
Dynamic Motion Planning
in Low Obstacle Density Environments�

Robert-Paul Berretty Mark Overmars A. Frank van der Stappen

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

A fundamental task for an autonomous robot is to plan its own motions. Ex-
act approaches to the solution of this motion planning problem suffer from high
worst-case running times. The weak and realistic low obstacle density (L.O.D.)
assumption results in linear complexity in the number of obstacles of the free
space [11]. In this paper we address the dynamic version of the motion planning
problem in which a robot moves among moving polygonal obstacles. The ob-
stacles are assumed to move along constant complexity polylines, and to respect
the low density property at any given time. We will show that in this situation a
cell decomposition of the free space of sizeO(n2�(n) log2 n) can be computed
inO(n2�(n) log2 n) time. The dynamic motion planning problem is then solved
in O(n2�(n) log3 n) time. We also show that these results are close to optimal.

Keywords: Motion planning, low obstacle density, moving obstacles, cell decompo-
sition.

1 Introduction

Robot motion planning concerns the problem of finding a collision-free path for a
robotB in a workspaceW with a set of obstaclesE from an initial placementZ0 to a
final placementZ1. The parameters required to specify a placement of the robot are
referred to as the degrees of freedom of the robot. The motion planning problem is
often studied as a problem in the configuration spaceC, which is the set of parametric
representations of the placements of the robotB. The free spaceFP is the sub-space
ofC of placements for which the robot does not intersect any obstacle inE . A feasible
motion for the robot corresponds to a curve fromZ0 toZ1 in FP (or its closure).

Motion planning is a difficult problem. In general, many instances of the robot mo-
tion planning problem are P-SPACE-complete, even if the obstacles are stationary [5].
For a constant-complexity robot moving amidst stationary obstacles polynomial time
algorithms have been shown to exist. The running time is exponential in the number
of degrees of freedom of the robot [7]. For anf -DOF robot, the complexity of the free
space, can be as high as
(nf ) and the motion planning problem will, therefore, in
general have a worst case running time close to
(nf ).

�Research is partially supported by the Dutch Organization for Scientific Research (N.W.O.).

1



We address the motion planning problem for a robot operating in an environment
with moving obstacles. This problem is also referred to as the dynamic motion plan-
ning problem. In general, when the obstacles in the workspace are allowed to move,
the motion planning problem becomes even more complicated. For example, Reif and
Sharir [6] showed that, when obstacles in a 3-dimensional workspace are allowed to ro-
tate, the motion planning problem is PSPACE-hard if the velocity modulus is bounded,
and NP-hard otherwise. (A similar result was obtained by Sutner and Maass [8].)
Canny and Reif [3] showed that dynamic motion planning for a point in the plane, with
a bounded velocity modulus and an arbitrary number of convex polygonal obstacles,
is NP-hard, even when the obstacles are convex and translate at constant linear veloc-
ities. They also showed that the 2-dimensional dynamic motion planning problem for
a translating robotB with bounded velocity modulus, among polygonal obstaclesE
that translate at fixed linear velocity, can be solved using an algorithm that is polygo-
nal in the total number of vertices ofB andE , if the number of obstacles is bounded.
However, their algorithm takes exponential time in the number of moving obstacles.

Van der Stappenet al. [11] (see also [10]) showed that modelling robots in re-
alistic workspaces has a profound influence on the complexity of solving the static
motion planning problem, mainly independent of the number of degrees of freedom
of the robot. They gave a description of environments with a so-calledlow obsta-
cle densitywhich leads to a surprising gain in efficiency for several instances of the
motion planning problem. An environment has the low obstacle density property if
any region in the workspace intersects a constant number of obstacles that are larger
than the size of the region. (See below for a more precise definition.) Under the
low obstacle density assumption, the exact motion planning problem for anf -DOF
robot was efficiently solved, using the cell decomposition approach. The low obstacle
density of the workspace implies a linear combinatorial complexity of the free space,
even forf -DOF robots. For a robotB moving amidstn stationary obstacles the cell
decomposition of the free space hasO(n) size and is computable inO(n logn) time.
Vleugels [12] extended these results to multiple robots simultaneously operating in the
same workspace. De Berget al. [2] gave an overview of several realistic input models
and gave experimental results on scenes based on real input data, which showed that
the ‘hidden’ constant in the low obstacle density assumption was indeed low.

We demonstrate that the low obstacle density property can also be used to ef-
ficiently plan a motion for a robotB with f degrees of freedom moving in a 2-
dimensional workspace with non-stationary obstacles. The obstacles are allowed to
translate in the workspace along polyline trajectories, with a fixed speed per segment.
The motion planning problem is then solved inO(n2�(n) log3 n) time, using a cell
decomposition of sizeO(n2�(n) log2 n). Note that these bounds do not depend onf

(assumingf is constant). We also show that this result is close to optimal, by giving
an example where the robot has to perform
(n2) simple motions to get from its start
to its goal position.

In this paper we will first present an overview of the method used in the paper
of Van der Stappenet al. [11]. The computation of the cell decomposition for the
dynamic low obstacle density motion planning problem is treated in Sections 3 and 4;
the algorithm to compute a feasible path through the cell decomposition is presented
Section 5. Section 6 concludes the paper.

2



2 Low Obstacle Density

In this section we recall some of the definitions and results from the paper by Van der
Stappenet al.[11] on motion planning in low density environments. The authors focus
in particular on the large class of motion planning problems with configuration spaces
of the formC = W � D, whereW is thed-dimensional workspace andD is some
(f � d)-dimensional rest space. Let us use thereachof a robot as a measure for its
maximum size; the reach�B of B is defined as the maximum radius that the minimal
enclosing hypersphere of the robot, centered at its reference point, can ever have (in
any placement ofB). The reach of the robot is assumed to be comparable to the size
of the smallest obstacle. The robot has constant complexity and moves in a workspace
with constant-complexity obstacles. The workspace satisfies the static low obstacle
density property which is defined as follows.

