
Computing Small Search Numbers in Linear Time�

Hans L. Bodlaender Dimitrios M. Thilikosy

Department of Computer Science, Utrecht University,

P.O. Box 80.089, 3508 TB Utrecht, the Netherlands

e-mail: fhansb,sedthilkg@cs.ruu.nl

Abstract

Let G = (V;E) be a graph. The linear-width of G is de�ned as the smallest integer k such

that E can be arranged in a linear ordering (e1; : : : ; er) such that for every i = 1; : : : ; r � 1,

there are at most k vertices both incident to an edge that belongs to fe1; : : : ; eig as to an

edge that belongs to fei+1; : : : ; erg. For each �xed constant k, a linear time algorithm is

given, that decides for any graph G = (V;E) whether the linear-width of G is at most k,

and if so, �nds the corresponding ordering of E. Linear-width has been proven to be related

with the following graph searching parameters: mixed search number, node search number,

and edge search number. A consequence of this is that we obtain for �xed k, linear time

algorithms that check whether a given graph can be mixed, node, or edge searched with at

most k searchers, and if so, output the corresponding search strategies.

1 Introduction

In this paper, we study algorithmic aspects of a relatively new graph parameter: linear-width.

Apart from having interest on its own, this parameter has close relationships with some well

known graph searching parameters: mixed search number, node search number, and edge search

number, as well as well known parameters related or equal to these parameters, like pathwidth,

vertex separation number, and proper pathwidth. The results for linear-width allow us to rederive

some old results for some of these parameters, and obtain similar new results for the other

parameters, basically all as consequences of one algorithm.

The linear-width of a graph G is de�ned to be the least integer k such that the edges of G can

be arranged in a linear ordering (e1; : : : ; er) in such a way that for every i = 1; : : : ; r � 1, there

are at most k vertices that incident to at least one edge that belongs to fe1; : : : ; eig and that are

incident to at least one edge that belongs to fei+1; : : : ; erg. Linear-width was �rst mentioned by

Thomas in [26] and is strongly connected with the notion of crusades introduced by Bienstock

�This research was partially supported by ESPRIT Long Term Research Project 20244 (project ALCOM IT:

Algorithms and Complexity in Information Technology).
yThe second author was supported by the Training and Mobility of Researchers (TMR) Program, (EU contract

no ERBFMBICT950198).

1

and Seymour in [2]. Linear-width can be seen as \a linear variant of branch-width", in the same

way as pathwidth can be seen as \a linear variant of treewidth". In [25], it is proved that several

variants of problems appearing on graph searching can be reduced to the problem of computing

linear-width.

In a graph searching game a graph represents a system of tunnels where an agile, fast, and

invisible fugitive is resorting. We desire to capture this fugitive by applying a search strategy

while using the fewest possible searchers. Brie
y said, the search number of a graph is the

minimum number of searchers a searching strategy requires in order to capture the fugitive.

Several variations on the way the fugitive can be captured during a search, de�ne the the

parameters of the edge, node, and mixed search number of a graph (namely, es(G), ns(G), and

ms(G)). The �rst graph searching game was introduced by Breisch [6] and Parsons [18] and

is the one of edge searching. Node searching appeared as a variant of edge searching and was

introduced by Kirousis and Papadimitriou in [14]. Finally, mixed searching was introduced in [24]

and [2] and is a natural generalisation of the two previous variants (for the formal de�nitions see

Subsection 4.1 { for other results concerning search games on graphs see [1, 7, 9, 15, 16, 23].)

The problems of computing es(G);ns(G);ms(G), or linear-width(G) is NP-complete (see [16,

14, 24, 25]). On the other hand, since all of these parameters are closed under taking of minors, we

know (see e.g. [3, 19, 20, 22, 21]) that, for any k, there exists a linear algorithm that given a graph

G checks whether es(G);ns(G);ms(G), or linear-width(G) is at most k (in other words, all these

parameters are \�xed parameter tractable"). Unfortunately, the above result is not constructive

i.e. does not provide a way to construct the corresponding algorithm (see [10, 11]). Therefore, it is

highly desired to have constructive \�xed parameter results" for the aforementioned parameters.

In this paper we carry out the above task by constructing such a linear algorithm for linear-

width. This algorithm can be directly transfered to a linear algorithm for node, edge, and mixed

search number thanks to their connection (see [25]) with linear-width.

So far, such a linear time algorithm has been constructed (see [3, 4]) only for the parameters of

treewidth and pathwidth (actually, the result in [3, 4] can be directly transfered to the node search

number which is known to be equal to the node search number minus one { see [12, 13, 17]).

To be precise, [3, 4] state that for �xed k, one can determine in linear time whether a given

graph has pathwidth at most k, and if so, �nd a path decomposition of minimum width. This

algorithm �rst �nds a tree decomposition of width at most k, if existing (and if not existing, then

the pathwidth is also larger than k), and then uses this tree decomposition to solve the problem,

using the result in [4] that states that for �xed k and l, one can test whether the pathwidth of a

graph G is at most l, and if so, �nd a minimum width path decomposition, assuming that G is

given together with a tree decomposition of width at most k. The technique in this paper uses

a similar technique: we �rst determine a path decomposition of bounded width (if such a path

decomposition does not exist, we know that the linear-width also is not bounded), and then

apply an algorithm, presented in this paper, that, given such a path decomposition, solves our

2

problem. It can actually be avoided to work with tree decompositions by a modi�cation of the

algorithm in [3].

An other parameter related to linear-width is branch-width. In another paper [5], we give

a similar algorithm for branch-width. That algorithm uses the techniques of this paper as a

building block for a more complicated algorithm.

This paper is organised as follows. In Section 2, we give some preliminary results and de�-

nitions. The main algorithm is presented in Section 3. The consequences of the main algorithm

can be found in Section 4.

2 De�nitions and preliminary results

We �rst give a number of de�nitions and notations, dealing with sequences (i.e., ordered sets)

! = (!1; : : : ; !r) of objects from some set O, where O can be a set of numbers, sequences of

numbers, vertices, vertex sets, or of edges. We use the notation (!)i;j , 1 � i � j � r to denote

the subsequence (!i; : : : ; !j) of !. If \�" is an operation de�ned on O, we use for any !0 2 O,

the notation (!)i;j � !
0; i � j, to denote the sequence (!i � !

0; : : : ; !j � !
0). Given two sequences

!i; i = 1; 2, de�ned onO, where !i = (!i1; : : : ; !
i
ri

); i = 1; 2 we set !1�!2 = (!1
1�!

2
1; : : : ; !

1
r1
�!2

r2
).

We also set !1 � !2 = (!1
1 ; : : : ; !

1
r1
; !2

1; : : : ; !
2
r2

). We �nally denote the length of a sequence !

by j!j.

Unless mentioned otherwise, we will assume all graphs considered in this paper to be undi-

rected and without parallel edges or self-loops. Given a graph G = (V; e) we denote its ver-

tex set and edge set with V (G) and E(G) respectively. If V 0 � V (G), we call the graph

(V 0; ffv; ug 2 E(G) : v; u 2 V 0) subgraph of G induced by V 0 and we denote it by G[V 0]. For any

edge set H � E(G) we denote by V (H) the set of vertices that are incident to edges of H (i.e.

V (H) = [e2He). The degree of a vertex v in graph G is the number of edges containing it and

is denoted by dG(v). We call a vertex pendant when it has degree 1. We call an edge of a graph

pendant when it contains a pendant vertex.

2.1 Pathwidth

A path decomposition of a graph G = (V; e) is a sequence X = (X1; : : : ;XjXj) of subsets of

V (G) such that for every V =
S
1�i�rXi, for every fv; wg 2 e, there is an i, 1 � i � r,

fv; wg � Xi, and for all i; i0; i00, 1 � i � i0 � i00, Xi \ Xi00 � Xi0 . (The sets Xi are called the

nodes of the path decomposition.) The width of a path decomposition X = (Xi; 1 � i � jXj)

equals max1�i�jXjfjXij � 1g. The pathwidth of a graph G is the minimum width over all path

decompositions of G.

Let X = (Xi; 1 � i � jXj) be a path decomposition of a graph G. We say that X is nice if

jX1j = 1 and 82�i�jXj (Xi �Xi�1) [(Xi�1 �Xi)j = 1. The following lemma is easy.

