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1 Introduction

Vicious circularities pervade the �eld of image analysis. For instance, features like \edges" only
exist by virtue of a �ducial \edge detector". In turn, such a detector is typically constructed
with the aim to extract those features one is inclined to classify as \edges".

The paradox arises from abuse of terminology. The polysemous term \edge" can be used in
two distinct meanings: as an operationally de�ned concept (output of an edge detector), or as
a heuristic feature pertaining to our intuition. In the former case the design of edge detection
�lters is|strictu sensu|merely a convention for imposing structure on raw data. In the latter
case it is our expectation of what an \edge" should be like that begs the question of appropriate
detector design. The keyword then becomes interpretation.

Clearly all low-level image concepts pertain to structure as well as interpretation. Once
de�ned, structure becomes evidence. Interpretation amounts to a selection among all possible
hypotheses consistent with this evidence. Clarity may be served by a manifest segregation of
the two. A convenient way to achieve this is to embed \structure" into a framework of duality
and to model \interpretation" by a hermeneutic circle driven by external insight constraining
the class of a priori feasible interpretations (gauge conditions, respectively gauge invariance).

Here the proposed framework is applied to motion analysis. Duality accounts for the role of
preprocessing �lters. The notorious \aperture problem" arises from an intrinsic local invariance
(or gauge invariance), which cannot be resolved on the exclusive basis of image evidence. Gauge
conditions reect external knowledge for disambiguation.

In a similar fashion, two stages can be distinguished in an error analysis of the outcome.
There are errors of the obvious kind, caused by inadequate modelling (\semantical errors",
or \mistakes"), which one would like to remove altogether, and subtle but inevitable errors
propagated by any structural representation of data of intrinsically �nite tolerance. Indeed,
the exibility to alter the gauge (re-interpret the data) and the possibility to carry out a
rigorous error propagation study for the data formatting stage is a major rationale behind the
current framework, cf. Fig. 1 and 2.

�This report is based on a presentation held at the Dagstuhl Seminar, Saarbr�ucken, Germany, March 16{20

1998.

1



 structure interpretation

?!

raw data formatted data

"syntax"

∆

"semantics"

Figure 1: Manifest segregation of structural and semantic representations.
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Figure 2: In a duality formalism \structure" means \operationally de�ned structure". Degrees
of freedom captured by raw data f 2 � are identi�ed with probes of a �ducial �lter class
�, i.e. with mappings \dual�" : � �! IR induced by the raw data through exposure to all
members � 2 �. In particular, if two source con�gurations induce identical mappings they
are considered equivalent (\metamerism"). This can be exploited so as to hide irrelevant grid
details and alleviate the impact of noise (robustness).
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The emphasis is on global methodology. Technical details can be found in a recent publi-
cation [5].

2 Theory

Duality paradigms account for the inner workings of the �ltering stage used to de�ne data for-
mat. As such they should be contrasted with conventional \preprocessing" or \regularisation"
techniques, in which the emphasis is on suitable preparation of data for subsequent processing.
Rigidity of a �xed preprocessing or regularisation stage conicts with the plasticity required
for solving speci�c tasks of which all details cannot possibly be known in advance. Modelling
image structure by duality principles on the other hand manifestly captures the public facts
that one always needs a �ltering stage to de�ne the basic structural degrees of freedom driving
image algorithms (necessity), and that outcome always depends crucially on the details of this
stage (criticality). The latter observation is reected in the way �lters are handled in a dualistic
approach, viz. as free (albeit mandatory) arguments to algorithms. This view makes the role
of �lters transparent.

The concept of duality leaves ample leeway for implementation. One of the simplest options
is \topological duality". It basically boils down to linear �ltering with smooth, essentially
compact �lters, though one should always keep in mind that it is not output in itself (\black
box") but in connection to its production (\glass box") that is of interest. Originally proposed
by Schwartz [10] as a mathematical formalism it may serve as a generic framework for many
linear image processing �lters used today. Topological duality subjected to a few plausible
constraints produces the familiar Gaussian scale-space paradigm (viz. postulate a unique,
positive �lter consistent with Schwartz' theory and require algebraic closure [4]). In x2.1 it is
extended to cope with motion.

Once a generic data format has been established, solutions to particular tasks typically
depend on fewer degrees of freedom than actually available (provided one has su�cient data and
knowledge). Indeed, genericity encourages redundancy, but at the same time has the potential
of facilitating the selection of degrees of freedom that are relevant to a speci�c problem.