Property 2.1 Let IRd be a space with a setE of non intersecting obstacles. Then
IRd is said to be astatic low (obstacle) densityspace if for any regionR � IRd with
minimal enclosing hyper-sphere radius�, the number of obstaclesE 2 E with minimal
enclosing hyper-sphere radius at least� intersectingR is bounded by a constant.

Van der Stappenet al. [11] showed that, under the circumstances outlined above, the
complexity of the free space is linear in the number of obstacles.

The configuration space contains hyper-surfaces of the formf�;�, consisting of
placements of the robotB in which a robot feature� is in contact with an obstacle
feature�. We shall denote the fact that� is a feature of some object or object setX

by � 2f X . The arrangement of all (constant-complexity) constraint hyper-surfaces
f�;�(� 2f B;� 2f E) divides the higher-dimensional configuration space into free
cells and forbidden cells. Van der Stappenet al. [11] considered so-calledcylindri-
fiable configuration spacesC = B � D which have the property that the subspace
B—referred to as thebase space—can be partitioned into constant complexity regions
R satisfying

jff�;�j� 2f B ^ � 2f E ^ f�;� \ (R�D) 6= ;gj = O(1):

A partition that satisfies this constraint is called acylindrical partition. In words, the
lifting of the regionR into the configuration space is intersected by a constant number
of constraint hyper-surfaces. These hyper-surfaces subdivide the cylinderR �D into
O(1) constant-complexity free and forbidden cells. The cylindrical partition ofB

therefore almost immediately gives us a cell decompositionof the free portionFPofC.
Theorem 2.2 states that the transformation of a cylindrical partition of the base space
into a cell decomposition of the free space can beaccomplished in time proportional
to the size of the cylindrical partition.

Theorem 2.2 [11] Let V be the set of regions of a cylindrical partition of a base space
B and letE be the set of region adjacencies. Let the regions ofB be of constant com-
plexity. Then the cell decomposition of the free space calculated by lifting the regions
R of the base partition into the configuration space consists of constant complexity
subcells. Furthermore, the complexity of the decomposition and the time to compute it
isO(jV j+ jEj).

3



Note that the size of the cylindrical partition determines the size of the cell decompo-
sition. The low obstacle density motion planning problem outlined above was shown
to yield a cylindrifiable configuration space, in which the workspaceW is a valid base
space. Small and efficiently computable cylindrical partitions ofW have led to opti-
mal cell decompositions and thus efficient solutions to the motion planning problem
(see [11] for details).

In this paper, we show that the configuration space of the dynamic version of the
low obstacle density motion planning problem is cylindrifiable as well. We find a
cylindrical partition of an appropriate base space that leads to an almost optimal size
cell decomposition.

3 A Dynamic Base Space

3.1 Problem Statement

We now focus on the dynamic robot motion planning problem, subjected to low ob-
stacle density. We show that the framework outlined in Section 2 can be used to
plan a motion for a robotB with f degrees of freedom, moving in a 2-dimensional
workspace with non-stationary obstacles. The obstacles translate in the workspace,
and can only change speed or direction a constant number of times. We will use a cell-
decomposition based on a cylindrical partition, similar to Section 2. Since dynamic
motion planning is tedious to deal with, we split the problem into sub-problems. We
first formally define the problem and state some useful properties of the base space
for the dynamic motion planning problem. In Section 4, we construct a cylindrical
decomposition, and in Section 5, we compute the actual path for the robot.

Thedynamic low obstacle density motion planning problemis defined as follows.

� The workspaceW of the robotB is the 2-dimensional Euclidean space IR2 and
contains a collection ofn obstaclesE 2 E , each moving along a polyline at
constant speed per line segment.

� The robotB has constant complexity and its reach is bounded by�B � b � �,
whereb � 0 is a constant and� is a lower bound on the minimal enclosing
hyper-sphere radii of all obstaclesE 2 E .

� Each obstacleE 2 E is polygonal and has constant complexity.

� Any constraint hyper-surface in the configuration space corresponding to the set
of robot placements in which a certain robot feature is in contact with a certain
obstacle, is algebraic of bounded degree.

� The robot is placed at the initial placementZ0 at timet0 and has to be at the goal
placementZ1 at timet1.

� At any time betweent0 andt1, the workspace with obstacles satisfies the low
obstacle density property.

A standard approach when dealing with moving obstacles is to augment the sta-
tionary configuration space with an extra time dimensionT . In this manner, we obtain

4



the configuration-time space. When planning the motion of our robot through the
configuration-time space, we have to make sure that the path is time-monotone—the
robot is not allowed to move back in time. The first objective in solving the dynamic
low obstacle density motion planning problem is to obtain a cylindrical partition that
consists of constant complexity regions. An appropriate choice for a base spaceB is
the Cartesian product of the 2-dimensional workspace and time. This way, the config-
uration time space is of the formCT = W � T �D = IR2 � IR � D (= IR3 �D),
whereD is some(f � 2)-dimensional rest space.

3.2 Characteristics of the Base Space

The base spaceB = W � T can be considered as a 3-dimensional Euclidean space.
In our dynamic motion planning setting, we only consider the work-time space slice
IR2 � [t0; t1]. We first look at the situation where the obstacles move along a line in
the workspace. Later, we extend the result to the polyline case.

