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Abstract

We investigate the “deep structure” of a scale-space image. The emphasis is on topology,i.e. we
concentrate on critical points—points with vanishing gradient—and top-points—critical points with
degenerate Hessian—and monitor their displacements, respectively generic morsifications in scale-
space. Relevant parts of catastrophe theory in the context of the scale-space paradigm are briefly
reviewed, and subsequently rewritten into coordinate independent form. This enables one to imple-
ment topological descriptors using a conveniently defined, global coordinate system.

1 Introduction

1.1 Historical Background

A fairly well understood way to endow an image with a topology is to embed it into a one-parameter
family of images known as a “scale-space image”. The parameter encodes “scale” or “resolution”
(coarse/fine scale means low/high resolution, respectively).

Among the simplest is the linear or Gaussian scale-space model. Proposed by Iijima [13] in the
context of pattern recognition it went largely unnoticed for a couple of decades, at least outside the
Japanese scientific community. Another early Japanese contribution is due to Otsu [32]. The Japanese
accounts are quite elegant and can still be regarded up-to-date in their way of motivating Gaussian
scale-space; for a translation, the reader is referred to Weickert, Ishikawa, and Imiya [41]. The earliest
accounts in the English literature are due to Witkin [42] and Koenderink [18]. Koenderink’saccount
is particularly instructive for the fact that the argumentation is based on a precise notion ofcausality
(in the resolution domain), which allows one to interpret the process of blurring as a well-defined
generalisation principle akin to similar ones used in cartography, and also for the fact that it pertains to
topological structure.

1.2 Scale and Topology

The quintessence is thatscale provides topology. In fact, by virtue of the scale degree of freedom
one obtains a hierarchy of topologies enabling transitions between coarse and fine scale descriptions.
This is often exploited in coarse-to-fine algorithms for detecting and localising relevant features (edges,
corners, segments,etc.).

The core problem—the embodiment of a decent topology—hadalready been addressed by the math-
ematical community well before practical considerations in signal and image analysis boosted the devel-
opment of scale-space theory. Of particular interest is thetheory of tempered distributionsformulated
by Laurent Schwartz in the early fifties [34]. Indeed, the mere postulate ofpositivity imposed on the
admissible test functions proposed by Schwartz, together with aconsistency requirement1 suffices to

1The consistency requirement, the details of which are stated elsewhere [5, 6], imposes a convolution-algebraic structure on
admissible filter classes in the linear case at hand. Both Schwartz’ “smooth functions of rapid decay” as well as Koenderink’s
Gaussian family are admissible. The autoconvolution algebra generated by the normalised zeroth order Gaussian scale-space
filter is unique in Schwartz space given the constraint of positivity.
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single out Gaussian scale-space theory from the theory of Schwartz. Moreover, straightforward ap-
plication of distribution theory readily produces the complete Gaussian family of derivative filters as
proposed by Koenderink in the framework of front-end visual processing [24]. For details on Schwartz’
theory and its connection to scale-space theorycf. the monograph by Florack [6]. In view of ample
literature on the subject we will henceforth assume familiarity with the basics of Gaussian scale-space
theory [6, 12, 29, 35].

1.3 Deep Structure

In their original accounts both Koenderink as well as Witkin proposed to investigate the “deep structure”
of an image,i.e. structure at all levels of resolution simultaneously. Today, the handling of deep struc-
ture is still an outstanding problem in applications of scale-space theory. Nevertheless, many heuristic
approaches have been developed for specific purposes that do appear promising. These typically utilise
some form of scale selection and/or linking scheme,cf. Bergholm’s edge focusing scheme [2], Linde-
berg’s feature detection method [29, 30], the scale optimisation criterion used by Niessenet al. [31]
and Floracket al. [9] for motion extraction, Vincken’s hyperstack segmentation algorithm [40],etc..
Encouraged by the results in specific image analysis applications an increasing interest has recently
emerged trying to establish a generic underpinning of deep structure. Results from this could serve as
a common basis for a diversity of multiresolution schemes. Such bottom-up approaches invariably rely
oncatastrophe theory.

1.4 Catastrophe Theory

An early systematic account of catastrophe theory is due to Thom [37, 38], although the interested
reader will probably prefer Poston and Stewart’s [33] or Arnold’s account [1] instead. Koenderink has
pointed out that a scale-space image defines aversal family, to which Thom’s classification theorem
can be applied [10, 33, 37, 38]. “Versal” means that almost all members are generic (i.e. “typical”
in a precise sense). However, although this is something one could reasonably expect, it isnot self-
evident. On the one hand, the situation is simplified by virtue of the existence of only one control
parameter: isotropic inner scale. On the other hand, there is a complication,viz. the fact that scale-
space is constrained by a p.d.e.2: the isotropic diffusion equation. The control parameter at hand is
special in the sense that it is in fact the evolution parameter of this p.d.e.