Gauge invariant representations|common in physics|are characterised by pointwise re-
dundancies induced by the deliberate use of nonphysical variables (auxiliaries). The idea is that
models may become most parsimonious in terms of redundant systems with constraints that
cancel the e�ect of nonphysical degrees of freedom. Variables could be isolated such that the
additional constraints (gauge conditions) become obsolete, but only at the price of an increase
of model complexity. Gauge theoretical principles and their use in the context of motion are
further discussed in x2.2.

2.1 Duality in the Context of Motion

An a priori condition for the de�nition of a dense motion �eld is local conservation. Some
well-de�ned local characteristic must retain its identity in order to enable us to monitor point
trajectories over time. This condition is necessary but does not su�ce to de�ne unambiguous
motion (except in the case of time varying one-dimensional signals).

Since conservation is a generic principle data format can be de�ned so as to incorporate it
a priori (\kinematic structure"). That is, the basic elements in the analysis are of a kinematic
nature, encapsulating the \proto-semantics" that enjoys public consensus1. Further disam-

1The premiss is that one agrees on the quantity that is actually conserved. A direct link with image data
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biguation of motion requires speci�c models, depending on task, image formation details, et
cetera (the \aperture problem"). In view of speci�city this is best left as an interpretation
task. In this section only structural aspects are discussed.

Local conservation principles are often stated in terms of a vanishing Lie derivative, which
can in turn be expressed in terms of an ordinary derivative and a vector �eld. For a scalar
function f the Lie derivative is given by Lvf = rf � v, in which r denotes the spatiotemporal
gradient operator. For a density �eld % one has Lv% = r(%�v) [3]. The original \Horn & Schunck
equation" [6, 7, 9] is obtained by identifying f or % with the image function and setting its Lie
derivative equal to zero under the additional assumption that the temporal component of the
vector �eld equals one.

Classical derivatives are ill-posed. Their counterparts in the setting of topological duality
are not only well-posed but also operationally well-de�ned. If f [�] denotes a linear sample
obtained from \raw image" f by linear �ltering with �lter �, then a derivative sample is
de�ned as

rf [�]
def
= f [rT�] ;

in which AT denotes the transposed of a linear operator A. Generalisation to higher orders is
straightforward. The base point associated with such a sample is the �lter's centre of gravity,
while resolution is the inverse of the �lter's width. In any case, derivatives are de�ned by virtue
of a �lter paradigm. This allows us to de�ne a Lie derivative as follows:

Lvf [�]
def
= f [LTv�] :

Again, the de�nition cannot be unconfounded from a �ducial �lter class. It follows that motion,
if de�ned along the lines of Horn & Schunck, has no existence on its own, but only relative to
the �lter paradigm in use.

According to a famous theorem a linear continuous sample f [�] can be written in integral
form as follows:

f [�] =
Z
f(x)�(x) dx ;

from which it follows that transposition of a derivative brings in a minus sign: rT = �r and
LTv = �Lv. A subtlety arises in the case of transposing Lie derivatives: if f is a scalar, then
� behaves as a density, vice versa. Under the assumption of homogeneity the transition from
local samples to images is trivial, and leads to similar expressions with spacetime correlations|
or, if one prefers, convolutions, in which case the minus signs are absorbed|instead of scalar
products. The resulting motion constraint equation is homogeneous and trilinear with respect
to input data f (whether scalar or density), correlation �lter �, and spacetime vector v.

2.2 Gauge Theory in the Context of Motion

Let v be the desired motion �eld satisfying the motion constraint equation:

Lvf [�] = 0 :

In principle this �xes 1 component of v per base point, leaving n unde�ned in (n+1)-dimensional
spacetime (typically n = 2 or 3). In the terminology introduced previously one may say that
v is a gauge �eld with 1 physical and n auxiliary components. It would complicate matters
greatly if one would choose to dispense with the auxiliaries beforehand, and in fact could even

requires a careful acquisition protocol and a quantitative reconstruction, e.g. proton density cine-MR.
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obscure the very motion concept completely, since this is a semantical concept that requires
additional knowledge in conjunction with the above constraint equation. Rather, the natural
way to proceed is to enforce additional constraints to disambiguate the solution. Such gauge
conditions reect knowledge inspired by the application and other external factors.

However, along with the above equation one additional hypothesis is always tacitly adopted.
One could describe it as conservation of topological detail. It entails that one takes for granted
that the ow induced by v is transversal to spatial frames, so that (by virtue of homogeneity)
one can always scale the temporal component to unity: v = (1;~v), say. It is the spatial part
~v that is commonly associated with the optic ow or motion vector. One explanation of this
\temporal gauge" is that whatever it is that moves cannot reverse its temporal sense and \travel
backward in time". But there is an alternative and more natural one, which at the same time
shows that the temporal gauge is not self-evident, and even unrealistic if strictly enforced:
A time-reversal of a spacetime trajectory can always be given the causal interpretation of a
creation or annihilation event. In this way one can e.g. account for enhancement of extrema in
a scalar image sequence that would otherwise turn into spurious ow singularities.