Definition 3.1 LetS � W and let be a curve inW � T . Then thecolumncol(S)
is defined bycol(S) = f(x; y; 0)j(x; y) 2 Sg � , where� denotes the Minkowski
sum operator.

The columncol(S) is the volume swept byS in the work-time space as its ref-
erence pointO follows the curve. In our application, the curve describes the
translational motion of an obstacle and is therefore time-monotone. A point(x; y; t)
belongs tocol(S) if and only ifS covers the point(x; y) at timet.

Definition 3.2 LetQO;�B be a square centered at the origin, having side length2�B.
ThenH(E) = E � QO;�B .

The Minkowski sumH(E) enclosesE. No point inH(E) has a distance larger
than

p
2 � �B to E. We denote the arrangement of the boundaries@col(H(E)) of

the grown obstacle columns byA(col �H). We will show that this arrangement is of
O(n2) complexity.

Let us for a moment consider a fixed obstacleE at a fixed timeti. We consider
the boundary of the grown obstacleH(E). Now, if the reference point of the robot is
placed outsideH(E), the robot cannot collide with the obstacle. If the reference point
of the robot is inside the grown obstacle, there might be configurations in which the
the robot intersects the obstacle. Since both the robot and the obstacles have constant
complexity, the arrangement of constraint hypersurfaces inH(E) at time ti, when
lifted into the configuration space, has constant complexity as well. We exploit this
observation to build a partition of the base space.

We say that an obstacleE is in the proximity of another obstacleE 0 if H(E) and
H(E0) intersect, hencecol(H(E)) andcol0(H(E0)) intersect.

Theorem 3.3 The complexity of the arrangementA(col �H) of the boundaries of the
grown obstacle columns isO(n2).

Proof: The complexity of the arrangement is determined by the number of ver-
tices. A vertex results from an intersection of three columns. A necessary condition

5



for three columns to intersect is that the corresponding obstacles are less than2
p
2�B

apart at some moment in time. We show that the number of such triples isO(n2). We
charge each such triple to a pair of obstacles. For this we choose the smallest obsta-
cleE of the three and the one (of the remaining two) that last enteredE’s proximity.
Assume that an obstacleE 0 enters the proximity ofE. (Note thatE 0 can enterE’s
proximity at mostO(1) times becauseE andE 0 have constant complexity and both
move along line paths.) A third obstacleE 00 involved in a triple(E;E 0; E00) must al-
ready be in the proximity ofE at the time of arrival ofE 0 in order to be charged to the
pair (E,E 0). By Property 2.1, there are onlyO(1) larger obstacles inE’s proximity at
any time, soE 00 is chosen from a set ofO(1) size. As a result, onlyO(1) triples are
charged to each of theO(n2) pairs (E, E 0). Each of theseO(n2) triples(E;E 0; E00)
contribute a constant number of vertices toA(col �H) because the obstaclesE, E 0,
andE 00 have constant complexity and move along line paths. Therefore, the complex-
ity of A(col �H) is bounded byO(n2). 2

It is easy to see that a 2-face of a column in the final arrangement is divided into a
number of parts, of which some are non-convex. The following theorem states that the
2-faces of the arrangementA(col�H) are polygons without holes. This property turns
out to be important in the sequel.

Theorem 3.4 The faces ofA(col �H) are polygonal and have no holes.

Proof: The faces ofA(col � H) are formed by the possibly intersecting faces of
the columnscol(H(E)) (E 2 E). Since the columns are polyhedra, the arrangement
A(col�H) has polygonal faces. It remains to prove that the faces do not contain holes.
A face of the arrangement has a holeiff a column penetrates the interior of this face
without intersecting its boundary. We distinguish the bottom and top faces and the side
faces of the columns. The bottom and top faces of the columns, i.e. the intersections
of the columns witht = t0 and t = t1, are the boundaries of the Minkowski sums
of the obstacles at their positions att0 andt1 andQO;�B . A grown obstacle cannot be
fully contained in another grown obstacle, otherwise the obstacles would also intersect,
which is not the case. Therefore, the top and bottom faces of columns are faces without
holes.

The side faces of the columns are the possibly intersecting walls that connect the
top and bottom faces of the columns. Assume, for a contradiction, that (a part of) some
side facef of col(H(E)) has a hole. There must be another columncol0(H(E0))
which intersects this face. We call the smallest time coordinate of the holeta, and the
largest time coordinatetb. Note thatt0 < ta < tb < t1. Without loss of generality,
we fix objectE, such that its speed becomes zero, and adjust the speed of the other
objects accordingly. After this transformation, we consider the 2-dimensional vertical
projection onto the workspace ofcol(H(E)) andcol0(H(E 0))\fta; tbg (i.e.H(E 0)
at ta andtb respectively. See Figure 1). Note thatE andE 0 are grown using the same
squareQ0;�B . It is easy to see that, dependent on the location of the obstacleE with
respect to the projection off , E 0 intersectsE at t = ta or t = tb which is impossible
by assumption. So, the faces ofA(col �H) are polygonal and have no holes. 2

If we extend the setting to the case in which obstaclesE 2 E translate along polylines,
the complexity of the arrangementA(col �H) does not increase asymptotically—in

6



f
col0(H(E0)) \ ta

E

col0(H(E0)) \ tb

col(H(E))

Figure 1: The 2-dimensional scene with the dark grey area depicting the intersection
of two obstacles att = tb.

the proof of Theorem 3.3, the chargings to the obstacle pair(E;E 0) caused by obstacle
E00 are, in the worst case, multiplied by a constant factor. Unfortunately, the 2-faces
of A(col � H) are no longer polygons without holes. We can resolve this by adding
extra faces to the arrangement. For every timeti at which one of the obstacles changes
speed, we add a planet = ti. This way, the area between two successive planes is a
work-time space slice where all obstacles move in a fixed direction with a fixed speed.
The arrangements on the newly introduced planes are cross sections of the work-time
space. They are arrangements of possibly intersecting grown obstacle boundaries and
have linear complexity because the obstacles statisfy the low obstacle density property
at any time [11]. We compute a triangulation of these 2-dimensional arrangements to
assure that their faces have no holes. Since we haveO(n) polyline vertices, the total
added complexity isO(n2).

