completeness sake it was tried with the simulated annealing
algorithm also. This gives poor performance, as could be expected since the local optimiser strictly
improves the situation and therefore lacks a method to escape a local optimum by generating an
inferior solution. The third version has the focusing capabilities that were originally developed for
the loGA turned on. This had as a result that the performance was increased, since the algorithm
did not have to waste iterations improving already good labelings. Also the speed of the algorithm
was increased.

Interesting is that both the simulated annealing algorithm with focus and the loGA produce
exactly the same solutions for the low density maps. Since these results are averages from �ve
randomly generated maps, this leads us to suspect that these solutions are optimal. The quality of

5 COMPARISON EXPERIMENTS 42

SA (with focus)
SA (with slot�lling)

SA (no focus)
loGA

loGA (popsize = 150)

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Figure 37: The simulated annealing algorithm compared with the loGA. See appendix A for the
exact datapoints with standard deviation.

the results of both algorithms are very similar and it can not really be said that one is signi�cantly
better than the other (see however section 5.3 for a discussion on the running times).

In another experiment we changed the problem to the one described in de�nition 2.4, where
the placement model also contains the possibility of entirely deleting a point and its label from the
map. This way more labels can be placed since unresolvable con
icts can be solved by deleting
one or more of the labels. This adds an extra level of complexity to the problem. In �gure 38
three runs are plotted: the loGA which uses the slot-�lling initialization described in section 4.3
and optimises parents, the SA with and the SA without focus. We used the same cooling-schedule
for the SA as before (which is the same as Christensen et al. recommend). Although the loGA
seems to perform better one should take into account that the cooling schedule could have been
lowered more slowly since the SA takes less time to converge.

We were also curious to see how both algorithms would perform if they used the eight position
placement model, since this results in an enormous increase in the search space The results are
plotted in �gure 39. Again we see that the loGA starts performing better than the SA when the
problem complexity increases. Here also we have to consider that the cooling schedule of the SA
could be extended, which would result in better results. I seems to be however that the loGA
is very robust since changing the problem instance still produces acceptable results, whereas the
SA would have its cooling schedule to be tuned for every problem instance. Also we suspect
that there is a boundary where the problem instance becomes so complex that the SA becomes
computationally infeasible while the loGA still produces good results in reasonable time. This is
because the loGA uses its local optimisers to transform the alphabet into a much simpler meta-
alphabet (see section 4.3) which reduces the size of the search space drastically. The SA still has
the whole search space to cope with. Since real map labeling problems include many rules and
constraints, this boundary is likely to be crossed relatively soon. In other words, map labeling
problems become very complex very fast and an algorithm like the loGA which reduces the search
space seems to be the best approach for solving them.

5 COMPARISON EXPERIMENTS 43

SA (with deletion, with focus)
SA (with deletion, no focus)

loGA (with deletion)

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.95

0.9

0.85

0.8

0.75

Figure 38: The simulated annealing algorithm compared with the loGA for the problem with label
selection. See appendix A for the exact datapoints with standard deviation.

SA (eight pos)
loGA (eight pos)

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.95

0.9

0.85

0.8

0.75

0.7

Figure 39: The simulated annealing algorithm compared with the loGA using an eight position
model. See appendix A for the exact datapoints with standard deviation.

5 COMPARISON EXPERIMENTS 44

5.2.3 The loGA versus the copyGA

How does the GA of Verner et al. compare against the loGA? In �gure 40 the results for the
randomly generated datasets are plotted. Note that these results contrast with the results given
in the original article of Verner et al. Unfortunately we were unable to reproduce the results
of Verner et al, and �gure 40 shows the results that our own implementation of the algorithm
produced. Note that there even is a point where (our implementation of) the algorithm of Verner
et al. starts performing worse than the hillclimber, a much simpler algorithm. We also plotted a
run of the GA which used only the crossover operator of Verner et al. (see section 5.1.3). This
produced good results, but could not top the loGA.

copy Xover ERGA (no neigh)
copyGA

Lazy hillclimber
loGA

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 40: The loGA compared against the GA of Verner et al.. See appendix A for the exact
datapoints with standard deviation.

We did try several approaches to �nd out why our implementation produced di�erent results.
In �gure 41 several runs are plotted together with the data from [19]. These runs were all done
in the eight-position model (a label can be placed in any of eight possible positions, according
to de�nition 2.3) since this model was used also in their article to compare their results with the
simulated annealing algorithm (which, however, used a four-position model).

From the experiments which are visualised in �gure 41 we can conclude the following:

� The position model was not the cause of the discrepancy, since the run which uses the
eight-position model still performs worse than Verner et al. reported in their article.

� Curiously enough, the run which did not consider neighbours (see 5.1.3) performed compa-
rable with the reported results.

� The loGA performs better than the reported results.

Besides failing to produce better results than the loGA, there is also the important question
of how easily the copyGA can be extended to other problem instances. We will argue that this is
diÆcult, but we will have to examine the workings of the GA closer before understanding why.