Catastrophe theory in the context of the scale-space paradigm is now fairly well-established. It
has been studied, among others, by Damon [4]—probably the most comprehensive account on the
subject—as well as by Griffin [11], Johansen [14, 15, 16], Lindeberg [27, 28, 29], and Koenderink
[19, 20, 21, 22, 25]. An algorithmic approach has been described by Tingleff [39]. Closely related to
the present article is the work by Kalitzin [17], who pursues a nonperturbative topological approach.

1.5 Canonical versus Covariant Formalism

The purpose of the present article is twofold: (i) to collect relevant results from the literature on catas-
trophe theory, and (ii) to express these in terms of user-defined coordinates. More specifically we derive
covariant expressions for the tangents to the critical curves in scale-space, both through Morse as well
as non-Morse critical points (or top-points3), establish a covariant interpolation scheme for the locations

2p.d.e. = “partial differential equation”.
3The term “top-point” is somewhat misleading; we will use it to denoteany point in scale-space where critical points

merge or separate.
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of the latter in scale-space, and compute the curvature of the critical curves at the top-points, again in
covariant form.

The requirement of covariance is a novel and important aspect not covered in the literature. It entails
that one abstains—from the outset—from any definite choice of coordinates. The reason for this is that
in practice one is not given the special, so-called “canonical coordinates” in terms of which catastrophe
theory is invariably formulated in the literature. Canonical coordinates are chosen to look nice on paper,
and as such greatly contribute to our understanding, but in the absence of an operational definition they
are of little practical use. A covariant formalism—by definition—allows us to use whatever coordinate
convention whatsoever. All computations can be carried out in a global, user-defined coordinate system,
say a Cartesian coordinate system aligned with the grid of the digital image.

2 Theory

Theory is presented as follows. First we outline the general plan of catastrophe theory (Section 2.1), and
then consider it in the context of scale-space theory (Section 2.2). An in-depth analysis is presented in
subsequent sections in canonical (Section 2.3), respectively arbitrary coordinate systems (Section 2.4).
The first three sections mainly serve as a review of known facts scattered in the literature, and more or
less suffice if the sole purpose is to gain insight in deep structure. The remainder covers novel aspects
that are useful for exploiting this insight in practice,i.e. for coding deep structure given an input image.

2.1 The Gist of Catastrophe Theory

A critical point of a function is a point at which the gradient vanishes. Typically this occurs at isolated
points where the Hessian has nonzero eigenvalues. TheMorse Lemmastates that the qualitative prop-
erties of a function at these so-calledMorse critical pointsare essentially determined by the quadratic
part of the Taylor series (theMorse canonical form).

However, in many practical situations one encountersfamiliesof functions that depend oncontrol
parameters. An example of a control parameter is scale in a scale-space image. Catastrophe theory is
the study of how the critical points change as the control parameters change.

While varying a control parameter in a continuous fashion, a Morse critical point will move along
a critical curve. At isolated points on such a curve one of the eigenvalues of the Hessian may become
zero, so that the Morse critical point turns into anon-Morse critical point. Having several control
parameters to play with one can get into a situation in which` eigenvalues of the Hessian vanish simul-
taneously, leavingn� ` of them nonzero. TheThom Splitting Lemmasimplifies things: It states that, in
order to study the degeneracies, one can simply discard then� ` “nice” variables corresponding to the
regular(n� `)� (n� `)-submatrix of the Hessian, and thus study only the` “bad” ones [37, 38]. That
is, one can split up the function into a Morse and a non-Morse part, and study the canonical forms of
each in isolation, because the same splitting result holds in a full neighbourhood of a non-Morse func-
tion. Again, the Morse part can be canonically described in terms of the quadratic part of the Taylor
series. The non-Morse part can also be put into canonical form, called thecatastrophe germ, which is a
polynomial of order3 or higher.

The Morse part does not change qualitatively after a small perturbation. Critical points may move
and corresponding function values may change, but nothing will happen to their type: ifi eigenvalues
of the Hessian are negative prior to perturbation (a “Morsei-saddle”), then this will still be the case
afterwards. Thus—from a topological point of view—there is no need to scrutinise the perturbations.

The non-Morse part, on the other hand, does change qualitatively upon perturbation. In general,
the non-Morse critical point of the catastrophe germ will split into a number of Morse critical points.
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Figure 1: The generic catastrophes in isotropic scale-space. Left: annihilation of a pair of Morse
critical points. Right: creation of a pair of Morse critical points. In both cases the points involved
have opposite Hessian signature. In 1D, positive signature signifies a minimum, while a negative one
indicates a maximum; creation is prohibited by the diffusion equation. In multidimensional spaces
creations do occur generically, but are typically not as frequent as annihilations.

This state of events is calledmorsification. The Morse saddle types of the isolated Morse critical
points involved in this process are characteristic for the catastrophe.Thom’s Theoremprovides an
exhaustive list of “elementary catastrophes” (1; : : : ; 5 control parameters), with canonical formulas for
the catastrophe germs as well as for the perturbations needed to describe their morsification [37, 38].

2.2 Catastrophe Theory and the Scale-Space Paradigm

One should not carelessly transfer Thom’s results to scale-space, since there is a nontrivial constraint
to be satisfied: Any scale-space image, together with all admissible perturbations, must satisfy the
isotropic diffusion equation. Damon has shown how to extend the theory in this case in a systematic
way [4].