We will show that every cylinderR � D, defined by a 3-cellR of the arrange-
ment, is intersected by a constant number of constraint hyper-surfaces. We define the
coverageof a regionR � B = W � T .

Definition 3.5 Cov(R) = fE 2 EjR\ col(H(E)) 6= ;g:
In words, the coverage of a region is the set of obstacles whose columns, which

are computed after growing the obstacles, intersect the region. The following result
follows from the low density property and the observation that all pointsp in a single
3-cell of the arrangement of column boundaries lie in exactly the same collection of
columns.

Lemma 3.6 The regionsR, defined by the cells ofA(col�H) havejCov(R)j = O(1).

Lemma 3.7 shows that the partition of the base space into regionsR with jCov(R)j
= O(1) is a cylindrical partition. The proof is very similar to the proof of Lemma 3.6
of Van der Stappenet al. [11] and has been omitted.

Lemma 3.7 LetR � B be such thatjCov(R)j = O(1). Then

jff�;�j� 2f B ^ � 2f E ^ f�;� \ (R�D) 6= ;gj = O(1):

The only problem is that the complexity of the cells ofA(col�H) is not necessarily
constant. So, we must refine the partition to create constant complexity subcells. This
is discussed in Section 4.

7



Z1Z0

gadget withm fences

m obstacles

m obstacles

Figure 2: The quadratic lowerbound construction.

3.3 Complexity of the Free Space

In the previous subsection we showed that the work-time space of the robot can be
partitioned into regions with total combinatorial complexityO(n2). Furthermore, by
Lemmas 3.6 and 3.7, each region, when lifted into the configuration-time space is inter-
sected by at most a constant number of constraint hyper-surfaces of bounded algebraic
degree. Therefore, a decomposition of the configuration space into free and forbid-
den cells of combinatorial complexityO(n2) exists. Obviously, thisO(n2) bound is
an upper bound on the complexity of the free space for our dynamic motion planning
setting.

Theorem 3.8 The complexity of the free space of the dynamic low obstacle density
motion planning problem isO(n2).

We will now demonstrate that this bound is worst-case optimal, even in the situation
where the robot is only allowed to translate and the obstacles move along lines. To this
end, we give a problem instance withn obstacles, for which any path for the robotB
has
(n2) complexity. Consider the workspace in Figure 2. The grey rectangular robot
must translate from positionZ0 to Z1. The gadget in the middle forces the robot to
make
(m) moves to move from left to right. It can easily be constructed fromO(m)
stationary obstacles. The big black obstacle at the bottom right moves very slowly to
the right. So it takes a long time before the robot can actually get out of the gadget
to go to its goal. Now a small obstacle moves from the left to the right, through the
gaps in the middle of the gadget. This forces the robot to go to the right as well. Only
there can it move slightly further up to let the obstacle pass. But then a new obstacle
comes from the right through the gaps, forcing the robot to move to the left of the
gadget to let the obstacle pass above it. This is repeatedm times after which the big
obstacle is finally gone and the robot can move to its goal. The robot has to move2m
times through the gadget, each time making
(m) moves, leading to a total of
(m2)
moves. Asm = 
(n), the total number of moves is
(n2). It is easily verified that at
any moment the low obstacle density property is satisfied.

Theorem 3.9 The complexity of the free space of the dynamic low obstacle density
motion planning problem for a translating robot is
(n2).

8



Actually, the example shows a much stronger result. Not only does it give a bound
on the complexity of the free space, but also on the complexity of a single cell in the
free space and on the complexity of any dynamic motion planning algorithm.

Theorem 3.10 The complexity of any algorithm for the dynamic low obstacle density
motion planning problem (even for a translating robot) is lower bounded by
(n2).

4 Decomposing the Base Space

We still need to decompose the arrangement of columnscol(H(E)) (E 2 E) into
constant complexity subcells. To this end, we construct a vertical decomposition of
the arrangement. Since the vertical decomposition refines the cells of the arrangement,
the subcells of the final decomposition still have constant-size coverage. The approach
we use [1] requires that the columns in the work-time space, as described in Section
3.2, are in general position. This can be achieved by an appropriate perturbation of the
vertices of the columns. Before we can calculate a vertical decomposition we have to
triangulate the 2-faces of the columns. Triangulation does not increase the asymptotic
complexity of the arrangement. After triangulation, the 2-faces of the arrangement
might coincide, though. It is easily verified that the vertical decomposition algorithm
still works with these introduced degeneracies. To bound the space we add two hori-
zontal planes at timet0 andt1 (the start and goal time) and only consider the area in
between. To bound the space in thex- andy-direction we also add a triangular prism
far around the relevant region of the work-time space.

