Dynamic Motion Planning
in Low Obstacle Density Environmenits

Robert-Paul Berretty =~ Mark Overmars A. Frank van der Stappen

Department of Computer Science, Utrecht University,
P.O. Box 80.089, 3508 TB Utrecht, The Netherlands.

Abstract

A fundamental task for an autonomous robot is to plan its own motions. Ex-
act approaches to the solution of this motion planning problem suffer from high
worst-case running times. The weak and realistic low obstacle density (L.O.D.)
assumption results in linear complexity in the number of obstacles of the free
space [11]. In this paper we address the dynamic version of the motion planning
problem in which a robot moves among moving polygonal obstacles. The ob-
stacles are assumed to move along constant complexity polylines, and to respect
the low density property at any given time. We will show that in this situation a
cell decomposition of the free space of si2én’a(n) log” n) can be computed
in O(n*a(n) log” n) time. The dynamic motion planning problem is then solved
in O(na(n)log” n) time. We also show that these results are close to optimal.

Keywords: Motion planning, low obstacle density, moving obstacles, cell decompo-
sition.

1 Introduction

Robot motion planning concerns the problem of finding a collidiee path for a
robotB in a workspacéV with a set of obstacle$S from an initial ppcement’, to a

final placementZ;. The parameters required to specify a placement of the robot are
referred to as the degrees of freedom of the robot. The motion planning problem is
often studied as a problem in the configuration sgagcehich is the set of parametric
representations of the placements of the ra@hofhe free spac€&P is the sub-space

of C' of placements for which the robot does not intersect any obstaéleArfeasible
motion for the robot corresponds to a curve fr@mto Z, in FP (or its closure).

Motion planning is a difficult problem. In general, many instances of the robot mo-
tion planning problem are P-SPACE-complete, even if the obstacles are stationary [5].
For a constant-complexity robot moving amidst stationary obstacles polynomial time
algorithms have been shown to exist. The running time is exponential in the number
of degrees of freedom of the robot [7]. For A4DOF robot, the complexity of the free
space, can be as high 8¢n/) and the motion planning problem will, therefore, in
general have a worst case running time clos@(te’).

*Research is partially supported by the Dutch Organization for Scientific Research (N.W.O.).

We address the motion planning problem for a robot operating in an environment
with moving obstacles. This problem is also referred to as the dynamic motion plan-
ning problem. In general, when the obstacles in the workspace are allowed to move,
the motion planning problem becomes even more complicated. For example, Reif and
Sharir [6] showed that, when obstacles in a 3-dimensional workspace are allowed to ro-
tate, the motion planning problem is PSPACE-hard if the velocity modulus is bounded,
and NP-hard otherwise. (A similar result was obtained by Sutner and Maass [8].)
Canny and Reif [3] showed that dynamic motion planning for a pointin the plane, with
a bounded velocity modulus and an arbitrary number of convex polygonal obstacles,
is NP-hard, even when the obstacles are convex and translate at constant linear veloc-
ities. They also showed that the 2-dimensional dynamic motion planning problem for
a translating robof3 with bounded velocity modulus, among polygonal obsta€les
that translate at fixed linear velocity, can be solved using an algorithm that is polygo-
nal in the total number of vertices #fand¢, if the number of obstacles is bounded.
However, their algorithm takes exponential time in the number of moving obstacles.

Van der Stappeeet al. [11] (see also [10]) showed that modelling robots in re-
alistic workspaces has a profound influence on the complexity of solving the static
motion planning problem, mainly independent of the number of degrees of freedom
of the robot. They gave a description of environments with a so-cédedobsta-
cle densitywhich leads to a surprising gain in efficiency for several instances of the
motion planning problem. An environment has the low obstacle density property if
any region in the workspace intersects a constant number of obstacles that are larger
than the size of the region. (See below for a more precise definition.) Under the
low obstacle density assumption, the exact motion planning problem fgrROF
robot was efficiently solved, using the cell decomposition approach. The low obstacle
density of the workspace implies a linear combinatorial complexity of the free space,
even for f-DOF robots. For a robaf moving amidstr stationary obstacles the cell
decomposition of the free space @&) size and is computable iD(n log n) time.
Vleugels [12] extended these results to multiple robots simultaneously operating in the
same workspace. De Beggal. [2] gave an overview of several realistic input models
and gave experimental results on scenes based on real input data, which showed that
the ‘hidden’ constant in the low obstacle density assumption was indeed low.

We demonstrate that the low obstacle density property can also be used to ef-
ficiently plan a motion for a robo with f degrees of freedom moving in a 2-
dimensional workspace with non-stationary obstacles. The obstacles are allowed to
translate in the workspace along polyline trajectories, with a fixed speed per segment.
The motion planning problem is then solveddrin?a(n)log® n) time, using a cell
decomposition of siz&(n?a(n)log? n). Note that these bounds do not dependfon
(assumingf is constant). We also show that this result is close to optimal, by giving
an example where the robot has to perf@im?) simple motions to get from its start
to its goal position.

In this paper we will first present an overview of the method used in the paper
of Van der Stappeet al. [11]. The computation of the cell decomposition for the
dynamic low obstacle density motion planning problem is treated in Sections 3 and 4;
the algorithm to compute a feasible path through the cell decomposition is presented
Section 5. Section 6 concludes the paper.