3

Lemma 1 For some constant k, given a path decomposition of a graph G that has width at most

k and O(jV (G)j) nodes, one can �nd a nice path decomposition of G that has width at most k

and at most 2jV (G)j nodes in O(jV (G)j) time.

Let Xi be a node of a nice path decomposition X such that i � 1. We say that Xi is an

introduce (forget) node if jXi �Xi�1j = 1 (jXi�1 �Xij = 1). It is easy to observe that any node

Xi; i � 2 of a nice path decomposition is either an introduce or a forget node.

2.2 Linear-width

The linear-width of a graph is de�ned as follows. Let G be a graph and l = (e1; : : : ; ejE(G)j)

an ordering of E(G). De�ne �l(ei) = V ((l)1;i) \ V ((l)i+1;jE(G)j) (i.e. �l(ei) is the set of vertices

in V (G) that are endpoints of an edge in (l)1;i and also of an edge in (l)i+1;jE(G)j). The linear-

width of an ordering l is max1�i�jE(G)jfj�l(ei)jg. The linear-width of a graph is the minimum

linear-width over all the orderings of E(G).

Given an edge ordering l we de�ne P (l) = (�l(e1); : : : ; �l(er)). Moreover, we de�ne Q(l) =

((j�l(e1)j); : : : ; (j�l(er�1)j)) Notice that P (l) is a sequence of sets and Q(l) is a sequence of

sequences of numbers each containing only one element. We use this, somewhat overloaded,

de�nition for reasons of consistency with terminology that will be introduced later. We �nally

de�ne the pendant sequence of l as H(l) = (ej \ A(G); 1 � j � jE(G)j) where A(G) = fv 2

V (G) : dG(v) = 1g. It is not hard to prove that if l has linear-width at most k, then P (l)[H(l)

form a path decomposition of G with width at most k. Therefore, we we have the following.

Lemma 2 For every graph G, pathwidth(G) � linear-width(G).

Given a vertex set V , a vertex x 2 V , and a sequence of vertex sets I = (I1; : : : ; IjIj) where

Ii � V; 1 � i � r and [i=1;:::;rIi = V , we de�ne FI(x) = minfm; 1 � m � r j x 2 Img and

LI(x) = maxfm; 1 � m � r j x 2 Img.

As an example we consider the following graph G along with an ordering l = (e1; : : : ; e19) of

its edges.

e1

v1

v2

v3

v4

v5

v6
v9

v7 v11

v10 v14

v12

e5

e2

e3

e7

e6

e8
v8

e4

e12

e11

e10

e15 e16

v5

v13

e9

e13

e14

e17

e18

e19

v15

enew

4

One can now observe that if P (l) = (P1; : : : ; P19) and H(l) = (H1; : : : ;H19), then

P1 = ;; P2 = fv3; v4g; P3 = fv4; v5g; P4 = fv5; v7g;

P5 = fv5; v7g; P6 = fv5; v7; v9g; P7 = fv7; v8; v9g; P8 = fv7; v9g;

P9 = fv7; v9g; P10 = fv7; v9; v11g; P11 = fv9; v10; v11g; P12 = fv10; v11g;

P13 = fv10; v11g; P14 = fv11; v14g; P15 = fv11; v14g; P16 = fv11; v14; v13g;

P17 = fv13; v14g; P18 = fv13; v15g; P19 = ;;

H1 = fv1; v2g;H2 =

: : : = H4 = ;;H5 = fv6g;H6 = : : : = H12 = ;;H13 = fv12g;H14 = : : : = H10 = ;. and

Q(l) = ((0); (2); (2); (2); (2); (3); (3); (2); (2); (2); (3); (2); (2); (2); (2); (3); (2); (2); (0)).

Suppose now that we introduce in G a new edge vnew = fv6; v14g and that l0 is the

edge ordering of G0 = (V (G); E(G) [ffv6; v14gg) obtained from l after inserting vnew be-

tween e9 = fv7; v9g and e10 = fv7; v11g. Then, if P (l0) = (P 0
1; : : : ; P9; Pnew; P10; : : : ; P19) and

H(l0) = (H 0
1; : : : ;H

0
9;Hnew;H

0
10; : : : ;H

0
19) we have that

P1 = ;; P2 = fv3; v4g; P3 = fv4; v5g; P4 = fv5; v7g;

P5 = fv5; v6; v7g; P6 = fv5; v6; v7; v9g; P7 = fv6; v7; v8; v9g; P8 = fv6; v7; v9g;

P9 = fv6; v7; v9g; Pnew = fv7; v9; v14g; P10 = fv7; v9; v11; v14g; P11 = fv9; v10; v11; v14g;

P12 = fv10; v11; v14g; P13 = fv10; v11; v14g; P14 = fv11; v14g; P15 = fv11; v14g;

P16 = fv11; v13; v14g; P17 = fv13; v14g; P18 = fv13; v15g; P19 = ;;

H 0
1 = fv1; v2g;H

0
2 = : : : = H 0

9 = Hnew = H 0
10 = : : : H 0

12 = ;;H 0
13 = fv12g;H

0
14 = : : : = H 0

19 = ;,

and Q(l) = ((0); (2); (2); (2); (3); (4); (4); (3); (3); (3); (4); (4); (3); (3); (2); (2); (3); (2); (2); (0)).

We can now describe the changes that are happening after introducing enew = fv2; v7g as

follows.

(a) Set P9 is duplicated and thus a new set Pnew = P9 is inserted between P9 and P10.

(b) v6 is added to all the sets of P (l) from the set having as index the one of the unique set

containing it in H(l) until P9 i.e. from PLH(l)(v6) = P5 until P8.

(c) v14 is added to all the sets of P (l) from Pnew until one set before the �rst set containing it

in P (l) i.e. from Pnew until PFP (l)(v14)�1 = P13.

Suppose now that enew = fv4; v12g and that enew is inserted between e7 and e8. In such a

case the changes are the the following.

(a) Set P7 is duplicated and a new set Pnew = P7 is inserted between P7 and P8.

(b) v4 is added to all the sets of P (l) from the set after the last set containing v4 until P7 i.e.

from PLP (l)(v4)+1 = P4 until P7.

(c) v12 is added to all the sets of P (l) from Pnew until the set having as indice the one of the

unique set containing it in H(l) decreased by one i.e. from Pnew until PFH(l)(v7)�1 = P12.

The observations of the above examples are utilised in the following lemma (see also Lem-

ma 14).

5

Lemma 3 Let l = (e1; : : : ; er) be an edge ordering of a graph G and enew � V (G) be an edge

not in E(G). Let P (l) = (P1; : : : ; Pr). Suppose that l0 = (e1; : : : ; ei; enew; ei+1; : : : ; er) for some

i; 1 � i � r� 1 (l0 is an edge ordering of G0 = (V (G); E(G)[fenewg)). Then the following hold.

(i) If H(l) = (H1; : : : ;Hr) and H(l0) = (H 0
1; : : : ;H

0
r+1) then

81�j�i H
0
j = Hj � e;H 0

i+1 = e \A(G);8i+2�j�r+1 H
0
j = Hj�1 � e

(ii) If P (l) = (P1; : : : ; Pr) and P (l0) = (P 0
1; : : : ; P

0
r+1) then

81�j�i P
0
j = Pj [fx 2 enew j LP (l)[H(l)(x) � jg; and (1)

8i+1�j�r+1 P
0
j = Pj�1 [fx 2 enew j j � 1 � FP (l)[H(l)(x)� 1g; (2)

Proof. (i) follows immediately from the de�nition of H(l). In order to prove (ii) we notice �rst

that 81�j�i P
0
j � Pj and 8i+1�j�r+1 P

0
j � Pj�1. As only vertices from e can be introduced we

have that 81�j�i P
0
j � Pj � enew and 8i+1�j�r+1 P

0
j � Pj�1 � enew. Assume that x 2 [P2P (l)P .

Using the de�nition of linear-width we can observe that for any x 2 enew the following hold.

(i) If 1 � j � i then x 2 P 0
j � Pj i� LP (l)(x) + 1 � j.