4.1 The Vertical Decomposition

Let S = fs1; : : : ; sng be a set ofn possibly intersecting triangles in 3 space. The
vertical decompositionof the arrangementA(S) decomposes each cell ofA(S) into
subcells, and is defined as follows (see [1]): from every point on an edge ofA(S)—
this can be a part of a triangle edge or of the intersection of two triangles—we extend a
vertical ray in positive and negativex3-direction to the first triangle above and the first
triangle below this point. This way we create a vertical wall for every edge, which we
call aprimary wall. We obtain amulti-prismatic decompositionofA(S) into subcells,
themulti-prisms, with a unique polygonal bottom and top face; the vertical projections
of both faces are exactly the same. However, the number of vertical walls of a cylinder
need not be constant and the cylinder may not be simply connected. We triangulate the
bottom face as in the planar case. The added segments are extended upward vertically
until they meet the top face. The walls thus erected are thesecondary walls. Each
subcell of the vertical decomposition is now a box with a triangular base and top,
connected by vertical walls. (Note that, for navigation purposes, our notion of vertical
decomposition is slightly different from other notions of vertical decomposition that
construct secondary walls using a planar vertical decomposition of the projections of
the top and bottom faces.)

Theorem 4.1 The vertical decomposition of the arrangementA(col �H) in the work-
time space consists ofO(n2�(n) logn) constant complexity subcells, and can be com-
puted in timeO(n2�(n) log2 n).

9



Proof: Tagansky [9] proved that the vertical decomposition of the entire arrange-
ment of a set ofn triangles in IR3 consists ofO(K + n2�(n) logn) subcells whereK
is the complexity of the arrangement. Application of this result to the arrangement of
grown obstacle column boundariesA(col �H), which satisfiesK = O(n2), yields the
complexity bound.

We can compute the vertical decomposition using an algorithm by De Berget
al. [1]. This algorithm runs in timeO(n2 log n + V log n), whereV is the combi-
natorial complexity of the vertical decomposition. AsV = O(n2�(n) logn), the
bound follows. 2

To faciliate navigation, we wanteach subcell to have a constant number of neighbors.
The common boundary of a subcell� and one of its neighbors can be a secondary
wall, a primary wall, or a 2-face of the arrangementA(col �H). It is easy to see that
the number of neighbors sharing a primary or a secondary wall with� is bounded by
a constant. Let us now consider the maximum number of neighbors, sharing a part
of a triangle ofA(col � H) with �. Unfortunately the arrangements of walls ending
on the top and bottom side of the triangle can be very different, and can in general be
as complex as the complexity of the full decomposition which is only upper-bounded
by O(n2�(n) logn). Simply connecting the subcells at the top of the triangle to the
subcells at the bottom of the triangle could result in a number of neighbors that is hard
to bound by anything better thanO(n2�(n) logn) for each subcell�. However, as we
will show, we can connect the subcells at the top and bottom of a face by a symbolic,
infinitely thin tetrahedralization. This tetrahedralization will increase the combina-
torial complexity of the vertical decomposition by a factor of at mostO(logn), but
assures that the number of neighbors per subcell is bounded by a constant. Since this
method is quite complicated, we dedicate the following subsection to it. This will lead
to the following result:

Theorem 4.2 There exists a cylindrical decomposition of the base spaceB for the dy-
namic low obstacle density motion planning problem consisting ofO(n2�(n) log2 n)
constant complexity subcells and a constant number of neighbors per subcell. This
decomposition can be computed inO(n2�(n) log2 n) time.

4.2 Tetrahedralizing between Polygons

To reduce the number of neighbors of the subcells we will extend the vertical decom-
position with a symbolic connecting structure, that increases the total combinatorial
complexity of the vertical decomposition by a factor ofO(logn). As a result, the
number of neighbors per subcell of the cell decomposition with the connecting struc-
ture will be bounded by a constant. For each face of the arrangementA(col � H),
this structure connects the subcells at the top side with the subcells at the bottom side.
The structure we use is a symbolic, infinitely thin tetrahedralization. To simplify the
discussion, we assume that the face for which we construct the connecting structure is
horizontal. (This is not a constraint, but just a matter of definition.) Throughout this
section the vertical direction is parallel to the normal of the face.

Both the top and the bottom side of the face contain a triangulated 2-dimensional
arrangement, sayTt andTb, created by the intersecting faces and the walls that end
on it. Such triangulations with extra vertices in their interior are referred to as Steiner

10



triangulations; the extra vertices are called Steiner points. The arrangementsTt and
Tb are normally different; they do not share Steiner points. We separate the top and
bottom of every face in the arrangement. Imagine that the top of the face is at height1:0
and the bottom at height0:0. We tetrahedralize the space between the top and bottom
arrangement, by adding a number of Steiner points between the top and bottom face.
(Remember that this is only done in a symbolic way. In reality, the top and bottom
face lie in the same plane. The vertical distance is only used to define the adjacencies
of the added (flat) subcells.)

We distinguish between the convex and the non-convex faces. Note that non-
convex faces indeed exist, since a column can cut out a part of another column. The-
orem 3.4 gives us that the cut out parts are never strictly included in the open interior
of a 2-face of a column. We first show how to tetrahedralize the space between two
different Steiner triangulationsTt andTb of the same convex simple polygonP .

Our tetrahedralization has two layers joined at height0:5 by a Steiner triangulation
of P . This triangulationTm has one Steiner pointp: P is triangulated using a star of
edges fromp to all vertices ofP . BothTm andTb are different Steiner triangulationsof
the same polygonP , therefore the vertical projections of the boundaries ofTb andTm
are equivalent. We tetrahedralize betweenTm andTb by adding a face from every edge
of Tb to p. The result is a tetrahedralized pyramid where each tetrahedron corresponds
to a triangle ofTb.