2 Low Obstacle Density

In this section we recall some of the défions and results from the paper by Van der
Stapperet al.[11] on motion planning in low density environments. The authors focus

in particular on the large class of motion planning problems with configuration spaces
of the form(' = W x D, whereW is the d-dimensional workspace and is some

(f — d)-dimensional rest space. Let us use tbachof a robot as a measure for its
maximum size; the reaghy of B is defined as the maximum radius that the minimal
enclosing hypersphere of the robot, centered at its reference point, can ever have (in
any placement oB). The reach of the robot is assumed to be comparable to the size
of the smallest obstacle. The robot has constant complexity and moves in a workspace
with constant-complexity obstacles. The workspace satisfies the static low obstacle
density property which is defined as follows.

Property 2.1 Let R? be a space with a sef of non intersecting obstacles. Then
R is said to be astatic low (obstacle) densipace if for any regiorR ¢ R? with
minimal enclosing hyper-sphere radipsthe number of obstaclds € £ with minimal
enclosing hyper-sphere radius at leagnhtersectingk is bounded by a constant.

Van der Stappest al.[11] showed that, under the circumstances outlined above, the
complexity of the free space is linear in the number of obstacles.

The configuration space contains hyper-surfaces of the fr; consisting of
placements of the robd in which a robot feature is in contact with an obstacle
feature®. We shall denote the fact thatis a feature of some object or object sét
by £ €; X. The arrangement of all (constant-complexity) constraint hyper-surfaces
fs0(¢ €5 B,® €; &) divides the higher-dimensional configuration space into free
cells and forbidden cells. Van der Stappstral. [11] considered so-calledylindri-
fiable configuration space§' = B x D which have the property that the subspace
B—referred to as thbase space-can be partitioned into constant complexity regions
R satisfying

H{fsolo€s BARECs ENfganN (R X D)#0} =0(1).

A partition that satisfies this constraint is calledydindrical partition. In words, the

lifting of the regionR into the configuration space is intersected by a constant number
of constraint hyper-surfaces. These hyper-surfaces subdivide the cylinddp into

O(1) constant-complexity free and forbidden cells. The cylindrical partitiorBof
therefore almost immediately gives us a cell decomposition of the free p&fiohC'.
Theorem 2.2 states that the transformation of a cylindrical partition of the base space
into a cell decomposition of the free space carabeomplished in time proportional

to the size of the cylindrical partition.

Theorem 2.2 [11] Let V" be the set of regions of a cylindrical partition of a base space

B and letE be the set of region adjacencies. Let the regionB tfe of constant com-
plexity. Then the cell decomposition of the free space calculated by lifting the regions
R of the base partition into the configuration space consists of constant complexity
subcells. Furthermore, the complexity of the decomposition and the time to compute it
isO(|V] + | £]).

Note that the size of the cylindrical partition determines the size of the cell decompo-
sition. The low obstacle density motion planning problem outlined above was shown
to yield a cylindrifiable configuration space, in which the worksgates a valid base
space. Small and efficiently computable cylindricaltpins of 1% have led to opti-

mal cell decompositions and thus efficient solutions to the motion planning problem
(see [11] for details).

In this paper, we show that the configuration space of the dynamic version of the
low obstacle density motion planning problem is cylindrifiable as well. We find a
cylindrical partition of an appropriate base space that leads to an almost optimal size
cell decomposition.

3 A Dynamic Base Space

3.1 Problem Statement

We now focus on the dynamic robot motion planning problem, subjected to low ob-
stacle density. We show that the framework outlined in Section 2 can be used to
plan a motion for a roboB with f degrees of freedom, moving in a 2-dimensional
workspace with non-stationary obstacles. The obstacles translate in the workspace,
and can only change speed or direction a constant number of times. We will use a cell-
decomposition based on a cylindrical partition, similar to Section 2. Since dynamic
motion planning is tedious to deal with, we split the problem into sub-problems. We
first formally define the problem and state some useful properties of the base space
for the dynamic motion planning problem. In Section 4, we construct a cylindrical
decomposition, and in Section 5, we compute the actual path for the robot.
Thedynamic low obstacle density motion planning probismefined as follows.

¢ The workspacéV of the robots is the 2-dimensional Euclidean spacé &d
contains a collection of. obstaclesE ¢ £, each moving along a polyline at
constant speed per line segment.

¢ The robotB has constant complexity and its reach is bounde@ by b - p,
whereb > 0 is a constant ang is a lower bound on the minimal enclosing
hyper-sphere radii of all obstaclésc &£.

o Each obstacl& ¢ £ is polygonal and has constant complexity.

¢ Any constraint hyper-surface in the configuration space corresponding to the set
of robot placements in which a certain robot feature is in contact with a certain
obstacle, is algebraic of bounded degree.

e Therobotis placed at theitial placement?; at timet, and has to be at the goal
placementZ; at timet;.

¢ At any time between, andt;, the workspace with obstacles satisfies the low
obstacle density property.

A standard approach when dealing with moving obstacles is to augment the sta-
tionary configuration space with an extra time dimendionn this manner, we obtain

the configuration-time space. When planning the motion of our robot through the
configuration-time space, we have to make sure that the path is time-monotone—the
robot is not allowed to move back in time. The first objective in solving the dynamic
low obstacle density motion planning problem is to obtain a cylindrical partition that
consists of constant complexity regions. An appropriate choice for a base Bpace

the Cartesian product of the 2-dimensional workspace and time. This way, the config-
uration time space is of the forfi7” = W x T'x D = R? x Rx D (= R® x D),
whereD is some(f — 2)-dimensional rest space.

3.2 Characteristics of the Base Space

The base spacB = W x T can be considered as a 3-dimensional Euclidean space.
In our dynamic motion planning setting, we only consider the work-time space slice
R? x [to,t1]. We first look at the situation where the obstacles move along a line in
the workspace. Later, we extend the result to the polyline case.