A genetic algorithm is an adaptive process: it applies adaptive mechanisms to adapt solutions
to become more like the desired solution. In the conventional GA, the only adaptive mechanism
is provided by the combination of variation (as induced by initialisation, crossover and mutation)
and selection. This is often called the exploration/exploitation mechanism. With this mechanism,

5 COMPARISON EXPERIMENTS 45

copyGA (eight pos, no neigh)
copyGA (eight pos)

Original data of Verner et al.
loGA (eight pos)

Number of cities on the map

Q
u
a
li
ty

140012001000800600400200

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 41: Several approaches of the copyGA compared with original results. See appendix A for
the exact datapoints with standard deviation.

given two random parent strings, crossover is equally likely to make a child which is better as
to make a child which is worse. However, it is possible to put a bias in the crossover operator
so that it is more likely to generate good children. This introduces a new adaptive mechanism.
This is exactly what the crossover with masking does (see �gure 42 in which the in
uence of the
adaptiveness of selection is removed). The crossover from the loGA which swaps rival groups and
repairs using local optimisers (called the rival crossover from now on) also puts adaptive powers
in the crossover operator (because it uses local optimisers). There is nothing wrong with making
the genetic algorithm adaptive in this way. However, it is a design decision which has several
consequences.

Care must be taken so that the two adaptive mechanisms (from variety/selection and from
adaptive crossover) do not act against each other, thereby crippling the genetic algorithm. In a
way, the GA has two drivers at the wheel since both mechanisms could drive the solutions in a
di�erent direction. We took care when we devised our local optimisers that they never made a
local solution worse according to the �tness function. This means that repositionings (for example
placing a label in a preferred position) were only allowed if the number of free labels did not
decrease. The copyGA also combines the two adaptive mechanisms without opposing them.

The map labeling problem has the characteristics that it combines di�erent aspects which can
be global or local and has di�erent precedence levels for di�erent aspects. When dealing with such
a problem, special care should be taken that each aspect is handled appropriately. As we saw in
section 4.4, this could easily be done with the loGA. The copyGA fares less well. Recapitulating
from section 4.4, local aspects should not belong in the �tness function since the principle of
maximal delegation prescribes that the �tness function should only contain combinatorial diÆcult
(and therefore global) aspects of the problem. Aspects of di�erent hardness should also not be
together in the �tness function since precedence levels can not, or very awkwardly, be considered
then. To make this more concrete, consider for example the problem of maximising the amount
of free labels combined with preferences for positions. Both are global aspects, and the con
ict
aspect is harder than the preference aspect (one generally does not want to have more overlap just
because some extra labels can be placed in more preferred positions). Verner et al. did propose a
�tness function which included a term for position preferences. Unfortunately they excluded this
term in the rest of the article and did not provide any experimental results on this matter. Since

5 COMPARISON EXPERIMENTS 46

the aspects are of di�erent hardness, this is not the preferred approach anyway.
Another option to handle more complex problems (besides changing the �tness function) is to

adjust the crossover operator, since it is the only other adaptive mechanism. It is however far
from clear how to do this using the technique of masking and copying. Instead we propose the
use of local optimisers.

copy Xover, no selection [r023]
copy Xover [r022]

Label intersection tests (*106)

F
it
n
es
s

654321

500

450

400

350

300

250

200

Figure 42: The copyGA without selection.

5.3 Speed

The algorithms that were used in the experiments produced results that di�ered in quality, and
always the loGA produced better or equal results than the competing algorithm. Quality is
however linked to computational e�ort. If an algorithm is allowed to run longer, it may produce
better results. For a rough indication, �gures 43 and 44 show how much time the algorithms used
needed to produce the results which were reported.

As argued in 5.2.2, the loGA is likely to perform better (in terms of computational expense)
relative to other algorithms when the complexity of the problem instance increases. On the other
hand, as can be observed in the �gures, the running time of the loGA increases drastically when
the size of the problem instance increases. A solution for this is the use of additional techniques
to keep the region of the map which is labeled small. Research in that area still has to be done.

For a di�erent perspective on how the algorithms �nd their solutions, the runs of the four
algorithms are plotted for the maps with 750 cities.

5.4 Concluding observations

We can from these experiments and the above discussions draw several conclusions:

� The lazy hillclimber with random repositioning performs surprisingly well, but is still no
match for the loGA.

� Simulated annealing handles the basic problem with four positions well and (on large maps)
fast. The loGA achieves the same quality with higher computation costs (on large maps). It
is expected that loGA will outperform SA on more complex problems, but this was diÆcult

5 COMPARISON EXPERIMENTS 47

loGA (with deletion)
copyGA (eight pos, no neigh)

copyGA (eight pos)
copyGA

loGA

Number of cities on the map

L
a
b
el
in
te
rs
ec
ti
o
n
te
st
s
(*
1
0
6
)

1000900800700600500400300200100

3000

2500

2000

1500

1000

500

Figure 43: Time needed by the algorithms in the comparison experiments - most time consuming
algorithms. Note that this is given as a rough indication of running times. The number of label
intersection tests given is the amount needed to achieve the quality reported in section 5.2.