To triangulate the complement of this pyramid in the layer betweenTb andTm, we
connect the boundaries ofTb andTm by vertical faces between the boundary edges. For
every facefi introduced by connecting the boundaries, we add a Steiner pointqi in the
middle offi. We connectqi to all vertices onfi and connect each resulting triangle to
p (see Figure 3). These triangles complete the tetrahedralization of the space between
Tb andTm. The tetrahedralization betweenTt andTm is constructed in the same way.
It is easy to see that the number of tetrahedra created is linear in the complexity of the
triangulationsTb andTt.

Unfortunately, faces need not be convex. So we must also show how to tetrahe-
dralize the space between two different Steiner triangulations of the same non-convex
simple polygonP . (As indicated above we know that the polygon has no holes. This
is crucial here.) We again add a Steiner triangulationTm of P betweenTt andTb. In
the non-convex case we have to use a more sophisticated Steiner triangulation. For this
we use a triangulation by Hershberger and Suri [4] that was originally designed for ray
shooting in simple polygons. This triangulationtm has three important properties. Let
k be the number of edges ofP :

1. It introducesO(k) Steiner points with each Steiner point directly connected to
the boundary ofP by at least one triangulation edge;

2. Every line segment that lies insideP intersects at mostO(log k) triangles ofTm;

3. The triangulation can be computed inO(k) time.

We can derive the following lemma from the properties ofTm.

Lemma 4.3 Let P be a polygon withk vertices and without holes, LetTm be the
triangulation ofP as described in [4]. Let� be a triangle insideP , and letA� be the

11



(a) (b)

fi

Tb

Tm

p p

qi

Tt

h = 0:5

h = 1:0

h = 0:0

Figure 3: (a) The construction of the pyramid of tetrahedra betweenp and the triangles
of Tb. (The added edges are bold.) (b) The tetrahedra created in the second step
between boundary facefi and the pyramid.

arrangement oftm inside triangle�. ThenA� has onlyO(log k) constant complexity
faces.

Proof: Let v be a vertex ofTm inside�. Because, by property (1), every vertex of the
triangulationTm is connected to the boundary ofP by at least one edge, one outgoing
edge fromv must intersect the boundary of�. By property (2), the boundary of�
intersects at mostO(log k) edges, and, hence, there are also onlyO(log k) vertices
inside�. Since each face ofA� is the intersection of a triangle fromTm and the
triangle�, it has constant complexity. It follows that the whole arrangementA� has
complexityO(log k). 2

This immediately results in the following corollary.

Corollary 4.4 Let P be a polygon without holes. LetTm be the triangulation de-
scribed in [4]. LetTa be another triangulation ofP with complexitym. The arrange-
ment we obtain by overlayingTa andTm hasO(m logm) constant complexity faces.

Proof: Each triangle ofTa is divided intoO(log k) � O(logm) constant complexity
faces, by Lemma 4.3. The resulting arrangement therefore hasO(m logm) faces of
O(1) complexity. 2

Let Tb�m be the triangulation ofP we obtain by overlayingTb andTm and triangu-
lating the resulting faces. Letmb denote the complexity ofTb. Corollary 4.4 shows
that the complexity ofTb�m isO(mb logmb). It is easily computed inO(mb logmb)
time. To connectTb to Tm (at height0:5) we placeTb�m betweenTb andTm at height
0:25. First we tetrahedralize the layer betweenTb andTb�m. We start by adding
vertical faces from every edge ofTb to its corresponding edge inTb�m. This results
in mb prisms that have the triangles ofTb as their top and bottom faces. The top

12



faces still contain a number of other edges, that are part ofTm We tetrahedralize each
prism by adding a vertex in the center and connecting it to top, bottom and sides, in
the way described for the convex case. (Note that Steiner points might exist on the
edges of triangles ofTb�m. However, the triangles on the other side of these edges
shares these Steiner points, because they are the result of the intersection of two fully
connected arrangements. Therefore each tetrahedralized prism perfectly fits its neigh-
boring prisms.) The number of tetrahedra in this layer isO(mb logmb). We similarly
tetrahedralize the layer betweenTb�m andTm. So the total space betweenTb and
Tm can be filled withO(mb logmb) tetrahedra. In the same way we can fill the area
betweenTt andTm using the triangulationTt�m. This tetrahedralization will have
O(mt logmt) tetrahedra, wheremt is the complexity ofTt.

Summarizing, we can symbolically create a tetrahedralization between the top and
the bottom side of the faces of the arrangement. As the original arrangement has com-
binatorial complexityO(n2�(n) logn) (see Theorem 4.1), the extended arrangement
has complexityO(n2�(n) log2 n). It can be computed inO(n2�(n) log2 n) time. The
subcells in this arrangement each have constant complexity and a constant number of
neighbors.

4.3 The Decomposition of the Free Space

We constructed a decomposition of the work-time space with the following properties:

� The number of subcells isO(n2�(n) log2 n).

� Each subcell has constant combinatorial complexity.

� Each subcell has constant size coverage, i.e. each subcell is intersected by a
constant number of columns of grown obstacles.

� Each subcell has a constant number of neighboring subcells.

Since the boundaries of the colums form a subset of the subcell boundaries, it is easy to
compute the coverage of each subcell by simply traversing the subdivisionof the work-
time space. This can, for example, be accomplished by a breadth first search. Now, we
can use the same approach as in [11] to compute the complete cell decomposition of the
free space (Theorem 2.2). This result is a graphCG. Each node ofCGcorresponds to a
constant complexity subcell in the free part of the configuration-time space. Each edge
corresponds to an adjacency between two such subcells. Here two subcells are called
adjacent if and only if they share anf -dimensional face. (This is important because
we want to compute free paths, rather than semi-free paths.) The degree of the nodes
is bounded by a constant. The complexity ofCG is the same as the complexity of the
base space, so it hasO(n2�(n) log2 n) nodes and edges. The computation time of
O(n2�(n) log2 n) for the base partition dominates the computation time forCG.