(ii) If i + 1 � j � r + 1 then x 2 P 0
j � Pj�1 i� j � 1 � FP (l)(x)� 1.

Let now x 62 [P2P (l)P . Clearly x is a pendant vertex. We observe the following.

(iii) If 1 � j � i then x 2 P 0
j � Pj i� LH(l)(x) � j.

(iv) If i + 1 � j � r + 1 then x 2 P 0
j � Pj�1 i� j � 1 � FH(l)(x)� 1.

It is now su�cient to observe that (i),(iii) and (ii),(iv) certify the correctness of (1) and (2)

respectively. 2

3 A decision algorithm for linear-width

In this section, we give for every pair of integer constants k, l, an algorithm that, given a graph

G with a path decomposition of width at most l, decides whether G has linear-width at most k.

3.1 Sequences of integers

If A = (a1; : : : ; ajAj) is a sequence of integers, we de�ne max(A) = max1�i�jAjfmax(ai)g and for

any integer t we set A + t = (a1 + t; : : : ; ajAj + t). The typical sequence �(A) of a sequence of

integers A is the sequence obtained after iterating the following operations, until none is possible

any more.

(i) If for some i; 1 � i � jAj�1 ai = ai+1, then set A = (a1; : : : ; ajAj) (a1; : : : ; ai; ai+2; : : : ; ajAj).

(ii) If the sequence contains two elements ai and aj such that j � i � 2 and 8i<k<j ai � ak � aj

or 8i<k<j ai � ak � aj , then set A = (a1; : : : ; ajAj) (a1; ai; aj ; : : : ; ajAj).

6

As an example we mention that if A = (5; 5; 6; 7; 7; 7; 4; 4; 3; 5; 4; 6; 8; 2; 9; 3; 4; 6; 7; 2; 7; 5; 4; 4; 6; 4),

then �(A) = (5; 7; 3; 8; 2; 9; 2; 7; 4).

The following has been proved in [4].

Lemma 4 ([4]) The number of di�erent typical sequences of integers in f0; 1; : : : ; Lg is at most
8
322L.

Let A;B be two typical sequences where A = (a1; : : : ; ajAj) andB = (b1; : : : ; bjBj). If jAj = jBj

then we say that A � B if 81�i�jAj ai � bi. We de�ne the set of extensions of A as

e(A) = fA� = (a�1; : : : ; a
�
A�) j 91=t1<:::<tjAj+1

81�i�jAj 8ti�k<ti+1
a�k = aig:

We say that A � B if there exist extensions A� 2 e(A); B� 2 e(B) such that jA�j = jB�j

and A� � B�. For example if A = (5; 7; 3; 8) and B = (1; 7; 2; 6; 4) then B � A because

A� = (5; 7; 7; 7; 3; 8; 8; 8; 8) is an extension of A, B� = (1; 7; 2; 6; 4; 4; 4; 4; 4) is an extension of A,

and B� � A�. The proof of the following Lemma can be found in [4] (Lemma 3.19).

Lemma 5 Let A;A0; B;B0 be typical sequences such that A � A0 and B � B0. Then �(A�B) �

�(A0 �B0).

Suppose now that A = (A1; : : : ; AjAj) and B = (B1; : : : ; BjBj) are two sequences of sequences

such that jAj = jBj = r. We say that A � B if 81�i�r Ai � Bi. Finally, for any integer t we set

A + t = (A1 + t; : : : ; AjAj + t) and max(A) = max1�i�jAjfmax(Ai)g.

3.2 Characteristic of a typical triple

Let X be a path decomposition of a graph G and let Xi be a node in X where 1 � i � jXj. Let

S = (S1; : : : ; SjSj) be a sequence of vertex sets where Sj � Xi; 1 � j � jSj, D = (D1; : : : ;DjDj)

a sequence of subsets of Xi where jDj j � 2; 1 � j � jF j and 81�j<i�jDjDi \ Dj = ;, and

T = (T1; : : : ; TjTj) be a sequence of typical sequences such that jTj = jSj. We call such a triple

(S;D;T) a typical triple of Xi.

Given a typical triple (S;D;T), of Xi we de�ne its characteristic C(S;D;T) of it as a typical

triple (I;K;A) de�ned as follows.

Let (r1; : : : ; rq+1) be the sequence with 1 = r1 < � � � < rq+1 = jSj+ 1 and such that

(a) 81�j�q 8rj�h<rj+1
(Sh = Srj and Dh = Drj),

(b) 81�j<q (Srj+1 6= Srj or Drj+1 6= Drj).

We call the pair (I;K) where I = (Sr1 ; : : : ; Srq) and K = (D1; : : : ;Drq) the interval model of S

and D. Notice that, as 81�j<i�jDjDi\Dj = ;, we can observe that if Drj 6= ; then rj+1 = rj + 1

and rj�1 = rj � 1.

For any j; 1 � j � q, let Aj = (Trj � � � � � Trj+1�1). We also set A = (A1; : : : ; AjAj)

(�(A1); : : : ; �(Aq)) and we call the typical triple (I;K;A) the characteristic of the typical triple

(S;D;T).

7

Given two typical triples (Si;Di;Ti); j = 1; 2 we say that (S1;D1;T1) � (S2; ;D2;T2) if they

have the same characteristic i.e. C(S1;D1;T1) = C(S2;D2;T2). We also say that (S1;D1;T1) �

(S2;D2;T2) if S1 = S2, D1 = D2 (i.e. they have the same interval model), and T1 � T2. It is

easy to see that relation \�" is transitive i.e. if T1 � T2 and T2 � T3 then T1 � T3. We also

extending the de�nition of \�" so that whenever (Si;Di;Ti); i = 1; 2 are two typical triples, the

typical triple (S1 � S2;D1 �D2;T1 �T2) is denoted by (S1;D1;T1)� (S2;D2;T2).

3.3 Characteristic of an ordering

Let X be a path decomposition of a graph G and Xi some node of X where 1 � i � jXj. We

de�ne Vi = [1�j�iXj and Gi = G[Vi].

Let l be an edge ordering of Gi with linear-width at most k. Let also P (l) = (P1; : : : ; PP (l)).

We de�ne the restriction of l on Xi as R(l) = (Pj \Xi; 1 � j � jP (l)j).

We de�ne the characteristic C(l) of l as C(R(l);H(l);Q(l)). If C(R(l);H(l);Q(l)) =

(I;K;A), we say that the pair (I;K) is an interval model at Xi and A is the correspond-

ing sequence of typical sequences. From now on, whenever we consider an edge ordering we will

associate it with a node Xi of a path decomposition.

As an example of a characteristic, we mention that if l is the ordering of the graph G of the

example of Section 2.2, and Xi = fv5; v7; v10; v12g then C(R(l);H(l);Q(l)) = (I;K;A) where

I = (;; fv5g; fv5; v7g; fv7g; ;; fv10g; fv10g; ;; fv13g; ;);

K = (;; ;; ;; ;; ;; ;; fv12g; ;; ;; ;);

A = ((0; 2); (2); (2; 3); (3; 2); (2); (3; 2); (2); (2); (3; 2); (0)):

Using now Lemma 3.1 of [4] we can prove the following.

Lemma 6 For each node Xi where jXij � l the number of di�erent interval models at Xi is

bounded by (2l + 3)2l+3. The number of elements of any interval model is bounded by 2l + 3.

Using Lemmata 6 and 4 we have the following.

Lemma 7 Let X = (X1; : : : ;XjXj) be a path decomposition of G with width at most l. Let

Xi; 1 � i � jXj be some node in X. The number of di�erent characteristics of all possible edge

orderings of Gi with linear-width at most k, is at most (2l + 3)2l+3 � (8
3
� 22k)2l+3.

The following procedure de�nes function Com, that maps a typical triple (I;K;A) to another

typical triple that is a `compression' of the input pair (see Lemma 8.)

Procedure Com(I;K;A)

Input: A typical triple (I;K;A)

Output: A typical triple (I;K;A).

1: Set r = jIj = jKj = jAj.

8

2: Apply the following operation until it is no longer possible.