That Damon’s account is somewhat complex is mainly due to his aim for completeness and rigour.
If we restrict our attention togenericsituations only, and consider only “typical” input images that
are not subject to special conditions such as symmetries, things are actually fairly simple. The only
generic morsifications in scale-space arecreationsandannihilationsof pairs of Morse hypersaddles of
opposite Hessian signature4: Fig. 1 (for a proof, see Damon [4]). Everything else can be expressed as
a compound of isolated events of either of these two types (although one may not always be able to
segregate the elementary events due to numerical limitations).

In order to facilitate the description of topological events, Damon’saccount, following the usual line
of approach in the literature, relies on a slick choice of coordinates. However, these so-called“canonical
coordinates” are inconvenient in practice, unless one provides an operational scheme relating them to
user-defined coordinates. Mathematical accounts fail to be operational in the sense that—in typical
cases—canonical coordinates are at best proven to exist. Their mathematical construction often relies
on manipulations of the physically void trailing terms of a Taylor series expansion, in other words,
on derivatives up to infinite order, and consequently lacks an operational counterpart. Even if one
were in the possession of an algorithm one should realize that canonical coordinates are in factlocal
coordinates. Each potential catastrophe in scale-space would thus require an independent construction
of a canonical frame.

The line of approach that exploits suitably chosen coordinates is known as thecanonical formalism.
It provides the most parsimonious way to approach topology if neither metrical relations nor numerical
computations are of interest. Thus its role is primarily tounderstandtopology. In the next section we
give a self-contained summary of the canonical formalism for the generic cases of interest.

4“Hessian signature” means “sign of the Hessian determinant evaluated at the location of the critical point”.
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2.3 Canonical Formalism

The two critical points involved in a creation or annihilation event always have opposite Hessian sig-
nature (this will be seen below), so that this signature may serve to define a conserved “topological
charge” intrinsic to these critical points. It is clear (by definition!) that the charge of Morse-critical
points can never change, as this would require a zero-crossing of the Hessian determinant, violating
the Morse criterion that all Hessian eigenvalues should be nonzero. Thus the interesting events are the
interactions of charges within a neighbourhood of a non-Morse critical point.

Definition 1 (Topological Charge) A Morse-critical point is assigned a topological chargeq = �1
corresponding to the sign of the Hessian determinant evaluated at that point. A regular point has zero
topological charge. The topological charge of a non-Morse critical point equals the sum of charges of
all Morse-critical points involved in the morsification.

In anticipation of the canonical coordinate convention, in which the first variable is identified to be the
“bad” one, and in which also a second somewhat special direction shows up, it is useful to introduce
the following notation.

Notation 1 We henceforth adhere to the following coordinate conventions:

x
def
= (x1; : : : ; xn) 2 IRn ; y

def
= (x2; : : : ; xn) 2 IRn�1 :

Instead ofx1 andx2 we shall writex andy, respectively.

This notation will allow us to account for signals and images of different dimensions (typicallyn =
1; 2; 3) within a single theoretical framework.

Definition 2 (Catastrophe Germs) Using Notation 1 we define the catastrophe germs

gA(x; t)
def
= x3 + 6xt ; gC(x; y; t)

def
= x3 � 6x(y2 + t) ;

together with their perturbations

f A(x; t)
def
= gA(x; t) + Q(y; t) ; fC(x; t)

def
= gC(x; y; t) + Q(y; t) :

The quadricQ(y; t) is defined as follows:

Q(y; t)
def
=

nX
k=2

�k

�
x2k + 2t

�
;

in which each�k is either+1 or �1.

Note that germs as well as perturbations satisfy the diffusion equation

@u

@t
= �u : (1)

In the canonical formalism it is conjectured that, given a generic event in scale-space, one can always
set up coordinates in such a way that qualitative behaviour is summarised by one of the two“canonical
forms” given above. Note that, even though it does describe the effect of a general perturbation in a
full scale-space neighbourhood of the catastrophe, the quadric actually does not depend onx. At the
location of the catastrophe exactly one Hessian eigenvalue vanishes. The formsfA(x; t) andfC(x; t)
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correspond to an annihilation and a creation event at the origin, respectively (v.i.). The latter requires
n � 2; creations will not be observed in 1D signals.

Both events are referred to as “fold catastrophes”. The diffusion equation imposes a constraint
that manifests itself in the asymmetry of these two canonical forms. In fact, whereas the annihilation
event is relatively straightforward, a subtlety can be observed in the creation event,viz. the fact that the
possibility for creations to occur requires space to be at least two-dimensional5. The asymmetry of the
two generic events reflects the one-way nature of blurring; topology tends to simplify as scale increases,
albeit not monotonically.

2.3.1 The A-Germ

Morsification of the A-germ of Definition 2 entails an annihilation of two critical points of opposite
charge as resolution is diminished.