Definition 3.1 Let S C W and lety be a curve iniW x T'. Then thecolumncol.,(5)
is defined byrol,(5) = {(z,y,0)|(z,y) € S} & v, whereq denotes the Minkowski
sum operator.

The columncol.,(5) is the volume swept by in the work-time space as its ref-
erence poin© follows the curvey. In our application, the curve describes the
translational motion of an obstacle and is therefore time-monotone. A painti)
belongs tacol.,(5) if and only if 5 covers the pointz, y) at timet.

Definition 3.2 Let()o ,,, be a square centered at the origin, having side lergth.
ThenH(E)=E & Qo pp-

The Minkowski sumi (£) enclosest. No point in /(L) has a distance larger
thany/2 - ps to . We denote the arrangement of the boundadies.(H (F)) of
the grown obstacle columns bY(col o H'). We will show that this arrangement is of
O(n?) complexity.

Let us for a moment consider a fixed obstaZlat a fixed timez;. We consider
the boundary of the grown obstad® ~'). Now, if the reference point of the robot is
placed outsidé/ (£'), the robot cannot collide with the obstacle. If the reference point
of the robot is inside the grown obstacle, there might be configurations in which the
the robot intersects the obstacle. Since both the robot and the obstacles have constant
complexity, the arrangement of constraint hypersurfacef (it’) at time¢;, when
lifted into the configuration space, has constant complexity as well. We exploit this
observation to build a partition of the baseasep.

We say that an obstacle is in the proximity of another obstacke if H(£)and
H(E') intersect, henceol.,(H(E))andcol.,(H(E')) intersect.

Theorem 3.3 The complexity of the arrangeme#tcol o H) of the boundaries of the
grown obstacle columns &(n?).

Proof: The complexity of the arrangement is determined by the number of ver-
tices. A vertex results from an intersection of three columns. A necessary condition

5

for three columns to intersect is that the corresponding obstacles are less/than

apart at some moment in time. We show that the number of such triplEs:%5). We
charge each such triple to a pair of obstacles. For this we choose the smallest obsta-
cle £ of the three and the one (of the remaining two) that last ent&rfsgbroximity.
Assume that an obstacle’ enters the proximity of2. (Note thatE’ can enterE’s
proximity at mostO(1) times becausé& and E’ have constant complexity and both
move along line paths.) A third obstadi¢’ involved in a triple(£, E’, E”") must al-
ready be in the proximity of/ at the time of arrival of®’ in order to be charged to the
pair (£, E’). By Property 2.1, there are onfy(1) larger obstacles if’’s proximity at

any time, sol” is chosen from a set @ (1) size. As a result, only)(1) triples are
charged to each of th@(n?) pairs (7, E’). Each of thes@(n?) triples(E, E', E")
contribute a constant number of vertices4¢col o H) because the obstaclés £,

and E” have constant complexity and move along line paths. Therefore, the complex-
ity of A(col o H) is bounded by)(n?). O

It is easy to see that a 2-face of a column in the final arrangement is divided into a
number of parts, of which some are non-convex. The following theorem states that the
2-faces of the arrangemedt col o H) are polygons without holes. This property turns
out to be important in the sequel.

Theorem 3.4 The faces ofd(col o H) are polygonal and have no holes.

Proof: The faces ofA(col o H) are formed by the possibly intersecting faces of
the columnsol,(H(E)) (£ € &). Since the columns are polyhedra, the arrangement
A(colo H) has polygonal faces. It remains to prove that the faces do not contain holes.
A face of the arrangement has a hdfea column penetrates the interior of this face
without intersecting its boundary. We distinguish the bottom and top faces and the side
faces of the columns. The bottom and top faces of the columns, i.e. the intersections
of the columns withk = ¢, and¢ = ¢, are the boundaries of the Minkowski sums

of the obstacles at their positionstgtandt; and@)o ,,.. A grown obstacle cannot be

fully contained in another grown obstacle, otherwise the obstacles would also intersect,
which is not the case. Therefore, the top and bottom faces of columns are faces without
holes.

The side faces of the columns are the possibly intersecting walls that connect the
top and bottom faces of the columns. Assume, for a contradiction, that (a part of) some
side facef of col,(H (F)) has a hole. There must be another coluwwahy, (H (E£’))
which intersects this face. We call the smallest time coordinate of the ha@d the
largest time coordinatg. Note thatty < ¢, < t, < #;. Without loss of generality,
we fix objectE, such that its speed becomes zero, and adjust the speed of the other
objects accordingly. After this transformation, we consider the 2-dimensional vertical
projection onto the workspace @sl.,(H(E)) andcol..(H(E'))N{t,, 1} (i.e. H(E')
att, andt, respectively. See Figure 1). Note thatand £’ are grown using the same
square)o,,,- Itis easy to see that, dependent on the location of the obstawlith
respect to the projection ¢f, £’ intersectst att = ¢, or¢ = t, which is impossible
by assumption. So, the faces.dfcol o H) are polygonal and have no holes. O

If we extend the setting to the case in which obstaéles £ translate along polylines,
the complexity of the arrangemet(col o H) does not increase asymptotically—in

colyz(H(E')) Ntg
COIVI(H(E/)) Nty

col, (1))

Figure 1: The 2-dimensional scene with the dark grey area depicting the intersection
of two obstacles at = 7.

the proof of Theorem 3.3, the chargings to the obstaclg pair’) caused by obstacle
E" are, in the worst case, multiplied by a constant factor. Unfortunately, theesf
of A(col o H) are no longer polygons without holes. We can resolve this by adding
extra faces to the arrangement. For every tipg which one of the obstacles changes
speed, we add a plane= ¢,. This way, the area between two successive planes is a
work-time space slice where all obstacles move in a fixed direction with a fixed speed.
The arrangements on the newly introduced planes are cross sections of the work-time
space. They are arrangements of possibly intersecting grown obstacle boundaries and
have linear complexity because the obstacles statisfy the low obstacle density property
at any time [11]. We compute a triangulation of these 2-dimensional arrangements to
assure that their faces have no holes. Since we Héug polyline vertices, the total
added complexity i) (n?).