� If 91�h�r�1 : (Ih = Ih+1 and Kh+1 = ;) then set

I = (I1; : : : ; Ir�1) (I1; : : : ; Ih; Ih+2; : : : ; Ir);

K = (K1; : : : ;Kr�1) (K1; : : : ;Kh;Kh+2; : : : ;Kr);

A = (A1; : : : ; Ar�1) (A1; : : : ; Ah�1; �(Ah �Ah+1); Ah+2; : : : ; Ar); and

r r � 1:

3: end.

The following lemmata follow from the de�nition of the characteristic of an ordering.

Lemma 8 Let l be an edge ordering of some Gi. Then C(l) = Com(R(l);H(l);Q(l)).

Lemma 9 Let (Ii;Ki;Ai); i = 1; 2 be two typical triples such that (I1;K1;A1) � (I2;K1;A2).

Then Com(I1;K1;A1) = Com(I2;K2;A2).

The following lemmata follow easily from the de�nitions and Lemma 5.

Lemma 10 Let (Ii;Ki;Ai); i = 1; 2 be two typical triples such that (I1;K1;A1) � (I2;K2;A2).

Then Com(I1;K1;A1) � Com(I2;K2;A2).

Lemma 11 Let (Ii;Ki;Ai); i = 1; : : : ; 4 be two typical triples where (I1;K1;A1) � (I2;K2;A2)

and (I3;K3;A3) � (I4;K4;A4). Then (I1�I3;K1�K3;A1�A3) � (I2�I4;K4�K4;A2�A4).

Lemma 12 Assume that (I;K;A) = (I1;K1;A1)� (I2;K2;A2). Then Com(I;K;A) = Com(

Com(I1;K1;A1) � Com(I2;K2;A2)).

A set FS(i) of characteristics of edge orderings of a graph Gi (i is a node of the path

decomposition) with width at most k is called a full set of characteristics at i if for each linear

ordering l of Gi with linear-width at most k, there is a edge ordering l0 such that C(l0) � C(l)

and C(l0) 2 FS(i), i.e. the characteristic of l0 is in FS(i). The following lemma can be derived

directly from the de�nitions.

Lemma 13 A full set of characteristics at i is non-empty if and only if the linear-width of

Gi is at most k. If some full set of characteristics at i is non-empty, then every full set of

characteristics at this node is non-empty.

An important consequence of Lemma 13 is that the linear-width of G is at most k, if and only

if any full set of characteristics of GjXj = G is non-empty. In what follows, we will show how to

compute a full set of characteristics at a node Xi in O(1) time, when a full set of characteristics

of Xi�1 is given.

9

3.4 Introducing an edge

The following procedure is an important ingredient of our algorithm. Given a typical triple

(I;K;A), it \inserts an edge": after the mth position in the jth sequence in A, an edge is

inserted; S is the set of the vertices that are endpoints of the edge. Both I and A are modi�ed

accordingly.

Procedure Int(I;K;A; j;m; S)

Input A typical triple (I;K;A) where I = (Ii; 1 � i � jIj), K = (Ki; 1 � i � jKj), A =

(Ai; 1 � i � jIj = jKj), and Ai = (aij ; 1 � j � jAij); 1 � i � jIj, two integers j;m where

1 � j � jIj;m; 1 � m � jIj j, and a vertex set S.

Output A typical triple (I;K;A).

1: (Splitting step) Apply the following three steps.

� Set I 0 = (I 01; : : : ; I
0
jIj+1) (I1; : : : ; Ij�1; Ij ; Ij ; Ij+1; : : : ; IjIj)

� Set K 0 = (K 0
1; : : : ;K

0
jIj+1) (K1�S; : : : ;Kj�1�S;Kj�S; S\A(G);Kj+1�S; : : : ;KjIj�S)

� Set A0 = (A0
1; : : : ; A

0
jIj+1) (A1; : : : ; Aj�1; (a

j
1; : : : ; a

j
m); (ajm; : : : ; a

j

jAj j
); Aj+1; : : : ; AjIj):

2: (Insertion step) For any x 2 S, apply the following.

� For any h; 1 � h � jIj+ 1;minfLI[K(x); jg � h � maxfj; FI[K(x)� 1g : set Ih Ih [fxg

and Ah Ah + 1

3: Output I 0;K 0;A0.

4: end.

The above procedure has two main steps: Step 1 duplicates the jth position of sequence I,

rede�ne K so that a new edge, having as endpoint the vertices in S, is considered, and \splits" A

on the mth position of its jth sequence. Step 2 inserts vertices from S in some of the elements

of I and increases the numbers of some of the sequences in A. Notice that using the above

procedure we can add elements in any position of a typical triple except from the beginning.

This drawback can be overcome if we enhance the input graph with an isolated edge which will

always be on the beginning of an edge ordering. The next lemma proves that procedure Int is

useful in computing the characteristic of the layout occurring after the insertion of a new edge.

Lemma 14 Let G be a graph rooted on Xi and G0 be the graph obtained by G after intro-

ducing an edge enew with both endpoints in Xi. Let also l = (e1; : : : ; ejlj) be an edge or-

dering of G and l0 = (e1; : : : ; e
 ; enew; e
+1; : : : ; ejlj) for some
; 1 �
 � jlj. Then C(l0) =

Com(Int(R(l);H(l);Q(l);
; 1; enew)).

Proof. From Lemma 8 we have that C(l0) = Com(R(l0);H(l0);Q(l0)) and thus it is su�cient to

prove that (R(l0);H(l0);Q(l0)) = Int(R(l);H(l);Q(l);
; 1; enew). Let H(l) = (H1; : : : ;Hjlj) and

P (l) = (P1; : : : ; Pjlj). Observe that Int(R(l);H(l);Q(l);
; 1; enew) enters step 2 with the typical

triple (I 0;K 0;A0) where

I 0 = (P1 \Xi; : : : ; P
 \Xi; P
 \Xi; : : : ; Pjlj) \Xi);

10

K 0 = (H1 � enew; : : : ;H
 � enew; enew \A(G);H
+1 � enew; : : : ;Hjlj � enew);

A0 = ((jP1j); : : : ; (jP
 j); (jP
 j); (jPjljj)):

Using Lemma 3.i, we have that K 0 = H(l0). It remains to prove that (R(l0) and Q(l0) are

correctly computed after step 2. This follows easily from relations (1) and (2) of Lemma 3.ii.2

Lemma 15 Let l be an ordering and assume that (I;K;A) = C(R(l);H(l);Q(l)). Let also

R(l) = (R1; : : : ; Rjlj), F (l) = (F1; : : : ; Fjlj), Q(l) = ((q1); : : : ; (qjlj)), I = (I1; : : : ; IjIj), and A =

(A1; : : : ; AjIj) where Aj = (aj1; : : : ; a
j

jAj j
); 1 � j � jIj. Then for any vertex set S, the following

hold.

(i) For any j;m; 1 � j � jIj; 1 � m � jAjj, there exists an integer
; 1 �
 � jlj such that

Com(Int(I;K;A; j;m; S)) = Com(Int(R(l);H(l);Q(l);
; 1; S)).

(ii) For any
; 1 �
 � jlj and any S � Xi, there exist two integers j;m; 1 � j � jIj; 1 � m �

jAj j such that Com(Int(I;K;A; j;m; S)) � Com(Int(R(l);H(l);Q(l);
; 1; S)).

Proof (i) Notice �rst that there exist �; �; 1 � � � � � jlj such that

(I;K;A)1;j�1 � (R(l);H(l);Q)1;��1; (3)

(I;K;A)j;j � (R(l);H(l);Q)�;�; (4)

(I;K;A)j+1;jIj � (R(l);H(l);Q)�+1;jlj; (5)

From (4) we have that �(q�; : : : ; q�) = Aj and therefore there exist a
; � �
 � � such that

�(q�; : : : ; q
) = (aj1; : : : ; a
j
m); (6)

�(q
 ; : : : ; q�) = (ajm; : : : ; a
j

jAj j
): (7)

We claim that Com(Int(I;K;A; j;m; S)) = Com(Int(R(l);H(l);Q(l);
; S)). Clearly, from Lem-

ma 9, it is su�cient to prove that Int(I;K;A; j;m1; S) � Int(R(l);H(l);Q(l);
; 1; S). In order to

prove this claim we will proceed applying in parallel the steps of procedures Int(I;K;A; j;m; S)

and Int(R(l);H(l);Q;
; 1; S). We we will show that the corresponding typical triples constructed

after each step are equivalent.