Lazy hillclimber
SA (eight pos)

loGA (eight pos)
SA (with deletion, with focus)
SA (with deletion, no focus)

SA (with focus)
SA (with slot�lling)

SA (no focus)
loGA

loGA (popsize = 150)

Number of cities on the map

L
a
b
el
in
te
rs
ec
ti
o
n
te
st
s
(*
1
0
6
)

1000900800700600500400300200100

250

200

150

100

50

Figure 44: Time needed by the algorithms in the comparison experiments - least time consuming
algorithms. See the comment in �gure 43.

6 ROBUSTNESS OF THE GA 48

Lazy hillclimber
SA

loGA
copy Xover ERGA

Label intersection tests (*106)

F
it
n
es
s

40302010

700

650

600

550

500

450

400

350

300

250

Figure 45: A plot of the running times.

to verify experimentally since no recommendations for the cooling schedule were given by
Christensen et al. for more complex problems.

� The algorithm of Verner et al. is outperformed in terms of quality and speed by the loGA.

� The loGA can easily be extended to other problem instances.

6 Robustness of the GA

The notion of robustness is something that we consider to be quite important, so we want to
summarise and stress the points about this topic that were mentioned earlier.

Most GA's get used as a `black box': fabricate a nice �tness function, use a standard library
and see what happens if we let it run. Sometimes this works well, but in practice this happens
only for problems which were easy to begin with. Most seasoned GA-builders (see for example
[3]) therefore acquire a `feeling' for constructing GA's which depends on carefully choosing the
representation of the solution, picking the right operators and so on. This produces GA's that are
successful at tackling diÆcult problems. A disadvantage is that building GA's is more like an art
than a science.

Other GA-builders try to gain a deeper understanding in how GA's really work and come up
with analyses of concepts such as schema processing, convergence speed, deception and multi-
modality. Research in this area is progressing well, but an illuminating theory on GA's which
explains all is far from being.

The map labeling problem is a diÆcult one and a careful balance has to be made between art
and theory. Not only is even the most basic problem (minimizing overlap for points with four
�xed positions) NP-complete, also a wide variety of quality measures have to be used due to the
large variety in possible con
icts (for example point with river, point with sea, etc.). It is therefore
wise to keep this in mind when building a GA that has to work on these problems. It is not very
practical (in terms of design e�ort) to build a GA that works well on point features but which can
not be extended to other problem instances. Summarizing, we want a GA which is robust in the
sense that we can extend it to other problem instances without much diÆculties.

7 CONCLUSION 49

Which these thoughts in mind, we have constructed a GA which has the following points which
account for its robustness:

� Pc, the crossover probability, can safely be set to 1 because of the elitist recombination
scheme.

� Pm, the mutation probability, can be set to 0 (avoiding the disadvantages of random muta-
tion) because local optimisers are used.

� No tuning of �tness weights is necessary because multiple-term �tness functions are avoided.

� Hitchhiking is prevented because crossover masks are �ne grained as the result of sampling.

� Genetic drift is avoided because of the constant selection pressure which acts on all parts of
the solution (all points on the map).

� Extendibility is o�ered through the use of local optimisers.

� The alphabet is reduced using the local optimisers so the search space remains tractable.

In the GA as it stands (which works well on the problem of labeling points) more 'intelligence'
can easily be built in using the local optimisers. This means that we expect to be able to extend
this algorithm without dramatic losses in quality to more diÆcult problems. This can be done
without recalibrating the algorithm, which is a major advantage when building a algorithm for a
problem which is so multifaceted as map labeling.

One point of calibration is still an open question however: that is the question of the optimal
population size. Too large a population is a waste of valuable computing resources, too little a
population means running the risk of getting inferior solutions. There are two answers to this
problem. First, we could make a analytic model of the process and derive a formula for the
population size. This is diÆcult, but it would produce valuable insights in the workings of the
GA. However, this analysis might not be extendible when the problem changes. The other method
is by making the population size adaptive, as is described in [16]. Further research is being done
to tackle this problem. Note however that since only one parameter needs to be tuned this is
something the user of the GIS can do because he can see (literally on the resulting map) what the
e�ect is of changing the population size.

7 Conclusion

This paper described a new genetic algorithm for the problem of labeling maps. It was shown
that the results of this algorithm are equal or better (as tested in the framework of Christensen
et al.) than the results of other algorithms presently known in literature. Besides constructing an
algorithm which could solve the problem of labeling point features well, care was taken to make the
algorithm robust in the sense that it would be possible to extend the algorithm to other problem
instances without major changes or time consuming recalibrations of user de�ned constants.

Topic of further research are:

� How to speed up the genetic algorithm further, especially on large or very dense maps.

� Extending the framework of the GA to include line- and area features

� Gaining insight in the relation between problem complexity and population size.

Acknowledgements

The software for this work used the GALib genetic algorithm package, written by Matthew Wall
at the Massachusetts Institute of Technology.
Thanks go to Roger Wainwright for providing the data which was used in �gure 7.