5 Finding a Path

In this section we show how to use the cell decomposition to compute a time-monotone
path through the free space. Since the path must be time-monotone we cannot do

13



�1

�2

�5

�3

�4

�1

�2

�5

�3

�4

(a) (b)

Figure 4: (a) A 2-dimensional space with four connected free subcells. (b) The con-
nectivity graphCG. Although there is no time-monotone path from�1 to �4, this fact
is not represented byCG.

an arbitrary search through the configuration-time space; we will use a space sweep
algorithm in the time direction to keep track of the reachable space, while time passes.
We sweep with a hyper-planeP , orthogonal to the time direction, fromt = t0 to
t = t1. Slightly abusing the notation, we will from now on useCG to denote both the
connectivity graph and the cell decomposition it represents.

5.1 Preprocessing the Cell Decomposition

To compute the parts of the configuration-time space reachable by time-monotone
paths from the start configuration of the robot, we cannot use the cell decomposi-
tion directly. The space is partitioned into not necessarily convex constant complexity
subcells. The subcells and their adjacencies are represented by the graphCG; each
subcell inCG has a constant number of neighbors. A problem withCG is that the
time-monotonicity restrictions are not incorporated in the graph. There can be a path
between two configurationsaccording toCG, while there exists no time-monotone path
between those two configurations. Figure 4 shows a 2-dimensional example in which
time increases in the vertical upward direction. Although the graph contains a path
between the subcells�1 and�4 there exists no time-monotone path from (any configu-
ration in)�1 to (any configuration) in�4. Note also that there exists a time-monotone
path from�1 to only some of the configurations in�3.

Since the subcells in the cell decomposition are not necessarily convex, there can
even exist a pair of configurations in the same subcell, that cannot be connected by
a time-monotone path. In conclusion, the connectivity graphCG does not contain all
necessary data to find a time-monotone path. It is possible, however, to decompose the
(f + 1)-dimensional subcells ofCG into smaller subcells for which there is a time-
monotone path for every pair of configurations in the same subcell. If a hyper-plane
P , that is orthogonal to the time direction, intersects a subcell� in a number of discon-
nected regions, then there might be configurations in� that cannot be connected with
a time-monotone path. We therefore decompose each such subcell� into a constant
number of smaller subcells, such that any cross-section of the hyper-planeP with a

14



subcell consists of one connected region. If for somet, P is tangent to a feature of�,
thenP decomposes� into a constant number of constant complexity subcells. Since
� is of constant complexity, there areO(1) of these tangencies. We decompose� into
O(1) subcells generated by all possible tangencies ofP with features of�. To adapt
CG, we replace the node of� by nodes for the subcells of� with the appropriate ad-
jacencies. This extension does not increase the asymptotic combinatorial complexity
of CG. Also the number of neighbors per subcell remains bounded by a (larger) con-
stant. It is easy to see that any pair of configurations in each resulting subcell can be
connected by a time-monotone path. In Figure 4 for example,�5 is decomposed into
three subcells by the dashed line.

5.2 Computing a Path

We take the refined connectivity graphCGand note that each subcell� has the follow-
ing property: if(Z; �) 2 � is reachable by a time-monotone path, then allf(Z 0; � 0) 2
�j� 0 � �g are reachable by a time-monotone path. In addition, all adjacent subcells
�0 for which the intersection� \ �0 \ (t � �) is anf -dimensional face, are (at least
partially) reachable through�.

Our objective is to label each subcell� with the earliest time� at which it can be
reached from(Z0; t0) and with a link to the subcell from which it can be reached at
time � . If the subcell�1 3 (Z1; t1) receives a label�1 < t1 then(Z1; t1) is reachable
from (Z0; t0) by a time-monotone path. The sequence of subcells containing this path
can be found by tracing back the links from each subcell, starting from�1.

To obtain the labelling outlined above, we perform a sweep-like search ofCG
starting from�0 3 (Z0; t0). An event occurs if a subcell�0 is reachable from another
subcell� at some time� . We keep the events(�; �0; �) of the sweep in a priority queue
Q—the event with the smallest� is dequeued prior to every other event.

An event(�; �0; �) is handled quite straightforward. Firstly, we add a link from�0

to� and label�0 with � . Secondly, we consider each neighbor�00 of �0 in CG for which
�0 \ �00 \ ft � �g is anf -dimensional face. Let� 0 = minftj�0 \ �00 \ ft � �g 6= ;g.
If �00 is not yet stored inQ we add the event(�0; �00; � 0) toQ. Otherwise, if the time
of the event stored for�00 is later than� 0 we replace the old event by the new one.

If the event queueQ is empty, we are done. We check if the subcell�1 3 (Z1; t1)
received a label. If so, we start in�1 and trace the links back to the starting subcell
�0 3 (Z0; t0) to find the (reversed) sequence of subcells that contains a time-monotone
free path from(Z0; t0) to (Z1; t1). If the subcell�1 did not receive a label, then(Z1; t1)
is not reachable by a time-monotone path, and we report failure.

It remains to transform the sequence of subcells into a path. We want this path to
lie in the free space (not in its boundary) and we want it to be strictly time-monotone
(otherwise the robot would need infinite speed to traverse parts of the path). We call
the sequence of connected subcells achannel. Because adjacencent subcells have an
f -dimensional intersection, the interior of the channel will be connected. Also the inte-
rior of the channel lies completely in the free space. Clearly, this interior must contain
a strictly time-monotone path. (It contains a time-monotone path by construction, and
because the interior is an open space this path can be made strictly monotone.)