Clearly (I;K;A) � (R(l);H(l);Q(l)). Let (I
0i;K

0i;A
0i); i = 1; 2 be the triples created after

step 1 of Int(I;K;A;K; j;m; S) and Int(R(l);H(l);Q(l);
; 1; S) respectively. For notational

simplicity we assume that j1 = j and j2 =
. We observe the following.

(I
01;K

01;A
01)1;j1 � (I

02;K
02;A

02)1;j2 ; (8)

(I
01;K

01;A
01)j1+1;jI01j � (I

02;K
02;A

02)j2+1;jI02j: (9)

(8) follows from (3) and (6). (9) follows from (5) and (7).

11

Suppose now that the main command of step 2 is executed for some vertex x 2 S. Observe

that it is su�cient to prove that conditions (8) and (9) hold for the resulting typical triple as

well. In order to prove this, we �rst observe that LI01[K01(x) � j1 , LI02[K02(x) � j2 and

FI01[K01(x) > j1 + 1 , FI02[K02(x) > j2 + 1. We also assume that either LI01[K01(x) � j1 or

F
I
01[K01(x) > j1 + 1 as, in any other case, no change in (I

0i;K
0i;A

0i); i = 1; 2 happens. We

examine the following cases.

Case (i) LI01[K01(x) � j1. We notice �rst the following.

(I
01;K

01;A
01)1;L

I
01[K

01 (x)�1 � (I
02;K

02;A
02)1;L

I
02[K

02 (x)�1; (10)

(I
01;K

01;A
01)L

I
01[K

01(x);j1
� (I

02;K
02;A

02)L
I
02[K

02 (x);j2
; (11)

(I
01 [fxg;K

01;A
01 + 1)L

I
01[K

01(x);j1
� (I

02 [fxg;K
02;A

02 + 1)L
I
02[K

02 (x);j2
: (12)

(10) and (11) follow easily from (8) and the de�nition of a characteristic triple. (12) follows

directly from (11). Suppose now that (I
0i
new;K

0i
new;A

0i
new); i = 1; 2 are the produced typical pairs.

Clearly,

I
0i
new = (I

0i)1;L
I
0i[K

0i(x)�1 � (I
0i [fxg)L

I
0i[K

0i(x);ji
� (I

0i)ji+1;jI0ij; K
0i
new = K

0i; and

A
0i
new = (A

0i)1;L
I
0i[K

0i(x)�1 � (A
0i [fxg)L

I
0i[K

0i(x);ji
� (A

0i)ji+1;jI0ij; i = 1; 2:

Using now (10) and (12), and Lemma 11, one can see that (8) and (9) also hold if we replace

(I
0i;K

0i;A
0i); i = 1; 2 with (I

0i
new;K

0i
new;A

0i
new); i = 1; 2.

Case 2. FI01[K01(x) > j1 + 1. Similar to (i).

(ii) Notice that there exists some j; 1 � j � jIj such that Ij = R
 . Moreover, there exist

�; �; 1 � � � � � jlj such that relations (3){(5) of (i) hold. We �rst claim that we can exclude the

case where there exists a m; 1 � m � jAj j such that relations (6) and (7) hold as well. Indeed,

this case is trivial as it is su�cient to follow the steps of proof of (i) and �nally conclude that

Com(Int(I;K;A; j;m; S)) = Com(Int(R(l);H(l);Q(l);
; 1; S)) which is a stronger version of the

required relation.

We now observe that there exist some m0; 1 � m0 � jAj j � 1 and two integers �0; �0; � � �0 <

 < �0 � � such that

�(q�; : : : ; q�0) = (aj1; : : : ; a
j
m0); (13)

�(q�0 ; : : : ; q�) = (ajm0+1; : : : ; a
j

jAj j
): (14)

Clearly, q�0 6= q�0 . If q�0 > q�0 then we set m m0+1, otherwise we set m m0. We claim that,

in any case, Com(Int(I;K;A; j;m; S)) � Com(Int(R(l);H(l);Q(l);
; 1; S)). We will examine the

case where q�0 > q�0 (the other case is similar).

Notice that 8�0+1�h��0�1 qh > ajm. Using this fact and relations (13) and (14) we have the

following.

�(q�; : : : ; q
) � (aj1; : : : ; a
j
m); (15)

�(q
 ; : : : ; q�) � (ajm; : : : ; a
j

jAj j
): (16)

12

As in the proof of (i), we will apply in parallel the steps of procedures Int(I;K;A; j;m; S) and

Int(R(l);H(l);Q;
; 1; S).

Clearly (I;K;A) � (R(l);H(l);Q(l)). Let (I
0i;K

0i;A
0i); i = 1; 2 be the typical triples created

after step 1 of Int(I;A;K; j;m; S) and Int(R(l);H(l);Q(l);
; 1; S) respectively. For notational

simplicity we assume that j1 = j and j2 =
. We observe the following

(I
01;K

01;A
01)1;j1�1 � (I

02;K
02;A

02)1;j2�1; (17)

(I
01;K

01;A
01)j1;j1 � (I

02;K
02;A

02)j2;j2 ; (18)

(I
01;K

01;A
01)j1+1;j1+1 � (I

02;K
02;A

02)j2+1;j2+1; (19)

(I
01;K

01;A
01)j1+2;jI01j � (I

02;K
02;A

02)j2+2;jI2j: (20)

Relations (17), (18), (19), and (20) follow from (3), (15), (5), and (16) respectively.

We claim now that the typical triples constructed after the application of step 2 are satisfying

relations (17){(20) as well. We omit the proof as it is similar to the one used for the corresponding

claim in the proof of (i). In what follows we will use the notation (I
0i;K

0i;A
0i); i = 1; 2 in order to

denote the outputs of Int(I;K;A;K; j;m; S) and Int(R(l);H(l);Q(l);
; 1; S). From Lemma 12

we have that

Com(I
0i;K

0i;A
0i) = Com(Com((I

0i;K
0i;A

0i)1;j1�1)�

Com((I
0i;K

0i;A
0i)j1;j1)�

Com((I
0i;K

0i;A
0i)j1+1;j1+1)�

Com((I
0i;K

0i;A
0i)j1+1;jI0ij)); i = 1; 2:

The result follows now directly using (17), (18), (19), (20), and Lemmata 9 and 10. 2

As an example we assume that Ra; Rb; Rc; Re; Rf are pairwise di�erent vertex sets and we set

(5),(5),(2),(4),(8),(9),(3), (2),(7),(8),(4),(3),(5),(2),(6),(4),Q(l) = ((5),(2),(1),(5),(5), (2),(2), (9)(9)

q�0q� q
 q�q�0

R(l) = (Ra;Ra;Ra;Rb; Rc; Rd; Rd;Re;Rb; Rb; Rb; Rc; Re;Re;Rd;Rd;Rd;Rd;Rd;Rd;Rd; Re;Rf ; RfRf ;

H(l) = (;; ;;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;;; ;; ;;

)

)

).

If (I;A) = C(R(l);Q(l)), then we clearly have

Ra; Rb; Rc; Rd; ReI = ()Rf

;; ; ;K = (;);

Ij = I4

(5; 2); (4; 9; 3) (5)A = ((5; 1; 2))(2; 9)(2;8;2;6;4)
;

am = a43

Assume that j = 2 and m = 2. Using the proof of Lemma 15.i we can verify that if
 = 6

then Com(Int(I;K;A; j;m; S)) = Com(Int(R(l);H(l);Q(l);
; 1; S)). Let now
 = 14. Following

the proof of Lemma 15.ii we have that, if j = 4 and m = 3, then Com(Int(I;K;A; j;m; S)) �

Com(Int(R(l);H(l);Q(l);
; 1; S)).

13

Lemma 16 Let (Ii;Ki;Ai); i = 1; 2 be two typical triples such that (I1;K1;A1) � (I2;K2;A2).