We will show that every cylindekr x D, defined by a 3-celk of the arrange-
ment, is intersected by a constant number of constraint hyper-surfaces. We define the
coverageofaregionR C B =W x T.

Definition 3.5 Cov(R) ={E € £|RN col ,(H(E)) # 0}.

In words, the coverage of a region is the set of obstacles whose columns, which
are computed after growing the obstacles, intersect the region. The following result
follows from the low density property and the observation that all pgititsa single
3-cell of the arrangement of column boundaries lie in exactly the same collection of
columns.

Lemma 3.6 The regionsk, defined by the cells of(colo H) have| Cov(R)| = O(1).

Lemma 3.7 shows that the partition of the base space into regiovith | Cov(R)|
= O(1) is a cylindrical partition. The proof is very similar to the proof of Lemma 3.6
of Van der Stappeat al.[11] and has been omitted.

Lemma 3.7 Let R C B be such thatCov(R)| = O(1). Then
H{foolo € BA® €5 EN fooN (R xD)# 0} =0(1).

The only problem is that the complexity of the cells4ifcol o H) is not necessarily
constant. So, we must refine the partition to create constant complexity subcells. This
is discussed in Section 4.

gadget withm fences

|m obstacles
-~ - - - - -
- —— -« = = =
m obstacles | | | | ._> |:|
Zo 41

Figure 2: The quadratic lowerbound construction.

3.3 Complexity of the Free Space

In the previous subsection we showed that the work-time space of the robot can be
partitioned into regions with total combinatorial complexity»?). Furthermore, by
Lemmas 3.6 and 3.7, each region, when lifted into the configuration-time space is inter-
sected by at most a constant number of constraint hyper-surfaces of bounded algebraic
degree. Therefore, a decomposition of the configuration space into free and forbid-
den cells of combinatorial complexity(n?*) exists. Obviously, thi$)(»?) bound is

an upper bound on the complexity of the free space for our dynamic motion planning
setting.

Theorem 3.8 The complexity of the free space of the dynamic low obstacle density
motion planning problem i®(n?).

We will now demonstrate that this bound is worst-case optimal, even in the situation
where the robot is only allowed to translate and the obstacles move along lines. To this
end, we give a problem instance wittpbstacles, for which any path for the rolt
has(n?) complexity. Consider the workspace in Figure 2. The grey rectangular robot
must translate from positiof, to Z,. The gadget in the middle forces the robot to
makes2(m) moves to move from left to right. It can easily be constructed ftom:)
stationary obstacles. The big black obstacle at the bottom right moves very slowly to
the right. So it takes a long time before the robot can actually get out of the gadget
to go to its goal. Now a small obstacle moves from the left to the right, through the
gaps in the middle of the gadget. This forces the robot to go to the right as well. Only
there can it move slightly further up to let the obstacle pass. But then a new obstacle
comes from the right through the gaps, forcing the robot to move to the left of the
gadget to let the obstacle pass above it. This is repeattthes after which the big
obstacle is finally gone and the robot can move to its goal. The robot has ta2move
times through the gadget, each time makir(@r) moves, leading to a total ¢f(m?)
moves. Asn = (n), the total number of moves {3(r?). It is easily verified that at

any moment the low obstacle density property is satisfied.

Theorem 3.9 The complexity of the free space of the dynamic low obstacle density
motion planning problem for a translating robot$¥ n?).

Actually, the example shows a much stronger result. Not only does it give a bound
on the complexity of the free space, but also on the complexity of a single cell in the
free space and on the complexity of any dynamic motion planning algorithm.

Theorem 3.10 The complexity of any algorithm for the dynamic low obstacle density
motion planning problem (even for a translating robot) is lower boundegd ().

4 Decomposing the Base Space

We still need to decompose the arrangement of columhg H (E)) (E € &) into
constant complexity subcells. To this end, we construct a vertical decomposition of
the arrangement. Since the vertical decompaosition refines the cells of the arrangement,
the subcells of the final decomposition still have constant-size coverage. The approach
we use [1] requires that the columns in the work-time space, as described in Section
3.2, are in general position. This can be achieved by an appropriate perturbation of the
vertices of the columns. Before we can calculate a vertical decomposition we have to
triangulate the 2-faces of the columns. Triangulation does not increase the asymptotic
complexity of the arrangement. After triangulation, the 2-faces of the arrangement
might coincide, though. It is easily verified that the vertical decompaosition algorithm
still works with these introduced degeneracies. To bound the space we add two hori-
zontal planes at timg, and#; (the start and goal time) and only consider the area in
between. To bound the space in theandy-direction we also add a triangular prism

far around the relevant region of the work-time space.