Result 1 (Morsification of the A-Germ) Recall Definition 2. Fort < 0 we have two Morse-critical
points carrying opposite charge, fort > 0 there are none. Att = 0 the two critical points collide and
annihilate. The critical curves are parametrised as follows:

P� : (x;y; t)� = (�p�2t; 0; t) :

See Fig. 2. It follows from the parametrisation that the critical points collide with infinite opposite
velocities before they disappear. Thus one must be cautious and take the parametrisation intoaccount
if one aims to link corresponding critical points near annihilation.

Annihilations of the kind described by Result 1 are truly “one-dimensional” events. At the origin
both branches of critical curves are tangential to the(x; t)-plane, and in fact approach eachother from
opposite spatial directions tangential tot = 0, and—in this canonical case—perpendicular to the Hes-
sian zero-crossing6. In numerical computations one must account for the fact that near annihilation
corresponding critical points are separated by a distance of the orderO(

p
�t) if �t is the “time7-to-

collision”.
For 1D signals this summarises the analysis of generic events in scale-space. For images there are

other possibilities, which are studied below. In 2D images the present case describes the annihilation of
a minimum or maximum with a saddle. Minima cannot annihilate maxima, nor can saddles annihilate
eachother. In 3D images one has two distinct types of hypersaddles, one with a positive and one with
a negative topological charge. Also minima and maxima have opposite charges in this case, and so
there are various possibilities for annihilation all consistent with charge conservation. However, charge
conservation is only a constraint and does not permit one to conclude that all events consistent with it
will actually occur. In fact, by continuity and genericity one easily appreciates that a Morsei-saddle
can only interact with a(i � 1)-saddle (i = 1; : : : ; n), because one and only one Hessian eigenvalue
is likely to change sign when traversing the top-point (i.e. the degenerate critical point) along the crit-
ical path. Genericity implies that sufficiently small perturbations will not affect the annihilation event
qualitatively. It may undergo a small dislocation in scale-space, but it is bound to occur.

5The germfC(x; t) seems to captureanother catastrophehappening at a somewhat coarser scale some distance away from
the origin, yet invariably coupled to the creation event. However, it should be stressed that canonical forms like these are not
intended to describe events away from the origin. Indeed, the associated “scatter” event turns out to be highly nongeneric, and
is therefore of little practical interest.

6“Hessian zero-crossing” is shorthand for “zero-crossing of the Hessian determinant”.
7“Time” in the sense of the evolution parameter of Eq. (1).
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Figure 2: In 2D, positive Hessian determinant signifies an extremum, while a negative one indicates a
saddle. The morsification is visualised here for the annihilation event (Result 1), showing five typical,
fixed-scale local pictures at different points on or near the critical curve.

2.3.2 The C-Germ

Morsification of the C-germ of Definition 2 entails a creation of two critical points of opposite charge
as resolution is diminished. (For a while there has been some confusion about this in the literature;
creation events were—falsely—believed to violate the causality principle that is the core of scale-space
theory [18].) The event of interest here is the one occurring in the immediate vicinity of the origin.

Result 2 (Morsification of the C-Germ) Recall Definition 2. Fort < 0 there are no Morse-critical
points in the immediate neighbourhood of the origin. Att = 0 two critical points of opposite charge
emerge producing two critical curves fort > 0. The critical curves are parametrised as follows:

P� : (x;y; t)� = (�
p
2t; 0; t) :

Again charges are conserved, and again the emerging critical points escape their point of creation with
infinite opposite velocities. Genericity implies that creations will persist despite perturbations, and will
suffer at most a small displacement in scale-space.

2.3.3 The Canonical Formalism: Summary

To summarize, creation and annihilation events together complete the list of possible generic catastro-
phes. The canonical formalism enables a fairly simple description of what can happen topologically.
However, canonical coordinates do not coincide with user-defined coordinates, and cease to be use-
ful if one aims to compute metrical properties of critical curves. This limitation led us to develop the
covariant formalism, which is presented in the next section.
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2.4 Covariant Formalism

In practice the separation into “bad” and “nice” coordinate directions is not given. The actual realiza-
tion of canonical coordinates varies from point to point, a fact that might lead one to believe that it
requires an expensive procedure to handle catastrophes in scale-space. However, the covariant formal-
ism declines from the explicit construction of canonical coordinates altogether. It allows us (i) to carry
out computations in anyuser-defined, global coordinate system, requiring only a few image convolu-
tions per level of scale, and (ii) to computemetrical propertiesof topological events (angles, directions,
velocities,accelerations,etc.).

The covariant formalism relies on tensor calculus. The only tensors we shall need are (i) metric ten-
sorg�� and its dualg�� (the components of which equal the Kronecker symbol��� in a Cartesian frame,
i.e.1 if � = �, otherwise0), (ii) Levi-Civita tensor"�1:::�n and its dual"�1:::�n in n dimensional space,
and (iii) covariant image derivatives (equal to partial derivatives in a Cartesian frame). In a Cartesian
frame the Levi-Civita tensor is defined as the completely antisymmetric tensor with"1;:::;n = 1; from
this any other nontrivial component follows from permuting indices and toggling signs. Actually, we
will only encounter products containing an even number of Levi-Civita tensors, which can always be
rewritten in terms of metric tensors only (seee.g.Floracket al. [7] for details). Wherever possible we
will use matrix notation to alleviate theoretical difficulties so that familiarity with the tensor formalism
is not necessary.