Let also Ii = (Iij ; 1 � j � jIij); i = 1; 2, Ki = (Ki
j ; 1 � j � jKij); i = 1; 2, Ai = (Ai

j ; 1 �

i � jAij); i = 1; 2 Ai
j = (aj;ih ; 1 � h � jAi

j j); 1 � j � jAij; i = 1; 2. Then, for any S �

Xi; j; 1 � j � jI1j = jI2j and m1; 1 � m1 � jA
1
j j there exist a m2; 1 � m2 � jA

2
j j, such that

Com(Int(I1;K1;A1; j;m1; S)) � Com(Int(I2;K2;A2; j;m2; S)).

Proof Since A1
j � A2

j , we can easily observe that there exist m2; 1 �m2 � jA
i
j j such that

(a1j;1; : : : ; a
i
j;m1

) � (a2j;1; : : : ; a
2
j;m2

) (21)

(a1j;m1
; : : : ; aij;jA1

j
j) � (a2j;m2

; : : : ; a2j;jA2
j
j): (22)

From Lemma 10, it is su�cient to prove that Int(I1;K1;A1; j;m1; S) � Int(I2;K2;A2;
; a; S).

Let (I
0i;K

0iA
0i); i = 1; 2 be the typical triples created after step 1 (as in the proof of Lemma 15

we follow \in parallel" the steps of Int(Ii;Ki;Ai; j;mi; S)i = 1; 2). We notice the following.

(I
01;K

01;A
01)1;j1 � (I

02;K
02;A

02)1;j2 ; (23)

(I
01;K

01;A
01)

j1+1;jI
01j � (I

02;K
02;A

02)
j2+1;jI

02j: (24)

(23) follows from (21) and (24) follows from (22).

We claim now that the typical triples constructed after the application of step 2 are satis-

fying relations (23) and (24) as well. We omit the proof as it is similar to those used for the

corresponding claims in the proofs of Lemma 15. 2

3.5 A full set for an introduce node

We will now consider the case where Xi is an introduce node.

Clearly Vi = Vi�1 [fxg where x 62 Vi�1. Suppose that Ex = fe1; : : : ; erg; 0 � r � jXi�1j � l

is the set of edges incident to x in Gi (notice that, [e2Exe � Xi). If Ex = ;, then, we simply set

FS(i) = FS(i� 1). What remains is to examine the case where jExj � 1.

We de�ne G
p
i = (V (Gi); E(Gi�1) [fe1; : : : ; epg); 0 � p � r. Clearly, FS(i � 1) is a full set

of characteristics for G0
i = Gi�1. Notice also that Gi = G

p
i . Suppose that we have a full set of

characteristics FS(i; p� 1) for Gp�1
i ; 1 � p � r (which is the case when p = 1). It is su�cient to

give a O(1) time algorithm constructing a full set of characteristics FS(i; p) for Gp
i .

Algorithm Introduce-edge

Input: A full set of characteristics FS(i; p� 1) for Gi�1
p .

Output: A full set of characteristics FS(i; p) for Gi
p.

1: Initialise FS(i; p) = ;.

2: For each characteristic (I;K;A) 2 FS(i; p � 1) where I = (Ij : 1 � j � jIj) and A = (Aj :

1 � j � jIj) apply step 3.

14

3: For any set Ij 2 I let Aj = (aj1; : : : ; a
j

jAj j
) and apply step 4.

4: For any ajm; 1 � m � jAj j in Aj , set (I 0;K 0;A0) = Com(Int(I 0;K 0;A0; j;m; ep)) and if

max(A0) � k, then set FS(i; p) FS(i; p) [f(I 0;K 0;A0)g.

5: end.

Lemma 17 The set FS(i; p) constructed by the above algorithm is a full set of characteristics.

Proof. We will prove �rst that FS(i; p) is a set of characteristics. Let (I 0;K 0;A0) 2 FS(i; p). We

will show that there exists an edge ordering of Gi
p with this characteristic. Clearly, as (I 0;K 0;A0)

is constructed by the algorithm above, there must be a characteristic (I;K;A) 2 FS(i; p � 1),

and two integers m and j such that

Com(Int(I;K;A; j;m; ep)) = (I 0;K 0A0): (25)

Let l = (e1; : : : ; ejlj) be an edge ordering of Gp�1
i that has (I;K;A) as characteristic. From

Lemma 15.(i) we have that there exist a
; 1 �
 � jlj such that

Com(Int(R(l);H(l);Q(l);
; 1; ep)) = Com(Int(I;K;A; j;m; ep)): (26)

We now claim that l0 = (e01; : : : ; e
0
jl0j) = (e1; : : : ; e
 ; ep; e
+1; : : : ; er) is an edge ordering of Gp

i

such that C(l0) = (I 0;K 0;A0). Indeed, from Lemma 14, we have that

C(l0) = Com(Int(R(l);H(l);Q(l);
; 1; ep)): (27)

and, now, C(l0) = (I 0;K 0A0) follows directly from (25), (26) and (27).

In what follows, we prove that FS(i; p) is a full set of characteristics. Let l0 be an edge

ordering of Gp
i of width at most k. We will show that there exists an edge ordering l0� of Gp

i such

that C(l0�) � C(l0) and C(l0�) 2 FS(i; p). Suppose that l0 = (g1; : : : ; g
 ; ep; g
+1; : : : ; gr). We set

l = (g1; : : : ; g
 ; g
+1; : : : ; gr). Let C(l) = (I;K;A). From Lemma 14 we have that

Com(Int(R(l);H(l);Q(l);
; 1; ep)) = C(l0): (28)

From Lemma 15.(ii) we have there exist j;m; 1 � j � jIj, 1 � m � jIj j such that

Com(Int(I;K;A; j;m; ep)) � Com(Int(R(l);H(l);Q(l);
; 1; ep)): (29)

As FS(i; p� 1) is a full set of characteristics, we have that there exists an edge ordering l� of

G
p�1
i such that C(l�) � C(l) and C(l�) 2 FS(i; p�1). Let C(l�) = (I�;K�;A�). From Lemma 16

we have that there exist a m0 such that

Com(Int(I�;K�;A�; j;m
0; ep)) � Com(Int(I;K;A; j;m; ep)): (30)

Let l� = (g�1 ; : : : ; g
�
jl�j

) (notice that jlj = jl�j = jE(Gp�1
i)j) and we set l0� =

(g�1 ; : : : ; g
�

� ; ep; g

�

�+1; : : : ; g

�
jl�j

). From Lemma 15.(i) there exist a
�; 1 �
� � jl�j such that

Com(Int(R(l�);H(l�);Q(l�);
�; 1; ep) = Com(Int(I�;K�;A�; j;m
0; ep)): (31)

15

C(l0) = (I0;K0;A0)l0; (R(l0); H(l0);Q(l0)) C(l0�) = (I0�;K
0
�;A

0
�) l0�; (R(l

0
�); H(l0�);Q(l0�))�

C(l) = (I;K;A)l; (R(l); H(l);Q(l)) C(l�) = (I�;K�;A�) l�; (R(l�);H(l�);Q(l�))�

Com(: : :

Com(: : :

Int(: : : ;
0Com(Int(: : : ; j;m0Com(Int(: : : ; j;mInt(: : : ;

Com(: : :

Com(: : :

Figure 1: A scheme for the proof of Lemma 17.

Moreover, from Lemma 14 we have that

C(l0�) = Com(Int(R(l�);H(l�);Q(l�);

�; 1; ep)): (32)

From (32) and algorithm Introduce-edge we have that C(l0�) 2 FS(i; p). Finally, from (28), (29),

(30), (31), and (32), we have that C(l0�) � C(l0). 2

3.6 A full set for a forget node

We will now consider the case where Xi is a forget node. Clearly, Gi = Gi�1 and there exists

a unique vertex v 2 Xi�1 with v 62 Xi. We call this vertex v forgotten. Given a full set of

characteristics F (i � 1) for Xi�1, the following algorithm computes a full set of characteristics

F (i) for Xi.

Algorithm Forget-Vertex

Input: A full set of characteristics FS(i� 1) for Gi�1 and a forgotten vertex x.

Output: A full set of characteristics FS(i) for Gi.

1: Initialise FS(i) = ;.

2: For any (I;K;A) 2 FS(i� 1) set FS(i) FS(i) [fCom(I � fxg;K � fxg;A)g.

3: end.

Lemma 18 The set FS(i) constructed by the above algorithm is a full set of characteristics.