REFERENCES 50

Figure 46: A labeling of major cities in the USA.

References

[1] H. Asoh and H. M�uhlenbein. On the mean convergence time of evolutionary algorithms
without selection and mutation. In Y. Davidor, H. Schwefel, and R. M�anner, editors, Lecture
Notes in Computer Science, Vol. 866: Parallel Problem Solving from Nature PPSN-III., pages
98{107. Springer-Verlag, 1994.

[2] J. Christensen, J. Marks, and S. Shieber. An empirical study of algorithms for point-feature
label placement. ACM Transactions on Graphics, 14(3):203{232, 1995.

[3] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York, 1991.

[4] K. DeJong. Analysis of Behavior of a Class of Genetic Adaptive Systems. PhD thesis, The
University of Michigan, 1975.

[5] Y. Djouadi. Cartage: A cartographic layout system based on genetic algorithms. In Proc.
EGIS, pages 48{56, 1994.

[6] M. Feigenbaum. Method and apparatus for automatically generating symbol images against
a background image without collision utilizing distance-dependent attractive and repulsive
forces in a computer simulation, 1994. Assigned to Hammond Inc., Maplewood, New Jersey.
U.S. Patent �led 11/5/93, received 10/11/94.

[7] D. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, Reading, Mass., 1989.

[8] D. Goldberg and P. Segrest. Finite markov chain analysis of genetic algorithms. In Genetic
algorithms and their applications: Proceedings of the Second International Conference on
Genetic Algorithms, pages 1{8, 1987.

A DATAFILES 51

[9] G. Harik, E. Cant�u-Paz, D. Goldberg, and B. Miller. The gambler's ruin problem, genetic
algorithms, and the sizing of populations. In Proceedings of the 1997 IEEE International
Conference On Evolutionary Computation, pages 7{12, 1997.

[10] S. Hirsch. An algorithm for automatic name placement around point data. The American
Cartographer, 9(1):5{17, 1982.

[11] E. Imhof. Positioning names on maps. The American Cartographer, 2(2):128{144, 1975.

[12] S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science,
220(4598), 1983.

[13] G. Langran and T. Poiker. Integration of name selection and name placement. In Proc.
Auto-Carto 8, pages 50{64, 1986.

[14] J. Marks and S. Shieber. The computational complexity of cartographic label placement.
Technical Report TR-05-91, Harvard University, March 1991.

[15] H. M�uhlenbein and D. Schlierkamp-Voosen. Predictive models for the breeder genetic algo-
rithm: Continuous parameter optimization. Evolutionary Computation, 1(1):25{49, 1993.

[16] R. Smith. Adaptively resizing populations: An algorithm and analysis. Technical report,
University of Alabama, February 1993.

[17] D. Thierens. Selection schemes, elitist recombination, and selection intensity. In T. B�ack,
editor, Proceedings of the Seventh International Conference on Genetic Algorithms (ICGA97),
San Francisco, CA, 1997. Morgan Kaufmann.

[18] D. Thierens and D. Goldberg. Elitist recombination: An integrated selection recombination
ga. In Proceedings of the First IEEE International Conference on Evolutionary Computation,
pages 508{512. IEEE Service Center, Piscataway, NJ, 1994.

[19] O. Verner, R. L. Wainwright, and D. A. Schoenefeld. Placing text labels on maps and diagrams
using genetic algorithms with masking. INFORMS Journal of Computing, 9(3), 1996.

[20] P. Yoeli. The logic of automated map lettering. The Cartographic Journal, 9:99{108, 1972.

[21] S. Zoraster. Integer programming applied to the map label placement problem. Cartographica,
23(3):16{27, 1986.

[22] S. Zoraster. The solution of large 0-1 integer programming problems encountered in automated
cartography. Operations Research, 38(5):752{759, 1990.

[23] S. Zoraster. Practical results using simulated annealing for point feature label placement.
Cartography and GIS, 1998. to appear.

A Data�les

This appendix summarises the experimental results of the runs which were done for the �gures
12, 22, 23, 25, 28, 32, 33. All these runs were done on the same map. This map was a randomly
generated map (according to the speci�cations of Christensen et al.): the dimensions of the map
were 792 by 612, those of the labels were 30 by 7 and the points were randomly placed. A
four-position model was used.

For all the runs the following factors were kept constant, unless mentioned otherwise in the
comment of table 3:

� Deletion of labels was not allowed.

� The �tness function counted the number of free (without an intersection) labels on the map.

A DATAFILES 52

� No preferences for label positions were considered.

� The initialization procedure was the initializer that chooses for each gene a random allele in
the range of valid positions.

In table 2 and 3 the settings of the runs are enumerated. For every entry in the tables �ve
runs were done and averaged. The following terms were used:

� Pc : probability of crossover.

� Pm : probability of mutation.

� uniform : uniform crossover.

� 1pt : one point crossover.

� rival : rival based crossover.