Derivatives are computed by linear filtering:

L�1:::�k

def
= (�1)k

Z
dz f(z)��1:::�k (z) : (2)

Here, (�1)k ��1:::�k(z) is thek-th order transposed covariant derivative of the normalised Gaussian
�(z) with respect toz�1 ; : : : ; z�k , tuned to the location and scale of interest (these parameters have been
left out for notational simplicity), andf(z) represents the raw image. In particular, the components
of the image gradient and Hessian are denoted byL� andL�� , respectively. Instead of “covariant
derivative” one can read “partial derivative” as long as one sticks to Cartesian frames or rectilinear
coordinates. (This is all we need below.) Distributional differentiation according to Eq. (2) iswell-posed
because it is actually integration. Well-posedness admits discretisation and quantisation of Eq. (2), and
guarantees that other sources of small scale noise are not fatal. Of course the filters need to be realistic;
for scale-space filters this means that one keeps their scales confined to a physically meaningful interval,
and that one keeps their differential order below an appropriate upper bound [3]. Equally important is
the observation that Eq. (2) makes differentiation operationallywell-defined. One can actually extract
derivatives from an image in the first place, because things are arranged in such a way that, unlike with
“classical” differentiation and corresponding numerical differencing schemes,differentiation precedes
discrete sampling. In practice one will almost always calculate derivatives at all points in the image
domain; in that case Eq. (2) is replaced by aconvolutionof f and��1:::�k (the minus sign is then
implicit).

The ensemble of image derivatives up tok-th order provides a model of local image structure in a
full scale-space neighbourhood, known as thelocal jet of orderk [8, 10, 23, 24, 26, 33]. Here it suffices
to consider structure up to fourth order at the voxel8 of interest (summation convention applies):

(4)

L (x; t) = L+ L� x
� +

1

2
L�� x

�x� + �L t+
1

6
L��� x

�x�x� + �L� x
�t+

+
1

24
L���� x

�x�x�x� +
1

2
�L�� x

�x�t +
1

2
�2L t2 : (3)

8The term “voxel” refers to a “pixel” in arbitrary dimensions.
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Then+ 1 constraints for a non-Morse critical point are8<: r (4)

L (x; t) = 0 ;

detrrT
(4)

L (x; t) = 0 ;
(4)

which become generic in(n+ 1)-dimensional scale-space. For a Morse critical point one simply omits
the determinant constraint, leavingn equations inn unknowns (and1 scale parameter).

Let us investigate the system of Eqs. (3–4) in the immediate vicinity of a critical point of interest.
Assume that(x; t) = (0; 0) labels a fiducial grid point near the desired zero-crossing, which has been
designated as the base point for the numerical coefficients of Eq. (3). Both gradient as well as Hessian
determinant at the corresponding (or any neighbouring) voxel will be small, though odds are that they
are not exactly zero. Then we know that Eq. (4) will be solved for(x; t) � (0; 0), and we may use
perturbation theory for interpolation to establish a lowest order sub-voxel solution.

The details are as follows. Introduce a formal parameter" � 0 corresponding to the order of
magnitude of the left hand sides of Eq. (4) at the fiducial origin. Substitute(x; t) = " (x1; t1) into Eq.
(4) and collect terms of orderO(") (the terms of order zero vanish by construction). Absorbing the
formal parameter back into the scaled quantities the result is the following linear system:(

L�� x
� +�L� t = �L� (� = 1; : : : ; n) ;eL��L��� x

� + eL���L�� t = �kL��k ; (5)

in which the eL�� are the components of the transposed cofactor matrix obtained from the Hessian
(Appendix A), andkL��k denotes the Hessian determinant9. The determinant constraint (last identity)
follows from a basic result in perturbation theory for matrices:

det(A + "B) = detA + " tr (eAB) + O("2) : (6)

In Eq. (5) both the coefficients on the left hand side as well as the data on the right hand side can be
obtained by staightforward linear filtering of the raw image as defined by Eq. (2), so that we indeed
have an operationally defined interpolation scheme for locating critical points within the scale-space
continuum. It is important to note that the system of Eq. (5) holdsin any coordinate system(manifest
covariance). We will exploit this property in our algorithmic approach later on.

Our next goal is to invert the system of Eq. (5)while maintainingmanifest covariance. This obviates
the need for numerical inversions or the construction of canonical frames. Such methods would have to
be applied to each and every candidate voxel in scale-space, while neither would give us much insight
in local critical curve geometry. The inversion differs qualitatively for Morse and non-Morse critical
points and so we consider the two cases separately.

It is convenient to rewrite Eq. (5) in matrix form with the help of the definitions

H��
def
= L�� ; (7)

w�
def
= �L� ; (8)

z�
def
= L���

eL�� ; (9)

g�
def
= L� ; (10)

c
def
= �L��

eL�� : (11)

9This abuse of notation—there are actuallyno free indices inkL��k—is common in classical tensor calculus.
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Note that

H = rg ; (12)

w = @tg ; (13)

z = r detH ; (14)

c = @t detH ; (15)

so that we may conclude that all relevant information is contained in first order spatial and scale deriva-
tives of the image’s gradient and Hessian determinant.