Proof. We will prove �rst that FS(i) is a set of characteristics. Let (I 0;K 0;A0) 2 FS(i). We will

prove that there is an edge ordering of Gi with this characteristic. From algorithm Forget-Vertex,

there exist some (I;K;A) 2 FS(i� 1) such that

Com(I � fxg;K � fxg;A) = (I 0;K 0;A0): (33)

Let l be an ordering of Gi�1 where C(l) = (I;K;A). From the obvious fact that

(R(l);H(l);Q(l)) � (I;K;A) we can easily derive the following.

(R(l)� fxg;H(l)� fxg;Q(l)) � (I � fxg;K � fxg;A): (34)

16

Notice that l0 = l is an ordering of Gi as well. We claim that C(l0) = (I 0;K 0;A0). From the

de�nitions we have that R(l0) = R(l) � fxg;H(l0) = H(l) � fxg; and Q(l0) = Q(l). Therefore,

we easily have that

Com(R(l0);H(l0);Q(l0)) = Com(R(l)� fxg;H(l)� fxg;Q(l)): (35)

Using now (33), (34), and (35), and Lemma 9 we conclude that C(l0) = Com(R(l0);H(l0);Q(l0)) =

(I 0;K 0;A0).

Next we prove that FS(i; p) is a full set of characteristics. Let l0 be an edge ordering of

Gi of width at most k. We will show that there exists an edge ordering l0� of Gi such that

C(l0�) � C(l0) and C(l0�) 2 FS(i). Observe that l = l0 is an edge ordering of Gi�1 as well and set

C(l) = (I;K;A). Notice that relations (34) and (35) hold as well and �nally using Lemma 9 we

obtain

C(l0) = Com(I � fxg;K � fxg;A): (36)

As FS(i � 1) is a full set of characteristics, there exist an ordering l� of Gi�1 such that if

C(l�) = (I�;K�;A�) then (I�;K�;A�) � (I;K;A). It is now easy to verify that

(I� � fxg;K� � fxg;A�) � (I � fxg;K � fxg;A): (37)

Notice now that l0� = l� is an ordering of Gi as well. Notice also that relations (34) and (35)

hold also for the case of l� and (I�;K�;A�) and therefore we obtain the following.

C(l0�) = Com(I� � fxg;K� � fxg;A�) (38)

From Algorithm Forget-Vertex and (38) we have that C(l0�) 2 FS(i). Finally, from Lemma 8 and

relations (36), (37), and (38) we have that C(l0�) � C(l0).

3.7 The decision algorithm

Using the algorithms of the previous sections we can compute a full set of characteristics for

G1; G2; G3; : : : ; GjXj = G (obviously E(G1) = ;). Notice that if a graph consists of a single edge

estart = fv1start; v
2
startg, its full set of characteristics is ((fv1start; v

2
startg); (fv

1
start; v

2
startg); ((0))).

Using this full set of characteristics as a base we can use the procedures of the previous sections

to compute the full sets for G2; G3, etc., in order. Note that the computation needs O(1) time

per node of the path decomposition, and thus in total, time linear on the number of vertices of

G. After the full set for the last node has been computed, in O(1) time one can decide whether

the linear-width of G is at most k, as this holds if and only if this last full set FS(jXj) is not

empty.

17

3.8 Turning the decision algorithm to a constructive one

Suppose that, after running the algorithm described in the previous subsections we know that

a graph G has linear-width at most k, i.e., the computed set FS(jXj) is not empty. We will

now describe a way to construct an edge ordering of E(G) with linear-width at most k. By

observing the working of the algorithm, it follows that there exist a sequence of characteristics,

(I1;K1;A1); (I2;K2;A2) : : : ; (In;Kn;An) such that

� (I1;K1;A1) = ((fv1start; v
2
startg); (fv

1
start; v

2
startg); ((0))) (the unique characteristic of the or-

dering consisting of the �rst edge considered by the algorithm),

� (In;Kn;An) is some characteristic in FS(jXj), and

� for any i, 1 � i � n� 1 (Ii+1;Ki+1;Ai+1) was constructed after a call of either Introduce-

edge or Forget-Vertex with input (Ii;Ki;Ai). We call such a sequence witness path.

If for each time a new characteristic is computed we set up a pointer to the the characteristic

it was constructed from, we obviously have a suitable structure for constructing such a witness

path in linear time.

Let (Ii;Ki;Ai) be a characteristic of the witness path where Ai = (Ai
1; : : : ; A

i
jAij

) and

Ai
j = (ai;j1 ; : : : ; a

i;j

jAj j
); 1 � j � jAij. Let also li = (ei1; : : : ; e

i
ri

) be an ordering such that C(li) =

(Ii;Ki;Ai). We de�ne �i : Ai
1 � � � � �Ai

jAj ! li such that

�i(a
i;j
m) = e
 , Com(Int(Ii;Ki;Ai; j;m; e
)) = Com(Int(R(li);H(li);Q(li);
; 1; e
):

We maintain a data structure associating the position (determined by j and m) of each number

ai;jm of a typical sequence Ai
j of Ai with an edge �i(a

i;j
m) in li.

We assume that for some i, 1 � i � n� 1 li and �i are known. We will show that li+1, �i+1

can be computed in O(1) time.

We �rst examine the case where (Ii+1;Ki+1;Ai+1) was computed after a call of

Introduce-edge. Let enew be the new edge introduced. Clearly, (Ii;Ki;Ai+1) =

Com(Int(Ii;Ki;Ai; j;m; enew)) for some j;m; and enew 62 li (notice that we can consider

j;m; and enew as known if we maintain a back up of them during the execution of the

decision algorithm). From the proof of Lemma 17, we have that, if e
 = �(ai;jm), then

li+1 = (ei1; : : : ; e
i

 ; enew; e

i

+1; : : : ; e

i
ri

) is an ordering where C(li+1) = (Ii+1;Ki+1;Ai+1). Finally,

in order to compute the function �i+1 we �rst run again Int(Ii;Ki;Ai; j;m; enew) initialising

function �0i+1 so that after step 5 the unique newly introduced number jI�j j is mapped to enew

and all the other numbers of the typical sequences of A0 are mapped to the images they had

\originally" in �i. Now �i+1 is just a \projection" of �0i+1 to the numbers of typical sequence

that \survive" after the application of Com on the output of Int(Ii;Ki;Ai; j;m; enew). It is easy

to see that li+1 and �i+1 can be computed in O(1) time.

18

Let now now (Ii+1;Ki+1;Ai+1) was computed after a call of Forget-Vertex and let vold was

the forgotten vertex. Clearly, the new ordering li+1 is the same as li and the new function �i+1

is obtained if we initialise �0i+1 �i as a function corresponding to (Ii � xold;K
i � x;Ai) and

obtain �0i+1 as a \projection" of �0i+1 to the numbers of typical sequence that \survive" after

the application of Com(Ii � fxoldg;K
i � fxoldg;A

i). Clearly li+1 and �i+1 can be computed in

O(1) time.

Now, as l1 = (estart) and �1(1) = estart, we are able to construct an ordering l = ln such that

C(l) 2 FS(jXj). Therefore we conclude to the following.

Theorem 1 For all k; l � 1 there exists an algorithm that, given a graph G and a path decom-

position X = (Xi; 1 � i � jXj) of G with width at most l, computes whether the linear-width of

G is at most k and, if so, constructs an edge ordering of G with linear-width at most k and that

uses O(V (G) + jXj) time.

The results presented so far can be trivially extended to graphs with multiple edges. In such

a case, we should consider the complexity of the algorithm in theorem 1 to be O(jE(G)j+ jXj).

4 The consequences of our algorithm

In this section we de�ne several search game parameters and we present their relations with

linear-width. Using these relations we conclude that there exist for any �xed k, linear time

algorithms that check whether given graphs can be mixed, node, or edge searched with at most

k searchers, and if so, output the corresponding search strategies.

4.1 Search games for an agile fugitive

In this section we give the de�nitions of three versions of search games on graphs and we present

their connection with linear-width.

A mixed searching game is de�ned in terms of a graph representing a system of tunnels where

an omniscient and agile fugitive with unbounded speed is hidden (alternatively, we can formulate

the same problem considering that the tunnels are contaminated by some poisonous gas). The

object of the game is to clear all edges, using one or more searchers. An edge of the graph is

cleared if one of the following cases occur.