4.1 The Vertical Decomposition

Let S = {sy,...,s,} be a set ofx possibly intersecting triangles in 3 space. The
vertical decompositioof the arrangement{(5') decomposes each cell gf(.5') into
subcells, and is defined as follows (see [1]): from every point on an edge9f—

this can be a part of a triangle edge or of the intersection of two triangles—we extend a
vertical ray in positive and negativeg-direction to the first triangle above and the first
triangle below this point. This way we create a vertical wall for every edge, which we
call aprimary wall. We obtain anulti-prismatic decompositionf .4(.5') into subcells,
themulti-prismswith a unique polygonal bottom and top face; the vertical projections

of both faces are exactly the same. However, the number of vertical walls of a cylinder
need not be constant and the cylinder may not be simply connected. We triangulate the
bottom face as in the planar case. The added segments are extended upward vertically
until they meet the top face. The walls thus erected areséiwendary walls Each
subcell of the vertical decomposition is now a box with a triangular base and top,
connected by vertical walls. (Note that, for navigation purposes, our notion of vertical
decomposition is slightly different from other notions of vertical decomposition that
construct secondary walls using a planar vertical decomposition of the projections of
the top and bottom faces.)

Theorem 4.1 The vertical decomposition of the arrangemeiitol o 1) in the work-
time space consists 6f(n?a(n) log n) constant complexity subcells, and can be com-
puted in timeO (n2a(n)log® n).

Proof: Tagansky [9] proved that the vertical decomposition of the entire arrange-
ment of a set of: triangles in R consists o) (K + n2a(n) log n) subcells where(
is the complexity of the arrangement. Application of this result to the arrangement of
grown obstacle column boundarid$col o H), which satisfiedi = O(n?), yields the
complexity bound.

We can compute the vertical decomposition using an algorithm by DeeBerg
al. [1]. This algorithm runs in time&)(n?logn + V log n), whereV is the combi-
natorial complexity of the vertical decomposition. As = O(n%a(n)logn), the
bound follows. O

To faciliate navigation, we wargach subcell to have a constant number of neighbors.
The common boundary of a subcelland one of its neighbors can be a secondary
wall, a primary wall, or a 2-face of the arrangemetitcol o H). It is easy to see that

the number of neighbors sharing a primary or a secondary wallmighbounded by

a constant. Let us now consider the maximum number of neighbors, sharing a part
of a triangle ofA(col o H) with k. Unfortunately the arrangements of walls ending

on the top and bottom side of the triangle can be very different, and can in general be
as complex as the complexity of the full decompaosition which is only upper-bounded
by O(n?a(n)logn). Simply connecting the subcells at the top of the triangle to the
subcells at the bottom of the triangle could resultin a number of neighbors that is hard
to bound by anything better th&h(n?a(n)log n) for each subcelt. However, as we

will show, we can connect the subcells at the top and bottom of a face by a symboalic,
infinitely thin tetrahedralization. This tetrahedralization will increase the combina-
torial complexity of the vertical decomposition by a factor of at moglog), but
assures that the number of neighbors per subcell is bounded by a constant. Since this
method is quite complicated, we dedicate the following subsection to it. This will lead
to the following result:

Theorem 4.2 There exists a cylindrical decomposition of the base sgatar the dy-
namic low obstacle density motion planning problem consistir@(ef a(n) log* 1)
constant complexity subcells and a constant number of neighbors per subcell. This
decomposition can be computedin?a(n)log® n) time.

4.2 Tetrahedralizing between Polygons

To reduce the number of neighbors of the subcells we will extend the vertical decom-
position with a symbolic connecting structure, that increases the total combinatorial
complexity of the vertical decomposition by a factor @flogn). As a result, the
number of neighbors per subcell of the cell decomposition with the connecting struc-
ture will be bounded by a constant. For each face of the arrangedient o H),
this structure connects the subcells at the top side with the subcells at the bottom side.
The structure we use is a symbolic, infinitely thin tetrahedralization. To simplify the
discussion, we assume that the face for which we construct the connecting structure is
horizontal. (This is not a constraint, but just a matter of definition.) Throughout this
section the vertical direction is parallel to the normal of the face.

Both the top and the bottom side of the face contain a triangulated 2-dimensional
arrangement, say; and7,, created by the intersecting faces and the walls that end
on it. Such triangulations with extra vertices in their interior are referred to as Steiner

10

triangulations; the extra vertices are called Steiner points. The arrangeimentd

T, are normally different; they do not share Steiner points. We separate the top and
bottom of every face in the arrangement. Imagine that the top of the face is at héight

and the bottom at height0. We tetrahedralize the space between the top and bottom
arrangement, by adding a number of Steiner points between the top and bottom face.
(Remember that this is only done in a symbolic way. In reality, the top and bottom
face lie in the same plane. The vertical distance is only used to define the adjacencies
of the added (flat) subcells.)

We distinguish between the convex and the non-convex faces. Note that non-
convex faces indeed exist, since a column can cut out a part of another column. The-
orem 3.4 gives us that the cut out parts are never strictly included in the open interior
of a 2-face of a column. We first show how to tetrahedralize the space between two
different Steiner triangulatiorig and7, of the same convex simple polygéh

Our tetrahedralization has two layers joined at heighby a Steiner triangulation
of P. This triangulatior,, has one Steiner poipt P is triangulated using a star of
edges fronp to all vertices ofP. Both7,, and7, are different Steiner triangulations of
the same polygo®, therefore the vertical projections of the boundarieg,cdnd7,,
are equivalent. We tetrahedralize betw&gnandT7, by adding a face from every edge
of 7, to p. The result is a tetrahedralized pyramid where each tetrahedron corresponds
to a triangle of7y.