With this notation(n+ 1)� (n+ 1) coefficient matrix of Eq. (5) becomes

M
def
=

"
H w

zT c

#
: (16)

For Morse critical points at fixed resolution the relevant subsystem in the hyperplanet = 0 is

Hx = �g ; (17)

but in fact we obtain a linear approximation of thecritical curve through the Morse critical point of
interest if we allow scale to vary:

Hx = � (g +w t) : (18)

This can be easily generalised to any desired order. For top-points we must consider the full system

M

"
x

t

#
= �

"
g

detH

#
: (19)

2.4.1 Morse Critical Points

From Eq. (18) it follows that at levelt = 0 the tangent to the critical path in scale-space is given by"
x

t

#
=

"
x0
0

#
+

"
v

c

#
t (20)

in which the sub-voxel location of the Morse critical point is given by

x0 = �Hinvg ; (21)

and its instantaneous scale-space velocity—i.e. the displacement in scale-space per unit oft—by"
v

1

#
=

"
�Hinvw

1

#
: (22)

Note that the path followed by Morse critical points is always transversal to the hyperplanet = 0, which
is why we can set the scale component equal to unity. In other words, such critical points can never
vanish “just like that”; they necessarily have to change identity into a non-Morse variety. According to
Eq. (22), spatial velocityv becomes infinite as the point moves towards a degeneracy (odds are thatw

remains nonzero). If we do not identify “time” with scale, but instead reparametriset = detH � , then
scale-space velocity—now defined as the displacement per unit of�—becomes"

v0

c0

#
=

"
� eHw
detH

#
: (23)
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With this refinement of the scale parameter the singularity is approached “horizontally” from a spatial
direction perpendicular to the null-space of the Hessian (note,e.g.by diagonalising the Hessian, thateH
becomes singular, yet remains finite when eigenvalues ofH degenerate). The trajectory of the critical
point continues smoothly through the top-point, where its “temporal sense” is reversed. This picture
of the generic catastrophe captures the fact that there are always pairs of critical points of opposite
Hessian signature that “belong together”, either because they share a common fate (annihilation) or
because they have a common cause (creation). The two members of such a pair could therefore be
seen as manifestations of a single “topological particle” if one allows for a non-causal interpretation,
in much the same way as one can interpret positrons as instances of electrons upon time-reversal. The
analogy with particle physics can be pursued further, as Kalitzin points out, by modeling catastrophes
in scale-space as interactions conserving a topological charge [17]. Indeed, charges are operationally
well-defined conserved quantities that add up under point interactions at non-Morse critical points,
irrespective their degree of degeneracy. This interpretation has the advantage that one can measure
charges from spatial surface integrals around the point of interest (by using Stokes’ theorem), thus
obtaining a “summary” of qualitative image structure in the interior irrespective of whether the enclosed
critical points are generic or not. So far, however, Kalitzin’s approach has not been refined to the sub-
voxel domain, and does not give us a local parametrisation of the critical curve.

The perturbative approach can be extended to higher orders without essential difficulties, yielding
a local parametrisation of the critical path of corresponding order. It remains a notorious problem to
find theoptimal orderin numerical sense, because it is clear that although the addition of yet another
order will reducethe formal truncation error due to the smaller Taylor tail discarded, it will at the same
time incrementthe amount of intrinsic noise due to the computation of higher order derivatives. It is
beyond the scope of this paper to deal with this issue in detail; a point of departure may be Blom’s study
of noise propagation under simultaneous differentiation and blurring [3]. We restrict our attention to
lowest nontrivial order. For Morse critical points this is apparently third order, for top-points this will
be seen to require fourth order derivatives.

If one knows the location of the top-point one can find a similar critical curve parametrisation in
terms of the parameter� , starting out from this top-point instead of a Morse critical point. In that
case we first have to solve the top-point localisation problem. It is clearly of interest to know the
parametrisationat the top-point, since this will enable us to identify the two corresponding branches of
the Morse critical curves that are glued together precisely at this point. Our next objective will be to
find the location of the top-point with sub-voxel precision, as well as geometric properties of the critical
curve passing through.

2.4.2 Top-Points

The reason why we must be cautious near top-points is that Eq. (21) breaks down at degeneracies of
the Hessian, and is therefore likely to produce unreliable results as soon as we come too close to such
a point. A differential invariant [7] that could be used to trigger an alarm10 is t� = �2nkgk2n +
� �4n det2H for any� > 0 (exponents have been chosen as such for reasons of homogeneity); in the
generic caset�(x0; t0) = 0 iff (x0; t0) is a top-point. “Hot-spots” in scale-space thus correspond to
regions wheret�(x; t) becomes smaller than some suitably chosen small parameter times its average
value over the scale-space domain (say). In those regions we must study the full system of Eq. (19), in-
cluding the degeneracy constraint. The additional scale degree of freedom obviously becomes essential,
because top-points will typically be located in-between two precomputed levels of scale.