In the following, we describe how to first create a semi-free and time-monotone
path, and sebsequently transform this path into a free and strictly time-monotone path.

15



Let � and�0 be two adjacent subcells in the channel. We create a vertex of the path
that lies on the boundary of� and�0 at the time� stored with�0. (� was the earliest
moment at which we could reach�0.) Inside each subcell we connect the two vertices
created with a time-monotone path. Because the subcell has constant complexity this
can be done in constant time. The full path is time-monotone but not necessarily
strictly time-monotone. Also, it is only semi-free. We have to transform the computed
path into a path that is strictly time-monotone and lies completely in the free space.
Firstly, we transform the channel into a channel which only consists of subcells with
non-zero volume, and contains the original path. This is easily done by tracing the
semi-free path and while doing this replacing flat tetraheda by subcells of the original
decomposition which contain the path as well. We discard the symbolic coordinates on
the fly. Secondly, we transform it into a strictly time-monotone free path by piecewise
slightly slanting it in the time direction.

Summarizing, in order to solve a dynamic low obstacle density motion planning
problem, we perform the following steps:

1. COMPUTE vertical decomposition ofA(col �H).
2. for all facesf of A(col �H) do

COMPUTE flat tetrahedralization between the top and the bottom side off .
3. TRANSFORMA(col �H) into a decomposition of theconfiguration-time space.
4. COMPUTE a strictly time-monotonefreepath.

It remains to analyse the complexity of the algorithm. LetjCGj denote the size
of the graph. Every subcell of the decomposition has a constant number of neighbors
and, thus, every subcell creates a constant number of events. This sums up toO(jCGj)
events. So the size ofQ is O(jCGj) and enqueueing and dequeueing an event takes
O(log jCGj) time. It is easy to see that handling an event, therefore, takesO(log jCG j)
time. The time for the sweep is therefore upper bounded byO(jCGj log jCGj). Since
jCGj = O(n2�(n) log2 n) by Theorem 4.2, the computation of a time-monotone path
takesO(n2�(n)log3 n) time. The following theorem summarizes the result.

Theorem 5.1 The low obstacle density motion planning problem for a robot among
a set ofn obstacles that move with constant speed along polylines, can be solved in
O(n2�(n) log3 n) time.

6 Conclusion

In this paper we addressed a dynamic extension of the robot motion planning problem.
We developed an approach for the exact motion planning problem for a single robot
in a low obstacle density environment with multiple moving objects whose motion is
represented by a constant complexity polygonal line. We proved that the complexity
of the free space of this motion planning problem is�(n2). Our algorithm takes
O(n2�(n) log3 n) time to compute a free, time-monotone path, for the robot. We are
able to construct low obstacle density workspaces, with moving obstacles, for which
the path of the robots is of combinatorial complexity
(n2), so our result is close to
optimal. It remains to be seen whether such a bound exists for a robot with bounded
velocity modulus, or bounded acceleration.

16



It is an interesting question whether the results can be extended to a 3-dimensional
workspace. We can again define columns in the (now 4-dimensional) work-time space.
Theorem 3.3 can easily be extended, leading again to a bound ofO(n2) on the com-
plexity of the free space, like in the two-dimensional case. Also the lowerbound of

(n2) easily carries over. The problem is to compute a constant-complexity partition
of the work-time space that has constant coverage. It is easy to obtain anO(n4) par-
tition by extending the faces of the columns to hyper-planes, building the complete
arrangement of these hyper-planes, and subdividing the resulting cells into simplices.
This leads to a close toO(n4) algorithm for motion planning in dynamic 3-dimensional
low obstacle density environments. It is at the moment unclear how to improve this
result.

References

[1] M. de Berg, L. Guibas, and D. Halperin. Vertical decomposition for triangles in
3-space.Discrete & Computational Geometry, 15:35–61, 1996.

[2] M. de Berg, M. Katz, A.F. van der Stappen, and J. Vleugels. Realistic input mod-
els for geometric algorithms. InProc. of the 13th ACM Symp. on Computational
Geometrypages 294–303, 1997.

[3] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. InProc. 28th IEEE Symp. on Foundations of Computer Science, pages
49–60, Los Angeles, 1987.

[4] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk.J. Algorithms, 18:403–431, 1995.

[5] J. Reif. Complexity of the generalized mover’s problem. InPlanning, Geometry
and Complexity of Robot Motion, J.T. Schwartz, M. Sharir, J. Hopcroft (Eds.),
pages 267–281, Ablex Pub., Norwood, NJ, 1987.

[6] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In
J. ACM41, 4, pages 764-790, 1994.

[7] J. Schwartz and M. Sharir. On the piano movers’ problem: II. general techniques
for computing topological properties of real algebraic manifolds.Advances in
Applied Mathematics, 4:289–351, 1983.

[8] K. Sutner and W. Maass. Motion planning among time dependent obstacles.Acta
Informatica, 26:93–133, 1988.

[9] B. Tagansky. A new technique for analyzing substructures in arrangements. In
Proc. 11th Annual ACM Symp. on Computational Geometry, 1995.

[10] A.F. van der Stappen.Motion planning amidst fat obstacles. PhD thesis, Dept.
of Computer Science, Utrecht University, 1994.

[11] A.F. van der Stappen, M.H. Overmars, M. de Berg and J. Vleugels. Motion
planning in environments with low obstacle density. Technical report, UU-CS-
1997-19, Dept. of Computer Science, Utrecht University, 1997.

17



[12] J. Vleugels. On fatness and fitness – realistic input models for geometric algo-
rithms. PhD-thesis, Dept. of Computer Science, Utrecht University, 1997.

18