To triangulate the complement of this pyramid in the layer betwgemd7,,, we
connect the boundaries @f and7,, by vertical faces between the boundary edges. For
every facef; introduced by connecting the boundaries, we add a Steinergointhe
middle of f;. We connecty; to all vertices onf; and connect each rdfing triangle to
p (see Figure 3). These triangles complete the tetrahedralization of the space between
T, and7,,. The tetrahedralization betwegpnand7,, is constructed in the same way.

It is easy to see that the number of tetrahedra created is linear in the complexity of the
triangulationsy, and7;.

Unfortunately, faces need not be convex. So we must also show how to tetrahe-
dralize the space between two different Steiner triangulations of the same non-convex
simple polygonP. (As indicated above we know that the polygon has no holes. This
is crucial here.) We again add a Steiner triangulafignof P between7; and7,. In
the non-convex case we have to use a more sophisticated Steiner triangulation. For this
we use a triangulation by Hershberger and Suri [4] that was originally designed for ray
shooting in simple polygons. This triangulatign has three important properties. Let
k be the number of edges &*

1. ItintroducesO(k) Steiner points with each Steiner point directly connected to
the boundary of by at least one triangulation edge;

2. Every line segment that lies insidkintersects at mos?(log k) triangles of7,,,;
3. The triangulation can be computediigk) time.
We can derive the following lemma from the propertiegpf

Lemma 4.3 Let P be a polygon withé vertices and without holes, Lét, be the
triangulation of P as described in [4]. Let\ be a triangle inside?, and letAA be the

11

fi qi
(a) (b)

Figure 3: (a) The construction of the pyramid of tetrahedra betweenl the triangles
of 7,. (The added edges are bold.) (b) The tetrahedra created in the second step
between boundary facé and the pyramid.

arrangement of,,, inside triangleA. ThenA, has onlyO(log k) constant complexity
faces.

Proof: Letwv be avertex off,,, insideA. Because, by property (1), every vertex of the
triangulation7,, is connected to the boundary Bfby at least one edge, one outgoing
edge fromv must intersect the boundary &f. By property (2), the boundary ak
intersects at mosP(log k) edges, and, hence, there are also anljog k) vertices
inside A. Since each face ofis is the intersection of a triangle frof,, and the
triangleA, it has constant complexity. It follows that the whole arrangeménthas
complexityO(log k). O

This immediately results in the following corollary.

Corollary 4.4 Let P be a polygon without holes. Léf, be the triangulation de-
scribed in [4]. Let7, be another triangulation of” with complexitym. The arrange-
ment we obtain by overlayirig, and7,, hasO(m log m) constant complexity faces.

Proof: Each triangle off, is divided intoO(log k) < O(log m) constant complexity
faces, by Lemma 4.3. The rd8ng arrangement therefore héxm log m) faces of
O(1) complexity.]

Let 7,«.. be the triangulation of” we obtain by overlaying/, and7,, and triangu-
lating the resultingdces. Letrn, denote the complexity of,. Corollary 4.4 shows
that the complexity off; ., is O(my log my). It is easily computed i) (my, log my)
time. To connecf, to 7,,, (at heightd.5) we placeT,,, betweeny, and7,, at height
0.25. First we tetrahedralize the layer betwegnand 7,..,,. We start by adding
vertical faces from every edge @f to its corresponding edge f,,,. This results
in m, prisms that have the triangles @f as their top and bottom faces. The top

12

faces §ll contain a number of other edges, that are parf,gf\We tetrahedralize each
prism by adding a vertex in the center and connecting it to top, bottom and sides, in
the way described for the convex case. (Note that Steiner points might exist on the
edges of triangles of;.,,,. However, the triangles on the other side of these edges
shares these Steiner points, because they are the result of the intersection of two fully
connected arrangements. Therefore each tetrahedralized prism perfectly fits its neigh-
boring prisms.) The number of tetrahedra in this layep {sm; log m;). We similarly
tetrahedralize the layer betweép,,, and7,,. So the total space betweén and

7. can be filled withO(my log m,) tetrahedra. In the same way we can fill the area
between7; and7,, using the triangulatiory;.,,. This tetrahedralization will have
O(mylog m,) tetrahedra, where, is the complexity of7;.

Summarizing, we can symbolically create a tetrahedralization between the top and
the bottom side of the faces of the arrangement. As the original arrangement has com-
binatorial complexityO(n?a(n)logn) (see Theorem 4.1), the extended arrangement
has complexity) (n?a(n)log?). It can be computed i@ (n2a(n)log® ») time. The
subcells in this arrangement each have constant complexity and a constant number of
neighbors.

4.3 The Decomposition of the Free Space

We constructed a decomposition of the work-time space with the following properties:
¢ The number of subcells 8(n2a(n)log? n).
¢ Each subcell has constant combinatorial complexity.

o Each subcell has constant size coverage, i.e. each subcell is intersected by a
constant number of columns of grown obstacles.

e Each subcell has a constant number of neighboring subcells.

Since the boundaries of the colums form a subset of the subcell boundaries, itis easy to
compute the coverage of each subcell by simply traversing the subdivision of the work-
time space. This can, for example, be accomplished by a breadth first search. Now, we
can use the same approach as in [11] to compute the complete cell decomposition of the
free space (Theorem 2.2). This resultis a gr&@) Each node o€G corresponds to a
constant complexity subcell in the free part of the configuration-time space. Each edge
corresponds to an adjacency between two such subcells. Here two subcells are called
adjacent if and only if they share giidimensional face. (This is important because

we want to compute free paths, rather than semi-free paths.) The degree of the nodes
is bounded by a constant. The complexityQs is the same as the complexity of the
base space, so it h@n?a(n)log? n) nodes and edges. The computation time of
O(n%a(n)log? n) for the base partition dominates the computation timeCfGr

5 Finding a Path

In this section we show how to use the cell decomposition to compute a time-monotone
path through the free space. Since the path must be time-monotone we cannot do

13

Ko
K1 K3

Rq

R5

@) (b)

Figure 4: (a) A 2-dimensional space with four connected free subcells. (b) The con-
nectivity graphCG. Although there is no time-monotone path fremto x4, this fact
is not represented b@G.

an arbitrary search through the configuration-time space; we will use a space sweep
algorithm in the time direction to keep track of the reachable space, while time passes.
We sweep with a hyper-plarie, orthogonal to the time direction, from = ¢, to

t = ty. Slightly abusing the notation, we will from now on uS& to denote both the
connectivity graph and the cell decomposition it represents.