Recall Eq. (16). Let us rewrite the corresponding cofactor matrix, the Cartesian coefficients of

10A zero-crossings method forg anddetH is, however, the preferred choice, as it preserves connectivity.
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which are defined by (cf. Appendix A)

fM�� def
=

1

n!
"��1:::�n "��1:::�n M�1�1 : : :M�n�n ; (24)

into a similar block form: fM def
=

"
H w

zT c

#
: (25)

By substitution one may verify that the defining equationfMM = detMI(n+1)�(n+1) is satisfied iff
the coefficients are defined as follows:

H
�� def

=
1

(n�1)!
"��1:::�n�1"��1:::�n�1H�1�1 : : :H�n�2�n�2

�
cH�n�1�n�1�(n�1)w�n�1z�n�1

�
;(26)

w� def
= � 1

(n�1)!
"��1:::�n�1 "��1 :::�n�1 H�1�1 : : :H�n�1�n�1w� ; (27)

z�
def
= � 1

(n�1)!
"��1:::�n�1 "��1 :::�n�1 H�1�1 : : :H�n�1�n�1z� ; (28)

c
def
=

1

n!
"�1:::�n "�1:::�nH�1�1 : : :H�n�n : (29)

Note thatz = � eHz, w = � eHw, andc = detH. Recalling Eq. (23) one observes that(w; c) =
(v0; c0). Also,

detM =
1

n!
"�1:::�n "�1:::�n H�1�1 : : :H�n�1�n�1 (cH�n�n � nw�nz�n) ; (30)

or, in coordinate-free notation,detM = c detH� tr ( eHwzT). At the location of a critical point this is
proportional to the scale-space scalar product of the critical point’s scale-space velocity and the scale-
space normal of the Hessian zero-crossing (recall Eqs. (14–15) and Eq. (23) and the remark above):

detM = zTw + c c = wT z+ c c : (31)

Result 3 (Transversality Hessian Zero-Crossing/Critical Curve)At a top-point the critical path in-
tersects the Hessian zero-crossing transversally.

This readily follows by inspection of the tangent hyperplane to the Hessian zero-crossing,

zTx+ c t = 0 ; (32)

and the critical curve’s tangent vector, Eq. (23). The cosine of the angle of intersection follows from
Eq. (31), which is nonzero in the generic case; genericity implies transversality.

With the established results it is now possible to invert the linear system of Eq. (19); just note that

Minv =
1

detM
fM ; (33)

so that "
x

t

#
= � 1

detM

"
Hg +wc
zTg + cc

#
: (34)

The expression is valid in any coordinate system as required. Note that the sign ofdetM subdivides
the image domain into regions to which all generic catastrophes are confined. In fact, the following
lemma holds.
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Lemma 1 (Segregation of Creations and Annihilations)detM < 0 at annihilations,detM > 0 at
creations.

One way to see this is to note that it holds for the canonical formsfA(x; t) andfC(x; t) of Definition 2.
If we now transform these under an arbitrary coordinate transformation that leaves the diffusion equa-
tion invariant, it is easily verified that the sign ofdetM is preserved. An alternative proof based on
geometric reasoning is given below.

Proof 1 (Lemma 1) First consider an annihilation event, and recall Eq. (14), and the geometric inter-
pretation of Eqs. (27) and (29) as the scale-space velocity given by Eq. (23). As the topological particle
with positive charge (i.e. the Morse-critical point withdetH > 0) moves towards the catastrophe (to-
wards increasing scale), the magnitude ofdetH must necessarily decrease. By the same token, as the
anti-particle (detH < 0) moves away from the catastrophe (towards decreasing scale), the magnitude
of detHmust decrease as well. But recall that at the catastrophedetM = zTw is just the directional
derivative ofdetH in the direction of motion as indicated. ThereforedetM < 0.

Next consider a creation event. The positive particle now escapes the singularity in the positive
scale direction, whereas the negative particle approaches it in the negative scale direction, so that along
the prescribed pathdetH must necessarily increase. In other words,detM > 0 at the catastrophe.
This completes the proof.

The lemma is a special case of the following, more general result, which gives us the curvature of the
critical path at the catastrophe.

Result 4 (Curvature of Critical Path at the Catastrophe) At the location of a generic catastrophe
the critical path satisfies

t =
1

2

1

detM

�
zTx

�2
+O(kxk3; kxk t; t2) :

The curvature of the critical path at the catastrophe is given by(wTr)2 tcatastrophe= detM.