A: both of its endpoints are occupied by a searcher,

B: a searcher slides along it, i.e., a searcher is moved from one endpoint of the edge to the

other endpoint.

A search is a sequence containing some of the following moves. a: place a new searcher on a

vertex, b: remove a searcher from a vertex, c: slide a searcher, residing on some of the endpoints

of an edge e, along e and place it on the other endpoint of e.

19

The object of a mixed search is to clear all edges using a search. The search number of a

search is the maximum number of searchers on the graph during any move. The mixed search

number, ms(G), of a graph G is the minimum search number over all the possible searches of it.

A move causes recontamination of an edge if it causes the appearance of a path from an uncleared

edge to this edge not containing any searchers on its vertices or its edges. (Recontaminated edges

must be cleared again.) A search without recontamination is called monotone.

The node (edge) search number, ns(G) (es(G)) is de�ned similarly to the mixed search number

with the di�erence that an edge can be cleared only if A (B) happens.

The following results were proved by Bienstock and Seymour in [2] (see also [24]).

Theorem 2 For any graph G the following hold:

(a) If ms(G) � k then there exist a monotone mixed search in G using at most k searchers.

(b) linear-width(G) � ms(G).

(c) If G does not contain vertices of degree 1, then linear-width(G) = ms(G).

(d) If Ge is the graph occurring from G after subdividing each of it edges, then es(G) = ms(Ge).

(e) If Gn is the graph occurring if we replace every edge in G with two edges in parallel, then

ns(G) = ms(Gn).

We mention that the mixed search number is equivalent with the parameter of proper-

pathwidth de�ned by Takahashi, Ueno, and Kajitani in [24]. It is also known that the node

search number is equal to the pathwidth, the interval thickness, and the vertex separation number

(see [13, 14, 17, 12, 8]).

The following is a generalisation of Theorem 2.(c) and has been proved in [25].

Theorem 3 If Gh is the graph occurring from G after subdividing each of its pendant edges,

then ms(G) = linear-width(Gh).

4.2 Final Comments

The result of Theorem 1 has several consequences. First, as one can �nd a path decomposition

of a graph G with width at most l, if existing, in linear time ([3, 4], but see also below) and

using Lemma 2 we can conclude to the following result.

Theorem 4 For all k � 1, there exists an algorithm that, given a graph G, computes whether

the linear-width of G is at most k and, if so, constructs an edge ordering of G with linear-width

at most k and that uses O(V (G)) time.

Using now Theorems 2 and 3, we can obtain the following result for the search parameters.

Theorem 5 For all k, l, there exists an algorithm, that given a graph G and a path decompo-

sition X = (Xi; 1 � i � jXj) of G with width at most l, computes whether the mixed search

20

number (edge search number; node search number) of G is at most k, and if so, constructs a

mixed search (edge search; node search) that clears G with most k searchers, and that uses at

most O(jV (G)j+ jXj) time.

Using small modi�cations of techniques from [3], the result above can be used to obtain

an alternative (but strongly related) proof for the result from [3, 4] that for each �xed k, the

problem to determine whether a given graph has pathwidth at most k, and if so, to �nd a path

decomposition of width at most k, has a linear time algorithm. Using this fact, we obtain from

Theorem 5 the following.

Theorem 6 For all k, there exists an algorithm, that given a graph G, computes whether the

mixed search number (edge search number; node search number) of G is at most k, and if so, con-

structs a monotone mixed search (edge search; node search) that clears G with most k searchers,

and that uses at most O(jV (G)j) time.

References

[1] D. Bienstock. Graph searching, path-width, tree-width and related problems (a survey).

DIMACS Ser. in Discrete Mathematics and Theoretical Computer Science, 5:33{49, 1991.

[2] D. Bienstock and P. Seymour. Monotonicity in graph searching. J. Algorithms, 12:239 {

245, 1991.

[3] H. L. Bodlaender. A linear time algorithm for �nding tree-decompositions of small treewidth.

SIAM J. Comput., 25:1305{1317, 1996.

[4] H. L. Bodlaender and T. Kloks. E�cient and constructive algorithms for the pathwidth

and treewidth of graphs. J. Algorithms, 21:358{402, 1996.

[5] H. L. Bodlaender and D. M. Thilikos. Constructive linear time algorithms for branchwidth.

In P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings 24th Inter-

national Colloquium on Automata, Languages, and Programming, pages 627{637. Springer

Verlag, Lecture Notes in Computer Science, vol. 1256, 1997.

[6] R. Breisch. An intuitive approach to speleotopology. A publication of the Southwestern

Region of the National Speleological Society, VI:72{78, 1967.

[7] N. D. Dendris, L. M. Kirousis, and D. M. Thilikos. Fugitive-search games on graphs and

related parameters. Theor. Comp. Sc., 172:233{254, 1997.

[8] J. A. Ellis, I. H. Sudborough, and J. Turner. Graph separation and search number. Report

DCS-66-IR, University of Victoria, 1987.

21

[9] J. A. Ellis, I. H. Sudborough, and J. Turner. The vertex separation and search number of

a graph. Information and Computation, 113:50{79, 1994.

[10] M. R. Fellows and M. A. Langston. On search, decision and the e�ciency of polynomial-

time algorithms. In Proceedings of the 21rd Annual Symposium on Theory of Computing,

pages 501{512, 1989.

[11] H. Friedman, N. Robertson, and P. D. Seymour. The metamathematics of the graph minor

theorem. Contemporary Mathematics, 65:229{261, 1987.

[12] N. G. Kinnersley. The vertex separation number of a graph equals its path width. Inform.

Proc. Letters, 42:345{350, 1992.

[13] L. M. Kirousis and C. H. Papadimitriou. Interval graphs and searching. Disc. Math.,

55:181{184, 1985.

[14] L. M. Kirousis and C. H. Papadimitriou. Searching and pebbling. Theor. Comp. Sc.,

47:205{218, 1986.

[15] A. S. LaPaugh. Recontamination does not help to search a graph. J. ACM, 40:224{245,

1993.

[16] N. Megiddo, S. L. Hakimi, M. R. Garey, D. S. Johnson, and C. H. Papadimitriou. The

complexity of searching a graph. J. ACM, 35:18{44, 1988.

[17] R. H. M�ohring. Graph problems related to gate matrix layout and PLA folding. In E. Mayr,

H. Noltemeier, and M. Sys lo, editors, Computational Graph Theory, Comuting Suppl. 7,

pages 17{51. Springer Verlag, 1990.

[18] T. D. Parsons. Pursuit evasion in a graph. In Y. Alavi and D. R. Lick, editors, Theory and

Application of Graphs, pages 426{441, Berlin, 1976. Springer Verlag.

[19] N. Robertson and P. D. Seymour. Graph width and well-quasi ordering: a survey. In J. A.

Bondy and U. S. R. Murty, editors, Progress in Graph Theory, pages 399{406, Toronto,

1984. Academic Press.

[20] N. Robertson and P. D. Seymour. Disjoint paths { a survey. SIAM J. Alg. Disc. Meth.,

6:300{305, 1985.

[21] N. Robertson and P. D. Seymour. An outline of a disjoint paths algorithm. Paths, Flows

and VLSI Design, Algorithms and Combinatorics, 9:267{292, 1990.

[22] N. Robertson and P. D. Seymour. Graph minors. XIII. The disjoint paths problem. J.

Comb. Theory Series B, 63:65{110, 1995.

22

[23] P. D. Seymour and R. Thomas. Graph searching and a minimax theorem for tree-width. J.

Comb. Theory Series B, 58:239{257, 1993.

[24] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed-searching and proper-path-width. Theor.

Comp. Sc., 137:253{268, 1995.

[25] D. M. Thilikos. Algorithms and obstructions for linear-width and related search parame-

ters. Technical Report UU-CS-97-35, Department of Computer Science, Utrecht University,

Utrecht, 1997.

[26] R. Thomas. Tree-decompositions of graphs. Lecture notes, School of Mathematics. Georgia

Institute of Technology, Atlanta, Georgia 30332, USA, 1996.

23