5.1 Preprocessing the Cell Decomposition

To compute the parts of the configuration-time space reachable by time-monotone
paths from the start configuration of the robot, we cannot use the cell decomposi-
tion directly. The space is partitioned into naagssarily convex constant complexity
subcells. The subcells and their adjacencies are represented by theCggaphch
subcell inCG has a constant number of neighbors. A problem W@t is that the
time-monotonicity restrictions are not incorporated in the graph. There can be a path
between two configurations accordingd®, while there exists no time-monotone path
between those two configurations. Figure 4 shows a 2-dimensional example in which
time increases in the vertical upward direction. Although the graph contains a path
between the subcells andx, there exists no time-monotone path from (any configu-
ration in) x4 to (any configuration) im,. Note also that there exists a time-monotone
path froms, to only some of the configurations k3.

Since the subcells in the cell decomposition are reaassarily convex, there can
even exist a pair of configurations in the same subcell, that cannot be connected by
a time-monotone path. In conclusion, the connectivity gréghdoes not contain all
necessary data to find a time-monotone path. Itis possible, however, to decompose the
(f + 1)-dimensional subcells dEG into smaller subcells for which there is a time-
monotone path for every pair of configurations in the same subcell. If a hyper-plane
P, that is orthogonal to the time direction, intersects a suladella number of discon-
nected regions, then there might be configurationstinat cannot be connected with
a time-monotone path. We therefore decompose each such skbotdla constant
number of smaller subcells, such that any cross-section of the hyperfplaith a

14

subcell consists of one connected region. If for seme@ is tangent to a feature af,

then? decomposes into a constant number of constant complexity subcells. Since

r is of constant complexity, there af¥ 1) of these tangencies. We decompeasato

O(1) subcells generated by all possible tangenciep efith features ofz. To adapt

CG, we replace the node af by nodes for the subcells af with the appropriate ad-
jacencies. This extension does not increase the asymptotic combinatorial complexity
of CG. Also the number of neighbors per subcell remains bounded by a (larger) con-
stant. It is easy to see that any pair of configurations in eaclitireggubcell can be
connected by a time-monotone path. In Figure 4 for examglés decomposed into
three subcells by the dashed line.

5.2 Computing a Path

We take the refined connectivity grafi® and note that each subcelhas the follow-
ing property: if(Z, 7) € « is reachable by a time-monotone path, thed @', ') €
k|T" > r} are reachable by a time-monotone path. Initaid, all adjacent subcells
' for which the intersection N ' N (¢ > 7) is an f-dimensional face, are (at least
partially) reachable through

Our objective is to label each subcellwith the earliest time- at which it can be
reached from(Zy, t,) and with a link to the subcell from which it can be reached at
time 7. If the subcell; 5 (7;,,) receives alabet, < t; then(Z;,1,) is reachable
from (Zy, o) by a time-monotone path. The sequence of subcells containing this path
can be found by tracing back the links from each subcell, starting fram

To obtain the labelling outlined above, we perform a sweep-like searebof
starting fromxg > (Zg, to). An event occurs if a subcelf is reachable from another
subcellx at some time-. We keep the events:, ', 7) of the sweep in a priority queue
0Q—the event with the smallestis dequeued prior to every other event.

An event(x, v, 7) is handled quite straightforward. Firstly, we add a link frefn
to x and labek’ with . Secondly, we consider each neighk6of ' in CG for which
k' Nk"N{t > r}isanf-dimensional face. Let' = min{t|x' N " N {t > 7} # 0}.

If <" is not yet stored irQ we add the evenix’, ", 7’) to Q. Otherwise, if the time
of the event stored fot” is later than’ we replace the old event by the new one.

If the event queu® is empty, we are done. We check if the subeglb (71,1)
received a label. If so, we start iy and trace the links back to the starting subcell
ko 3 (Zo, o) to find the (reversed) sequence of subcells that contains a time-monotone
free path from{ 7y, tg) to (71, t1). If the subcelk, did notreceive a label, theiy, , ¢1)
is not reachable by a time-monotone path, and we report failure.

It remains to transform the sequence of subcells into a path. We want this path to
lie in the free space (not in its boundary) and we want it to be strictly time-monotone
(otherwise the robot would need infinite speed to traverse parts of the path). We call
the sequence of connected subcelthannel Because adjacencent subcells have an
f-dimensional intersection, the interior of the channel will be connected. Also the inte-
rior of the channel lies completely in the free space. Clearly, this interior must contain
a strictly time-monotone path. (It contains a time-monotone path by construction, and
because the interior is an open space this path can be made strictly monotone.)

In the following, we describe how to first create a semi-free and time-monotone
path, and sebsequently transform this path into a free and strictly time-monotone path.