� treeSwap : kd-tree based crossover.

� copy : copy crossover with masking of Verner et al..

� LO-mutator : a mutation operator which invokes the current local optimiser on a randomly
chosen point.

� RR-mutator : a mutation operator which invokes random repositioning on a randomly chosen
point.

� convergence : a stop criterion that terminates the algorithm when the average �tness in the
population equals the �tness of the best individual

�
atline/x : a stop criterion that terminates the algorithm when the last tenth of iterations
did not increase the average �tness in the population. The algorithm is not terminated
unless the number of iterations exceeds x. Notes that for a generational GA an iteration
equals a generation and for an incremental GA an iteration equals a recombination followed
by mutation.

Table 2 describes for each run the mutator, crossover, local optimiser, population size and
operator probabilities. When an entry is not applicable (e.g. which mutator when the probability
of mutation is 0.0) the dash (-) is shown.

Table 3 describes several options which could be turned on or o� for a run, and also shows the
optimum (averaged over �ve runs) these runs found. The options are:

� Optimise parents : Apply local optimisers to the central point of a sample in the parent?
See section 4.5.2.

� Use focus : Focus on regions with con
icts? See section 4.6.

� Repair : Repair border between genetic information from parents? See section 4.5.1.

� Adapt nr. of masks : as described in section 4.5.1 a multi-mask is composed of several
masks. The number of these masks is adapted during the run of the algorithm. The treeSwap
crossover was meant to be a geometric kind of one point crossover, with a �xed mask of one
(the implementation uses masks to specify the nodes of the tree). This did not work well,
so we also tried adapting the number of masks.

� Use ERGA: Use the elitist recombination scheme or a generational scheme with roulette-
wheel selection? See section 4.1.1.

Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 show the di�erences in quality for di�erent
algorithms (`S.D.' means `Standard Deviation').

A DATAFILES 53

Run Mutator Crossover Local Stop Population Pc Pm
Optimiser criterion Size Pc Pm

r001 - uniform - convergence 200 1.0 0.0
r002 - treeSwap - convergence 200 1.0 0.0
r003 - treeSwap - convergence 200 1.0 0.0
r004 - 1pt - convergence 200 1.0 0.0
r005 - rival - convergence 200 1.0 0.0
r006 - rival slot�lling convergence 200 1.0 0.0
r007 - rival slot�lling convergence 200 1.0 0.0
r008 - rival - convergence 200 1.0 0.0
r009 - rival slot�lling convergence 200 1.0 0.0
r010 - rival - convergence 400 1.0 0.0
r011 - rival slot�lling convergence 200 1.0 0.0
r012 - rival random repos. convergence 200 1.0 0.0
r013 - rival skip convergence 200 1.0 0.0
r014 - rival slot�lling convergence 200 1.0 0.0
r015 - rival slot�lling convergence 200 1.0 0.0
r016 LO-mutator - random repos.
atline/10000 1 0.0 1.0
r017 - rival slot�lling convergence 10 1.0 0.0
r018 LO-mutator - random repos.
atline/10000 1 0.0 1.0
r019 LO-mutator - slot�lling
atline/4000 1 0.0 1.0
r020 - copy slot�lling
atline/500 200 1.0 0.0
r021 RR-mutator copy slot�lling
atline/25 200 0.9 0.1
r022 - copy slot�lling
atline/500 200 1.0 0.0
r023 - copy slot�lling
atline/500 200 1.0 0.0
r024 - rival slot�lling convergence 200 1.0 0.0
r025 - copy slot�lling
atline/500 200 1.0 0.0
r026 - rival slot�lling convergence 75 1.0 0.0
r027 - rival slot�lling convergence 200 1.0 0.0
r028 - rival slot�lling convergence 200 1.0 0.0
r029 - rival slot�lling convergence 200 1.0 0.0
r030 - rival slot�lling convergence 200 1.0 0.0

Table 2: Settings of the runs used { 1.

A DATAFILES 54

Run Optimise Use Repair? Adapt nr. Use Optimum Comment:
Parents? Focus? of masks? ERGA? found:

r001 - - - - Yes 479
r002 No No No No Yes 300.8
r003 No No No Yes Yes 459.2
r004 - - - - Yes 362.2
r005 No No No Yes Yes 476.2
r006 No Yes Yes Yes Yes 490
r007 No Yes Yes Yes No 490
r008 No No No Yes Yes 476.2
r009 No No Yes Yes Yes 490
r010 No No No Yes Yes 481.6
r011 No Yes Yes Yes Yes 490
r012 No Yes Yes Yes Yes 490
r013 No Yes Yes Yes Yes 479.2
r014 No No Yes Yes Yes 490
r015 No Yes Yes Yes Yes 490
r016 Yes Yes Yes Yes Yes 482
r017 No Yes Yes Yes Yes 482.6
r018 Yes No Yes Yes Yes 476.4
r019 - - - - Yes 426.4
r020 - - - - Yes 490
r021 - - - - No 490
r022 - - - - Yes 490
r023 - - - - Yes 489.8 No selection.
r024 No Yes Yes Yes Yes 490
r025 - - - - Yes 490
r026 No Yes Yes Yes Yes 490
r027 No No Yes Yes Yes 490 Slot-�lling init.
r028 No No Yes Yes Yes 490
r029 No No Yes Yes Yes 969.2 Di�erent map.
r030 No Yes Yes Yes Yes 994.8 Di�erent map.