Proof 2 (Result 4) Consider the local2-jet expansion at the location of a generic catastrophe:8<: r (2)

L (x; t) = 0 ;

detrrT
(2)

L (x; t) = 0 ;

in whichL� = 0 andkL��k = 0. From this it follows that along the critical path through the catastrophe

�L�t = �L��x
� � 1

2
L���x

�x� + O(kxk3; kxk t; t2) :

Contraction withz� eL�� , noting thateL��L�� = 0 at the catastrophe, and using Eq. (27), yields

zTw tcatastrophe=
1

2

�
zTx

�2
:

Note that the first order directional derivativewTrt = tr ( eHH) = 0 at the catastrophe, so that first
order terms disappear. Also recall thatzTw = detM at such a point, so that the first result follows.
Straightforward differentiation produces the curvature expression.
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2.4.3 Explicit Results from the Covariant Formalism

Having established covariant expressions we have drawn several geometric conclusions that do not
follow from the canonical formalism. Here we give a few more examples, using explicit Cartesian
coordinates.

Example 1 (Tangent Vector to Critical Curve) At any point on the critical curve—including the top-
point—the scale-space tangent vector is proportional to that given by Eq. (23). In2D Cartesian coordi-
nates we have 264 v0x

v0y
c0

375 =

264 �(Lxxx + Lxyy)Lyy + (Lxxy + Lyyy)Lxy

(Lxxx + Lxyy)Lxy � (Lxxy + Lyyy)Lxx

LxxLyy � L2
xy

375 :

Example 2 In 2D the tangent plane to the Hessian zero-crossing in scale-space is given by the following
equation in any Cartesian coordinate system:

(LxxxLyy + LxxLxyy � 2LxyLxxy)x+ (LyyyLxx + LyyLxxy � 2LxyLxyy) y+

((Lxxyy + Lyyyy )Lxx + (Lxxxx + Lxxyy)Lyy � 2(Lxxxy + Lxyyy)Lxy) t = 0 :

Example 3 (Segregation of Creations and Annihilations)In a full (2 + 1)D scale-space neighbour-
hood of an annihilation (creation) the following differential invariant always has a negative (positive)
value:

detM =

([Lxxyy + Lyyyy ]Lxx + [Lxxxx + Lxxyy ]Lyy � 2[Lxxxy + Lxyyy ]Lxy)(LxxLyy � L2
xy) +

�fLxx[Lxxy + Lyyy ][LyyyLxx + LyyLxxy � 2LxyLxyy ] +

+Lyy [Lxxx + Lxyy ][LxxxLyy + LxxLxyy � 2LxyLxxy] +

�Lxy([Lxxx + Lxyy ][LyyyLxx + LyyLxxy � 2LxyLxyy ] +

[Lxxy + Lyyy ][LxxxLyy + LxxLxyy � 2LxyLxxy])g

The expressions are a bit complicated, but nevertheless follow straightforwardly from their condensed
covariant counterparts, which at the same time illustrates the power of the covariant formalism.

3 Conclusion and Discussion

We have described the deep structure of a scale-space image in terms of an operational scheme to
characterise, detect and localise critical points in scale-space. The characterisation pertains to local
geometrical properties of the scale-traces of individual critical points (locations, angles, directions,
velocities,accelerations), as well as to topological ones. The latter fall into two categories, local and
bilocal properties. The characteristic local property of a critical point is determined by its Hessian
signature (Morsei-saddle or top-point), which in turn defines its topological charge. The fact that pairs
of critical points of opposite charge can be created or annihilated as resolution decreases determines
bilocal connections; such pairs of critical points can be labelled according to their common fate or
cause,i.e. they can be linked to their corresponding catastrophe (annihilation, respectively creation).
This possibility to establish links is probably the most important topological feature provided by the
Gaussian scale-space paradigm.

Conceptually a scale-space representation is a continuous model imposed on a discrete set of pixel
data. The events of topological interest in this scale-space representation are clearly the top-points, and
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the question presents itself whether these discrete events in turn suffice to define a complete and robust
discrete representation of the continuous scale-space image (possibly up to a trivial invariance). In the
1D case it has been proven to be possible to reconstruct the initial image data from its scale-space top-
points, at least in principle [16], but the problem of robustness and the extension to higher dimensions
is still unsolved. The solution to this problem affects multiresolution schemes for applications beyond
image segmentation, such as registration, coding, compression,etc.
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A Determinants and Cofactor Matrices

Definition 3 (Transposed Cofactor Matrix) LetA be a squaren � n matrix with componentsa�� .
Then we define the transposed cofactor matrixeA as follows. In order to obtain the matrix entryea�� skip
the�-th column and�-th row ofA, evaluate the determinant of the resulting submatrix, and multiply
by (�1)�+� (“checkerboard pattern”). Or, using tensor notation,

eA�� def
=

1

(n� 1)!
"��1:::�n�1 "��1 :::�n�1 A�1�1 : : :A�n�1�n�1 :

By construction we haveA eA = detAI. Note that if the components ofA are indexed by lower
indices, then by convention one uses upper indices for those ofeA (vice versa). Furthermore, it is
important for subsequent considerations to observe that the transposed cofactor matrix is always well-
defined, and that its components are homogeneous polynomial combinations of those of the original
matrix of degreen � 1. In the nonsingular case one haseA = detAAinv; transposed cofactor ma-
trix equals inverse matrix times determinant. Seee.g. Strang [36]. Note that for diagonal matrices
determinants and transposed cofactor matrices are straightforwardly computed.
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