15

Let x andx’ be two adjacent subcells in the channel. We create a vertex of the path
that lies on the boundary ef andx’ at the timer stored withx’. (= was the earliest
moment at which we could reael.) Inside each subcell we connect the two vertices
created with a time-monotone path. Because the subcell has constant complexity this
can be done in constant time. The full path is time-monotone but not necessarily
strictly time-monotone. Also, it is only semi-free. We have to transform the computed
path into a path that is strictly time-monotone and lies completely in the free space.
Firstly, we transform the channel into a channel which only consists of subcells with
non-zero volume, and contains the original path. This is easily done by tracing the
semi-free path and while doing this replacing flat tetraheda by subcells of the original
decomposition which contain the path as well. We discard the symbolic coordinates on
the fly. Secondly, we transform it into a strictly time-monotone free path by piecewise
slightly slanting it in the time direction.

Summarizing, in order to solve a dynamic low obstacle density motion planning
problem, we perform the following steps:

1. CoMPUTE vertical decomposition afi(col o H).
2. for all facesf of A(col o H)do
CoMpuUTE flat tetrahedralization between the top and the bottom side of
3. TRANSFORM A(col o H) into a decomposition of theonfiguration-time space
4. COMPUTE a strictly time-monoton&ee path.

It remains to analyse the complexity of the algorithm. [€t7| denote the size
of the graph. Every subcell of the decomposition has a constant number of neighbors
and, thus, every subcell creates a constant number of events. This sun@3((p'te})
events. So the size @ is O(|C¢G|) and enqueueing and dequeueing an event takes
O(log | CG|)time. Itis easy to see that handling an event, therefore, takeg | CG|)
time. The time for the sweep is therefore upper bounde@@y’'G:| log | CG|). Since
|CG| = O(n%a(n)log? n) by Theorem 4.2, the computation of a time-monotone path
takesO(n2a(n)log® n) time. The following theorem summarizes the result.

Theorem 5.1 The low obstacle density motion planning problem for a robot among
a set ofn obstacles that move with constant speed along polylines, can be solved in
O(n*a(n)log®n) time.

6 Conclusion

In this paper we addressed a dynamic extension of the robot motion planning problem.
We developed an approach for the exact motion planning problem for a single robot
in a low obstacle density environment with multiple moving objects whose motion is
represented by a constant complexity polygonal line. We proved that the complexity
of the free space of this motion planning problem@ign?). Our algorithm takes
O(n*a(n)log® n) time to compute a free, time-monotone path, for the robot. We are
able to construct low obstacle density workspaces, with moving obstacles, for which
the path of the robots is of combinatorial complexityr?), so our result is close to
optimal. It remains to be seen whether such a bound exists for a robot with bounded
velocity modulus, or bounded acceleration.

16

Itis an interesting question whether the results can be extended to a 3-dimensional
workspace. We can again define columns in the (now 4-dimensional) work-time space.
Theorem 3.3 can easily be extended, leading again to a boufighaf) on the com-
plexity of the free space, like in the two-dimensional case. Also the lowerbound of
Q(n?) easily carries over. The problem is to compute a constant-complexity partition
of the work-time space that has constant coverage. It is easy to obt@iai par-
tition by extending thedces of the columns to hyper-planes, building the complete
arrangement of these hyper-planes, and subdividing the resulting cells into simplices.
This leads to a close t@(»*) algorithm for motion planning in dynamic 3-dimensional
low obstacle density environments. It is at the moment unclear how to improve this
result.

References

[1] M. de Berg, L. Guibas, and D. Halperin. Vertical decomposition for triangles in
3-space Discrete & Computational Geometry5:35-61, 1996.

[2] M. de Berg, M. Katz, A.F. van der Stappen, and J. Vleugels. Realistic input mod-
els for geometric algorithms. IRroc. of the 13th ACM Symp. on Computational
Geometrypages 294-303, 1997.

[3] J. Canny and J. Reif. New lower bound techniques for robot motion planning
problems. InProc. 28th IEEE Symp. on Foundations of Computer Scigramges
49-60, Los Angeles, 1987.

[4] J. Hershberger and S. Suri. A pedestrian approach to ray shooting: Shoot a ray,
take a walk.J. Algorithms 18:403-431, 1995.

[5] J. Reif. Complexity of the generalized mover’s problemPlanning, Geometry
and Complexity of Robot Motion].T. Schwartz, M. Sharir, J. Hopcroft (Eds.),
pages 267-281, Ablex Pub., Norwood, NJ, 1987.

[6] J. Reif and M. Sharir. Motion planning in the presence of moving obstacles. In
J. ACM41, 4, pages 764-790, 1994.

[7] J. Schwartz and M. Sharir. On the piano movers’ problem: Il. general techniques
for computing topological properties of real algebraic manifoldsivances in
Applied Mathematicst:289-351, 1983.

[8] K. Sutnerand W. Maass. Motion planning among time dependent obstAckes.
Informatica 26:93-133, 1988.

[9] B. Tagansky. A new technique for analyzing substructures in arrangements. In
Proc. 11th Annual ACM Symp. on Computational Geomé&®gs.

[10] A.F. van der StappenMotion planning amidst fat obstacle®hD thesis, Dept.
of Computer Science, Utrecht University, 1994.

[11] A.F. van der Stappen, M.H. Overmars, M. de Berg and J. Vleugels. Motion
planning in environments with low obstacle density. Technical report, UU-CS-
1997-19, Dept. of Computer Science, Utrecht University, 1997.

17

[12] J. Vleugels. On fatness and fitness — realistic input models for geometric algo-
rithms. PhD-thesis, Dept. of Computer Science, Utrecht University, 1997.

18