Table 3: Settings of the runs used { 2.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
copy Xover ERGA (no neigh) 1 0 100 100 100 100 100
loGA (with deletion) 1 0 100 100 100 100 100
loGA 1 0 100 100 100 100 100
copyGA (eight pos) 1 0 100 100 100 100 100
loGA (eight pos) 1 0 100 100 100 100 100
loGA (popsize=150) 1 0 100 100 100 100 100
Lazy hillclimber 1 0 100 100 100 100 100
SA (with deletion, with focus) 1 0 100 100 100 100 100
SA (with focus) 1 0 100 100 100 100 100
SA (with slot�lling) 1 0 100 100 100 100 100
SA (with deletion, no focus) 1 0 100 100 100 100 100
SA (no focus) 1 0 100 100 100 100 100
SA (eight pos) 1 0 100 100 100 100 100
copyGA (eight pos, no neigh) 0.996 0.008 100 100 98 100 100
copyGA 0.994 0.012 97 100 100 100 100

Table 4: Di�erences in quality for maps of size 100.

A DATAFILES 55

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.998667 0.00266667 150 150 150 149 150
SA (with deletion, with focus) 0.998667 0.00266667 150 150 150 149 150
SA (with deletion, no focus) 0.998667 0.00266667 150 150 150 149 150
copy Xover ERGA (no neigh) 0.997333 0.00533333 150 150 150 148 150
loGA 0.997333 0.00533333 150 150 150 148 150
loGA (eight pos) 0.997333 0.00533333 150 150 150 148 150
loGA (popsize=150) 0.997333 0.00533333 150 150 150 148 150
SA (with focus) 0.997333 0.00533333 150 150 150 148 150
SA (no focus) 0.997333 0.00533333 150 150 150 148 150
SA (eight pos) 0.997333 0.00533333 150 150 150 148 150
copyGA (eight pos) 0.996 0.008 150 150 150 147 150
copyGA (eight pos, no neigh) 0.996 0.008 150 150 150 147 150
Lazy hillclimber 0.994667 0.00653197 150 150 150 148 148
copyGA 0.990667 0.00997775 149 150 150 146 148
SA (with slot�lling) 0.974667 0.0180862 145 150 148 142 146

Table 5: Di�erences in quality for maps of size 150.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.998 0.00244949 199 200 200 199 200
loGA (eight pos) 0.998 0.004 200 200 200 198 200
SA (with deletion, with focus) 0.998 0.00244949 199 200 200 199 200
SA (with deletion, no focus) 0.998 0.00244949 199 200 200 199 200
SA (eight pos) 0.998 0.004 200 200 200 198 200
copyGA (eight pos, no neigh) 0.997 0.006 200 200 200 197 200
copy Xover ERGA (no neigh) 0.996 0.00489898 198 200 200 198 200
loGA 0.996 0.00489898 198 200 200 198 200
loGA (popsize=150) 0.996 0.00489898 198 200 200 198 200
Lazy hillclimber 0.996 0.00489898 198 200 200 198 200
SA (with focus) 0.996 0.00489898 198 200 200 198 200
SA (no focus) 0.996 0.00489898 198 200 200 198 200
copyGA 0.996 0.00489898 198 200 200 198 200
copyGA (eight pos) 0.995 0.00632456 200 198 200 197 200
SA (with slot�lling) 0.969 0.00663325 193 194 194 192 196

Table 6: Di�erences in quality for maps of size 200.

A DATAFILES 56

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.9968 0.0016 249 249 249 249 250
loGA (eight pos) 0.9968 0.00391918 250 248 250 248 250
copyGA (eight pos, no neigh) 0.9968 0.00391918 250 248 250 248 250
SA (with deletion, with focus) 0.9968 0.0016 249 249 249 249 250
SA (with deletion, no focus) 0.9968 0.0016 249 249 249 249 250
SA (eight pos) 0.9968 0.00391918 250 248 250 248 250
copyGA (eight pos) 0.9952 0.00587878 250 247 250 247 250
copy Xover ERGA (no neigh) 0.9936 0.0032 248 248 248 248 250
loGA 0.9936 0.0032 248 248 248 248 250
loGA (popsize=150) 0.9936 0.0032 248 248 248 248 250
SA (with focus) 0.9936 0.0032 248 248 248 248 250
SA (no focus) 0.9936 0.0032 248 248 248 248 250
copyGA 0.992 0.00505964 248 248 248 246 250
Lazy hillclimber 0.9888 0.00688186 247 248 245 246 250
SA (with slot�lling) 0.9624 0.02049 238 242 237 236 250