All validation studies of x3 adhere to the usual temporal gauge. In x3.1 the consequences
of this are discussed for the case where it is not appropriate to do so, while x3.2 presents a
simulation where it is. Since semantics is de-emphasised the \canonical gauge" will be adopted
expressing the normal ow condition. The n � 1 normal ow equations may be replaced by
physical conditions without technical di�culties. (This is done in x3.3.) Recall that this
semantical exibility lies at the core of gauge theoretical formalisms.

3 Validation

In the validation study outlined below one of the aims is to isolate the e�ect of semantical
weaknesses. Errors due to measurement noise and numerical approximations of image deriva-
tives are not quanti�ed in the tables (but of course may contribute signi�cantly to the results
listed). Such intrinsic errors set a lower bound on overall errors beyond which no improvement
is theoretically possible.

In conformity with scale-space theory all experiments are based on the Gaussian �lter
family [8], a complete, proper subset of Schwartz' space. For an analysis of error propagation
in computing Gaussian derivatives the reader is referred to Blom et al. [2]. Below \error" is
de�ned as \deviation from the model". No attempt is made to relate it quantitatively to a
theoretical prediction of the aforementioned fundamental limitation. To compensate for this
two related experiments are carried out on synthetic data. The �rst simulates an intentionally
de�cient model containing a feasible semantical error (x3.1). The second is set up without
this de�ciency, so that the only potential source of error a�ecting the solution stems from
data noise and numerical manipulations (x3.2). Both simulations are analytically tractable, so
that numerical results can be compared with theoretical predictions. In a third study, which
is carried out on real image data, there is no direct control over the stimulus, but in this
case external knowledge of scene con�guration and image formation enables the formulation of
analytical gauge conditions (x3.3).

3.1 Simulation Study: Density Stimulus, Scalar Paradigm

Imagine a bell-shaped stimulus with oscillating radius somewhere in the middle of the image.
If its amplitude covaries in such a way that its spatial integral (\mass") remains constant over
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Figure 3: Flow �eld obtained for the density stimulus (left) and ow magnitudes along a
horizontal scanline through the centre (right) showing analytical (solid line), 0-th (triangles)
and 1-st order results (stars). Note the singularity and the ow inversion.

time, then the sequence simulates density motion. Think of proton density cine-MR by way of
example.

Let us endow the motion constraint equation with the following gauge conditions: (i) the
normal ow condition, in casu the requirement that the motion �eld is radial, and (ii) the
usual temporal gauge. With the blob centred at the coordinate origin we then have v / (1;~r),
in which the proportionality factor depends on k~rk. If motion is well-de�ned in the �rst place
this constant should have no singularities, and in view of symmetry the only reasonable motion
vector to expect at the origin is the null vector, regardless of the �lter paradigm.

Suppose, however, that we make the mistake of modelling the image sequence as a time-
varying scalar �eld. Such a misinterpretation is not far-fetched in practice for several reasons.
Firstly one may lack adequate knowledge of image formation, so that one does not know whether
the image captures a density �eld at all. Even if it does, one may not understand the exact
relation between image values and physical density. Secondly there will be deviations from
any de�nite geometric paradigm, either due to plain noise or to the fact that the paradigm is
merely an idealization. In particular some motion sequences are neither densities nor scalars,
e.g. (typical) shading in optical projection imagery.

For the simulated density the consequence of the scalarity assumption is the appearance
of a spurious motion singularity at the centre of the blob. Apart from this there are other
qualitative discrepancies between visual percept (one observes alternating contractions and
expansions) and prediction (simultaneous inward and outward ow on two sides of a circle
oscillating in phase with the blob). Theoretical predictions are in quantitative agreement with
numerical computations carried out on a digital rendering of the density sequence, cf. Fig. 3.
Two numerical schemes have been used, a 0-th and a 1-st order one, the details of which
are given elsewhere [5]. Errors turn out to be largest in the immediate neighbourhood of the
singularity. It is clear that in realistic sequences with complex topological structure there will
be many such problematic neighbourhoods.

If one retains faith in conservation, there are two legitimate explanations for model failure.
Either the scalarity assumption fails, or one must allow for point sources and sink-holes, i.e.
give up the temporal gauge. Note that the numerical schemes yield accurate estimates; failure
does not have a computational cause. In fact, computations turn out to be quite robust.

3.2 Simulation Study: Scalar Stimulus, Scalar Paradigm

One would expect no problems if the motion constraint equation had been used in the appro-
priate form applicable to densities. Likewise, no singularities should emerge if we adhere to
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Figure 4: Flow �eld obtained for the scalar stimulus (left) and ow magnitudes along a hori-
zontal scanline through the centre (right) showing analytical (solid line), 0-th (triangles) and
1-st order results (stars). Note that the �eld is everywhere well-de�ned and has no inversions
(in agreement with perceptual impression).

the scalar model but slightly adapt the stimulus by taking the blob's amplitude to be constant.
Theory then predicts a motion �eld that (for a harmonically oscillating Gaussian blob) varies
linearly with eccentricity. Again, this is con�rmed numerically: Fig. 4.

3.3 A Comparative Study

We subject the motion paradigm to a �nal test to check whether it has any practical advantages
over alternative schemes proposed in the literature. To this end we fully exploit the exibility
of semantical modelling enabled by the manifest segregation of stages (Fig. 1), as well as
the theoretical properties of the �lter paradigm (Fig. 2). In the concrete, we (i) endow the
basic structural equations (the motion constraint equation in temporal gauge) with additional
spatial constraints reecting a priori knowledge of camera motion and scenery|this should
be contrasted with generic schemes that do not incorporate such speci�c knowledge|and (ii)
exploit the scale degree of freedom of the Gaussian family by scale selection.

The motion algorithm derived from the theory is the 1-st order scheme detailed elsewhere
[5], in which �lter scales are selected so as to (pixelwise) minimize the Frobenius norm of the
resulting linear system. It is run on benchmark sequences known as the translating and the
diverging tree sequence (\TTS", respectively \DTS"): Fig. 5. Outcome is compared to the
comprehensive study of Barron et al. [1] using the same error criterion. The tentative gauges
reect the hypothesis that vertical motion is absent, respectively that the focus of expansion
is known. (The \hermeneutic principle" relies on the existence of consistent cues conspiring
to produce such tentative hypotheses, and on the possibility to test and re�ne them.) Results
are listed in Table 1 (dense ow estimation) and Table 2 (sparse ow estimation discarding
uncertain estimates).

4 Conclusion

The strength of duality is that the role of �lters is made transparent, thus facilitating the
exploitation of �lter properties. In the case at hand Gaussian scale-space �lters have been used
and scale selection has been applied successfully for stable motion extraction.

The gauge �eld paradigm encourages clarity and parsimony. It has been applied here for
a manifest segregation of data evidence (gauge invariant system) and external models (gauge
conditions), and has led to a exible operational scheme for combining motion evidence with
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Figure 5: Textured plane and vector �eld for translation (TTS) and divergence (DTS).

Implementation TTS DTS

method � � � �

Modi�ed Horn & Schunck 2.02 2.27 2.55 3.67
Uras et al. (unthresholded) 0.62 0.52 4.64 3.48

Nagel 2.44 3.06 2.94 3.23
Anandan 4.54 3.10 7.64 4.96

Singh (step 1, n = 2; w = 2;N = 4) 1.64 2.44 17.66 14.25
Singh (step 2, n = 2; w = 2;N = 4) 1.25 3.29 8.60 5.60

Florack et al. (M = 1, scale selection) 0.49 1.92 1.15 3.32

Table 1: Comparison with best performing techniques [1] with dense velocity estimates; � and
� denote mean and standard deviation of error.

Implementation TTS DTS

method � � % (%) � � % (%)
Modi�ed Horn & Schunck 1.89 2.40 53.2 1.94 3.89 32.9

Lucas and Kanade (�2 � 1:0) 0.66 0.67 39.8 1.94 2.06 48.2
Lucas and Kanade (�2 � 5:0) 0.56 0.58 13.1 1.65 1.48 24.3
Uras et al. (det(H)� 1:0) 0.46 0.35 41.8 3.83 2.19 60.2

Nagel krLk2 � 5:0 2.24 3.31 53.2 3.21 3.43 53.5
Singh (step 1, n = 2;w = 2; �1 � 5:0;N = 4) 0.72 0.75 41.4 7.09 6.59 3.3

Heeger 4.53 2.41 57.8 4.49 3.10 74.2
Fleet & Jepson (� = 2:0) 0.23 0.19 49.7 0.80 0.73 46.5
Fleet & Jepson (� = 1:0) 0.25 0.21 26.8 0.73 0.46 28.2

Florack et al. (M = 1, scale selection) 0.16 0.18 60.0 0.79 1.13 60.0
Florack et al. (M = 1, scale selection) 0.14 0.13 40.0 0.43 0.40 40.0

Table 2: Comparison with best performing techniques [1] discarding uncertain velocity esti-
mates; � and � denote mean and standard deviation of error, % indicates pixel fraction with
motion estimates.

8



prior knowledge. Numerical results vote in favour of the proposed line of approach.
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