Table 7: Di�erences in quality for maps of size 250.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.997333 0.00133333 299 299 299 299 300
loGA (eight pos) 0.997333 0.00326599 300 298 300 298 300
copyGA (eight pos, no neigh) 0.997333 0.00326599 300 298 300 298 300
SA (with deletion, with focus) 0.997333 0.00133333 299 299 299 299 300
SA (with deletion, no focus) 0.997333 0.00133333 299 299 299 299 300
SA (eight pos) 0.997333 0.00326599 300 298 300 298 300
copyGA (eight pos) 0.996 0.00326599 298 298 300 298 300
copy Xover ERGA (no neigh) 0.994667 0.00266667 298 298 298 298 300
loGA 0.994667 0.00266667 298 298 298 298 300
loGA (popsize=150) 0.994667 0.00266667 298 298 298 298 300
SA (with focus) 0.994667 0.00266667 298 298 298 298 300
SA (no focus) 0.994667 0.00266667 298 298 298 298 300
copyGA 0.994667 0.00266667 298 298 298 298 300
Lazy hillclimber 0.983333 0.0107497 296 296 292 291 300
SA (with slot�lling) 0.956 0.018306 282 293 282 283 294

Table 8: Di�erences in quality for maps of size 300.

A DATAFILES 57

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.996571 0.00213809 348 349 349 348 350
loGA (eight pos) 0.996571 0.00279942 348 348 350 348 350
SA (with deletion, with focus) 0.996571 0.00213809 348 349 349 348 350
SA (eight pos) 0.996571 0.00279942 348 348 350 348 350
copyGA (eight pos, no neigh) 0.995429 0.00427618 346 348 350 348 350
SA (with deletion, no focus) 0.994857 0.00379043 348 349 348 346 350
copy Xover ERGA (no neigh) 0.993143 0.00427618 346 348 348 346 350
loGA 0.993143 0.00427618 346 348 348 346 350
loGA (popsize=150) 0.993143 0.00427618 346 348 348 346 350
SA (with focus) 0.993143 0.00427618 346 348 348 346 350
SA (no focus) 0.993143 0.00427618 346 348 348 346 350
copyGA (eight pos) 0.992571 0.0049816 345 348 348 346 350
copyGA 0.992 0.00279942 346 348 348 346 348
Lazy hillclimber 0.975429 0.00713714 342 340 340 339 346
SA (with slot�lling) 0.94 0.0190381 339 333 320 324 329

Table 9: Di�erences in quality for maps of size 350.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (eight pos) 0.996 0.002 398 398 398 398 400
SA (with deletion, with focus) 0.996 0.002 398 398 398 398 400
SA (eight pos) 0.996 0.002 398 398 398 398 400
loGA (with deletion) 0.9955 0.00244949 398 398 397 398 400
copyGA (eight pos, no neigh) 0.9955 0.00244949 398 398 398 397 400
SA (with deletion, no focus) 0.9945 0.00331662 396 398 397 398 400
copyGA (eight pos) 0.992 0.00509902 396 398 394 396 400
copy Xover ERGA (no neigh) 0.9915 0.0043589 396 396 395 396 400
loGA 0.9915 0.0043589 396 396 395 396 400
loGA (popsize=150) 0.9915 0.0043589 396 396 395 396 400
SA (with focus) 0.9915 0.0043589 396 396 395 396 400
SA (no focus) 0.9915 0.0043589 396 396 395 396 400
copyGA 0.988 0.00244949 394 396 394 396 396
Lazy hillclimber 0.9555 0.0134536 384 383 372 384 388
SA (with slot�lling) 0.939 0.0162481 373 388 369 373 375

Table 10: Di�erences in quality for maps of size 400.

A DATAFILES 58

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (eight pos) 0.995556 0.00281091 446 448 448 448 450
SA (eight pos) 0.995556 0.00281091 446 448 448 448 450
copyGA (eight pos, no neigh) 0.995111 0.00294811 446 448 447 448 450
SA (with deletion, with focus) 0.994667 0.00226623 446 448 448 447 449
loGA (with deletion) 0.994222 0.00226623 446 448 447 447 449
SA (with deletion, no focus) 0.992889 0.00326599 444 448 447 447 448
copy Xover ERGA (no neigh) 0.988444 0.00514482 441 446 445 444 448
loGA 0.988444 0.00514482 441 446 445 444 448
loGA (popsize=150) 0.988444 0.00514482 441 446 445 444 448
SA (with focus) 0.988444 0.00514482 441 446 445 444 448
SA (no focus) 0.988444 0.00514482 441 446 445 444 448
copyGA (eight pos) 0.985778 0.0101932 436 448 441 445 448
copyGA 0.983111 0.00989825 434 446 442 444 446
Lazy hillclimber 0.938667 0.0114698 420 420 416 431 425
SA (with slot�lling) 0.925778 0.0135974 407 419 413 419 425

Table 11: Di�erences in quality for maps of size 450.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (eight pos) 0.992 0.00357771 494 496 494 498 498
copyGA (eight pos, no neigh) 0.992 0.00357771 494 496 494 498 498
SA (eight pos) 0.992 0.00357771 494 496 494 498 498
loGA (with deletion) 0.99 0.00219089 494 495 494 495 497
SA (with deletion, with focus) 0.9896 0.00366606 493 495 493 495 498
SA (with deletion, no focus) 0.9852 0.00271293 492 493 491 492 495
copyGA (eight pos) 0.9816 0.0082365 488 494 484 494 494
copy Xover ERGA (no neigh) 0.98 0.00657267 487 490 487 490 496
loGA 0.98 0.00657267 487 490 487 490 496
loGA (popsize=150) 0.98 0.00657267 487 490 487 490 496
SA (with focus) 0.98 0.00657267 487 490 487 490 496
SA (no focus) 0.9792 0.00627375 486 490 487 490 495
copyGA 0.968 0.0167809 470 486 482 486 496
Lazy hillclimber 0.9336 0.0109836 463 473 462 474 462
SA (with slot�lling) 0.9064 0.0172696 445 456 443 467 455

Table 12: Di�erences in quality for maps of size 500.

A DATAFILES 59

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (eight pos) 0.967733 0.00770108 715 731 725 730 728
SA (eight pos) 0.966133 0.00811473 714 731 722 729 727
loGA (with deletion) 0.9616 0.00751413 712 728 723 718 725
copyGA (eight pos, no neigh) 0.960533 0.00882824 708 726 720 722 726
SA (with deletion, with focus) 0.9568 0.0100346 707 729 717 713 722
SA (with deletion, no focus) 0.954933 0.00644429 708 720 716 715 722
loGA 0.933333 0.0153883 680 712 704 695 709
loGA (popsize=150) 0.932533 0.0145229 680 711 701 697 708
copy Xover ERGA (no neigh) 0.931467 0.0154252 679 712 703 693 706
SA (with focus) 0.929867 0.0165806 676 714 699 695 703
SA (no focus) 0.929333 0.0172201 676 713 698 691 707
copyGA (eight pos) 0.9096 0.0185405 661 688 671 697 694
copyGA 0.871467 0.0286415 622 685 661 639 661
Lazy hillclimber 0.828533 0.0313103 614 596 663 605 629
SA (with slot�lling) 0.800533 0.0142261 582 607 600 599 614

Table 13: Di�erences in quality for maps of size 750.

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (eight pos) 0.9264 0.00884534 917 935 915 936 929
SA (eight pos) 0.9154 0.0110018 902 929 903 924 919
loGA (with deletion) 0.9142 0.00453431 912 918 911 921 909
SA (with deletion, no focus) 0.902 0.00626099 898 913 897 905 897
SA (with deletion, with focus) 0.9016 0.00560714 902 908 898 907 893
copyGA (eight pos, no neigh) 0.901 0.0105641 895 915 888 912 895
loGA 0.8494 0.00733757 842 861 844 855 845
SA (no focus) 0.847 0.0069857 844 858 842 852 839
SA (with focus) 0.8464 0.00760526 838 856 840 855 843
loGA (popsize=150) 0.842 0.00961249 833 858 834 848 837
copy Xover ERGA (no neigh) 0.8336 0.00722772 826 843 826 841 832
Lazy hillclimber 0.7562 0.00847113 761 741 753 762 764
copyGA (eight pos) 0.7336 0.0208672 715 762 716 756 719
copyGA 0.6976 0.0101509 689 703 702 711 683
SA (with slot�lling) 0.6374 0.015819 622 650 629 662 624

Table 14: Di�erences in quality for maps of size 1000.

A DATAFILES 60

Algorithm Quality S.D. run 1 run 2 run 3 run 4 run 5
loGA (with deletion) 0.789733 0.00237019 1187 1182 1190 1184 1180
SA (with deletion, no focus) 0.7696 0.00416547 1157 1153 1161 1158 1143
loGA (eight pos) 0.766933 0.00346667 1145 1147 1160 1151 1149
SA (with deletion, with focus) 0.766933 0.00302875 1153 1147 1144 1157 1151
SA (eight pos) 0.7472 0.00154344 1123 1122 1118 1118 1123
copyGA (eight pos, no neigh) 0.638133 0.00571003 956 943 969 956 962
SA (no focus) 0.634667 0.0065047 959 959 947 960 935
SA (with focus) 0.633733 0.00443421 957 947 958 951 940
loGA 0.633467 0.00552006 955 955 956 951 934
loGA (popsize=150) 0.607067 0.00527636 908 923 916 905 901
copy Xover ERGA (no neigh) 0.606533 0.00472158 919 916 907 908 899
Lazy hillclimber 0.567467 0.0125532 867 830 879 845 835
SA (with slot�lling) 0.363067 0.00782702 557 558 545 534 529
copyGA (eight pos) 0.176533 0.0095163 256 278 283 263 244
copyGA 0.174667 0.00893433 273 278 256 240 263

Table 15: Di�erences in quality for maps of size 1500.

